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ABSTRACT This paper presents novel observations and physical insights on jitter in a chain of CMOS
inverters. It is demonstrated that at the final output of the inverter chain, power supply induced jitter does not
necessarily increasewith the number of inverter stages. The presented investigation is validated by comparing
the results using a semianalytical method with SPICE based simulations. The proposed observations are also
validated using measurement results obtained by two measurement setups.
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I. INTRODUCTION7

This paper presents an extension of the work presented in [1]8

by introducing novel observations and physical insights on9

power supply induced jitter (PSIJ) in a CMOS chain-of-10

inverters. The chains of CMOS inverters have various appli-11

cations in VLSI systems such as delay lines or as clock12

networks, etc. [2], [3], [4]. Chain-of-inverters are also used in13

I/O drivers for driving on-chip and off-chip loads. For driving14

higher capacitive loads, tapered buffers are used [5] where15

chain-of-inverters are designed with the geometric progres-16

sion size for subsequent inverter stages. The delay of these17

chains is very sensitive with respect to power supply varia-18

tions [6]. Power supply noise (PSN) causes time interval error19

(TIE) which in turn contributes to PSIJ [7], [8], [9], [10], [11],20

[12], [13]. Due to narrow timing margins and very low supply21

voltages, PSIJ is one of the critical performance parameters22

that significantly impacts the overall timing budget in present23

high-speed systems. There are many studies available in the24

literature for the analysis of TIE and PSIJ in CMOS chain-25

of-inverters [13]. This paper presents a novel investigation on26

nature of PSIJ in CMOS chain-of-inverters.27

The associate editor coordinating the review of this manuscript and

approving it for publication was Amedeo Andreotti .

A. RELATIONSHIP BETWEEN NOISE AND JITTER 28

In a CMOS inverter, noise can propagate to its output through 29

power supply, ground and input terminals. The noise at output 30

propagating through different paths depend on the transfer 31

functions of the respective paths [14]. Due to the total noise 32

response, the transition edge (rising/falling) of the output 33

signal may deviate from nominal position, known as time 34

interval error (TIE). An efficient technique for estimation 35

of TIE is presented in [15], using the slope of the output 36

response. In this method, TIE is estimated from the total 37

noise response at the mid-point of the rising/falling edge 38

by dividing it by the signal slope at the same point. The 39

expression for the TIE (or instantaneous jitter, represented by 40

Jr ) for a particular bit is given as: 41

TIE = Jr =
vrn (tm)
αtm

(1) 42

where, vrn (tm) is the magnitude of noise response at the 43

mid-point (tm) of rising/falling edge of the output response 44

(calculated using the noise transfer function) and αtm is the 45

slope of the signal at tm. By calculating TIE for a large number 46

of bits using (1), the PSIJ can be estimated as: 47

PSIJ = JP−P = max(Jr )−min(Jr ) (2) 48

Here, JP−P corresponds to the peak-to-peak jitter. The above 49

expressions for PSIJ estimation [1], [15] are further adopted 50
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FIGURE 1. Eye crossing at the output of chain-of-inverters with different number of stages in the presence of multiple noise sources.

