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ABSTRACT Sunspot number is the most basic parameter to describe the level of solar activity. The accurate
prediction of sunspot number can reflect the electromagnetic disturbance level of the electromagnetic layer,
ionosphere and the middle and high layers in the future in advance, so as to provide important reference
information for navigation, positioning, communication and the prediction of orbital attenuation of LEO
satellites. Aiming at the characteristics of sunspot time series such as non-stationary, chaotic and difficult to
predict, this paper proposed a two-stage combined prediction model based on complete Ensemble Empirical
mode decomposition with adaptive noise (CEEMDAN), particle swarm optimization (PSO) and extreme
learning machine(ELM) network. In the first stage of prediction: firstly, the original sunspot monthly mean
series is decomposed by CEEMDAN to reduce the non-linearity and non-stationary of the original series.
Then, an ELM prediction model is established for the sub-sequences decomposed by CEEMDAN, and
the input layer dimension, hidden layer dimension, input layer weight and hidden layer bias of ELM are
optimized by PSO algorithm. Finally, the prediction results of the first stage are obtained by superimposing
the prediction results of each sub-sequence. The second stage is the error self-correction stage. Firstly,
the prediction error sequence of the first stage is obtained. Then, the CEEMDAN-PSO-ELM prediction
model is used to self-correct the prediction error of the first stage. Finally, the prediction results of the
first stage and the self-correction results of the second stage are superimposed to obtain the final prediction
value of the monthly sunspot number. In this paper, CEEMDAN is used to reduce the non-linearity and
non-stationary of the sunspot series, and PSO is used to determine the best parameters of ELM network,
and the useful information in the prediction error is fully considered, which effectively improves the
prediction accuracy of sunspot monthly mean series. The prediction experiment is carried out by using the
measured sunspot monthly mean series, and the proposed model is compared with wavelet neural network
(WNN), back propagation neural network (BPNN), ELM, CEEMDAN-ELM and CEEMDAN-PSO-ELM.
The experimental results show that the prediction accuracy of the proposed two-stage prediction model has
been significantly improved, and has better prediction stability.

INDEX TERMS Sunspots, CCEMDAN, particle swarm optimization, extreme learning machine.

I. INTRODUCTION
The number of sunspots is the most basic parameter describ-
ing the level of solar activity. Because the number of sunspots
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is closely related to solar flares and coronal mass ejec-
tions and other eruptive phenomena, these eruptive phenom-
ena cause geomagnetic disturbances. Accurate prediction of
sunspot numbers can reflect the state of disturbance levels in
the magnetosphere, ionosphere, and middle and upper atmo-
spheres, which can provide important reference information
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for navigation, positioning, communications, and low-orbit
satellite orbit attenuation predictions. Therefore, the accurate
prediction of sunspot number has very important research
significance.

At present, many scholars have conducted in-depth
research on the prediction of the monthly average of sunspots.
Among them, two physical prediction models based on sim-
ilar week and engine models have achieved good prediction
results [1], [2], [3]. However, it is another important research
direction to regard the smoothed monthly mean value of
sunspot number as a time series, and construct the time series
using historical data accumulated in long-term records, and
forecast by a certain prediction algorithm [4]. In recent years,
nonlinear prediction models represented by neural networks
have been widely used in the prediction of nonlinear systems
due to their extensive adaptability and learning capabilities.
The most widely used in the prediction of the monthly mean
value of sunspots are the nonlinear prediction models rep-
resented by radial basis function neural networks [5], [6],
echo state networks [7], and least square support vector
machines [8].

However, different prediction models have their own
advantages and disadvantages, so, the single prediction model
is difficult to achieve the optimal prediction results [9].
In order to further improve the prediction performance,
researchers have proposed the hybrid prediction model,
which can integrate the advantages of different models.
The hybrid prediction model mainly includes the follow-
ing aspects: data preprocessing technology, such as empir-
ical mode decomposition (CEEMDAN), variational mode
decomposition (VMD) and singular spectrum analysis (SSA),
intelligent optimization algorithms, such as genetic algorithm
(GA) [10], particle swarm optimization (PSO) [11] and grey
wolf optimizer(GWO) [12], as well as prediction models,
such as extreme learning machine (ELM), back propagation
neural network (BPNN) and support vector machine (SVM),
etc [13].

