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ABSTRACT Speaker verification (SV) aims to detect an individual’s identity from his/her voice. SV has
been successfully applied in various areas such as access control, remote service customization, financial
transactions, etc. Depending on whether the text content is pre-defined or not, SV can be text-dependent or
text-independent. This paper reviews recent research on text-dependent SV (TD-SV) and text-independent
SV (TI-SV). Because most modern SV systems apply deep learning methods to boost performance,
we focus on the studies that use deep speaker embedding, a technique representing a person’s identity via
a fixed-dimensional vector encoded from a variable-length utterance. Rather than detailing every existing
SV system, we make an overview of the representative SV systems that have attracted wide attention.
Furthermore, an increasing number of SV systems have been devoted to addressing real-world challenges
such as reverberation and noise, and this has driven a large number of studies on practical SV. Therefore,
the survey compares the existing SV systems in the Far-Field Speaker Verification Challenge 2020 (FFSVC
2020) to illustrate the most effective techniques for both TD-SV and TI-SV.
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INDEX TERMS Text-dependent speaker verification, text-independent speaker verification, deep speaker
embedding, far-field speaker verification.

I. INTRODUCTION15

Speaker verification (SV) aims to determine whether the16

identity of a claimed utterance matches a target identity. This17

technology has been applied in many practical scenarios such18

as access control, service customization, national security,19

etc. Modern SV systems generally have two types of struc-20

tures: (1) a cascaded structure comprising a front-end and a21

backend [see Fig. 1(a)] and (2) an end-to-end structure where22

the system directly outputs the verification scores or deci-23

sions [see Fig. 1(b)]. The difference between these two types24

of structures lies in how the decision scores are computed.25

Specifically, the former requires an embedding model—such26

as the traditional i-vector extractor [1] or a deep embedding27

network [2]—to produce speaker embeddings and a backend28

classifier to compute verification scores. In contrast, the latter29

directly computes the scores of verification trials.30

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy .

SV can be text-independent or text-dependent. For 31

text-independent SV (TI-SV), because there is no constraint 32

on the lexical content, the speaker embedding extractor is 33

trained on long utterances to suppress the adverse effect 34

of phonetic variability [3], [4]. TI-SV has been studied 35

extensively due to the ease of collecting large-scale text- 36

independent data. In contrast, the lexicon in text-dependent 37

SV (TD-SV) is constrained to a small set of words or 38

phrases. Because of the low degree of phonetic variability, 39

TD-SV usually outperforms TI-SV under short-duration sce- 40

narios. This propertymakes TD-SVmore advantageouswhen 41

the utterance duration is short and the response should be 42

quick [5]. However, to build a well-performed TD-SV sys- 43

tem, we need to collect a large amount of in-domain data, 44

which is very expensive in practice. 45

The recent advances in deep learning and deep neural net- 46

works have changed the landscape of speaker verification. 47

Various backbones, such as ResNets and DenseNets, have 48

been integrated into the speaker embedding networks. Com- 49

pared with i-vector, deep speaker embedding has achieved 50
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FIGURE 1. (a) A ‘‘Front-end + Backend’’ cascaded SV system and (b) an end-to-end SV system.

