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ABSTRACT Sunspot number is the most basic parameter to describe the level of solar activity. The accurate
prediction of sunspot number can reflect the electromagnetic disturbance level of the electromagnetic layer,
ionosphere and the middle and high layers in the future in advance, so as to provide important reference
information for navigation, positioning, communication and the prediction of orbital attenuation of LEO
satellites. Aiming at the characteristics of sunspot time series such as non-stationary, chaotic and difficult to
predict, this paper proposed a two-stage combined prediction model based on complete Ensemble Empirical
mode decomposition with adaptive noise (CEEMDAN), particle swarm optimization (PSO) and extreme
learning machine(ELM) network. In the first stage of prediction: firstly, the original sunspot monthly mean
series is decomposed by CEEMDAN to reduce the non-linearity and non-stationary of the original series.
Then, an ELM prediction model is established for the sub-sequences decomposed by CEEMDAN, and
the input layer dimension, hidden layer dimension, input layer weight and hidden layer bias of ELM are
optimized by PSO algorithm. Finally, the prediction results of the first stage are obtained by superimposing
the prediction results of each sub-sequence. The second stage is the error self-correction stage. Firstly,
the prediction error sequence of the first stage is obtained. Then, the CEEMDAN-PSO-ELM prediction
model is used to self-correct the prediction error of the first stage. Finally, the prediction results of the
first stage and the self-correction results of the second stage are superimposed to obtain the final prediction
value of the monthly sunspot number. In this paper, CEEMDAN is used to reduce the non-linearity and
non-stationary of the sunspot series, and PSO is used to determine the best parameters of ELM network,
and the useful information in the prediction error is fully considered, which effectively improves the
prediction accuracy of sunspot monthly mean series. The prediction experiment is carried out by using the
measured sunspot monthly mean series, and the proposed model is compared with wavelet neural network
(WNN), back propagation neural network (BPNN), ELM, CEEMDAN-ELM and CEEMDAN-PSO-ELM.
The experimental results show that the prediction accuracy of the proposed two-stage prediction model has
been significantly improved, and has better prediction stability.

25 INDEX TERMS Sunspots, CCEMDAN, particle swarm optimization, extreme learning machine.

I. INTRODUCTION26

The number of sunspots is the most basic parameter describ-27

ing the level of solar activity. Because the number of sunspots28

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamed M. A. Moustafa .

is closely related to solar flares and coronal mass ejec- 29

tions and other eruptive phenomena, these eruptive phenom- 30

ena cause geomagnetic disturbances. Accurate prediction of 31

sunspot numbers can reflect the state of disturbance levels in 32

the magnetosphere, ionosphere, and middle and upper atmo- 33

spheres, which can provide important reference information 34
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for navigation, positioning, communications, and low-orbit35