In recent years, in order to improve the prediction per-
formance of data, different types of hybrid prediction mod-
els have been proposed. Reference [14] used empirical
mode decomposition and autoregressive models to study the
long-term prediction of sunspot numbers. Reference [15]
used complementary ensemble empirical mode decompo-
sition (CEEMD) to decompose the time series of sunspot
numbers, and then used wavelet neural network (WNN) to
predict the decomposed components. Reference [16] com-
bines empirical mode decomposition with long- and
short-term network models in deep learning, and uses a
cyclic model to predict sunspot sequences. Reference [17]
proposed a hybrid wind power prediction model by
using the gravity search algorithm (GSA) to optimize the
hyper-parameters of least squares support vector machine
(LSSVM). Reference [18] proposed a hybrid prediction
model based on wavelet transform and convolutional neural
network. Reference [19] first uses wavelet packet transform
to decompose the original data, then uses LSSVM to predict
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the decomposed data, and uses the combined optimization
method based on simulated annealing and particle swarm
optimization(SA-PSO) to optimize the super-parameters of
LSSVM. The experimental results of the above hybrid models
show that the hybrid prediction model has higher prediction
accuracy than the single prediction model.

In addition, most of the research on prediction models only
carried out simple error correction, ignoring the importance
of prediction error, resulting in the inability to make full use
of the useful information in the prediction error. However,
the current research shows that considering the error factor
can significantly improve the prediction performance. For
example, [20] shows that the accuracy of the prediction model
based on error correction is significantly better than that
before error correction. Reference [21] proposed a hybrid
prediction model with error correction. The prediction results
show that the prediction model based on error correction has
better prediction ability than other prediction models without
error correction. The prediction results of [20], [22], [23],
and [24] also show that error correction can improve the
prediction accuracy. Based on the results of the above litera-
tures, this paper considers the error factor in constructing the
prediction model of the monthly mean series of sunspots, and
further improves the prediction accuracy through multi-scale
error correction.

Therefore, this paper proposes a two-stage prediction
model based on multi-scale decomposition, swarm intelli-
gence optimization algorithm and multi-scale correction of
error sequence, which successfully solves the above impor-
tant problems. Specifically, in the first stage of prediction,
aiming at the nonlinear problem of sunspot monthly mean
time series, CEEMDAN method is used to decompose the
original data into a series of intrinsic mode functions (IMF),
and then particle swarm optimization (PSO) ELM model
(PSO-ELM) is used to predict all the intrinsic mode com-
ponents. Then, in the second stage of prediction, an error
correction prediction method based on multi-scale PSO-ELM
is constructed to correct the prediction error in the first stage.
Finally, the prediction results of all IMF in the first stage are
integrated with the error prediction results in the second stage
to obtain the final prediction value. Experimental results show
that the proposed two-stage prediction model performs well
in predicting the monthly mean of sunspots.

The main innovation and contributions of this paper are
summarized as follows:

(1) In this paper, a new two-stage prediction framework is
proposed, which can better improve the prediction accuracy
of sunspot monthly mean. Moreover, the effectiveness of the
proposed two-stage prediction model is verified by several
datasets, and the prediction results of the proposed method are
compared and analyzed with other five classical prediction
results..

(2) The proposed sunspot prediction model takes into
account the error factors, and successfully solves a major
problem of the previous models, that is, it only improves the
prediction ability of sunspot monthly mean series, without

VOLUME 10, 2022



B. Zhang et al.: Two Stage Prediction Model of Sunspots Monthly Value Based on CEEMDAN and Particle Swarm Optimization ELM

IEEE Access

TABLE 1. Properties descriptive statistics of smoothed monthly mean
value of sunspot number.

Data Numb Mean Max Mi Std Ske Kur
ers n w t
All 3236 82.24 2850 0.0 63.16 0.77 281
samples

Training 2589 80.71 285.0 0.0 62.76 0.84  3.05
Testing 647 88.38 2329 22 64.43 048  2.02

considering the influence of error factors on the effectiveness
of the prediction model. Therefore, the multi-scale PSO-ELM
hybrid model is used to correct the prediction error, and then
the correction results of the prediction error are integrated into
the proposed two-stage prediction model.

(3) The accuracy and stability of the prediction are con-
sidered in the proposed prediction model. Specifically, PSO
algorithm is used to optimize super-parameters of ELM to
achieve high prediction accuracy and stability. The prediction
results show that the prediction model based on PSO-ELM
has high prediction accuracy and stability, which reflects the
effectiveness of PSO-ELM in predicting the monthly mean
value of sunspots.

Il. MATERIALS AND METHOD

A. MONTHLY MEAN DATA OF SUNSPOTS

The monthly average data of sunspots comes from the official
website of the Solar Influence Data Analysis Center (SIDC)
of the Royal Observatory of Belgium (http://sidc.oma.be/
silso/datafiles) [25]. The sunspot data on this website has
been recorded since 1749, and the data was revised signifi-
cantly in July 2015. This article uses the corrected monthly
average of sunspots. The smoothed monthly average of the
number of sunspots is the statistics of the monthly average
of the number of sunspots in the current 6 months, the next
6 months and the current month. The weight of the first month
of the first 6 months and the last month of the next 6 months
is 0.5, and the weight of the other 11 months is 1. Divide
the sum of the monthly averages of the 13-month sunspots
by 12. The time series data is the smoothed monthly average
of the number of sunspots from July 1949 to February 2019.
Table 1 is a descriptive statistics of the smoothed monthly
average of the number of sunspots.