state-of-the-art performance and dominated the SV area.51

However, SV still faces several challenges in practice (see52

Section II-C for details). Currently, the focus has shifted53

to using better speaker embedding networks to suppress54

non-speaker variabilities under various adverse situations.55

How to develop SV systems that are robust to noise and56

reverberation, domain mismatch, and short duration remains57

a difficult problem. Therefore, a comprehensive overview of58

the current methods and systems is necessary for practitioners59

and researchers to understand this field better. To this end,60

this paper surveys the most representative text-dependent and61

text-independent systems and compares their performance62

under the same dataset and evaluation protocol. This paper63

fills the gap in a recent review of speaker recognition [6]64

by providing comprehensive coverage of text-dependent sys-65

tems and explaining how they leverage deep speaker embed-66

ding to reduce domain mismatch and increase the robustness67

in the wild.68

The paper is organized as follows. Section II briefly intro-69

duces the recent development in both TI-SV and TD-SV and70

the challenges that SV systems face. Then, Section III reviews71

current representative TI-SV and TD-SV systems. The per-72

formance of these systems on a far-field speaker recognition73

challenge is compared in Section IV.Wewill give concluding74

remarks and future trends in Section V.75

II. RECENT ADVANCES IN SPEAKER VERIFICATION76

In this section, we introduce the recent development of TI-SV77

and TD-SV and highlight their challenges.78

A. TEXT-INDEPENDENT SPEAKER VERIFICATION79

TI-SV has long been popular in the speaker recognition80

community and has received pervasive investigations. Cur-81

rently, most TI-SV systems use a cascaded structure com-82

prising a front-end and a backend, as shown in Fig. 1(a).83

The front-end aims to extract speaker characteristics and84

the backend is responsible for scoring. Typical front-ends85

are i-vector embedding, x-vector embedding, and the more86

general deep speaker embedding. Typical backends include87

cosine similarity measure, probabilistic linear discriminant88

analysis (PLDA) [7], and heavy-tailed PLDA [8]. Since89

the era of i-vector [1], TI-SV has been dominated by the90

i-vector/PLDA framework. With the advancement of deep 91

learning, deep speaker embedding has led to significant per- 92

formance improvement in TI-SV systems [2], [9], [10], [11]. 93

Classical deep speaker embedding uses a speaker iden- 94

tification network to create a speaker-embedding space. 95

Typically, the embedding network comprises a frame-level 96

subnetwork, a pooling layer, and an utterance-level subnet- 97

work. After frame-level feature extraction and utterance- 98

level aggregation, the speaker embeddings are extracted from 99

the affine output of a fully-connected (FC) layer of the 100

utterance-level subnetwork. Under this framework, various 101

architectures based on convolutional neural networks (CNNs) 102

have been used for frame-level processing. A classic exam- 103

ple is the x-vector which uses time delay neural networks 104

(TDNNs) to extract the frame-level features [2]. Later, more 105

advanced networks, such as ResNets [9], DenseNets [10], 106

[12], and Res2Nets [11], [13], were introduced to better 107

model the spectral-temporal relationship across the acoustic 108

frames. Simultaneously, diverse aggregation methods have 109

been proposed to aggregate the frame-level information into 110

utterance-level embeddings, e.g., statistics pooling [2], multi- 111

head attentive pooling [14], NetVLAD-based pooling [9], 112

short-time spectral pooling [15], [16], etc. Also, different 113

training losses besides the softmax loss have been used 114

in deep speaker embedding to achieve better discrimina- 115

tive power. For example, additive margin softmax (AM- 116

Softmax) [17] loss and additive angular margin softmax 117

(AAM-Softmax) loss [18] have been widely used to replace 118

the vanilla softmax counterpart. 119

Another category of deep speaker embedding uses met- 120

ric learning for TI-SV [19], [20], [21]. In this category, 121

losses based on some distance measures are used to guide 122

the embedding network so that the speaker embeddings have 123

both large inter-class distance and small intra-class distance. 124

For example, triplet loss [21], prototypical network loss [20], 125

angular prototypical loss [19], and masked proxy loss [22] 126

have been applied to TI-SV and have achieved competitive 127

performance. 128

Besides the cascade of a front-end and a backend, there 129

are end-to-end architectures with an SV-loss objective (see 130

Fig. 1(b)) for TI-SV [23], [24]. These systems strictly con- 131

form to the SV objective in that they directly map an 132
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enrollment-test pair to a score or a decision probability,133

as shown in Fig. 1(b). In fact, the SV-loss is closely related to134

deepmetric learning in that they both involvemapping a train-135

ing sample pair/triplet to a similarity score. Their main differ-136

ence is that the SV-loss uses an additional logistic regression137

layer tomap the similarity score to a decision probability [24].138

B. TEXT-DEPENDENT SPEAKER VERIFICATION139

Although TI-SV has achieved outstanding performance in140

various evaluations [2], [11], [25], [26], it suffers severe per-141

formance degradation under short-utterance scenarios due142

to the abundant phonetic mismatch between the enrollment143

utterances and the test utterances [9], [27]. TD-SV, on the144

other hand, is more advantageous in short-duration applica-145

tions due to the limited phonetic variability in the utterances.146

With the increasing demand for voice-based access control147

applications, TD-SV has revived recently.148

Unlike TI-SV, TD-SV requires the matching of both speak-149

ers and text contents. Because TD-SV needs to take text150

information into account, directly applying a TI-SV model to151

TD-SV will cause problems. In fact, the authors of [28] have152

shown that exploiting the text information in utterances can153

remarkably improve the performance of TD-SV. Different154

from TI-SV, as shown in Table 1, there are three types of155

impostor trials in TD-SV: 1) the speaker in the enrollment156

and verification session matches but the texts do not match,157

2) the speakers in the enrollment and verification phases158

do not match but the text content matches, and 3) neither159

the speakers nor the contents match [5], [29]. This differ-160

ence requires TD-SV to adopt additional strategies to deal161

with the content information, which is ignored in TI-SV.162

For example, a phrase recognizer may be used to assist the163

verification of Target-wrong and Impostor-wrong trials in164

Table 1 [30].165

According to whether the text content is fixed or not,166

TD-SV can be phrase-dependent (phrases are pre-defined by167

the system) or phrase-independent (the users may customize168

their own phrases) [29]. For phrase-dependent TD-SV, it is169

preferable to train the embedding extractor on the matched170

phrases to make the speaker embeddings reflect the phonetic171

variability in the pre-defined phrases. Also, the parameters172

in the conventional channel compensation methods—such as173

within-class covariance normalization (WCCN) [31], LDA,174

and PLDA—should be trained on the data with the pre-175

defined phrases. This strategy helps reject impostors speak-176

ing the wrong phrases [32]. For phrase-independent TD-SV,177

however, because there may be text mismatch between the178

training utterances and the evaluation utterances, and even179

mismatch between the enrollment utterances and the verifica-180

tion utterances, specific techniques such as content normal-181

ization [28] and text adaptation [33] are required to alleviate182

the mismatch problem.183

Early work on TD-SV was mainly based on the i-vector184

framework and its variants. In [32], the authors took phonetic185

variability into consideration when modeling the uncertainty186

in the i-vectors. To this end, they propagated the i-vectors’187

TABLE 1. Types of trials in text-dependent speaker verification.

