IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 1 September 2022, accepted 11 September 2022, date of publication 14 September 2022,
date of current version 23 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3206541

== survey

A Survey on Text-Dependent and
Text-Independent Speaker Verification

YOUZHI TU, WEIWEI LIN™, AND MAN-WAI MAK ", (Senior Member, IEEE)

Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, SAR, China
Corresponding author: Man-Wai Mak (enmwmak @polyu.edu.hk)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61971371; and in part by
Huawei Technologies Company Ltd., under Project TC20210903021.

ABSTRACT Speaker verification (SV) aims to detect an individual’s identity from his/her voice. SV has
been successfully applied in various areas such as access control, remote service customization, financial
transactions, etc. Depending on whether the text content is pre-defined or not, SV can be text-dependent or
text-independent. This paper reviews recent research on text-dependent SV (TD-SV) and text-independent
SV (TI-SV). Because most modern SV systems apply deep learning methods to boost performance,
we focus on the studies that use deep speaker embedding, a technique representing a person’s identity via
a fixed-dimensional vector encoded from a variable-length utterance. Rather than detailing every existing
SV system, we make an overview of the representative SV systems that have attracted wide attention.
Furthermore, an increasing number of SV systems have been devoted to addressing real-world challenges
such as reverberation and noise, and this has driven a large number of studies on practical SV. Therefore,
the survey compares the existing SV systems in the Far-Field Speaker Verification Challenge 2020 (FFSVC
2020) to illustrate the most effective techniques for both TD-SV and TI-SV.

INDEX TERMS Text-dependent speaker verification, text-independent speaker verification, deep speaker

embedding, far-field speaker verification.

I. INTRODUCTION

Speaker verification (SV) aims to determine whether the
identity of a claimed utterance matches a target identity. This
technology has been applied in many practical scenarios such
as access control, service customization, national security,
etc. Modern SV systems generally have two types of struc-
tures: (1) a cascaded structure comprising a front-end and a
backend [see Fig. 1(a)] and (2) an end-to-end structure where
the system directly outputs the verification scores or deci-
sions [see Fig. 1(b)]. The difference between these two types
of structures lies in how the decision scores are computed.
Specifically, the former requires an embedding model—such
as the traditional i-vector extractor [1] or a deep embedding
network [2]—to produce speaker embeddings and a backend
classifier to compute verification scores. In contrast, the latter
directly computes the scores of verification trials.
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SV can be text-independent or text-dependent. For
text-independent SV (TI-SV), because there is no constraint
on the lexical content, the speaker embedding extractor is
trained on long utterances to suppress the adverse effect
of phonetic variability [3], [4]. TI-SV has been studied
extensively due to the ease of collecting large-scale text-
independent data. In contrast, the lexicon in text-dependent
SV (TD-SV) is constrained to a small set of words or
phrases. Because of the low degree of phonetic variability,
TD-SV usually outperforms TI-SV under short-duration sce-
narios. This property makes TD-SV more advantageous when
the utterance duration is short and the response should be
quick [5]. However, to build a well-performed TD-SV sys-
tem, we need to collect a large amount of in-domain data,
which is very expensive in practice.

The recent advances in deep learning and deep neural net-
works have changed the landscape of speaker verification.
Various backbones, such as ResNets and DenseNets, have
been integrated into the speaker embedding networks. Com-
pared with i-vector, deep speaker embedding has achieved
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FIGURE 1. (a) A “Front-end + Backend” cascaded SV system and (b) an end-to-end SV system.

state-of-the-art performance and dominated the SV area.
However, SV still faces several challenges in practice (see
Section II-C for details). Currently, the focus has shifted
to using better speaker embedding networks to suppress
non-speaker variabilities under various adverse situations.
How to develop SV systems that are robust to noise and
reverberation, domain mismatch, and short duration remains
a difficult problem. Therefore, a comprehensive overview of
the current methods and systems is necessary for practitioners
and researchers to understand this field better. To this end,
this paper surveys the most representative text-dependent and
text-independent systems and compares their performance
under the same dataset and evaluation protocol. This paper
fills the gap in a recent review of speaker recognition [6]
by providing comprehensive coverage of text-dependent sys-
tems and explaining how they leverage deep speaker embed-
ding to reduce domain mismatch and increase the robustness
in the wild.

The paper is organized as follows. Section II briefly intro-
duces the recent development in both TI-SV and TD-SV and
the challenges that SV systems face. Then, Section Il reviews
current representative TI-SV and TD-SV systems. The per-
formance of these systems on a far-field speaker recognition
challenge is compared in Section IV. We will give concluding
remarks and future trends in Section V.

Il. RECENT ADVANCES IN SPEAKER VERIFICATION
In this section, we introduce the recent development of TI-SV
and TD-SV and highlight their challenges.