to obtain physical insights into the behavior and impact of51

power supply noise on timing deviations, and are detailed in52

the following sections.53

II. NOVEL OBSERVATIONS ON THE BEHAVIOR OF PSIJ54

Fig. 1 shows a CMOS inverter based delay-line frequently55

used in clock networks of digital systems. The number of56

inverter stages in the chain may vary based on the amount57

of delay required by the system.58

In the example used in Fig. 1, 128 inverter stages are59

used and the figure shows the simulated eye-crossings at the60

output of various number of stages in the presence of power61

supply as well as ground noise sources. The inverters are62

designed in 55 nm triple-gate oxide BiCMOS technology of63

STMicroelectronics with a supply voltage of 1.8 V. For simu-64

lation purposes, different sinusoidal signals with frequencies65

ranging from 200MHz to 800MHz are used as noise sources.66

A signal with data rate of 1 Gbps is applied at the input. The67

simulation was done using industry standard EDA tools. In68

Fig. 1, it can be observed from the eye-diagrams that, PSIJ69

is not increasing monotonically along the number of stages,70

instead it tends to decrease at the output of even number of71

stages and increase at the output of odd number of stages.72

III. PHYSICAL INSIGHTS73

The phenomenon of the behavior of peak-to-peak jitter values74

in the eye-diagrams of Fig. 1, can be explained by a sim-75

ple example having a chain of three inverters as shown in76

Fig. 2. In Fig. 2, the noise sources vns (t), vng (t) and vnd (t)77

correspond to the deterministic noise sources at different78

terminals representing supply noise, ground noise and data79

noise, respectively.80

Consider the rising edge of a data signal at the input81

of a chain-of-inverters in the presence of noise. The82

FIGURE 2. A rising edge of input signal and the corresponding
rising/falling edge of output signals in the presence of multiple noise
sources in a chain-of-inverters. Here the black lines at the output of
inverters represents the ideal waveform and the grey line represents the
deviated waveform in the presence of noise sources.

corresponding signal transitions (rising/falling) at the output 83

of each stage are shown in Fig. 2. At the output of the first 84

stage, the slope (αtm1 ) is negative (due to the falling edge) 85

at the mid-point (tm1 ). Hence, if the total noise response 86

(vo1 (tm1 )) is positive, then the TIE (Jr1 ) will be negative and 87

is represented by 1T1, given by: 88

1T1 =
vo1 (tm1 )
αtm1

. (3) 89

After the propagation delay of inverter (tm2 − tm1 ), the output 90

of second inverter reaches mid-point (tm2 ) of rising edge. 91

If the noise frequency is not very high, the phase of total 92

noise response (vo2 (tm2 )) will also be approximately same as 93

the phase of vo1 (tm1 ). Also, note that, for this stage, the TIE 94

due to power supply and ground noise will be positive (due 95

to positive slope). Correspondingly, the total TIE at the rising 96

edge of the second inverter output can be estimated as [16]: 97

Jr2 = −1T1 +1T2 (4) 98

where 1T2 =
vo2 (tm2 )
αtm2

. From (4), it can be seen that the 99

magnitude of total TIE is reduced at the output of second 100
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TABLE 1. TIE at different stages.