satellite orbit attenuation predictions. Therefore, the accurate36

prediction of sunspot number has very important research37

significance.38

At present, many scholars have conducted in-depth39

research on the prediction of themonthly average of sunspots.40

Among them, two physical prediction models based on sim-41

ilar week and engine models have achieved good prediction42

results [1], [2], [3]. However, it is another important research43

direction to regard the smoothed monthly mean value of44

sunspot number as a time series, and construct the time series45

using historical data accumulated in long-term records, and46

forecast by a certain prediction algorithm [4]. In recent years,47

nonlinear prediction models represented by neural networks48

have been widely used in the prediction of nonlinear systems49

due to their extensive adaptability and learning capabilities.50

The most widely used in the prediction of the monthly mean51

value of sunspots are the nonlinear prediction models rep-52

resented by radial basis function neural networks [5], [6],53

echo state networks [7], and least square support vector54

machines [8].55

However, different prediction models have their own56

advantages and disadvantages, so, the single predictionmodel57

is difficult to achieve the optimal prediction results [9].58

In order to further improve the prediction performance,59

researchers have proposed the hybrid prediction model,60

which can integrate the advantages of different models.61

The hybrid prediction model mainly includes the follow-62

ing aspects: data preprocessing technology, such as empir-63

ical mode decomposition (CEEMDAN), variational mode64

decomposition (VMD) and singular spectrum analysis (SSA),65

intelligent optimization algorithms, such as genetic algorithm66

(GA) [10], particle swarm optimization (PSO) [11] and grey67

wolf optimizer(GWO) [12], as well as prediction models,68

such as extreme learning machine (ELM), back propagation69

neural network (BPNN) and support vector machine (SVM),70

etc [13].71

In recent years, in order to improve the prediction per-72

formance of data, different types of hybrid prediction mod-73

els have been proposed. Reference [14] used empirical74

mode decomposition and autoregressive models to study the75

long-term prediction of sunspot numbers. Reference [15]76

used complementary ensemble empirical mode decompo-77

sition (CEEMD) to decompose the time series of sunspot78

numbers, and then used wavelet neural network (WNN) to79

predict the decomposed components. Reference [16] com-80

bines empirical mode decomposition with long- and81

short-term network models in deep learning, and uses a82

cyclic model to predict sunspot sequences. Reference [17]83

proposed a hybrid wind power prediction model by84

using the gravity search algorithm (GSA) to optimize the85

hyper-parameters of least squares support vector machine86

(LSSVM). Reference [18] proposed a hybrid prediction87

model based on wavelet transform and convolutional neural88

network. Reference [19] first uses wavelet packet transform89

to decompose the original data, then uses LSSVM to predict90

the decomposed data, and uses the combined optimization 91

method based on simulated annealing and particle swarm 92

optimization(SA-PSO) to optimize the super-parameters of 93

LSSVM. The experimental results of the above hybridmodels 94

show that the hybrid prediction model has higher prediction 95

accuracy than the single prediction model. 96

In addition, most of the research on prediction models only 97

carried out simple error correction, ignoring the importance 98

of prediction error, resulting in the inability to make full use 99

of the useful information in the prediction error. However, 100

the current research shows that considering the error factor 101

can significantly improve the prediction performance. For 102

example, [20] shows that the accuracy of the predictionmodel 103

based on error correction is significantly better than that 104

before error correction. Reference [21] proposed a hybrid 105

prediction model with error correction. The prediction results 106

show that the prediction model based on error correction has 107

better prediction ability than other prediction models without 108

error correction. The prediction results of [20], [22], [23], 109

and [24] also show that error correction can improve the 110

prediction accuracy. Based on the results of the above litera- 111

tures, this paper considers the error factor in constructing the 112

prediction model of the monthly mean series of sunspots, and 113

further improves the prediction accuracy through multi-scale 114

error correction. 115

Therefore, this paper proposes a two-stage prediction 116

model based on multi-scale decomposition, swarm intelli- 117

gence optimization algorithm and multi-scale correction of 118

error sequence, which successfully solves the above impor- 119

tant problems. Specifically, in the first stage of prediction, 120

aiming at the nonlinear problem of sunspot monthly mean 121

time series, CEEMDAN method is used to decompose the 122

original data into a series of intrinsic mode functions (IMF), 123

and then particle swarm optimization (PSO) ELM model 124

(PSO-ELM) is used to predict all the intrinsic mode com- 125

ponents. Then, in the second stage of prediction, an error 126

correction predictionmethod based onmulti-scale PSO-ELM 127

is constructed to correct the prediction error in the first stage. 128

Finally, the prediction results of all IMF in the first stage are 129

integrated with the error prediction results in the second stage 130

to obtain the final prediction value. Experimental results show 131

that the proposed two-stage prediction model performs well 132

in predicting the monthly mean of sunspots. 133

The main innovation and contributions of this paper are 134

summarized as follows: 135

(1) In this paper, a new two-stage prediction framework is 136

proposed, which can better improve the prediction accuracy 137

of sunspot monthly mean. Moreover, the effectiveness of the 138

proposed two-stage prediction model is verified by several 139

datasets, and the prediction results of the proposedmethod are 140

compared and analyzed with other five classical prediction 141

results.. 142

(2) The proposed sunspot prediction model takes into 143

account the error factors, and successfully solves a major 144

problem of the previous models, that is, it only improves the 145

prediction ability of sunspot monthly mean series, without 146
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TABLE 1. Properties descriptive statistics of smoothed monthly mean
value of sunspot number.