B. CEEMDAN
Huang et al. [26] proposed an EMD method that can
decompose any signal into intrinsic mode functions (IMF).
M. A. Colorminas et al. [27] proposed the Complete
ensemble empirical mode decomposition with adaptive
noise(CEEMDAN) method based on the research of
Huang et al. CEEMDAN uses the zero-mean characteristic
of Gaussian white noise to make the decomposition effect of
signal data more complete. The specific processing process
is as follows:

Step 1: Add the standard normal distribution white noise
w!(n) of different amplitudes to the given target signal x(1)
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and construct the signal sequence of the i-th experiment as

xim) = x(m) + yw'(n), (=1,2,...,1) (1)

where: yy is the standard deviation of noise.

Step 2: In the first stage, the EMD method is used to
decompose the target signal, and the first intrinsic modal
component(IMF) is obtained and the average value is

1
1 .
Cim) = 5 > " IMFi(n) )

i=1

(IMF refers to a function that satisfies the following two
conditions: 1) the number of extreme points is equal to or
differs from the number of zero crossings by at most one;
2) the mean of the envelope defined by the local maximum
point and the envelope defined by the local minimum point is
Zero)

The first stage margin signal is expressed as

ri(n) = x(n) — Ci(n) (€)

Step 3: Define Ej(n) as the K-th IMF component after
EMD decomposition of the signal data. Decomposing the
sequence r1(n) + y1E1(w'(n)), the IMF component of the
second stage can be obtained as

1d .
Com) = 5 ; Ei{ri(n) + yiE1[w ()]} 4

The second remaining component is
ra(n) = ri(n) — Cz(n) )
Step 4: By analogy, the K -th remaining component is
re(n) = re—1(n) — C(n) (6)
The (k + 1) -th IMF component is
I
1 i
Ciepi() = 7 2E1{rk<n) +uEwml (D)
=

Step 5: Repeat Step 4 until the remaining components cannot
meet the EMD decomposition conditions or the iteration
ends. Finally, all K intrinsic mode functions ({imfi}1<k<x)
of CEEMDAN are obtained, and the residual R(n) is

K
R(n) =x(n) = Y _ Ce(n) ®)
k=1
the target data sequence is decomposed into
K
x(n) =Y Ci(n) + R(n) ©)

k=1
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FIGURE 1. Network structure of ELM.

C. PARTICLE SWARM OPTIMIZATION EXTREM LEARING
MACHINE
1) EXTREM LEARING MACHINE
ELM is a new algorithm for Single-hidden Layer Feed For-
ward Networks (SLFNs) proposed by Huang et al. [28].
Compared with traditional neural networks based on gradient
learning, ELM has a unique advantage, that is, the algorithm
only needs to set the number of hidden layer units, and
then randomly generate input connection weight vectors and
hidden layer biases, and calculate the optimal solution. This
process avoids the traditional multiple iterations. In partic-
ular, ELM has a fast learning rate, which greatly reduces
training time, thereby improving the generalization of neural
networks and improving the accuracy of network operation
results. The ELM network structure is shown in Figure 1.
For any N different samples (x;, y;), where

,xinl’ e RV
vikl" € RE

xi = [x1, xi2, -
yi = [yit, yi2, -+

the output of a feed-forward neural network with hidden
nodes and an activation function G(x) is

yi = f(x:)

0
= Z,BjG(Wj - Xi + bj), wj € RN, ,Bj S RK (10)
=1

where i = 1,2,---,N,j = 1,2,---,0, wj is the input
weight connecting the input layer to the -th hidden layer node,
Bi =181, Bz, -+ » ,BjK]T is the output weight connecting the
J -th hidden layer node to the output node, b; is the deviation
value of the j-th hidden layer node, w; - x; represents the inner
product of vectors w; and x;, the excitation function G(x) can
be selected as ““Sigmoid”’, “Tansig”’, “Sine” or “RBF”’ and
SO on.
Converting Equation (10) into matrix form, we can get:

Y =HP (11)

where H is the hidden layer output matrix of the network.

In the ELM algorithm, the input weight and hidden layer
can be given randomly without adjustment during the training
process, and the hidden layer matrix H is a definite matrix
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before training. The training of the feed-forward neural net-
work is actually transformed into a problem of solving the
least square solution ;é of the output weight matrix. The
output weight matrix B can be expressed as

B=HY (12)

where H™ is the generalized inverse of matrix H.