uncertainty to a phrase-dependent PLDA model for TD-SV. 188

To incorporate phonetic information into speaker model- 189

ing, the authors of [29] proposed the hidden Markov model 190

(HMM) based i-vectors, where mono-phone HMMs were 191

used for frame alignment. The HMM i-vectors are in con- 192

trast to the conventional i-vectors where a Gaussian mixture 193

model (GMM) is used for aligning the frames. Another vari- 194

ant of speaker modeling is the bottleneck (BN) feature based 195

i-vector [30], [34]. Rather than extracting i-vectors from the 196

conventional Mel-frequency cepstral coefficients (MFCCs), 197

we extract the i-vectors from the BN features (may be con- 198

catenated with MFCCs). Because BN features are obtained 199

from the bottleneck layer of a phonetically-aware DNN 200

trained to classify the phone states, the phonetic information 201

can be incorporated into the sufficient statistics for i-vector 202

extraction. This makes the BN i-vectors both speaker- and 203

phrase-dependent. It was shown that whenmodeling speakers 204

using BN features, HMM state alignments are not neces- 205

sary [34]. However, one major drawback of BN i-vectors is 206

that an additional speech recognizer is required to obtain the 207

phone states. 208

Recently, deep learning has been widely used in 209

TD-SV [33], [35], [36], [37], [38], [39], [40], [41], [42]. One 210

deep learning framework is the end-to-end TD-SV [23], [24]. 211

Another straightforward way is to use the modified architec- 212

ture of a TI-SV model for TD-SV [37], [40]. For example, 213

under the x-vector framework, the standard deviation vectors 214

rather than the affine output from the utterance-level subnet- 215

work are used as the speaker representations for TD-SV [40]. 216

In [37], a bidirectional attentive pooling layer is incorporated 217

into a DenseNet to better establish the contextual information 218

across the frames. When these models are trained on suffi- 219

cient in-domain data, good performance can be achieved even 220

though they are expected to perform speaker classification 221

only, i.e., the single-task style. 222

Although TI-SV models can be well adapted to TD-SV, 223

the text information is actually exploited in an implicit 224

way. A more intuitive strategy is to explicitly explore the 225

phrase information through multi-task learning. In [35], the 226

authors proposed a j-vector system to deal with the con- 227

textual information in utterances through multi-task learn- 228

ing. Besides using a speaker classifier as in single-task 229

learning, the j-vector network applies a phrase classifier to 230

explicitly propagate the phrase information to the speaker- 231

embedding layer. To address the text mismatch between the 232

training data and the evaluation data, and also the text mis- 233

match between the enrollment phrases and the test phrases, 234

a speaker-text factorization network was proposed in [33]. 235
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The network aims to disentangle the speaker information236

from the text information through two separate subtasks:237

speaker classification and phoneme classification. Due to238

the factorization of the speaker and phoneme representa-239

tions, text-independent speaker embeddings can be adapted to240

text-dependent ones based on the given phrases. Recently, the241

authors of [38] proposed a multi-task learning network with242

phoneme-aware attentive pooling for TD-SV. To exploit the243

phonetic information in utterances, the posteriors obtained244

from the frame-level phoneme classifier are used in atten-245

tive pooling. Furthermore, attributed to the adversarial train-246

ing through a segment-level phoneme classification loss, the247

learned speaker embeddings will be invariant to the phrase248

variations.249

C. CHALLENGES IN SPEAKER VERIFICATION250

In practice, we are faced with various challenges. One251

challenge is that, under noise and reverberation conditions,252

the performance of both TI-SV and TD-SV will degrade253

severely [25], [26], [39], [43]. To deal with this problem,254

researchers applied a speech enhancement module to restore255

the undistorted speech. For example, in [44], weighted pre-256

diction error (WPE) was applied to suppress the late rever-257

beration in multi-channel speech. Later, a neural WPE was258

proposed in [45] to better estimate the power spectral den-259

sity for both single- and multi-channel dereverberation. For260

single-channel speech, the authors of [46] proposed a joint261

training scheme to optimize a UNet-based speech enhance-262

ment front-end and a DenseNet-based speaker-embedding263

extractor simultaneously. Also, beamforming-based tech-264

niques [47], [48] have been used for denoising and derever-265

beration.266

Besides using a speech enhancement front-end, transfer267

learning is another effective method to address noise and268

reverberation. In [49] and [50], adversarial learning was269

exploited to create a noise-invariant embedding space so that270

the embeddings can generalize to a variety of noise. Also,271

the authors of [51] implemented a teacher-student learn-272

ing framework to transfer the knowledge learned from the273

near-field data to the far-field situation dominated by noise274

and reverberation.275

On the other hand, when the duration of the evaluation276

utterances becomes short, TI-SV systems will witness a sub-277

stantial performance drop [5], [9], [27]. As a result, short278

duration poses another challenge to TI-SV. Although TD-SV279

is more robust to short utterances, collecting text-dependent280

training data is expensive.281

What is worse, domain mismatch exacerbates the above282

challenges. Due to the discrepancy between different record-283

ing conditions, e.g., differences in channels, languages, noise284

and so on, the distribution of the training data usually dif-285

fers from that of the test data. Under this situation, it is286

necessary to adapt the trained models based on some target-287

domain data, a strategy known as domain adaptation (DA).288

On the other hand, due to the high cost of data labeling,289

only a small amount of labeled data or even no labeled data290

FIGURE 2. Structure of (a) an embedding model and (b) a backend in the
cascaded SV systems.