A. TEXT-INDEPENDENT SPEAKER VERIFICATION

TI-SV has long been popular in the speaker recognition
community and has received pervasive investigations. Cur-
rently, most TI-SV systems use a cascaded structure com-
prising a front-end and a backend, as shown in Fig. 1(a).
The front-end aims to extract speaker characteristics and
the backend is responsible for scoring. Typical front-ends
are i-vector embedding, x-vector embedding, and the more
general deep speaker embedding. Typical backends include
cosine similarity measure, probabilistic linear discriminant
analysis (PLDA) [7], and heavy-tailed PLDA [8]. Since
the era of i-vector [1], TI-SV has been dominated by the
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i-vector/PLDA framework. With the advancement of deep
learning, deep speaker embedding has led to significant per-
formance improvement in TI-SV systems [2], [9], [10], [11].

Classical deep speaker embedding uses a speaker iden-
tification network to create a speaker-embedding space.
Typically, the embedding network comprises a frame-level
subnetwork, a pooling layer, and an utterance-level subnet-
work. After frame-level feature extraction and utterance-
level aggregation, the speaker embeddings are extracted from
the affine output of a fully-connected (FC) layer of the
utterance-level subnetwork. Under this framework, various
architectures based on convolutional neural networks (CNN5)
have been used for frame-level processing. A classic exam-
ple is the x-vector which uses time delay neural networks
(TDNNSs) to extract the frame-level features [2]. Later, more
advanced networks, such as ResNets [9], DenseNets [10],
[12], and Res2Nets [11], [13], were introduced to better
model the spectral-temporal relationship across the acoustic
frames. Simultaneously, diverse aggregation methods have
been proposed to aggregate the frame-level information into
utterance-level embeddings, e.g., statistics pooling [2], multi-
head attentive pooling [14], NetVLAD-based pooling [9],
short-time spectral pooling [15], [16], etc. Also, different
training losses besides the softmax loss have been used
in deep speaker embedding to achieve better discrimina-
tive power. For example, additive margin softmax (AM-
Softmax) [17] loss and additive angular margin softmax
(AAM-Softmax) loss [18] have been widely used to replace
the vanilla softmax counterpart.

Another category of deep speaker embedding uses met-
ric learning for TI-SV [19], [20], [21]. In this category,
losses based on some distance measures are used to guide
the embedding network so that the speaker embeddings have
both large inter-class distance and small intra-class distance.
For example, triplet loss [21], prototypical network loss [20],
angular prototypical loss [19], and masked proxy loss [22]
have been applied to TI-SV and have achieved competitive
performance.

Besides the cascade of a front-end and a backend, there
are end-to-end architectures with an SV-loss objective (see
Fig. 1(b)) for TI-SV [23], [24]. These systems strictly con-
form to the SV objective in that they directly map an
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enrollment-test pair to a score or a decision probability,
as shown in Fig. 1(b). In fact, the SV-loss is closely related to
deep metric learning in that they both involve mapping a train-
ing sample pair/triplet to a similarity score. Their main differ-
ence is that the SV-loss uses an additional logistic regression
layer to map the similarity score to a decision probability [24].

B. TEXT-DEPENDENT SPEAKER VERIFICATION

Although TI-SV has achieved outstanding performance in
various evaluations [2], [11], [25], [26], it suffers severe per-
formance degradation under short-utterance scenarios due
to the abundant phonetic mismatch between the enrollment
utterances and the test utterances [9], [27]. TD-SV, on the
other hand, is more advantageous in short-duration applica-
tions due to the limited phonetic variability in the utterances.
With the increasing demand for voice-based access control
applications, TD-SV has revived recently.

Unlike TI-SV, TD-SV requires the matching of both speak-
ers and text contents. Because TD-SV needs to take text
information into account, directly applying a TI-SV model to
TD-SV will cause problems. In fact, the authors of [28] have
shown that exploiting the text information in utterances can
remarkably improve the performance of TD-SV. Different
from TI-SV, as shown in Table 1, there are three types of
impostor trials in TD-SV: 1) the speaker in the enrollment
and verification session matches but the texts do not match,
2) the speakers in the enrollment and verification phases
do not match but the text content matches, and 3) neither
the speakers nor the contents match [5], [29]. This differ-
ence requires TD-SV to adopt additional strategies to deal
with the content information, which is ignored in TI-SV.
For example, a phrase recognizer may be used to assist the
verification of Target-wrong and Impostor-wrong trials in
Table 1 [30].

According to whether the text content is fixed or not,
TD-SV can be phrase-dependent (phrases are pre-defined by
the system) or phrase-independent (the users may customize
their own phrases) [29]. For phrase-dependent TD-SV, it is
preferable to train the embedding extractor on the matched
phrases to make the speaker embeddings reflect the phonetic
variability in the pre-defined phrases. Also, the parameters
in the conventional channel compensation methods—such as
within-class covariance normalization (WCCN) [31], LDA,
and PLDA—should be trained on the data with the pre-
defined phrases. This strategy helps reject impostors speak-
ing the wrong phrases [32]. For phrase-independent TD-SV,
however, because there may be text mismatch between the
training utterances and the evaluation utterances, and even
mismatch between the enrollment utterances and the verifica-
tion utterances, specific techniques such as content normal-
ization [28] and text adaptation [33] are required to alleviate
the mismatch problem.