According to Equations (10) to (12), the output weight
matrix is determined by the deviation between the input
weight matrix and the hidden layer. Since ELM randomly
assigns the initial input weight matrix and hidden layer devi-
ation, there may be some input weight matrix and hidden
layer deviation of 0, resulting in some hidden layer nodes
are invalid. Therefore, in some practical applications, the
accuracy and time of ELM training will be affected by
randomness.

2) PSO ALOGRITHM

The Particle swarm optimization (PSO) algorithm was first
proposed by Kennedy and Eberhart [29] in 1995. The PSO
algorithm originated from the study of the predation behavior
of birds. When birds prey, the easiest and most effective way
for each bird to find food is to search the area around the bird
closest to the food.

Suppose that in a D-dimensional search space, there
is a population of n particles X = (X1,X2, -, Xpn).
The i-th particle represents a D-dimensional vector X; =
[Xi1, X2, -+, Xin]T, which represents the position of the
i -th particle in the D-dimensional search space, and also
represents a potential solution of the problem. According
to the objective function, the fitness value corresponding
to each particle position X; can be calculated. The veloc-
ity of the i-th particle is V; = [Vj, Vip, - , ViplT and
its individual extreme value is P; = [Pj, Pp, -+, Pip]’.
The global extreme minimum of the population is P, =
[Pg1, Pg2, -+, Pgpl”.

In each iteration, the particle updates its speed and position
through individual extreme values and global extreme values.
The update formula is as follows:

Vit = oVt + ein(Ply = Xy +c1r2(P§d — Xia)
13)
Xkl = xk 4 vk (14)

1

In Equations (13) and (14), w is the inertia weight, X;; € X;
is the d-th element of the i—th particle, d = 1,2,---,D,
i=1,2,---,n, k is the current iteration number, V;; is the
velocity of the particle, ¢ and c¢; are non-negative constants,
called acceleration factors, r; and rp are random numbers
distributed between [0, 1]. In order to prevent blind search
of particles, it is generally recommended to limit its position
and speed to a certain interval [—Xmax, XmaxJl> [— Vmax> VimaxJ-

3) PSO-ELM MODEL
When using the ELM model to predict the time series, the
input layer dimension and the hidden layer dimension are
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artificially given, and the optimal network dimension cannot
be guaranteed. The input weights and implicit deviation vec-
tors of the ELM network are randomly assigned, which leads
to the weak generalization and stability of the network, which
affects the prediction accuracy of the ELM network. The PSO
algorithm is an effective algorithm for parameter optimization
of the ELM model. This article uses PSO to optimize the ELM
parameters, the specific steps are as follows:

Step 1: Load the data and divide the data into 80% training
set and 20% test set.

Step 2: Initialize the particle population and set the relevant
parameters of the PSO algorithm. Individuals (particles) in
the population are composed of input layer dimensions, hid-
den layer dimensions, input weights and hidden deviations.
The particle length is L = 2K + Q + KQ, where Q is the
number of hidden layer nodes and K is the number of neurons
in the input layer.

Step 3: The input layer dimensions, hidden layer dimen-
sions, input weights and implicit deviations corresponding to
each particle are brought into the ELM training algorithm,
namely Equations (10)~(12) to obtain the output weights
and the predicted values of the matrix. The mean square
error (MSE) of the training set output of the ELM network
is used as the fitness of the particle swarm optimization
algorithm, the fitness value of each particle is calculated, and
the individual extreme value and the global extreme value are
updated.

Step 4: In the iterative process, the velocity and position
of the particles are updated according to Equations (13)
and (14). When the maximum number of iterations or the
best fitness is reached, the optimization iteration process is
stopped.

Step 5: The optimal input layer dimension, hidden layer
dimension, input weight and implicit deviation obtained by
performing the above steps are substituted into Equation (12)
to calculate the output weight matrix, and the prediction result
is obtained.

Ill. TWO-STAGE PREDICTION OF SUNPOT MONTHLY
VALUE BASED ON CEEMDAN-PSO-ELM

The monthly mean value of sunspots is nonlinear, non-
stationary and time-varying.

This paper proposes a two-stage sunspot prediction model
based on the combination of CEEMDAN and ELLM, and uses
the PSO algorithm to optimize the input layer dimension,
hidden layer dimension, input weight and implicit deviation
of the ELM model. The forecast flow chart is shown in
Figure 2.

The two stages prediction process based on CEEMDAN-
PSO-ELM is described as follows:

Step 1: The original sequence is decomposed into
C1, C3, - -+, Cx and R by CEEMDAN.