from the target domain are available. This difficulty neces- 291

sitates advanced methods to alleviate the domain mismatch 292

challenge. 293

Depending onwhether the target-domain data have speaker 294

labels or not, DA can be divided into supervised DA and 295

unsupervised DA. Unsupervised DA has been popular since 296

NIST 2016 SRE, where there is a severe language mismatch 297

between the training and evaluation data [52]. To address 298

this problem, the authors of [53] and [54] minimized the 299

maximum mean discrepancy (MMD) [55] across different 300

languages to create a language-invariant speaker embedding 301

space. Besides, domain adversarial training [56] has been 302

successfully applied [57], [58], [59], [60], [61] to produce 303

language-invariant speaker embeddings. There are also DA 304

methods that directly adapt the PLDA covariance matrices to 305

match the target distribution, e.g., CORAL+ [62] and Kaldi’s 306

PLDA adaptation [63].1 307

Recently, studies on DA have focused on the case where a 308

small amount of labeled in-domain data are available. In this 309

situation, many SV systems use transfer learning to fine-tune 310

a source-domain speaker model to the target-domain dis- 311

tribution [39], [41], [42], [43]. In [39], the authors used 312

text-dependent data to fine-tune a text-independent ResNet 313

for the speech in AISHELL-2019B-eval. The same strategy 314

was used to improve the text-dependent evaluation perfor- 315

mance in the INTERSPEECH 2020 Far-Field Speaker Verifi- 316

cation Challenge (FFSVC 2020). In the latest Short-duration 317

Verification Challenge (SdSVC) 2021, the authors of [41] 318

found that fine-tuning the whole model is more effective 319

than fine-tuning the upper layers only. To explicitly exploit 320

the text information in the fine-tuning operation, a multi- 321

task fine-tuning strategy was introduced for TD-SV in [42], 322

where both a speaker classification head and a phrase clas- 323

sification head were used. Another fine-tuning example for 324

TD-SV is illustrated in [23], where a GE2E contrastive loss 325

was used to fine-tune a text-independent speaker embedding 326

network. 327

1https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v2
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FIGURE 3. (a) Architecture of the ECAPA-TDNN based SV system and (b) detailed structure of the SE-Res2Block used
in ECAPA-TDNN. k and d are the kernel size and dilation rate of the convolutional filters, respectively. C and T
denote the number of channels and the number of frames in the feature map, respectively. N is the number of
speakers in the training data. The ‘‘Res2’’ in the second layer of (b) means residual-like connections of a standard
Res2Net module. (Adapted from [11]).

To make the organization of this paper clear, we illustrate328

the detailed structure of the ‘‘Front-end + Backend’’ SV329

system in Fig. 2. Note that the system structure is applicable330

to both TI-SV and TD-SV except that the phrase-dependent331

PLDA [30] and phrase-expanded PLDA [40] are designed332

for TD-SV. Although the TI-SV methods mentioned in333

Section II-A are mostly investigated on English corpora, they334

can well be generalized to other languages.335

III. REPRESENTATIVE SPEAKER VERIFICATION SYSTEMS336

As shown in Fig. 2, there are various categories of SV sys-337

tems for both TI-SV and TD-SV. In this section, rather than338

describing every details of these systems, we focus on repre-339

sentative SV systems reported recently.340

A. TEXT-INDEPENDENT SV SYSTEMS341

State-of-the-art TI-SV systems are mostly based on the cas-342

cade of a deep speaker embedding network and a backend.343

Moreover, we mostly use a single-task network architec-344

ture (speaker classifier) to extract speaker embeddings, with345

possible fine-tuning processes to transfer the source-domain346

knowledge to the target domain.347

1) ECAPA-TDNN348

One of the recent advances in deep speaker embedding349

for TI-SV is the Emphasized Channel Attention, Propa-350

gation and Aggregation in TDNN (ECAPA-TDNN) [11],351

[64]. The architecture of ECAPA-TDNN is shown in Fig. 3,352

which follows the framework of the x-vector extractor. There353

are four differences between the ECAPA-TDNN and the354

x-vector extractor: 1) the former uses Res2Net blocks [65] 355

with multi-layer feature aggregation to replace the conven- 356

tional TDNN structure for better frame-level information 357

propagation; 2) a channel- and content-dependent statis- 358

tics pooling layer is used in the ECAPA-TDNN to better 359

emphasize the contribution of the discriminative channels; 360

3) channel calibration is achieved through the squeeze-and- 361

excitation (SE) blocks [66] to better model the interdependen- 362

cies across the channels; and 4) additive angular margin soft- 363

max (AAM-Softmax) loss [18] rather than the vanilla softmax 364

loss is used in ECAPA-TDNN to better enforce intra-speaker 365

compactness. Attributed to these improvements, ECAPA- 366

TDNN has achieved state-of-the-art TI-SV performance on 367

VoxCeleb1 [11] and on SdSVC 2020 [64]. 368

2) DOMAIN-BALANCED HARD PROTOTYPE MINING 369

When there is domain mismatch between the training data 370

and the evaluation data, fine-tuning is an effective way to 371

boost SV performance. In [64], a domain-balanced hard pro- 372

totype mining (HPM) technique was proposed to exploit the 373

‘‘harder’’ speakers who confuse the system during the fine- 374

tuning process. In contrast to metric learning in which con- 375

siderable effort is made to mine hard negative samples [19], 376

HPM is easier to implement and nicely adoptable to the 377

AAM-Softmax loss. 378

Because it is impossible to compute a similarity matrix 379

across all utterances in a mini-batch to deduce speaker con- 380

fusion, the weights of the AAM-Softmax layer are used as 381

the proxies of the class centers of the training speakers. 382
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FIGURE 4. (a) Extraction of the bottleneck features from a triphone-state classifier and (b) the
process of the BN i-vector extraction. ((a) and (b) are adapted from [34] and [67], respectively).

These weights are referred to as speaker prototypes in HPM.383

Given N training speakers and a mini-batch of size B, the384

AAM-Softmax loss is expressed as385

L = −
1
B

B∑
i=1

log
es
(
cos
(
θyi+m

))
es
(
cos
(
θyi+m

))
+
∑N

j=1,j 6=yi e
s(cos(θj))