Early work on TD-SV was mainly based on the i-vector
framework and its variants. In [32], the authors took phonetic
variability into consideration when modeling the uncertainty
in the i-vectors. To this end, they propagated the i-vectors’
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TABLE 1. Types of trials in text-dependent speaker verification.

\ Target Speaker Imposter Speaker

Correct Phrase
Wrong Phrase

Target-correct
Target-wrong

Imposter-correct
Imposter-wrong

uncertainty to a phrase-dependent PLDA model for TD-SV.
To incorporate phonetic information into speaker model-
ing, the authors of [29] proposed the hidden Markov model
(HMM) based i-vectors, where mono-phone HMMs were
used for frame alignment. The HMM i-vectors are in con-
trast to the conventional i-vectors where a Gaussian mixture
model (GMM) is used for aligning the frames. Another vari-
ant of speaker modeling is the bottleneck (BN) feature based
i-vector [30], [34]. Rather than extracting i-vectors from the
conventional Mel-frequency cepstral coefficients (MFCCs),
we extract the i-vectors from the BN features (may be con-
catenated with MFCCs). Because BN features are obtained
from the bottleneck layer of a phonetically-aware DNN
trained to classify the phone states, the phonetic information
can be incorporated into the sufficient statistics for i-vector
extraction. This makes the BN i-vectors both speaker- and
phrase-dependent. It was shown that when modeling speakers
using BN features, HMM state alignments are not neces-
sary [34]. However, one major drawback of BN i-vectors is
that an additional speech recognizer is required to obtain the
phone states.

Recently, deep learning has been widely used in
TD-SV [33], [35], [36], [37], [38], [39], [40], [41], [42]. One
deep learning framework is the end-to-end TD-SV [23], [24].
Another straightforward way is to use the modified architec-
ture of a TI-SV model for TD-SV [37], [40]. For example,
under the x-vector framework, the standard deviation vectors
rather than the affine output from the utterance-level subnet-
work are used as the speaker representations for TD-SV [40].
In [37], a bidirectional attentive pooling layer is incorporated
into a DenseNet to better establish the contextual information
across the frames. When these models are trained on suffi-
cient in-domain data, good performance can be achieved even
though they are expected to perform speaker classification
only, i.e., the single-task style.

Although TI-SV models can be well adapted to TD-SV,
the text information is actually exploited in an implicit
way. A more intuitive strategy is to explicitly explore the
phrase information through multi-task learning. In [35], the
authors proposed a j-vector system to deal with the con-
textual information in utterances through multi-task learn-
ing. Besides using a speaker classifier as in single-task
learning, the j-vector network applies a phrase classifier to
explicitly propagate the phrase information to the speaker-
embedding layer. To address the text mismatch between the
training data and the evaluation data, and also the text mis-
match between the enrollment phrases and the test phrases,
a speaker-text factorization network was proposed in [33].
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The network aims to disentangle the speaker information
from the text information through two separate subtasks:
speaker classification and phoneme classification. Due to
the factorization of the speaker and phoneme representa-
tions, text-independent speaker embeddings can be adapted to
text-dependent ones based on the given phrases. Recently, the
authors of [38] proposed a multi-task learning network with
phoneme-aware attentive pooling for TD-SV. To exploit the
phonetic information in utterances, the posteriors obtained
from the frame-level phoneme classifier are used in atten-
tive pooling. Furthermore, attributed to the adversarial train-
ing through a segment-level phoneme classification loss, the
learned speaker embeddings will be invariant to the phrase
variations.

C. CHALLENGES IN SPEAKER VERIFICATION

In practice, we are faced with various challenges. One
challenge is that, under noise and reverberation conditions,
the performance of both TI-SV and TD-SV will degrade
severely [25], [26], [39], [43]. To deal with this problem,
researchers applied a speech enhancement module to restore
the undistorted speech. For example, in [44], weighted pre-
diction error (WPE) was applied to suppress the late rever-
beration in multi-channel speech. Later, a neural WPE was
proposed in [45] to better estimate the power spectral den-
sity for both single- and multi-channel dereverberation. For
single-channel speech, the authors of [46] proposed a joint
training scheme to optimize a UNet-based speech enhance-
ment front-end and a DenseNet-based speaker-embedding
extractor simultaneously. Also, beamforming-based tech-
niques [47], [48] have been used for denoising and derever-
beration.

Besides using a speech enhancement front-end, transfer
learning is another effective method to address noise and
reverberation. In [49] and [50], adversarial learning was
exploited to create a noise-invariant embedding space so that
the embeddings can generalize to a variety of noise. Also,
the authors of [51] implemented a teacher-student learn-
ing framework to transfer the knowledge learned from the
near-field data to the far-field situation dominated by noise
and reverberation.