Step 2: Normalize C1, C», - - - , Ck and R by the following
formula

X — Xmiin

y= (15)

Xmax — Xmin
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FIGURE 2. Flow of two-stage based on CEEMDAN-PSO-ELM.

where x is the input data, and xmax and Xy are the maximum
and minimum of x, respectively, and y is the normalized result
of the input data.

Step 3: Bring each normalized sub-sequence into the PSO-
ELM model for prediction, and de-normalize the output result
to get the prediction result Y1, Y2, - -+, Yk 41.

Step 4: Sum Y1, Y>, - -+, Yg41 to get the prediction result
of the first stage Yy,,,. Subtract Yy, rom the actual value to
get the error sequence E.

Step 5: Use the CEEMDAN method to decompose the error
sequence E to obtain CE, Cg, .., CE and RE.

Step 6: Normalize C%, L CA%[ and RE.

Step 7: Bring each normalized sub-sequence into the PSO-
ELM model for prediction, and get the prediction result
YE YE ... YE, .

1>520 7 I

Step 8: Sum Y, YE ...
prediction result YZ, .

Step 9: Sum the prediction result of the first stage Y, and
the prediction result of the second stage Y, Sim to get the final

prediction value, that is prediction value ¥ = Y, + Y, flm

, Yfl 4 to get the second stage

IV. MONTHLY SUNSPOT PREDICTION EXPERIMENT

The monthly mean number of sunspots is from the official
website of the solar action data analysis center of the Royal
Observatory of Belgium (source: silica data, Royal Observa-
tory of Belgium, Brussels). We selected the sunspot smooth-
ing monthly observations from August 1949 to March 2021 as
the experimental data, and the total length of the data set is
3260. In the first experiment, we selected all 3260 data as
experimental data (recorded as datasetl), in which the length
of the training set is 2600 and the length of the test set is
660. In the second group of experiments, we selected the
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FIGURE 3. CEEMDAN decomposition result of the original sequence.

data interval of [1621, 2435], a total of 815 data (denoted as
dataset2). The first 695 data of this data set were used as the
training set, and the last 120 data were used as the test set.

A. MODEL EVALUATION CRITERIA

This paper uses the following four error indicators to measure
the prediction effect of the proposed prediction model: Mean
Absolute Error(MAE), Root Mean Squared Error(RMSE),
Mean Absolute Percentage Error (MAPE), and the coefficient
of determination (R2). The formulas are:

MAE = % Z 1R(1) — x(1)| (16)
t=1
RMSE = |1 D IR = x(@)]? (17)
n
=1
x(t) —x(1)

MAPE = Z (18)

x(1)

Z G(1) — x(1))?
=L (19)

> () — %(1))2

=1

In Equations (16)~(19), x(¢) represents the prediction
value, x(¢) represents the original data, x(¢) represents the
mean of original data, and n represents the test set data length.
MAE represents the error between x(¢) and x(r). RMSE
reflects the error distribution, that is, the deviation between
x() and x(¢t). MAPE is used to measure the quality of a
model’s prediction results. The smaller the MAE, RMSE and
MAPE, the better the model. The larger the RZ, the better the
model.

B. PREDICTION EXPERIMENT OF DATASET1

1) FIRST STAGE PREDICTION OF DATASET1

Use CEEMDAN to decompose the monthly mean time series
to obtain 7 IMF (Cy, C,---,C7) and a residual compo-
nent R. The decomposition result is shown in Figure 3. The
PSO-ELM model is established for each normalized IMF
and R. Set the number of PSO iterations to 300, the population
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TABLE 2. Elm parameters optimization results by PSO in first stage.

ELM model parameters

Subsequence of ¥’ Input layer Hidden layer
dimension dimension
C 9 30
G 6 30
C; 6 33
C4 5 23
Cs 5 27
Co 5 32
C, 4 26
R 13 23
IMFI IMF2 10 IMF
0.047 0.0106 8.25
90,046 b 001055 s
s E = 82
E E 00105 E
2 0.045 2
3 4 3
£ E 0.01045 £8.15
= 0.044 ) =
0.0104
0.043 8.1
0 100 200 300 0 100 200 300 0 100 200 300
Number of iterations Number of iterations Number of iterations
5 IMF 6 IMF s IMF
4 5 1 6
2815712 152710 72720
2 2151 274
g A 3
2 2.81 a 2 7
2 2149 E
= [ = 6.9
1.48
2.805 6.8
0 100 200 300 0 100 200 300 0 100 200 300
Number of iterations Number of iterations Number of iterations
7 IMF s R
7 es
4% 10 8% 10
g3 g6
= s
g S
22 24
4 5
& g
=1 =2
0 0 \
0 100 200 300 0 100 200 300

Number of iterations Number of iterations

FIGURE 4. Fitness curve of first stage PSO optimization.

size to 30, the inertia factor to 0.8, and the learning rate to 2.
The optimization results of the PSO algorithm for the input
dimension and hidden layer dimension of the ELM model are
shown in Table 2. The fitness curve of the PSO algorithm for
optimizing the ELM model of each IMF and R is shown in
Figure 4.