considering the influence of error factors on the effectiveness147

of the predictionmodel. Therefore, themulti-scale PSO-ELM148

hybrid model is used to correct the prediction error, and then149

the correction results of the prediction error are integrated into150

the proposed two-stage prediction model.151

(3) The accuracy and stability of the prediction are con-152

sidered in the proposed prediction model. Specifically, PSO153

algorithm is used to optimize super-parameters of ELM to154

achieve high prediction accuracy and stability. The prediction155

results show that the prediction model based on PSO-ELM156

has high prediction accuracy and stability, which reflects the157

effectiveness of PSO-ELM in predicting the monthly mean158

value of sunspots.159

II. MATERIALS AND METHOD160

A. MONTHLY MEAN DATA OF SUNSPOTS161

Themonthly average data of sunspots comes from the official162

website of the Solar Influence Data Analysis Center (SIDC)163

of the Royal Observatory of Belgium (http://sidc.oma.be/164

silso/datafiles) [25]. The sunspot data on this website has165

been recorded since 1749, and the data was revised signifi-166

cantly in July 2015. This article uses the corrected monthly167

average of sunspots. The smoothed monthly average of the168

number of sunspots is the statistics of the monthly average169

of the number of sunspots in the current 6 months, the next170

6months and the current month. Theweight of the first month171

of the first 6 months and the last month of the next 6 months172

is 0.5, and the weight of the other 11 months is 1. Divide173

the sum of the monthly averages of the 13-month sunspots174

by 12. The time series data is the smoothed monthly average175

of the number of sunspots from July 1949 to February 2019.176

Table 1 is a descriptive statistics of the smoothed monthly177

average of the number of sunspots.178

B. CEEMDAN179

Huang et al. [26] proposed an EMD method that can180

decompose any signal into intrinsic mode functions (IMF).181

M. A. Colorminas et al. [27] proposed the Complete182

ensemble empirical mode decomposition with adaptive183

noise(CEEMDAN) method based on the research of184

Huang et al. CEEMDAN uses the zero-mean characteristic185

of Gaussian white noise to make the decomposition effect of186

signal data more complete. The specific processing process187

is as follows:188

Step 1: Add the standard normal distribution white noise189

wi(n) of different amplitudes to the given target signal x(n)190

and construct the signal sequence of the i-th experiment as 191

x i(n) = x(n)+ γ0wi(n), (i = 1, 2, . . . , I ) (1) 192

where: γ0 is the standard deviation of noise. 193

Step 2: In the first stage, the EMD method is used to 194

decompose the target signal, and the first intrinsic modal 195

component(IMF) is obtained and the average value is 196

C1(n) =
1
I

I∑
i=1

IMF i1(n) (2) 197

(IMF refers to a function that satisfies the following two 198

conditions: 1) the number of extreme points is equal to or 199

differs from the number of zero crossings by at most one; 200

2) the mean of the envelope defined by the local maximum 201

point and the envelope defined by the local minimum point is 202

zero) 203

The first stage margin signal is expressed as 204

r1(n) = x(n)− C1(n) (3) 205

Step 3: Define Ek (n) as the K -th IMF component after 206

EMD decomposition of the signal data. Decomposing the 207

sequence r1(n) + γ1E1(wi(n)), the IMF component of the 208

second stage can be obtained as 209

C2(n) =
1
I

I∑
i=1

E1{r1(n)+ γ1E1[wi(n)]} (4) 210

The second remaining component is 211

r2(n) = r1(n)− C2(n) (5) 212

Step 4: By analogy, the K -th remaining component is 213

rk (n) = rk−1(n)− Ck (n) (6) 214

The (k + 1) -th IMF component is 215

Ck+1(n) =
1
I

I∑
i=1

E1{rk (n)+ γkEk [wi(n)]} (7) 216

Step 5: Repeat Step 4 until the remaining components cannot 217

meet the EMD decomposition conditions or the iteration 218

ends. Finally, all K intrinsic mode functions ({imfk}1≤k≤K ) 219

of CEEMDAN are obtained, and the residual R(n) is 220

R(n) = x(n)−
K∑
k=1

Ck (n) (8) 221

the target data sequence is decomposed into 222

x(n) =
K∑
k=1

Ck (n)+ R(n) (9) 223
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FIGURE 1. Network structure of ELM.