On the other hand, when the duration of the evaluation
utterances becomes short, TI-SV systems will witness a sub-
stantial performance drop [5], [9], [27]. As a result, short
duration poses another challenge to TI-SV. Although TD-SV
is more robust to short utterances, collecting text-dependent
training data is expensive.

What is worse, domain mismatch exacerbates the above
challenges. Due to the discrepancy between different record-
ing conditions, e.g., differences in channels, languages, noise
and so on, the distribution of the training data usually dif-
fers from that of the test data. Under this situation, it is
necessary to adapt the trained models based on some target-
domain data, a strategy known as domain adaptation (DA).
On the other hand, due to the high cost of data labeling,
only a small amount of labeled data or even no labeled data
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FIGURE 2. Structure of (a) an embedding model and (b) a backend in the
cascaded SV systems.

from the target domain are available. This difficulty neces-
sitates advanced methods to alleviate the domain mismatch
challenge.

Depending on whether the target-domain data have speaker
labels or not, DA can be divided into supervised DA and
unsupervised DA. Unsupervised DA has been popular since
NIST 2016 SRE, where there is a severe language mismatch
between the training and evaluation data [52]. To address
this problem, the authors of [53] and [54] minimized the
maximum mean discrepancy (MMD) [55] across different
languages to create a language-invariant speaker embedding
space. Besides, domain adversarial training [56] has been
successfully applied [57], [58], [59], [60], [61] to produce
language-invariant speaker embeddings. There are also DA
methods that directly adapt the PLDA covariance matrices to
match the target distribution, e.g., CORAL+ [62] and Kaldi’s
PLDA adaptation [63].!

Recently, studies on DA have focused on the case where a
small amount of labeled in-domain data are available. In this
situation, many SV systems use transfer learning to fine-tune
a source-domain speaker model to the target-domain dis-
tribution [39], [41], [42], [43]. In [39], the authors used
text-dependent data to fine-tune a text-independent ResNet
for the speech in AISHELL-2019B-eval. The same strategy
was used to improve the text-dependent evaluation perfor-
mance in the INTERSPEECH 2020 Far-Field Speaker Verifi-
cation Challenge (FFSVC 2020). In the latest Short-duration
Verification Challenge (SASVC) 2021, the authors of [41]
found that fine-tuning the whole model is more effective
than fine-tuning the upper layers only. To explicitly exploit
the text information in the fine-tuning operation, a multi-
task fine-tuning strategy was introduced for TD-SV in [42],
where both a speaker classification head and a phrase clas-
sification head were used. Another fine-tuning example for
TD-SV is illustrated in [23], where a GE2E contrastive loss
was used to fine-tune a text-independent speaker embedding
network.

1 https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v2
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FIGURE 3. (a) Architecture of the ECAPA-TDNN based SV system and (b) detailed structure of the SE-Res2Block used
in ECAPA-TDNN. k and d are the kernel size and dilation rate of the convolutional filters, respectively. C and T
denote the number of channels and the number of frames in the feature map, respectively. N is the number of
speakers in the training data. The “Res2” in the second layer of (b) means residual-like connections of a standard

Res2Net module. (Adapted from [11]).

To make the organization of this paper clear, we illustrate
the detailed structure of the ‘“Front-end + Backend” SV
system in Fig. 2. Note that the system structure is applicable
to both TI-SV and TD-SV except that the phrase-dependent
PLDA [30] and phrase-expanded PLDA [40] are designed
for TD-SV. Although the TI-SV methods mentioned in
Section II-A are mostly investigated on English corpora, they
can well be generalized to other languages.

Ill. REPRESENTATIVE SPEAKER VERIFICATION SYSTEMS
As shown in Fig. 2, there are various categories of SV sys-
tems for both TI-SV and TD-SV. In this section, rather than
describing every details of these systems, we focus on repre-
sentative SV systems reported recently.

A. TEXT-INDEPENDENT SV SYSTEMS

State-of-the-art TI-SV systems are mostly based on the cas-
cade of a deep speaker embedding network and a backend.
Moreover, we mostly use a single-task network architec-
ture (speaker classifier) to extract speaker embeddings, with
possible fine-tuning processes to transfer the source-domain
knowledge to the target domain.

1) ECAPA-TDNN

One of the recent advances in deep speaker embedding
for TI-SV is the Emphasized Channel Attention, Propa-
gation and Aggregation in TDNN (ECAPA-TDNN) [11],
[64]. The architecture of ECAPA-TDNN is shown in Fig. 3,
which follows the framework of the x-vector extractor. There
are four differences between the ECAPA-TDNN and the

99042

x-vector extractor: 1) the former uses Res2Net blocks [65]
with multi-layer feature aggregation to replace the conven-
tional TDNN structure for better frame-level information
propagation; 2) a channel- and content-dependent statis-
tics pooling layer is used in the ECAPA-TDNN to better
emphasize the contribution of the discriminative channels;
3) channel calibration is achieved through the squeeze-and-
excitation (SE) blocks [66] to better model the interdependen-
cies across the channels; and 4) additive angular margin soft-
max (AAM-Softmax) loss [ 18] rather than the vanilla softmax
loss is used in ECAPA-TDNN to better enforce intra-speaker
compactness. Attributed to these improvements, ECAPA-
TDNN has achieved state-of-the-art TI-SV performance on
VoxCelebl [11] and on SASVC 2020 [64].