, (1)386

where m and s denote the angular margin and the scaling fac-387

tor, respectively. θyi represents the angle between the speaker388

embedding zi and the speaker prototype wyi , where yi is the389

corresponding speaker label; whereas θj is the angle between390

zi and the speaker prototype wj. Note that wj is the j-th col-391

umn of the weight matrixW in the AAM-Softmax layer, i.e.,392

W =
{
wj
}N
j=1, and wj is normalized to unit length. Based on393

the weight matrixW, the speaker similaritymatrix S ∈ RN×N
394

can be computed as S = W>W, whose elements represent395

the cosine distances between all pairs of speaker prototypes.396

Once we obtain the prototype similarity matrix S, we may397

create mini-batches by sampling the most difficult speakers.398

This, however, would lead to a problem in which only a small399

group of speakers will be frequently sampled in the fine-400

tuning process, reducing the diversity of the training samples.401

To avoid poor generalization, for each iteration, S speakers402

are randomly selected from the N training speakers. For each403

selected speaker,U utterances are sampled from his/her most404

similar I speakers, including the selected speaker, i.e., B =405

S×U×I . The similarity matrix Swill be updated when all the406

speakers have been iterated over in the mini-batch generation.407

This process is called HPM.408

In reality, the scale of the out-of-domain data is usu-409

ally much larger than that of the in-domain data, and410

using a small amount of in-domain data to fine-tune a411

pre-trained model can easily lead to overfitting. To alle-412

viate this problem, a better idea is to fine-tune a pre-413

trained model using both out-of-domain data and in-domain414

data, so that the resulting embeddings are more robust to415

domain mismatch. Suppose we have Nin in-domain speak-416

ers (Nin < N ), we follow the HPM strategy for each417

mini-batch generation. For each mini-batch, we iteratively 418

sample S speakers from both Nin in-domain speakers and 419

Nin out-of-domain speakers. Once these 2Nin speakers have 420

been used up, we update the similarity matrix S and randomly 421

selectedNin new speakers from theN out-of-domain speakers 422

again (together with Nin in-domain speakers). This process 423

is referred to as domain-balanced HPM, which samples hard 424

speakers not only from the target-domain but also from the 425

source domain. This fine-tuning strategy has shown much 426

better performance than that of fine-tuning on the in-domain 427

data only [64]. 428

B. TEXT-DEPENDENT SV SYSTEMS 429

TD-SV not only deals with the speaker information but also 430

the text information in the utterances. Therefore, TI-SVmeth- 431

ods cannot be directly used in the TD scenarios. In this 432

section, we will introduce several typical TD-SV systems 433

according to the organization in Fig. 2. 434

1) BOTTLENECK FEATURE BASED I-VECTORS 435

In [34], the authors investigated BN-feature-based i-vectors 436

that use the activations at the bottleneck layers of a 437

triphone-state classifier as acoustic features for i-vector 438

extraction. The process of extracting BN i-vectors is shown 439

in Fig. 4. Unlike the conventional i-vector extractor, a BN 440

i-vector extractor computes the Baum-Welch statistics (see 441

Fig. 4(b)) from the BN features or their concatenation with 442

MFCCs [34], [67]. Because BN features can capture abundant 443

phonetic information from the triphone-state classifier, the 444

resulting BN i-vectors can better represent the text informa- 445

tion in the utterances. Although using BN features for i-vector 446

extraction is not new, it is still competitive in TD-SV. For 447

example, in [30], the authors showed that the BN i-vectors 448

remarkably outperform the x-vectors that were trained on 449

sufficient in-domain data. However, a major disadvantage of 450

BN i-vectors is that to prepare the BN features for i-vector 451

extraction, an additional phonetic-aware DNN needs to be 452
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FIGURE 5. Architecture of speaker-phoneme multi-task learning. The pipeline of phoneme-aware
attentive pooling is shown in the orange block. (Adapted from [37]).

trained on a large amount of speech data. This will inevitably453

increase the cost of deploying the SV system.454

2) SPEAKER-PHONEME MULTI-TASK LEARNING455

Many TD speaker embedding networks are based on456

single-task learning to classify speakers. In [37], a bidirec-457

tional gated recurrent unit (BGRU) layer and an attentive458

pooling layer are combined to better capture the long-range459

context information and simultaneously highlight the dis-460

criminative frames during aggregation. In this architecture,461

the phonetic information is implicitly exploited for TD-SV.462

To explicitly incorporate text information into the speaker463

embeddings, we may apply multi-task learning through both464

speaker classification and phoneme classification. In [38],465

speaker-phoneme multi-task learning was proposed to pro-466

duce phoneme-aware speaker embeddings. As shown in467

Fig. 5, the network is comprised of a shared frame-level468

encoderMe, a frame-level phoneme classifierMpf , a speaker469

classifier Ms, and a segment-level phoneme classifier Mps.470

To incorporate phonetic information into the segment-level471

subnetworks shown in Fig. 5(b), the phoneme posteriors pro-472

duced by Mpf are used to weight the convolutional feature473

maps before statistics pooling:474

PhoneAttPool = StatsPool
(
scale · Softmax

(
p · outl5

))
,475

(2)476

where scale is a constant, p is the frame-based phoneme pos-477

terior vector produced byMpf , outl5 is the frame-based output478

vector at the 5-th TDNN layer, and (·) is the dot product.479

As a result, phoneme-discriminative frames can be empha- 480

sized when producing segment-level embeddings. On the 481

other hand, by adding a phoneme classifier Mps, segment- 482

level adversarial learning is introduced to make the speaker 483

embeddings invariant to the phoneme variations in the utter- 484

ances. Adversarial learning is accomplished by implement- 485

ing a gradient reversal layer at the bottom of Mps so that 486

the gradients with respective to the segment-level phoneme 487

classification loss are reversed in backpropagation. 488

Denote X = {x1, . . . , xN } as a sequence of acoustic vec- 489

tors, ys as the speaker label of X, and Y = {ypf1 , . . . , y
pf
N } as 490

the phoneme labels of X. The corresponding segment-level 491

phoneme label yps is defined as the normalized categorical 492

occurrences of phonemes, i.e., 493

yps = {yc}Cc=1, yc = Nc/N , (3) 494

where Nc is the number of occurrences of the c-th phoneme, 495

N is the number of frames in X, and C is the number of 496

phonemes in the selected phoneme set. To optimize the net- 497

work, we define the total loss as a combination of the speaker 498

classification loss Ls, the frame-level phoneme classification 499

loss Lpf , and the segment-level phoneme classification loss 500

Lps, 501

L = Ls + αLpf + βLps, (4) 502

where α and β are hyperparameters controlling the contri- 503

bution of Lpf and Lps, respectively. Ls, Lpf , and Lpf are 504

expressed as 505

Ls = CE
(
Ms (Me(X)) , ys

)
, (5) 506
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TABLE 2. TI-SV performance of existing best systems (without fusion) on the development set of FFSVC 2020.