C. PARTICLE SWARM OPTIMIZATION EXTREM LEARING224

MACHINE225

1) EXTREM LEARING MACHINE226

ELM is a new algorithm for Single-hidden Layer Feed For-227

ward Networks (SLFNs) proposed by Huang et al. [28].228

Compared with traditional neural networks based on gradient229

learning, ELM has a unique advantage, that is, the algorithm230

only needs to set the number of hidden layer units, and231

then randomly generate input connection weight vectors and232

hidden layer biases, and calculate the optimal solution. This233

process avoids the traditional multiple iterations. In partic-234

ular, ELM has a fast learning rate, which greatly reduces235

training time, thereby improving the generalization of neural236

networks and improving the accuracy of network operation237

results. The ELM network structure is shown in Figure 1.238

For any N different samples (xi, yi), where239

xi = [xi1, xi2, · · · , xiN ]T ∈ RN240

yi = [yi1, yi2, · · · , yiK ]T ∈ RK241

the output of a feed-forward neural network with hidden242

nodes and an activation function G(x) is243

yi = f (xi)244

=

Q∑
j=1

βjG(wj · xi + bj), wj ∈ RN , βj ∈ RK (10)245

where i = 1, 2, · · · ,N , j = 1, 2, · · · ,Q, wj is the input246

weight connecting the input layer to the -th hidden layer node,247

βj = [βj1, βj2, · · · , βjK ]T is the output weight connecting the248

j -th hidden layer node to the output node, bj is the deviation249

value of the j-th hidden layer node, wj · xi represents the inner250

product of vectors wj and xi, the excitation function G(x) can251

be selected as ‘‘Sigmoid’’, ‘‘Tansig’’, ‘‘Sine’’ or ‘‘RBF’’ and252

so on.253

Converting Equation (10) into matrix form, we can get:254

Y = Hβ (11)255

where H is the hidden layer output matrix of the network.256

In the ELM algorithm, the input weight and hidden layer257

can be given randomly without adjustment during the training258

process, and the hidden layer matrix H is a definite matrix259

before training. The training of the feed-forward neural net- 260

work is actually transformed into a problem of solving the 261

least square solution β̂ of the output weight matrix. The 262

output weight matrix β̂ can be expressed as 263

β̂ = H+Y (12) 264

where H+ is the generalized inverse of matrix H . 265

According to Equations (10) to (12), the output weight 266

matrix is determined by the deviation between the input 267

weight matrix and the hidden layer. Since ELM randomly 268

assigns the initial input weight matrix and hidden layer devi- 269

ation, there may be some input weight matrix and hidden 270

layer deviation of 0, resulting in some hidden layer nodes 271

are invalid. Therefore, in some practical applications, the 272

accuracy and time of ELM training will be affected by 273

randomness. 274

2) PSO ALOGRITHM 275

The Particle swarm optimization (PSO) algorithm was first 276

proposed by Kennedy and Eberhart [29] in 1995. The PSO 277

algorithm originated from the study of the predation behavior 278

of birds. When birds prey, the easiest and most effective way 279

for each bird to find food is to search the area around the bird 280

closest to the food. 281

Suppose that in a D-dimensional search space, there 282

is a population of n particles X = (X1,X2, · · · ,Xn). 283

The i-th particle represents a D-dimensional vector Xi = 284

[Xi1,Xi2, · · · ,Xin]T , which represents the position of the 285

i -th particle in the D-dimensional search space, and also 286

represents a potential solution of the problem. According 287

to the objective function, the fitness value corresponding 288

to each particle position Xi can be calculated. The veloc- 289

ity of the i-th particle is Vi = [Vi1,Vi2, · · · ,ViD]T and 290

its individual extreme value is Pi = [Pi1,Pi2, · · · ,PiD]T . 291

The global extreme minimum of the population is Pg = 292

[Pg1,Pg2, · · · ,PgD]T . 293

In each iteration, the particle updates its speed and position 294

through individual extreme values and global extreme values. 295

The update formula is as follows: 296

V k+1
id = ωV k+1

id + c1r1(Pkid − X
k
id )+ c1r2(P

k
gd − X

k
id ) 297

(13) 298

X k+1id = X kid + V
k+1
id (14) 299

In Equations (13) and (14), ω is the inertia weight, Xid ∈ Xi 300

is the d-th element of the i−th particle, d = 1, 2, · · · ,D, 301

i = 1, 2, · · · , n, k is the current iteration number, Vid is the 302

velocity of the particle, c1 and c2 are non-negative constants, 303

called acceleration factors, r1 and r2 are random numbers 304

distributed between [0, 1]. In order to prevent blind search 305

of particles, it is generally recommended to limit its position 306

and speed to a certain interval [−Xmax,Xmax], [−Vmax,Vmax]. 307

3) PSO-ELM MODEL 308

When using the ELM model to predict the time series, the 309

input layer dimension and the hidden layer dimension are 310
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artificially given, and the optimal network dimension cannot311