2) DOMAIN-BALANCED HARD PROTOTYPE MINING

When there is domain mismatch between the training data
and the evaluation data, fine-tuning is an effective way to
boost SV performance. In [64], a domain-balanced hard pro-
totype mining (HPM) technique was proposed to exploit the
“harder”” speakers who confuse the system during the fine-
tuning process. In contrast to metric learning in which con-
siderable effort is made to mine hard negative samples [19],
HPM is easier to implement and nicely adoptable to the
AAM-Softmax loss.

Because it is impossible to compute a similarity matrix
across all utterances in a mini-batch to deduce speaker con-
fusion, the weights of the AAM-Softmax layer are used as
the proxies of the class centers of the training speakers.
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FIGURE 4. (a) Extraction of the bottleneck features from a triphone-state classifier and (b) the
process of the BN i-vector extraction. ((a) and (b) are adapted from [34] and [67], respectively).

These weights are referred to as speaker prototypes in HPM.
Given N training speakers and a mini-batch of size B, the
AAM-Softmax loss is expressed as

1 B es(cos(Gyi +m))

L=—— log ,
B; A ) YN (o))

Vi

ey

where m and s denote the angular margin and the scaling fac-
tor, respectively. 6y, represents the angle between the speaker
embedding z; and the speaker prototype wy,, where y; is the
corresponding speaker label; whereas 6; is the angle between
z; and the speaker prototype w;. Note that w; is the j-th col-
umn of the weight matrix W in the AAM-Softmax layer, i.e.,
W = {Wj };v:p and w; is normalized to unit length. Based on

the weight matrix W, the speaker similarity matrix § € RV >V
can be computed as S = WTW, whose elements represent
the cosine distances between all pairs of speaker prototypes.

Once we obtain the prototype similarity matrix S, we may
create mini-batches by sampling the most difficult speakers.
This, however, would lead to a problem in which only a small
group of speakers will be frequently sampled in the fine-
tuning process, reducing the diversity of the training samples.
To avoid poor generalization, for each iteration, S speakers
are randomly selected from the N training speakers. For each
selected speaker, U utterances are sampled from his/her most
similar / speakers, including the selected speaker, i.e., B =
S x U x 1. The similarity matrix S will be updated when all the
speakers have been iterated over in the mini-batch generation.
This process is called HPM.

In reality, the scale of the out-of-domain data is usu-
ally much larger than that of the in-domain data, and
using a small amount of in-domain data to fine-tune a
pre-trained model can easily lead to overfitting. To alle-
viate this problem, a better idea is to fine-tune a pre-
trained model using both out-of-domain data and in-domain
data, so that the resulting embeddings are more robust to
domain mismatch. Suppose we have Nj, in-domain speak-
ers (N;;, < N), we follow the HPM strategy for each
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mini-batch generation. For each mini-batch, we iteratively
sample S speakers from both Nj, in-domain speakers and
N, out-of-domain speakers. Once these 2N;, speakers have
been used up, we update the similarity matrix S and randomly
selected N;, new speakers from the N out-of-domain speakers
again (together with N;, in-domain speakers). This process
is referred to as domain-balanced HPM, which samples hard
speakers not only from the target-domain but also from the
source domain. This fine-tuning strategy has shown much
better performance than that of fine-tuning on the in-domain
data only [64].

B. TEXT-DEPENDENT SV SYSTEMS

TD-SV not only deals with the speaker information but also
the text information in the utterances. Therefore, TI-SV meth-
ods cannot be directly used in the TD scenarios. In this
section, we will introduce several typical TD-SV systems
according to the organization in Fig. 2.

1) BOTTLENECK FEATURE BASED I-VECTORS

In [34], the authors investigated BN-feature-based i-vectors
that use the activations at the bottleneck layers of a
triphone-state classifier as acoustic features for i-vector
extraction. The process of extracting BN i-vectors is shown
in Fig. 4. Unlike the conventional i-vector extractor, a BN
i-vector extractor computes the Baum-Welch statistics (see
Fig. 4(b)) from the BN features or their concatenation with
MEFCCs [34], [67]. Because BN features can capture abundant
phonetic information from the triphone-state classifier, the
resulting BN i-vectors can better represent the text informa-
tion in the utterances. Although using BN features for i-vector
extraction is not new, it is still competitive in TD-SV. For
example, in [30], the authors showed that the BN i-vectors
remarkably outperform the x-vectors that were trained on
sufficient in-domain data. However, a major disadvantage of
BN i-vectors is that to prepare the BN features for i-vector
extraction, an additional phonetic-aware DNN needs to be
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trained on a large amount of speech data. This will inevitably
increase the cost of deploying the SV system.