2) SECOND STAGE PREDICTION OF DATASET1

After the predicted value of the first stage is obtained, the
error sequence E is decomposed by CEEMDAN, and the
parameter settings in CEEMDAN are the same as those in
the first stage. The CEEMDAN method decomposes E to
obtain 11 IMFs (CE, Cf, cee, Cﬁ) and a residual component
RE . The decomposition result is shown in Figure 5. The initial
parameter settings of the second stage PSO algorithm are the
same as those of the first stage. The optimization results of
the PSO algorithm for the input dimension and hidden layer
dimension of the ELM model are shown in Table 3.

3) PREDICTIVE EFFECTS OF MULTPLE MODELS
The prediction result of the first stage and the prediction
result of the second stage are summed to obtain the final
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TABLE 3. Elm parameters optimization results by PSO in second stage.

ELM model parameters
Subsequence of & Input layer Hidden layer
dimension dimension

ct 12 2
Cy 4 24
Ct 4 16
Cr 6 31
C’ 5 21
ct 5 30
Cy 4 17
Ct 14 17
Cy 4 27

E
C 4 27

E
(O 4 25
RE 4 19

predicted value. In order to verify the superiority of the
proposed method, the proposed method is compared with
wavelet neural network (WNN), back propagation neural
network (BPNN), ELM, CEEMDAN-ELM and CEEMDAN-
PSO-ELM. The prediction results of the proposed method
and other methods are shown in Figure 6. It can be seen from
Figure 6 that there are 9 Parts (Party, Parts, - - - , Party) in
total in the peaks and troughs of the test set sequence. When
the number of sunspots is continuously rising or falling, the
fitting effects of each model are better. At the peaks and
troughs, the single model’s fit to the mutation point deviated
significantly, while the combined model’s fit to the mutation
point more closely matched the original data. The prediction
effects of the combined models are all good, and it is difficult
to see the quality of the combined models from the fitting
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FIGURE 6. Comparison of prediction results of various models.

TABLE 4. Evaluation of prediction results of dataset 1.

Models MAE RMSE  MAPE R?
WNN 1.9888 2.5007 0.0595 0.9987
BPNN 1.0646 1.4357 0.0204 0.9995
ELM 1.0599 14254  0.0203 0.9995
CEEMDAN-ELM 03800  0.5247 0.0072 0.9999
CEEMDAN-PSO-ELM 03402 0.4962 0.0058 0.9999
Proposed method 0.2141 0.3260 0.0039 1.0000

graph. It is necessary to further calculate, analyze and com-
pare the model evaluation indicators.

4) PREDICTIVE EFFECT EVALUATION OF DATASET1

Using the aforementioned model evaluation criteria to evalu-
ate the model. The evaluation results are shown in Table 4 and
Figure 7. In terms of a single model, the ELM model is better
than the WNN model and the BPNN model in predicting
the monthly mean sequence of sunspots. CEEMDAN decom-
position effectively improves the prediction accuracy of the
ELM model. The PSO algorithm optimizes the parameters
of the CEEMDAN-ELM model to further improve the pre-
diction accuracy. The introduction of the two-stage method
makes the accuracy of the model higher. The three error
indicators of the model used in this article are all smaller than
other forecasting models, and the coefficient of determination
is higher than other models. Among them, MAE is 0.2141,
RMSE is 0.3260, MAPE is 0.0039, and R? is 1. Compared
with ELM, the proposed two-stage model has decreased
MAE by 79.80%, RMSE by 77.13%, and MAPE by 80.79%.
Compared with CEEMDAN-ELM, the proposed two-stage
model has decreased MAE by 43.66%, RMSE by 37.87%,
and MAPE by 45.83%. Compared with CEEMDAN-PSO-
ELM, the proposed two-stage model has decreased MAE by
37.07%, RMSE by 34.30%, and MAPE by 32.76%.