be guaranteed. The input weights and implicit deviation vec-312

tors of the ELM network are randomly assigned, which leads313

to the weak generalization and stability of the network, which314

affects the prediction accuracy of the ELM network. The PSO315

algorithm is an effective algorithm for parameter optimization316

of the ELMmodel. This article uses PSO to optimize the ELM317

parameters, the specific steps are as follows:318

Step 1: Load the data and divide the data into 80% training319

set and 20% test set.320

Step 2: Initialize the particle population and set the relevant321

parameters of the PSO algorithm. Individuals (particles) in322

the population are composed of input layer dimensions, hid-323

den layer dimensions, input weights and hidden deviations.324

The particle length is L = 2K + Q + KQ, where Q is the325

number of hidden layer nodes andK is the number of neurons326

in the input layer.327

Step 3: The input layer dimensions, hidden layer dimen-328

sions, input weights and implicit deviations corresponding to329

each particle are brought into the ELM training algorithm,330

namely Equations (10)∼(12) to obtain the output weights331

and the predicted values of the matrix. The mean square332

error (MSE) of the training set output of the ELM network333

is used as the fitness of the particle swarm optimization334

algorithm, the fitness value of each particle is calculated, and335

the individual extreme value and the global extreme value are336

updated.337

Step 4: In the iterative process, the velocity and position338

of the particles are updated according to Equations (13)339

and (14). When the maximum number of iterations or the340

best fitness is reached, the optimization iteration process is341

stopped.342

Step 5: The optimal input layer dimension, hidden layer343

dimension, input weight and implicit deviation obtained by344

performing the above steps are substituted into Equation (12)345

to calculate the output weight matrix, and the prediction result346

is obtained.347

III. TWO-STAGE PREDICTION OF SUNPOT MONTHLY348

VALUE BASED ON CEEMDAN-PSO-ELM349

The monthly mean value of sunspots is nonlinear, non-350

stationary and time-varying.351

This paper proposes a two-stage sunspot prediction model352

based on the combination of CEEMDAN and ELM, and uses353

the PSO algorithm to optimize the input layer dimension,354

hidden layer dimension, input weight and implicit deviation355

of the ELM model. The forecast flow chart is shown in356

Figure 2.357

The two stages prediction process based on CEEMDAN-358

PSO-ELM is described as follows:359

Step 1: The original sequence is decomposed into360

C1,C2, · · · ,CK and R by CEEMDAN.361

Step 2: Normalize C1,C2, · · · ,CK and R by the following362

formula363

y =
x − xmiin
xmax − xmin

(15)364

FIGURE 2. Flow of two-stage based on CEEMDAN-PSO-ELM.

where x is the input data, and xmax and xmin are the maximum 365

andminimum of x, respectively, and y is the normalized result 366

of the input data. 367

Step 3: Bring each normalized sub-sequence into the PSO- 368

ELMmodel for prediction, and de-normalize the output result 369

to get the prediction result Y1,Y2, · · · ,YK+1. 370

Step 4: Sum Y1,Y2, · · · ,YK+1 to get the prediction result 371

of the first stage Ysum. Subtract Ysum rom the actual value to 372

get the error sequence E . 373

Step 5: Use the CEEMDANmethod to decompose the error 374

sequence E to obtain CE
1 ,C

E
2 , · · · ,C

E
M and RE . 375

Step 6: Normalize CE
1 ,C

E
2 , · · · ,C

E
M and RE . 376

Step 7: Bring each normalized sub-sequence into the PSO- 377

ELM model for prediction, and get the prediction result 378

Y E1 ,Y
E
2 , · · · ,Y

E
M+1. 379

Step 8: Sum Y E1 ,Y
E
2 , · · · ,Y

E
M+1 to get the second stage 380

prediction result Y Esum. 381

Step 9: Sum the prediction result of the first stage Ysum and 382

the prediction result of the second stage Y Esum to get the final 383

prediction value, that is prediction value Ỹ = Ysum + Y Esum. 384

IV. MONTHLY SUNSPOT PREDICTION EXPERIMENT 385

The monthly mean number of sunspots is from the official 386

website of the solar action data analysis center of the Royal 387

Observatory of Belgium (source: silica data, Royal Observa- 388

tory of Belgium, Brussels). We selected the sunspot smooth- 389

ingmonthly observations fromAugust 1949 toMarch 2021 as 390

the experimental data, and the total length of the data set is 391

3260. In the first experiment, we selected all 3260 data as 392

experimental data (recorded as dataset1), in which the length 393

of the training set is 2600 and the length of the test set is 394

660. In the second group of experiments, we selected the 395
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FIGURE 3. CEEMDAN decomposition result of the original sequence.