2) SPEAKER-PHONEME MULTI-TASK LEARNING
Many TD speaker embedding networks are based on
single-task learning to classify speakers. In [37], a bidirec-
tional gated recurrent unit (BGRU) layer and an attentive
pooling layer are combined to better capture the long-range
context information and simultaneously highlight the dis-
criminative frames during aggregation. In this architecture,
the phonetic information is implicitly exploited for TD-SV.
To explicitly incorporate text information into the speaker
embeddings, we may apply multi-task learning through both
speaker classification and phoneme classification. In [38],
speaker-phoneme multi-task learning was proposed to pro-
duce phoneme-aware speaker embeddings. As shown in
Fig. 5, the network is comprised of a shared frame-level
encoder M., a frame-level phoneme classifier My, a speaker
classifier My, and a segment-level phoneme classifier M.
To incorporate phonetic information into the segment-level
subnetworks shown in Fig. 5(b), the phoneme posteriors pro-
duced by M, are used to weight the convolutional feature
maps before statistics pooling:

PhoneAttPool = StatsPool (scale - Softmax (p . out15>) ,
2

where scale is a constant, p is the frame-based phoneme pos-
terior vector produced by M, out’s is the frame-based output
vector at the 5-th TDNN layer, and (-) is the dot product.
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As a result, phoneme-discriminative frames can be empha-
sized when producing segment-level embeddings. On the
other hand, by adding a phoneme classifier M, segment-
level adversarial learning is introduced to make the speaker
embeddings invariant to the phoneme variations in the utter-
ances. Adversarial learning is accomplished by implement-
ing a gradient reversal layer at the bottom of M, so that
the gradients with respective to the segment-level phoneme
classification loss are reversed in backpropagation.

Denote X = {x1, ..., Xy} as a sequence of acoustic vec-
tors, y* as the speaker label of X, and Y = {ypf, R yf\{} as
the phoneme labels of X. The corresponding segment-level
phoneme label y”* is defined as the normalized categorical
occurrences of phonemes, i.e.,

Ye =Ne/N, 3)

where N, is the number of occurrences of the c-th phoneme,
N is the number of frames in X, and C is the number of
phonemes in the selected phoneme set. To optimize the net-
work, we define the total loss as a combination of the speaker
classification loss L, the frame-level phoneme classification
loss £,r, and the segment-level phoneme classification loss

£ps s

ypS = {)’C}CC:1 )

L =Ls+aly + BLps. @)

where o and § are hyperparameters controlling the contri-
bution of L,r and L, respectively. Ly, Ly, and L, are

expressed as
Ly = CE (M; (M(X)),¥"), ()
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TABLE 2. TI-SV performance of existing best systems (without fusion) on the development set of FFSVC 2020.

ystem raining Data ront-en acken o min vantages isadvantages
Syst Training D Front-end Backend EER (%) inDCF Advant: Disadvant
e SLR33, SLR38,
SLR47, SLR49,
SLR62, and | ° ?4']) Mel-
SLR68 for pre- requency o Test Vanilla softmax
L. filterbank features . .
training Gradient boost embedding loss instead of
[43] | o FFSVC20 TI-SV | ® Jrael 2005008 | averaging 5.83 0.580 Advanced VAD | AAM-Softmax
. based VAD [70] .
training data for o Cosine or AM-Softmax
N . o ResNet-34 .
fine-tuning Soft 1 loss
e Pyroomacoustics ¢ SOHmaxoss
Aug [69]
o Concatenated
Voxcelebl-2  for
pre-training e 80-D filterbank e Advanced
o SLR33, SLR62, features e Mean VAD Large number of
[71] SLR82, SLR85, | e U-netbased VAD adaptation 4.46 0.484 e Domain adap- training speakers
and FFSVC20 TI- | e ResNet34 o Cosine ’ ’ tation in the (larger training
SV training data | ¢ AM-Softmax loss backend model)
for fine-tuning
o Kaldi Aug
o SLRI8, SLR33,
SLR47, SLR49, | * WPEIT3]
SILR62. SLR68 o Beamforming e Used speech
’ > | e 80-D filterbank . enhancement Large number of
[72] E/LRS?’bZ and features and pitch ® %S)sme 332 0.435 front-ends training speakers
. Poi)c:rs;acoustics e ResNet34 ° norm ' ’ e Diverse data (larger training
A}lllg ST Aug, and | ° AAM-Softmax augmentations model)
" ’ loss
Kaldi Aug
e 40-D filterbank e Small amount
* SI\IS_EICEIEIT_Z, features of training data
2019B-cval, _and | * LhorEybased « Light-meight Slightly worse
Ours FFSVC20 TI-SV Cosine 6.93 0.710 embedding but reasonable
. o Standard x-vector model
training data . performance
Kaldi Aug network (efficient
* o AM-Softmax loss training)
& strategies using both speaker labels and phrase labels:
Epf =N Z CE (MPf (M, (x1)) , Ypf> s (6) « g £ » P I pn :
N < i speaker + phrase” and ‘“‘speaker x phrase”. As shown
=l in Fig. 6, “speaker + phrase” follows a multi-task fine-
and tuning style with two separate classification heads. In the
“speaker x phrase”” mode, however, only a single head is
Lps = KL (Mps (M. (X)), y) @)
2 2 e ’ ’

respectively, where CE and KL stand for cross-entropy loss
and Kullback-Leibler (KL) divergence, respectively. Note
that because the segment-level phoneme label y”* is not in
one-hot format, KL divergence instead of cross-entropy loss
is used in (7).