102987



IEEE Access

B. Zhang et al.: Two Stage Prediction Model of Sunspots Monthly Value Based on CEEMDAN and Particle Swarm Optimization ELM

WNN
2.0000 @
15000 1,
CEEMDAN-PSO- S _
ELM[TWO stages) 18000 BPNN
0.5000 : L4
o.oooo..‘
CEEMDAN-PSO-
ELM ELM
CEEMDAN-ELM
(a) MAE
WNN
3.0000
2.5000 @
. . 2.0000 ™
CEEMDAN-PSO- > PN, .
FIL.M({Two stages) 1.5000 ", BPNN
1.0000 :
0.5000 * L4
0 UUUU: ]
..., ®
CEEMD AN-PSO- .
FLM ELM
CEEMDAN-ELM
(b) RMSE
WNN
0.0600 @
0.0500 i
- . 0.0400
CEEMDAN-PSO- - .
ELM(Two siages) 00340 . BFNN
0.0200 5
0.0100 ]
0.0000 :
...
CEEMDAN-PSO-
EL FLM
CEEMDAN-ELM
(c) MAPE
WNN
1.0000
0.0005
CEEMDAN-PSO- _
CLM(Two 5‘ragea)?""-')f9.9.g_q__ e BANN
P 09985 ;
1 09980 :
CEEMDAN-PSO- ¢, .
ELM
g’
CEEMDAN-ELM
(d) R?

FIGURE 7. Comparison of MAE, RMSE, MAPE, R2 of each prediction
model.
5) COMPARISON OF PREDICTION ERROR OF DATASET1

The error sequence of each model is obtained by subtracting
the true value of the monthly mean value of sunspots from
the predicted value of each model. The error sequence of
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FIGURE 9. Empirical cumulative distribution diagram of the absolute
prediction errors of each model.

the model proposed in this paper is compared with the error
sequence of other models as shown in Figure 8. It can be
seen that the model proposed in this paper has a smaller error
sequence amplitude and closer to zero than other models.
Taking the absolute value of the prediction error sequence
to obtain the absolute prediction error sequence |FE|, the
empirical cumulative distribution diagram of the absolute
prediction error sequence of each model is shown in Figure 9.
Combining with the descriptive statistics of the absolute pre-
diction error sequence |FE| in Table 5, the mean value of |FE|
of the model proposed in this paper is 0.2198, and the variance
is 0.2594, which is smaller and more stable. The combined
forecasting model adopted in this paper is more suitable for
forecasting the changing trend of the monthly mean time
series of sunspots. It is a feasible forecasting method and has
practical significance.

C. PREDICTION EXPERIMENT OF DATASET 2

1) OPTIMIZATION OF PREDICTION OF DATASET 2

The prediction process of two-stage CEEMDA-PSO-ELM
for dataset 2 is as follows:

In the first stage: firstly, the monthly mean sunspot time
series of dataset 2 is decomposed by CCEMDAN. The
dataset 2 is decomposed into seven components, which are six
IMFs (Cq, Ca, - - -, Ce) and one residual component. Then,
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TABLE 5. Evaluation of prediction results.

|FE|
Models
Mean Max Min Median  Std

WNN 22276  9.8523 0.0106 1.8103  1.8473
BPNN 1.0732  6.4898 5.4476e-04  0.7675  0.9582
ELM 1.0603  6.5908 4.8841e-04  0.7515  0.9539
CEEé\]/IJ];lAN— 0.3787 2.7093 9.0642¢-04  0.2650  0.3654

CEEMDAN-
PSO-ELM 0.3347 2.4584 2.8828e-04  0.2238  0.3437
Proposed method ~ 0.2198 2.3754 5.7222¢-04  0.1380  0.2594

TABLE 6. Optimized parameters of ELM in first stage for dataset2.

Component of Input layer Hidden layer
CCEMDAN dimension dimension
(@ 17 24
C, 1 47
C, 17 29
C, 17 33
C 16 21
C, 19 26
R 42 29

TABLE 7. Optimized parameters of ELM in second stage for dataset2.

Input layer Hidden layer
component of error . A A )
dimension dimension
ct 25 35
Cy 4 26
Cy 2 20
E
C, 8 29
C SE 9 34
C’r 5 31
6
Cy 26 26
RE 45 29

amplitude

60
sampling

FIGURE 10. Error correction results of dataset2 in second stage.

TABLE 8. Evaluation of prediction results of dataset 2.

IMFs and R are normalized, and the normalized IMFs and
R are predicted by PSO-ELM model respectively. The opti-
mization results of PSO on the input dimension and hidden
layer dimension of ELM network are shown in Table 6.
After optimization, an optimized ELM model is obtained for
each component. Thirdly, the optimized model is used to
predict each component, and the prediction results of each
component are superimposed to obtain the prediction results
of the first stage.

In the second stage, the error sequence is decomposed
by CEEMDAN into 8 subsequences, which are 7 IMFs
(CE, Cf, e, C7E ) and 1 residual component (RE) respec-
tively. IMFs and R are normalized, and the normalized IMFs
and R are predicted by PSO-ELM model respectively. The
optimization results of the input dimension and hidden layer
dimension of ELM network are shown in Table 7.