data interval of [1621, 2435], a total of 815 data (denoted as396

dataset2). The first 695 data of this data set were used as the397

training set, and the last 120 data were used as the test set.398

A. MODEL EVALUATION CRITERIA399

This paper uses the following four error indicators to measure400

the prediction effect of the proposed prediction model: Mean401

Absolute Error(MAE), Root Mean Squared Error(RMSE),402

MeanAbsolute Percentage Error (MAPE), and the coefficient403

of determination (R2). The formulas are:404

MAE =
1
n

n∑
t=1

|x̂(t)− x(t)| (16)405

RMSE =

√√√√1
n

n∑
t=1

|x̂(t)− x(t)|2 (17)406

MAPE =
1
n

n∑
t=1

∣∣∣∣ x̂(t)− x(t)x(t)

∣∣∣∣ (18)407

R2 =

n∑
t=1

(x̂(t)− x̄(t))2

n∑
t=1

(x(t)− x̄(t))2
(19)408

In Equations (16)∼(19), x̂(t) represents the prediction409

value, x(t) represents the original data, x̄(t) represents the410

mean of original data, and n represents the test set data length.411

MAE represents the error between x̂(t) and x(t). RMSE412

reflects the error distribution, that is, the deviation between413

x̂(t) and x(t). MAPE is used to measure the quality of a414

model’s prediction results. The smaller the MAE, RMSE and415

MAPE, the better the model. The larger the R2, the better the416

model.417

B. PREDICTION EXPERIMENT OF DATASET1418

1) FIRST STAGE PREDICTION OF DATASET1419

Use CEEMDAN to decompose the monthly mean time series420

to obtain 7 IMF (C1,C2, · · · ,C7) and a residual compo-421

nent R. The decomposition result is shown in Figure 3. The422

PSO-ELM model is established for each normalized IMF423

andR. Set the number of PSO iterations to 300, the population424

TABLE 2. Elm parameters optimization results by PSO in first stage.

FIGURE 4. Fitness curve of first stage PSO optimization.

size to 30, the inertia factor to 0.8, and the learning rate to 2. 425

The optimization results of the PSO algorithm for the input 426

dimension and hidden layer dimension of the ELMmodel are 427

shown in Table 2. The fitness curve of the PSO algorithm for 428

optimizing the ELM model of each IMF and R is shown in 429

Figure 4. 430

2) SECOND STAGE PREDICTION OF DATASET1 431

After the predicted value of the first stage is obtained, the 432

error sequence E is decomposed by CEEMDAN, and the 433

parameter settings in CEEMDAN are the same as those in 434

the first stage. The CEEMDAN method decomposes E to 435

obtain 11 IMFs (CE
1 ,C

E
2 , · · · ,C

E
11) and a residual component 436

RE . The decomposition result is shown in Figure 5. The initial 437

parameter settings of the second stage PSO algorithm are the 438

same as those of the first stage. The optimization results of 439

the PSO algorithm for the input dimension and hidden layer 440

dimension of the ELM model are shown in Table 3. 441

3) PREDICTIVE EFFECTS OF MULTPLE MODELS 442

The prediction result of the first stage and the prediction 443

result of the second stage are summed to obtain the final 444
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FIGURE 5. CEEMDAN decomposition result of residual sequence.

TABLE 3. Elm parameters optimization results by PSO in second stage.

predicted value. In order to verify the superiority of the445

proposed method, the proposed method is compared with446

wavelet neural network (WNN), back propagation neural447

network (BPNN), ELM, CEEMDAN-ELM and CEEMDAN-448

PSO-ELM. The prediction results of the proposed method449

and other methods are shown in Figure 6. It can be seen from450

Figure 6 that there are 9 Parts (Part1,Part2, · · · ,Part9) in451

total in the peaks and troughs of the test set sequence. When452

the number of sunspots is continuously rising or falling, the453

fitting effects of each model are better. At the peaks and454

troughs, the single model’s fit to the mutation point deviated455

significantly, while the combined model’s fit to the mutation456

point more closely matched the original data. The prediction457

effects of the combined models are all good, and it is difficult458

to see the quality of the combined models from the fitting459

FIGURE 6. Comparison of prediction results of various models.