stage. Similarly, at the output of the third stage, note that the101

phase of total noise response (vo3 (tm3 )) at the mid-point (tm3 )102

is approximately same as that of phase of vo2 (tm2 ). Also, the103

TIE due to power supply and ground noise will be negative104

(due to negative slope). Consequently, the total TIE at the105

rising edge of third inverter output can be expressed as:106

Jr3 = −1T1 +1T2 −1T3; 1T3 =
vo3 (tm3 )
αtm3

. (5)107

As is obvious from (5), the magnitude of the total TIE is108

increased at the output of third stage compared to the one at109

the output of 2nd stage. Table 1 shows the sign of slopes and110

the corresponding TIE at the output of each stage.111

A. TAPERED BUFFERS AND DELAY LINES112

For the case of tapered buffers also, a similar pattern follows113

as the magnitudes of transfer functions remain approximately114

constant in spite of scaling of inverter sizes (both nMOS and115

pMOS). This is because the numerator and denominator of116

the transfer functions (refer to (47) of [1]) scale proportion-117

ally with respect to the size of MOSFET. Also, the transfer118

functions scale based on the biasing conditions.119

It is to be noted that, in delay lines, after initial few stages,120

the slope of the noise response approximately remains same,121

and also the biasing conditions at the mid-points (tm1 , tm2 , tm3 ,122

etc.) (refer to Fig. 9 of [1]). In other words, the rise/fall times123

after a few stages in a long chain of inverters do not depend124

much on the rise/fall time of the input at the first stage.125

Hence, it can be concluded that the incremental/126

decremental TIE (1T ) at the output of each stage of a chain-127

of-inverters will be approximately same (assuming that the128

frequency of noise is very low compared to the propagation129

delay of an inverter). This is observed in Fig. 1, where there130

is not much change in jitter values between the output of131

first stage inverter and 128th stage inverter, in spite of a large132

number of stages in between.133

IV. RESULTS AND DISCUSSION134

A. SIMULATION RESULTS135

Four Examples are considered in this section to validate136

the novel observations and physical insights presented in137

this paper. First example presented here corresponds to138

the Example-5 of [1] which considers a delay line having139

10 equal sized inverters with data rate of 240Mbps and the140

noise sources at data input, supply and ground, having fre-141

quencies of 233 MHz, 1 GHz and 500 MHz, respectively.142

The amplitudes for all the noise sources are same but different 143

phases are used. Fig. 3(a) (which corresponds to the Fig. 14(a) 144

of [1]) shows the jitter at the output of every stage using the 145

conventional SPICE simulation and the proposed estimation. 146

As can be seen from the graph, after the initial three stages, 147

the peak-to-peak jitter remains approximately constant for 148

all odd stages (also true for even number of stages) con- 149

firming the novel observations. To further verify the validity 150

of the presented observations, three more experiments are 151

performed in the similar way using tapered buffer circuit with 152

stage ratio of 2, and with different types of noise sources (e.g., 153

sawtooth noise). Here, the saw-tooth noise is generated by 154

superimposingmultiple sine waves. In all three new examples 155

presented here, the inverter chain is designed in 55 nmCMOS 156

technology and the input data rate to the inverter chain is 157

1 Gbps. The peak-to-peak amplitude of the noise is restricted 158

to VDD
10 so that the bias conditions don’t change. Correspond- 159

ing results are presented in Fig 3 (b), (c) and (d). It can be 160

observed from the plots, after the first few initial stages, that 161

the incremental and decremental PSIJ at the output of odd and 162

even number of stages, respectively, remain approximately 163

the constant. Hence, after few initial stages, the peak-to-peak 164

jitter remains approximately constant for all odd (and even) 165

number of stages. These results confirm the novel observa- 166

tions made in this paper, that the PSIJ after initial few stages 167

remains more or less the same due to the cancellation of TIE 168

from odd and even stages. 169

B. IMPACT OF ON-CHIP INTERCONNECTS ON THE 170

PROPOSED OBSERVATIONS 171

The proposed observations are also correct in different tech- 172

nologies/foundries, including the effects of interconnects in 173

presence of supply fluctuations. For the purpose of valida- 174

tion, the length of the segment (or the metal wire) between 175

two inverters is roughly in the range of 1 µm for 180 nm 176

technology or below technology nodes. The maximum noise 177

considered in work is 1 GHz, the wavelength of which will 178

be equal to 30 cm. Thus, for this comparatively small elec- 179

trical length of 1 µm, the phase of noise will not change 180

significantly. Noise at lower frequencies will have even larger 181

wavelengths. The interconnect RC values can be minimal 182

compared to the total node capacitance and resistance of the 183

transistors at the output of each inverter. Hence the effect 184

of interconnects on the charging and discharging of node 185

capacitance will be negligible. Because of this, the effect of 186

interconnects on TIE will also be negligible. For the purpose 187

of validation, a chain of 10 inverters is designed in CMOS 188

180 nm technology node of Lfoundry and simulated with and 189

without interconnects between every consecutive stage. Fig. 4 190

shows the comparison between both the cases, which assures 191

the validity of the proposed claim in the presence of on-chip 192

interconnects. It is worth to note that if the total electrical 193

length of the inverter chain is very small compared to the 194

wavelength of the noise, the phase of noise will not change 195

significantly from the input to output stage. Hence the rule 196

presented in this work will hold irrespective of the distance 197
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FIGURE 3. Comparison of jitter estimation using simulation and proposed approach for inverter chains with different number of stages:
(a) Delay-line with three different sinusoidal signals as noise sources at power supply, input and ground [1], (b) Tapered buffer with three
different sinusoidal signals as noise sources at supply, input and ground. (c) Tapered buffer with one sawtooth wave as noise source at supply.
(d) Tapered buffer with sawtooth wave as noise at ground.