Lpf =
1
N

N∑
i=1

CE
(
Mpf (Me (xi)) , y

pf
i

)
, (6)507

and508

Lps = KL
(
Mps (Me (X)) , yps

)
, (7)509

respectively, where CE and KL stand for cross-entropy loss510

and Kullback–Leibler (KL) divergence, respectively. Note511

that because the segment-level phoneme label yps is not in512

one-hot format, KL divergence instead of cross-entropy loss513

is used in (7).514

Speaker-phoneme multi-task learning has achieved sub-515

stantial improvement in RSR2015 compared with existing516

TD-SV systems [38]. However, an ASR model is required to517

generate phoneme labels, which increases the cost of system518

deployment.519

3) MULTI-TASK FINE-TUNING520

Similar to the case in Section III-B2 where multi-task learn-521

ing is used in pre-training, we can also use multi-task learning522

in the fine-tuning process to improve TD-SV performance.523

In [42], the authors investigated two different fine-tuning524

strategies using both speaker labels and phrase labels: 525

‘‘speaker + phrase’’ and ‘‘speaker × phrase’’. As shown 526

in Fig. 6, ‘‘speaker + phrase’’ follows a multi-task fine- 527

tuning style with two separate classification heads. In the 528

‘‘speaker × phrase’’ mode, however, only a single head is 529

used in the output layer of the classifier, and utterances in dif- 530

ferent phrases with the same speaker identity are considered 531

different classes. It was shown in [42] that the ‘‘speaker + 532

phrase’’ mode outperforms the ‘‘speaker × phrase’’ strategy 533

on the TD task in SdSVC 2021, which verifies the effective- 534

ness of multi-task fine-tuning. 535

IV. PERFORMANCE COMPARISONS 536

In this section, we compare the performance on the 537

recent Far-Field Speaker Verification Challenge (FFSVC) 538

2020 data [68]. FFSVC20 focuses on the smart home scenario 539

where far-field distributed microphone arrays are used in 540

noisy environments. The utterances in FFSVC20 are recorded 541

by one close-talkingmicrophone, one iPhone, and six circular 542

microphone arrays. The language is Mandarin. The enroll- 543

ment utterances and the test utterances in both TI-SV and 544

TD-SV tasks come from different microphones. 545
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TABLE 3. TD-SV performance of existing best systems (without fusion) on the evaluation set of FFSVC 2020.

FIGURE 6. Illustration of two fine-tuning strategies in TD-SV. The left
subfigure shows the ‘‘speaker + phrase’’ method with a speaker
classification head and a phrase classification head; whereas the right
‘‘speaker × phrase’’ method uses a single classification head but with
more output nodes. (Adapted from [42]).

A. TEXT-INDEPENDENT EVALUATION546

Task 2 of FFSVC 2020 falls into the text-independent547

category [68]. The training set contains 120 speak-548

ers speaking Mandarin. This dataset, together with the549

SLR-85 HI-MIA data2 can be used as in-domain data for 550

domain knowledge transfer. Besides, any publicly accessible 551

data shared on openslr.org before 1st February 2020 can be 552

used to develop the TI-SV systems. Because most partic- 553

ipants in this challenge only reported the performance of 554

fused systems on the evaluation set, we present the results 555

of single systems on the development set only for fair com- 556

parisons. The performance of some top performing sys- 557

tems (without fusion) on the development set is shown in 558

Table 2. 559

The official baseline system [43] (the first row of Table 2) 560

used public data from openslr.org for pre-training the embed- 561

ding model and adopted fine-tuning to transfer the knowl- 562

edge learned from the pre-training data to the FFSVC20 563

TI-SV task. The pre-training set comprises 10,544 speakers. 564

The system in [71] used a similar number of speakers for 565

pre-training and fine-tuning. Because the system uses more 566

advanced VAD (with a U-net structure) in the front-end and 567

mean adaptation in the backend, its performance is better than 568

2http://openslr.org/85/.
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that of the system in [43]. The embedding network in [72] was569