The optimized model is used to predict each component,
and the prediction results of each component are superim-
posed to obtain the prediction results of the second stage,
as shown in Figure 10. It can be seen that the fitting effect of
the error is good, especially the place with large error. In this
way, the place with large error in the first stage prediction can
be effectively corrected, so that the predicted value is closer
to the real value.
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model MAE RMSE  MAPE R?
WNN 2.0590  2.6599  0.0813  0.8187
BPNN 12042 1.6169  0.0439  0.7370
ELM 1.1077 14720  0.0401  0.6700
CEEMDAN-ELM 0.4373  0.6049  0.01391  0.9698
CEEMDAN-PSO-ELM 0.4149  0.5266 00116  0.9839
Proposed method 0.2701 0.3630 0.0065 0.9906

2) PREDICTIVE EFFECT EVALUATION OF DATASET 2

In order to verify the prediction effect of the proposed model,
the prediction results of the proposed model are compared
with those of LSTM, LSSVM, BP, ELM, CEEMDAN-ELM
and CEEMDAN-PSO-ELM models. The index comparisons
of the prediction results of the six models are shown in
Table 8.

It can be seen from Table 8 that CEEMDAN decomposi-
tion effectively improves the prediction accuracy of ELM,
PSO further improves the prediction accuracy on the basis
of CEEMDAN-ELM, and the self-correction of errors in the
two-stage prediction makes the model achieve higher accu-
racy. The three error indexes of the proposed model are all
smaller than other prediction models, and the coefficient of
determination is higher than other models, MAE is 0.2701,
RMSE is 0.3603, MAPE is 0.0065 and R? is 0.9906. Com-
pared with CEEMDAN-ELM, MAE decreased by 38.23%),
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FIGURE 11. Prediction error of dataset 2 by different models.

TABLE 9. Evaluation of prediction results of dataset 2.

|FE|
Models
Mean Max Min Median Std

WNN 2.2276  9.8523 0.0106 1.8103 1.8473
BPNN 1.0732  6.4898 5.4476e-04 0.7675  0.9582
ELM 1.0603  6.5908 4.8841e-04  0.7515  0.9539
CEEEAE];/IAN_ 0.3787 2.7093 9.0642¢-04  0.2650  0.3654

CEEMDAN-
PSO-ELM 0.3347 24584 2.8828e-04  0.2238  0.3437
Proposed method ~ 0.2198 2.3754 5.7222¢-04  0.1380  0.2594

RMSE decreased by 39.99%, MAPE decreased by 53.27%
and R? increased by 2.14%. Compared with CEEMDAN-
PSO-ELM, MAE decreased by 34.89%, RMSE decreased by
31.07%, MAPE decreased by 43.96% and R? increased by
0.68%.

The error sequence of each model was obtained by sub-
tracting the real value of monthly sunspots from the predicted
value. The error of the proposed model and the error order of
other models are shown in Figure 11. It can be seen that the
error amplitude of the proposed model is the smallest, which
is closer to 0 and closer to the positive distribution. This also
indicates that it is necessary to correct the error of the first
stage in the prediction of the second stage.

Comparing the absolute value of the prediction result
of different models, that is, the absolute prediction error
sequence |FE|, and calculating the descriptive statistical
value of |FE| as shown in Table 9. It can be seen from value
is closer to the real value.

Table 9 that the mean value of |FE| of the proposed model
is 2.1701 and the variance is 1.4926. Compared with other
models, the statistical value of the proposed method is smaller
and more stable, indicating that the proposed two-stage pre-
diction model is more suitable for predicting the change trend
of the sunspots monthly mean.

V. CONCLUSION
This article uses a two-stage modeling method. The first
stage: use CEEMDAN for the smoothing of the monthly
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mean sequence of sunspots, establish an ELM model for each
sub-sequence after decomposition, and use the PSO algo-
rithm to optimize the ELM parameters of each sub-model,
and superimpose the prediction results of the sub-sequences.
The second stage: CEEMDAN-PSO-ELM modeling is
performed on the residuals obtained in the first stage, and
the prediction results of the second stage are obtained. The
final prediction result is obtained by summing the predic-
tion results of the first stage and the second stage. Through
simulation experiment analysis, the following conclusions are
drawn:

(1) The monthly mean value model of sunspots predicted
after the sequence is decomposed by CEEMDAN has higher
overall prediction accuracy than the direct prediction model.
Sequence decomposition can effectively reduce the impact
of non-stationary features of the sequence on the prediction
results.

(2) The PSO algorithm has good parameter optimization
capabilities, which can effectively solve the influence of the
randomness of the ELM model parameters on the model, and
improve the prediction accuracy of the prediction model.

(3) The two-stage prediction method can further improve
the prediction accuracy on the basis of the above model.

The experimental results show that the CEEMD-PSO-
ELM sunspot forecasting model has achieved good forecast
accuracy.
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