Speaker-phoneme multi-task learning has achieved sub-
stantial improvement in RSR2015 compared with existing
TD-SV systems [38]. However, an ASR model is required to
generate phoneme labels, which increases the cost of system
deployment.

3) MULTI-TASK FINE-TUNING

Similar to the case in Section III-B2 where multi-task learn-
ing is used in pre-training, we can also use multi-task learning
in the fine-tuning process to improve TD-SV performance.
In [42], the authors investigated two different fine-tuning
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used in the output layer of the classifier, and utterances in dif-
ferent phrases with the same speaker identity are considered
different classes. It was shown in [42] that the ‘“‘speaker +
phrase” mode outperforms the “‘speaker x phrase’ strategy
on the TD task in SASVC 2021, which verifies the effective-
ness of multi-task fine-tuning.

IV. PERFORMANCE COMPARISONS

In this section, we compare the performance on the
recent Far-Field Speaker Verification Challenge (FFSVC)
2020 data [68]. FFSVC20 focuses on the smart home scenario
where far-field distributed microphone arrays are used in
noisy environments. The utterances in FFSVC20 are recorded
by one close-talking microphone, one iPhone, and six circular
microphone arrays. The language is Mandarin. The enroll-
ment utterances and the test utterances in both TI-SV and
TD-SV tasks come from different microphones.
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TABLE 3. TD-SV performance of existing best systems (without fusion) on the evaluation set of FFSVC 2020.

[ System [ Training Data | Front-end [ Backend [ EER(%) | minDCF | Advantages [ Disadvantages |
e SLR33, SLR38,
SLR47, SLR49,
SLR62, and | e 64-D Mel-
SLR68 for pre- frequency o Test Vanilla softmax
training filterbank features . .
o SLRS5 and | o Gradient boostin embedding loss instead of
[43] FFSVC20 TD.SV sd VA e averaging 6.37 0.620 Advanced VAD |  AAM-Softmax
training data for | e ResNet-34 + Cosine or AN{—OSS:ftmax
fine-tuning o Softmax loss
e Pyroomacoustics
Aug
e SLR33, SLR38,
SLR62, SLR68
s s e Advanced
?S—SV FFt?a?i/r?iﬁO ¢ 30-D MFCCs frame-level
data  for preg— o Energy-based architecture
training VAD . Advapced La_rg_e number of
[74] | o FESVC20 training | * ReSeNetBAM Cosine 481 0.454 domain training speakers
data  for fine. | Softmax loss adaptapon (larger training
tuning e Domain adversar- (domain model)
o Kaldi Aug with ial training ad\./e}'sarial
data selection training)
o SpecAug [75]
e 30-D filterbank e Advanced
) ISJILJE\%SCZO TD-aSn\(; features frame-level
37 training data ° D_en_seN_et PLDA 578 0.570 architecture Used in-domain
(371 e Online data aug- ° Bldlr;ctlonal' ' ’ ¢ Advzjmced training data only
mentation attentive pooling pooling
o AM-Softmax loss strategy
e CN-Celebl—2 e 40-D filterbank . Small. amount
AISHELL- ’ features of training data
o Energy-based o Light-weight .
2019B-eval, and . Slightly worse
Ours FFSVC20 TD-SV |  VAD Cosine 7.02 0.740 embedding but reasonable
training data o Standard x-vector model performance
Kaldi Au network (efficient
¢ & o AM-Softmax loss training)

| Phrase Classifier | Speaker x Phrase
/r Classifier

Embedding

I Speaker Classifier |

Embedding

Speaker + Phrase

Speaker x Phrase

FIGURE 6. Illustration of two fine-tuning strategies in TD-SV. The left
subfigure shows the “speaker + phrase” method with a speaker
classification head and a phrase classification head; whereas the right
“speaker x phrase” method uses a single classification head but with
more output nodes. (Adapted from [42]).

A. TEXT-INDEPENDENT EVALUATION

Task 2 of FFSVC 2020 falls into the text-independent
category [68]. The training set contains 120 speak-
ers speaking Mandarin. This dataset, together with the
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SLR-85 HI-MIA data® can be used as in-domain data for
domain knowledge transfer. Besides, any publicly accessible
data shared on openslr.org before 1st February 2020 can be
used to develop the TI-SV systems. Because most partic-
ipants in this challenge only reported the performance of
fused systems on the evaluation set, we present the results
of single systems on the development set only for fair com-
parisons. The performance of some top performing sys-
tems (without fusion) on the development set is shown in
Table 2.