TABLE 4. Evaluation of prediction results of dataset 1.

graph. It is necessary to further calculate, analyze and com- 460

pare the model evaluation indicators. 461

4) PREDICTIVE EFFECT EVALUATION OF DATASET1 462

Using the aforementioned model evaluation criteria to evalu- 463

ate the model. The evaluation results are shown in Table 4 and 464

Figure 7. In terms of a single model, the ELMmodel is better 465

than the WNN model and the BPNN model in predicting 466

the monthly mean sequence of sunspots. CEEMDAN decom- 467

position effectively improves the prediction accuracy of the 468

ELM model. The PSO algorithm optimizes the parameters 469

of the CEEMDAN-ELM model to further improve the pre- 470

diction accuracy. The introduction of the two-stage method 471

makes the accuracy of the model higher. The three error 472

indicators of the model used in this article are all smaller than 473

other forecastingmodels, and the coefficient of determination 474

is higher than other models. Among them, MAE is 0.2141, 475

RMSE is 0.3260, MAPE is 0.0039, and R2 is 1. Compared 476

with ELM, the proposed two-stage model has decreased 477

MAE by 79.80%, RMSE by 77.13%, and MAPE by 80.79%. 478

Compared with CEEMDAN-ELM, the proposed two-stage 479

model has decreased MAE by 43.66%, RMSE by 37.87%, 480

and MAPE by 45.83%. Compared with CEEMDAN-PSO- 481

ELM, the proposed two-stage model has decreased MAE by 482

37.07%, RMSE by 34.30%, and MAPE by 32.76%. 483
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FIGURE 7. Comparison of MAE, RMSE, MAPE, R2 of each prediction
model.

5) COMPARISON OF PREDICTION ERROR OF DATASET1484

The error sequence of each model is obtained by subtracting485

the true value of the monthly mean value of sunspots from486

the predicted value of each model. The error sequence of487

FIGURE 8. Comparison of prediction errors of various models.

FIGURE 9. Empirical cumulative distribution diagram of the absolute
prediction errors of each model.

the model proposed in this paper is compared with the error 488

sequence of other models as shown in Figure 8. It can be 489

seen that the model proposed in this paper has a smaller error 490

sequence amplitude and closer to zero than other models. 491

Taking the absolute value of the prediction error sequence 492

to obtain the absolute prediction error sequence |FE|, the 493

empirical cumulative distribution diagram of the absolute 494

prediction error sequence of each model is shown in Figure 9. 495

Combining with the descriptive statistics of the absolute pre- 496

diction error sequence |FE| in Table 5, themean value of |FE| 497

of themodel proposed in this paper is 0.2198, and the variance 498

is 0.2594, which is smaller and more stable. The combined 499

forecasting model adopted in this paper is more suitable for 500

forecasting the changing trend of the monthly mean time 501

series of sunspots. It is a feasible forecasting method and has 502

practical significance. 503

C. PREDICTION EXPERIMENT OF DATASET 2 504

1) OPTIMIZATION OF PREDICTION OF DATASET 2 505

The prediction process of two-stage CEEMDA-PSO-ELM 506

for dataset 2 is as follows: 507

In the first stage: firstly, the monthly mean sunspot time 508

series of dataset 2 is decomposed by CCEMDAN. The 509

dataset 2 is decomposed into seven components, which are six 510

IMFs (C1,C2, · · · ,C6) and one residual component. Then, 511
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TABLE 5. Evaluation of prediction results.

TABLE 6. Optimized parameters of ELM in first stage for dataset2.

IMFs and R are normalized, and the normalized IMFs and512

R are predicted by PSO-ELM model respectively. The opti-513

mization results of PSO on the input dimension and hidden514

layer dimension of ELM network are shown in Table 6.515

After optimization, an optimized ELM model is obtained for516

each component. Thirdly, the optimized model is used to517

predict each component, and the prediction results of each518

component are superimposed to obtain the prediction results519

of the first stage.520

In the second stage, the error sequence is decomposed521

by CEEMDAN into 8 subsequences, which are 7 IMFs522

(CE
1 ,C

E
2 , . . . ,C

E
7 ) and 1 residual component (RE ) respec-523

tively. IMFs and R are normalized, and the normalized IMFs524

and R are predicted by PSO-ELM model respectively. The525

optimization results of the input dimension and hidden layer526

dimension of ELM network are shown in Table 7.527

The optimized model is used to predict each component,528

and the prediction results of each component are superim-529

posed to obtain the prediction results of the second stage,530

as shown in Figure 10. It can be seen that the fitting effect of531

the error is good, especially the place with large error. In this532

way, the place with large error in the first stage prediction can533

be effectively corrected, so that the predicted value is closer534

to the real value.535

TABLE 7. Optimized parameters of ELM in second stage for dataset2.