FIGURE 4. Comparison between PSIJ values at the output of each stage in
a chain-of-inverters with and without RC interconnects.

between inverters if the frequency of the noise is not very198

high.199

C. MEASUREMENT RESULTS200

In this section, measurement based validation of the proposed201

concepts is presented. For this purpose, two measurement202

setups are used. These setups were designed in two different203

laboratories.204

1) MEASUREMENT SETUP-1205

Fig. 5(a) shows a block diagram of the first measurement206

setup for the estimation of PSIJ in the presence of PSN.207

The setup consists of a device under test (DUT), an arbitrary208

function generator (AFG) (AFG1062 by Tektronix) for the209

input waveform generation, an Oscilloscope (MSOS104A by210

Keysight) for the measurement of PSIJ. A series combination 211

of DC supply and PSN Source is used for providing the 212

power supply voltage (VDD) with small ac fluctuations to the 213

DUT. For the PSN source, a single-tone sinusoidal signal is 214

generated using the same AFG. A prototype with ten CMOS 215

inverter stages has been designed using the CD74HCT04E 216

integrated circuit (IC) (vendor: Texas Instruments). This is 217

accomplished using two CD74HCT04E ICs as each of the 218

ICs contains only six independent CMOS inverters. An equal 219

length for interconnects is considered for connection between 220

any two stages. A photograph of the complete measurement 221

setup is given in Fig. 5(b). 222

In this experiment, a 1 V single-tone sinusoidal signal 223

having a frequency of 5.213 MHz is applied on top of the 224

VDD. The data rate of the input signal is 6 Mbps and is 225

varied from 0 V to VDD, where VDD is 5 V. For the PSIJ 226

measurement, an eye diagram is plotted using a mixed-signal 227

oscilloscope (MSO) with and without supply fluctuations. 228

The difference between the two gives the PSIJ. A photograph 229

of the complete measurement setup is depicted in Fig. 5(b). 230

The measurement results of PSIJ with respect to the number 231

of stages is shown in Fig. 6. The behaviour of the PSIJ in 232

Fig. 6 also confirms the validity of the proposed observations. 233

2) MEASUREMENT SETUP-2 234

For additional validation, a second measurement setup, this 235

time with different modules with similar type of connections 236

as in setup-1 is setup. Here, two M74HC04B1 ICs (vendor: 237

STMicroelectronics) were used and the Oscilloscope model 238
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FIGURE 5. Measurement setup: (a) Block diagram and (b) Photograph.

FIGURE 6. Jitter for a 10 stage inverter chain using measurement Setup-1.

FIGURE 7. Jitter for a 10 stage inverter chain using measurement Setup-2.

MSOX4054A (Keysight) was used. The function generator239

used was DDS30 (Aplab). In this case, the data rate used240

was 3Mbps. All other input parameters were same (e.g. noise241

amplitude, frequency, etc.) as in measurement setup-1. The 242

measurement results of PSIJ with respect to the number of 243

stages is shown in Fig. 7. 244

It is evident that results obtained from both the measure- 245

ments converge and support the proposed observations and 246

theory developed in this paper. 247

V. CONCLUSION 248

Novel investigations and physical insights for time interval 249

error as well as power supply induced jitter in a chain of 250

CMOS inverters due to the effect of power supply noise 251

are presented in this paper. It is demonstrated using several 252

simulation as well as measurement results that PSIJ is not 253

necessarily higher in a chain of inverters having higher num- 254

ber of stages. 255
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