trained on a 11,120-speaker dataset. Before acoustic feature570

extraction, WPE and beamforming were applied to alleviate571

reverberation and to take into account the array information,572

respectively. Also, diverse augmentation methods were used573

in data preparation. These improvements contribute to better574

performance than the system in [71]. For our system (the575

last row of Table 2), we only used 3,118 speakers to prepare576

the training data. Besides, we used the standard x-vector net-577

work as the embedding model, which is not as capable as the578

advanced ResNet34. Therefore, we obtained slightly worse579

but reasonable performance as compared with the system580

in [43].581

B. TEXT-DEPENDENT EVALUATION582

Task 1 of FFSVC 2020 is text-dependent. The text content583

is ‘‘ni hao mi ya’’ in Mandarin. There are 120 speakers584

in the text-dependent training data. Similar to the TI-SV585

task, public data from openslr.org can be used in the sys-586

tem development. Table 3 shows the performance of several587

top performing systems (without fusion) on the evaluation588

set.589

The official TD-SV system [43] is similar to the offi-590

cial TI-SV system in Table 2, except that FFSVC20 TD-SV591

data were used for fine-tuning. The system in [74] was592

pre-trained on Mandarin utterances from 3,211 speakers and593

used ResNet-BAM as the embedding extractor. Also, the594

authors applied domain adversarial training to further reduce595

the mismatch between the TI data and the TD data. These596

implementations contribute to better performance than the597

system in [43]. Interestingly, although the system in [37]598

was trained on a smaller number of speakers than the sys-599

tem in [43], it still achieved better performance. This can be600

due to that the system in [37] uses more advanced embed-601

ding network (DenseNet), more effective aggregation strat-602

egy (bidirectional attentive pooling), and a more complex603

backend (PLDA model). Our TD-SV system was based on604

the same framework as that in the TI-SV task except that605

we used FFSVC20 TD-SV data for fine-tuning. We obtained606

reasonable performance as compared with the system in [43]607

because we neither trained our system on a large number of608

speakers nor did we use an advanced embedding network and609

powerful backends.610

V. CONCLUDING REMARKS AND FUTURE TRENDS611

In this paper, we briefly review the recent studies on612

TI-SV and TD-SV. Compared with TI-SV, where the con-613

text information is considered nuisance variability, TD-SV614

takes both speaker and phonetic information into account615

during speaker modeling.With the advances in deep learning,616

SV has achieved remarkable progress in many aspects such as617

domain-invariant learning, robust SV in the wild, and short-618

duration SV. These improvement has been reflected in the619

recent SV challenges. Specifically, in this paper, we com-620

pare the performance of several best performing systems on621

FFSVC 2020.622

A. CONCLUDING REMARKS 623

The concluding remarks are summarized as follows: 624

1) Advanced convolutional layers/blocks such as 625

DenseNet and ResNet are prevalent in SV. 626

2) Most existing SV systems are implemented in a ‘‘Front- 627

end + Backend’’ structure. 628

3) Fine-tuning is an effective tool to improve the perfor- 629

mance of TI-SV and TD-SV. 630

4) Multi-task learning seems to be unattractive for TD-SV. 631

B. FUTURE TRENDS 632

As mentioned in Section II-C, SV faces many challenges 633

in real-world applications. Background noise, reverberation 634

effect, short utterances, microphone mismatches, and lan- 635

guage mismatches have always been and will continue to be 636

the critical issues in robust speaker verification. Although the 637

current SV systems can partially address these problems, the 638

solutions are scenario-specific, e.g., an SV system that can 639

address noise could fail miserably when the utterances are 640

very short. Therefore, seeking principled solutions that can 641

generalize across different tasks is essential in the future. 642

On the other hand, to facilitate system deployment, model 643

compression techniques such as knowledge distillation [76] 644

and network pruning [77] have received increasing attention. 645

However, due to the trade-off between the system perfor- 646

mance and the runtime efficiency, developing lightweight 647

and effective SV systems is challenging and worths further 648

research. 649

Recently, the research on security in SV has also 650

attracted great attention and many studies have been focus- 651

ing on defending SV systems against malicious spoofing 652

attacks through replay, speech synthesis, voice conversion, 653

and adversarial samples [78], [79], [80]. Unlike previous 654

ASVspoof tasks [78], [79], which aim to develop counter- 655

measures (CMs) for a fixed SV system, the spoofing-aware 656

speaker verification (SASV) challenge [80] focuses on the 657

optimization of both CMs and SV subsystems to improve 658

the SV reliability. In this regard, SASV will attract extensive 659

attention in the future. 660

REFERENCES 661

[1] N. Dehak, P. J. Kenny, R. Dehak, D. Pierre, andO. Pierre, ‘‘Front-end factor 662

analysis for speaker verification,’’ IEEE Trans. Audio, Speech, Language 663

Process., vol. 19, no. 4, pp. 788–798, May 2011. 664

[2] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, ‘‘X- 665

Vectors: Robust DNN embeddings for speaker recognition,’’ in Proc. Int. 666

Conf. Acoust., Speech, Signal Process., 2018, pp. 5329–5333. 667

[3] T. Hasan, R. Saeidi, J. Hansen, and D. van Leeuwen, ‘‘Duration mismatch 668

compensation for I-vector based speaker recognition systems,’’ in Proc. 669

Int. Conf. Acoust., Speech, Signal Process., 2013, pp. 7663–7667. 670

[4] W. Chen, J. Huang, and T. Bocklet, ‘‘Length- and noise-aware training 671

techniques for short-utterance speaker recognition,’’ in Proc. Annu. Conf. 672

Int. Speech Commun. Assoc., 2020, pp. 3835–3839. 673

[5] H. Zeinali, K. A. Lee, J. Alam, and L. Burget, ‘‘Short-duration speaker 674

verification (SdSV) challenge 2021: The challenge evaluation plan,’’ 2019, 675

arXiv:1912.06311. 676

[6] Z. Bai and X. Zhang, ‘‘Speaker recognition based on deep learning: 677

An overview,’’ Neural Netw., vol. 140, pp. 65–99, Aug. 2021. 678

[7] S. Ioffe, ‘‘Probabilistic linear discriminant analysis,’’ in Proc. Eur. Conf. 679