FIGURE 10. Error correction results of dataset2 in second stage.

TABLE 8. Evaluation of prediction results of dataset 2.

2) PREDICTIVE EFFECT EVALUATION OF DATASET 2 536

In order to verify the prediction effect of the proposed model, 537

the prediction results of the proposed model are compared 538

with those of LSTM, LSSVM, BP, ELM, CEEMDAN-ELM 539

and CEEMDAN-PSO-ELM models. The index comparisons 540

of the prediction results of the six models are shown in 541

Table 8. 542

It can be seen from Table 8 that CEEMDAN decomposi- 543

tion effectively improves the prediction accuracy of ELM, 544

PSO further improves the prediction accuracy on the basis 545

of CEEMDAN-ELM, and the self-correction of errors in the 546

two-stage prediction makes the model achieve higher accu- 547

racy. The three error indexes of the proposed model are all 548

smaller than other prediction models, and the coefficient of 549

determination is higher than other models, MAE is 0.2701, 550

RMSE is 0.3603, MAPE is 0.0065 and R2 is 0.9906. Com- 551

pared with CEEMDAN-ELM, MAE decreased by 38.23%, 552
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FIGURE 11. Prediction error of dataset 2 by different models.

TABLE 9. Evaluation of prediction results of dataset 2.

RMSE decreased by 39.99%, MAPE decreased by 53.27%553

and R2 increased by 2.14%. Compared with CEEMDAN-554

PSO-ELM, MAE decreased by 34.89%, RMSE decreased by555

31.07%, MAPE decreased by 43.96% and R2 increased by556

0.68%.557

The error sequence of each model was obtained by sub-558

tracting the real value of monthly sunspots from the predicted559

value. The error of the proposed model and the error order of560

other models are shown in Figure 11. It can be seen that the561

error amplitude of the proposed model is the smallest, which562

is closer to 0 and closer to the positive distribution. This also563

indicates that it is necessary to correct the error of the first564

stage in the prediction of the second stage.565

Comparing the absolute value of the prediction result566

of different models, that is, the absolute prediction error567

sequence |FE|, and calculating the descriptive statistical568

value of |FE| as shown in Table 9. It can be seen from value569

is closer to the real value.570

Table 9 that the mean value of |FE| of the proposed model571

is 2.1701 and the variance is 1.4926. Compared with other572

models, the statistical value of the proposedmethod is smaller573

and more stable, indicating that the proposed two-stage pre-574

diction model is more suitable for predicting the change trend575

of the sunspots monthly mean.576

V. CONCLUSION577

This article uses a two-stage modeling method. The first578

stage: use CEEMDAN for the smoothing of the monthly579

mean sequence of sunspots, establish an ELMmodel for each 580

sub-sequence after decomposition, and use the PSO algo- 581

rithm to optimize the ELM parameters of each sub-model, 582

and superimpose the prediction results of the sub-sequences. 583

The second stage: CEEMDAN-PSO-ELM modeling is 584

performed on the residuals obtained in the first stage, and 585

the prediction results of the second stage are obtained. The 586

final prediction result is obtained by summing the predic- 587

tion results of the first stage and the second stage. Through 588

simulation experiment analysis, the following conclusions are 589

drawn: 590

(1) The monthly mean value model of sunspots predicted 591

after the sequence is decomposed by CEEMDAN has higher 592

overall prediction accuracy than the direct prediction model. 593

Sequence decomposition can effectively reduce the impact 594

of non-stationary features of the sequence on the prediction 595

results. 596

(2) The PSO algorithm has good parameter optimization 597

capabilities, which can effectively solve the influence of the 598

randomness of the ELMmodel parameters on the model, and 599

improve the prediction accuracy of the prediction model. 600

(3) The two-stage prediction method can further improve 601

the prediction accuracy on the basis of the above model. 602

The experimental results show that the CEEMD-PSO- 603

ELM sunspot forecasting model has achieved good forecast 604

accuracy. 605
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