The official baseline system [43] (the first row of Table 2)
used public data from openslr.org for pre-training the embed-
ding model and adopted fine-tuning to transfer the knowl-
edge learned from the pre-training data to the FFSVC20
TI-SV task. The pre-training set comprises 10,544 speakers.
The system in [71] used a similar number of speakers for
pre-training and fine-tuning. Because the system uses more
advanced VAD (with a U-net structure) in the front-end and
mean adaptation in the backend, its performance is better than

Zhttp://openslr.org/85/.
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that of the system in [43]. The embedding network in [72] was
trained on a 11,120-speaker dataset. Before acoustic feature
extraction, WPE and beamforming were applied to alleviate
reverberation and to take into account the array information,
respectively. Also, diverse augmentation methods were used
in data preparation. These improvements contribute to better
performance than the system in [71]. For our system (the
last row of Table 2), we only used 3,118 speakers to prepare
the training data. Besides, we used the standard x-vector net-
work as the embedding model, which is not as capable as the
advanced ResNet34. Therefore, we obtained slightly worse
but reasonable performance as compared with the system
in [43].

B. TEXT-DEPENDENT EVALUATION

Task 1 of FFSVC 2020 is text-dependent. The text content
is “ni hao mi ya” in Mandarin. There are 120 speakers
in the text-dependent training data. Similar to the TI-SV
task, public data from openslr.org can be used in the sys-
tem development. Table 3 shows the performance of several
top performing systems (without fusion) on the evaluation
set.

The official TD-SV system [43] is similar to the offi-
cial TI-SV system in Table 2, except that FFSVC20 TD-SV
data were used for fine-tuning. The system in [74] was
pre-trained on Mandarin utterances from 3,211 speakers and
used ResNet-BAM as the embedding extractor. Also, the
authors applied domain adversarial training to further reduce
the mismatch between the TI data and the TD data. These
implementations contribute to better performance than the
system in [43]. Interestingly, although the system in [37]
was trained on a smaller number of speakers than the sys-
tem in [43], it still achieved better performance. This can be
due to that the system in [37] uses more advanced embed-
ding network (DenseNet), more effective aggregation strat-
egy (bidirectional attentive pooling), and a more complex
backend (PLDA model). Our TD-SV system was based on
the same framework as that in the TI-SV task except that
we used FFSVC20 TD-SV data for fine-tuning. We obtained
reasonable performance as compared with the system in [43]
because we neither trained our system on a large number of
speakers nor did we use an advanced embedding network and
powerful backends.

V. CONCLUDING REMARKS AND FUTURE TRENDS

In this paper, we briefly review the recent studies on
TI-SV and TD-SV. Compared with TI-SV, where the con-
text information is considered nuisance variability, TD-SV
takes both speaker and phonetic information into account
during speaker modeling. With the advances in deep learning,
SV has achieved remarkable progress in many aspects such as
domain-invariant learning, robust SV in the wild, and short-
duration SV. These improvement has been reflected in the
recent SV challenges. Specifically, in this paper, we com-
pare the performance of several best performing systems on
FFSVC 2020.
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A. CONCLUDING REMARKS
The concluding remarks are summarized as follows:

1) Advanced convolutional layers/blocks such as
DenseNet and ResNet are prevalent in SV.

2) Mostexisting SV systems are implemented in a “‘Front-
end 4 Backend” structure.

3) Fine-tuning is an effective tool to improve the perfor-
mance of TI-SV and TD-SV.

4) Multi-task learning seems to be unattractive for TD-SV.

B. FUTURE TRENDS

As mentioned in Section II-C, SV faces many challenges
in real-world applications. Background noise, reverberation
effect, short utterances, microphone mismatches, and lan-
guage mismatches have always been and will continue to be
the critical issues in robust speaker verification. Although the
current SV systems can partially address these problems, the
solutions are scenario-specific, e.g., an SV system that can
address noise could fail miserably when the utterances are
very short. Therefore, seeking principled solutions that can
generalize across different tasks is essential in the future.

On the other hand, to facilitate system deployment, model
compression techniques such as knowledge distillation [76]
and network pruning [77] have received increasing attention.
However, due to the trade-off between the system perfor-
mance and the runtime efficiency, developing lightweight
and effective SV systems is challenging and worths further
research.

Recently, the research on security in SV has also
attracted great attention and many studies have been focus-
ing on defending SV systems against malicious spoofing
attacks through replay, speech synthesis, voice conversion,
and adversarial samples [78], [79], [80]. Unlike previous
ASVspoof tasks [78], [79], which aim to develop counter-
measures (CMs) for a fixed SV system, the spoofing-aware
speaker verification (SASV) challenge [80] focuses on the
optimization of both CMs and SV subsystems to improve
the SV reliability. In this regard, SASV will attract extensive
attention in the future.
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