Comput. Vis., 2006, pp. 531–542. 680

[8] P. Kenny, ‘‘Bayesian speaker verification with heavy-tailed priors,’’ in 681

Proc. Odyssey, Speaker Lang. Recognit. Workshop, 2010. 682

VOLUME 10, 2022 99047



Y. Tu et al.: Survey on Text-Dependent and Text-Independent Speaker Verification

[9] W. Xie, A. Nagrani, J. S. Chung, and A. Zisserman, ‘‘Utterance-level683

aggregation for speaker recognition in the wild,’’ in Proc. Int. Conf.684

Acoust., Speech, Signal Process., 2019, pp. 5791–5795.685

[10] W. W. Lin, M. W. Mak, and L. Yi, ‘‘Learning mixture representation for686

deep speaker embedding using attention,’’ in Proc. Odyssey, Speaker Lang.687

Recognit. Workshop, 2020, pp. 210–214.688

[11] B. Desplanques, J. Thienpondt, and K. Demuynck, ‘‘ECAPA-TDNN:689

Emphasized channel attention, propagation and aggregation in TDNN690

based speaker verification,’’ in Proc. Annu. Conf. Int. Speech Commun.691

Assoc., 2020, pp. 3830–3834.692

[12] W. Lin and M.-W. Mak, ‘‘Mixture representation learning for deep693

speaker embedding,’’ IEEE/ACM Trans. Audio, Speech, Language Pro-694

cess., vol. 30, pp. 968–978, 2022.695

[13] Y. Z. Tu and M. W. Mak, ‘‘Mutual information enhanced training for696

speaker embedding,’’ in Proc. Annu. Conf. Int. Speech Commun. Assoc.,697

2021, pp. 91–95.698

[14] Y. Zhu, T. Ko, D. Snyder, B. Mak, and D. Povey, ‘‘Self-attentive speaker699

embeddings for text-independent speaker verification,’’ in Proc. Annu.700

Conf. Int. Speech Commun. Assoc., 2018, pp. 3573–3577.701

[15] Y. Z. Tu and M. W. Mak, ‘‘Short-time spectral aggregation for speaker702

embedding,’’ in Proc. Int. Conf. Acoust., Speech, Signal Process., 2021,703

pp. 6708–6712.704

[16] Y. Tu and M.-W. Mak, ‘‘Aggregating frame-level information in the spec-705

tral domain with self-attention for speaker embedding,’’ IEEE/ACM Trans.706

Audio, Speech, Language Process., vol. 30, pp. 944–957, 2022.707

[17] F. Wang, J. Cheng, W. Liu, and H. Liu, ‘‘Additive margin softmax for708

face verification,’’ IEEE Signal Process. Lett., vol. 25, no. 7, pp. 235–238,709

Jul. 2018.710

[18] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, ‘‘Arcface: Additive angular711

margin loss for deep face recognition,’’ in Proc. IEEE Conf. Comput. Vis.712

Pattern Recognit., Jun. 2019, pp. 4690–4699.713

[19] J. Chung, J. Huh, S. Mun, M. Lee, H. Heo, S. Choe, C. Ham, S. Jung,714

B. Lee, and I. Han, ‘‘In defence ofmetric learning for speaker recognition,’’715

in Proc. Annu. Conf. Int. Speech Commun. Assoc., 2020, pp. 2977–2981.716

[20] J. Wang, K. Wang, M. Law, F. Rudzicz, and M. Brudno, ‘‘Centroid-based717

deep metric learning for speaker recognition,’’ in Proc. Int. Conf. Acoust.,718

Speech, Signal Process., 2019, pp. 3652–3656.719

[21] C. Zhang, K. Koishida, and J. H. L. Hansen, ‘‘Text-independent speaker720

verification based on triplet convolutional neural network embeddings,’’721

IEEE/ACM Trans. Audio, Speech, Language Process., vol. 26, no. 9,722

pp. 1633–1644, Sep. 2018.723

[22] J. Lian, A. Kumar, H. Dhamyal, B. Raj, and R. Singh, ‘‘Masked proxy724

loss for text-independent speaker verification,’’ in Proc. Annu. Conf. Int.725

Speech Commun. Assoc., 2021, pp. 4638–4642.726

[23] L. Wan, Q. Wang, A. Papir, and I. Moreno, ‘‘Generalized end-to-end loss727

for speaker verification,’’ in Proc. Int. Conf. Acoust., Speech, Signal Pro-728

cess., 2018, pp. 4879–4883.729

[24] G. Heigold, I. Moreno, S. Bengio, and N. Shazeer, ‘‘End-to-end text-730

dependent speaker verification,’’ in Proc. Int. Conf. Acoust., Speech, Signal731

Process., 2016, pp. 5115–5119.732

[25] D. Snyder, J. Villalba, N. Chen, D. Povey, G. Sell, N. Dehak, and733

S. Khudanpur, ‘‘The JHU speaker recognition system for the VOiCES734

2019 challenge,’’ in Proc. Annu. Conf. Int. Speech Commun. Assoc., 2019,735

pp. 2468–2472.736

[26] P. Matějka, O. Plchot, H. Zeinali, L. Mošner, A. Silnova, L. Burget,737

O. Novotný, and O. Glembek, ‘‘Analysis of BUT submission in far-field738

scenarios of VOiCES 2019 challenge,’’ in Proc. Annu. Conf. Int. Speech739

Commun. Assoc., 2019, pp. 2448–2452.740

[27] A. Gusev, V. Volokhov, T. Andzhukaev, S. Novoselov, G. Lavrentyeva,741

M. Volkova, A. Gazizullina, A. Shulipa, A. Avdeeva, A. Ivanov, A. Kozlov,742

T. Pekhovsky, and Y. Matveev, ‘‘Deep speaker embeddings for far-field743

speaker recognition on short utterances,’’ in Proc. Odyssey, Speaker Lang.744

Recognit. Workshop, 2020, pp. 179–186.745

[28] S. Dey, S. Madikeri, P. Motlicek, and M. Ferras, ‘‘Content normalization746

for text-dependent speaker verification,’’ in Proc. Annu. Conf. Int. Speech747

Commun. Assoc., 2017, pp. 1482–1486.748

[29] H. Zeinali, H. Sameti, and L. Burget, ‘‘HMM-based phrase-independent749

I-vector extractor for text-dependent speaker verification,’’ IEEE/ACM750

Trans. Audio, Speech, Language Process., vol. 25, no. 7, pp. 1421–1435,751

Jul. 2017.752

[30] A. Lozano-Diez, A. Silnova, B. Pulugundla, J. Rohdin, K. Veselỳ,753
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