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ABSTRACT This paper presents a complete 3D model reconstruction of an object with edge quality
enhancements using multiple inward depth sensors to create closed 3D model. In the reconstruction pipeline,
a pattern of incorrect depth information was consistently observed at the edges of the mesh generated by each
sensor stream, which we refer to in this paper as a ““drift-effect”. In order to mitigate this, we introduced a
filtering approach with a localized threshold value that is used to remove drift faces from a mesh. We also
present a mesh stitching technique incorporating Laplacian mesh smoothing to generate a closed 3D model
from the smoothened multi-view meshes. The primary objective of this research was to implement a system
that could capture a static physical object with a minimum scan time and at a low cost while retaining accurate
details in the model. For the demonstration, we used four Intel RealSense D435 depth sensors to capture a
clothing article that can be imported into a virtual dressing room application. We captured the entire object
within three seconds, which is quicker than traditional techniques such as table rotation and sensor rotation.
The final results indicate that the system is able to provide a satisfactory reconstruction of a clothing model

which can be used in a live virtual dressing room application.

INDEX TERMS 3D reconstruction, augmented reality, depth sensors, point-cloud, RGB-D, virtual reality.

I. INTRODUCTION

In the present-day augmented and virtual reality applications
are used in various fields, including in arts, computer games,
training platforms, virtual dressing rooms, virtual heritage,
etc. Commonly, 3D models are built using 3D modeling
tools such as Maya, 3DS Max, or Blender [1]. However,
this process involves tedious and time-consuming work and
requires 3D modeling engineers who are specially trained
for such work. Learning how to work with the above tools
is cumbersome for non-specialized professionals [2] who are
focused on various other fields. Additionally, there are appli-
cations that require the frequent creation of many 3D models
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of multiple physical objects. From a practical standpoint, it is
not efficient to use 3D modeling software when creating such
a large number of 3D models from physical objects. Instead,
this issue can be addressed using a 3D reconstruction system.

We can find various 3D reconstruction techniques
including image-based, single, and multiple depth sensors.
However, such 3D reconstruction implementations are expen-
sive [3], less accurate, [4], [S] and take time to scan [6] and
reconstruct the 3D models, which significantly limits the
accessibility of 3D reconstruction technology. As an example,
the frequency of use for such a reconstruction system would
be high in an apparel store that needs to generate 3D scanned
clothing objects every time a new article is added to their
inventory. The aforementioned factors further drive up the
cost of reconstruction for such use cases.
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In the process of 3D reconstruction, there are limitations
to removing noise and incorrect depth data from the raw
sensor output. This paper describes the additional techniques
we innovated to increase the quality of the 3D reconstruc-
tion using a generic depth sensor array configuration. The
implemented system is compatible with any provided color
and depth streams as it only relies on an RGB-D image array.
A major advantage of using the RGB-D image array is the
ability for this system to be connected to any type of sensor,
provided that the sensor can capture and provide the color and
depth streams.

When generating a 3D object using physical objects,
we identified the sequence of steps that needed to be carried
out, including the depth data acquisition, manipulation, and
conversion of depth data into three-dimensional meshes, and
the subsequent transformation of the end result into a merged
3D mesh. This process becomes tedious because, even with
precise calibration and position alignment of sensors, the
data may become contaminated with invalid data points. This
occurs mainly due to the hardware limitations of various
sensor technologies and the sensor manufacturer.

As most 3D reconstructions are based on RGB-D cam-
eras [7], we used four stereoscopic sensors (Intel RealSense
D435 ) as our primary depth sensor module for 3D recon-
struction. The Intel RealSense D435 sensor was one of the lat-
est sensor models that were available at the time this research
was conducted. The sensor uses infrared rays to capture depth
information unlike legacy stereoscopic sensors, which use
visible light. We used a parallel data acquisition technique
to speed up the depth capturing process which was facilitated
by the fact that the selected sensor model supported parallel
connections with the host out of the box.

The reconstruction process consists of three main stages:
depth data acquisition, mesh creation transformation and
alignment, and final 3D object creation using multi-view
mesh stitching. In the sensor pose estimation stage, we calcu-
lated the real-world sensor coordinates using image process-
ing to determine the translation and rotation of each depth
sensor placed at different angles. Then we focused on depth
noise filtering and the removal of invalid depth data from the
output sensor streams to generate a satisfactory point-cloud.
Depending on the sensor model, the output of depth points
and the generated mesh has a tendency to be noisy, justifying
the use of multiple filters to improve depth data quality.
One of the issues we observed in the mesh was the drift-
effect which we were able to reduce at the post-processing
stage. Finally, we proposed an algorithm to create a stitched
and closed 3D model from the meshes generated by each
Sensor.

From this paper, we contribute a novel algorithm for 3D
model reconstruction using depth sensors to refine the drifted
edges of a mesh and a stitching technique to create a closed
3D model. In this paper, the related work section will dis-
cuss the various 3D reconstruction research that has been
implemented in previous literature. Then the methodology
section will discuss how we implemented the system. Finally,
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we present the data that was obtained along with the conclu-
sions that were made from this research.

Il. RELATED WORK

A. SENSOR AND TABLE ROTATION TECHNIQUE

It has been reported in recent literature that most 3D scan-
ning and reconstruction procedures are carried out using a
single sensor with the aid of a rotation table. According
to Haleem et al. [8], the rotation scanner they implemented
had an operation time of approximately ten seconds and
had a weight limit. Table rotation is a common technique
used in 3D reconstruction, and several other attempts have
been implemented using the same technique to capture a 3D
model [9], [10]. In 2014, Popescu and Raluca implemented
a 3D reconstruction technique using a Kinect sensor, with
a mechanism that utilized sensor rotation instead of table
rotation [11]. However, for each of these implementations,
the usage of table and sensor rotations inherit multiple prob-
lems, including the complexity of the scanning setup and
its mechanical components. Rotating the sensor around the
object can also cause issues due to the sensor being mobile.
Furthermore, considerable human effort is required to capture
all aspects of the physical object when considering handheld
sensor rotation techniques. These scanning techniques also
take longer to capture the entire object that needs to be
scanned. As a result, the above methods are less attractive
for a use-case involving scanning numerous physical objects
(i.e., clothing articles for virtual dressing rooms).

B. MULTI-VIEW 3D RECONSTRUCTION USING IMAGES
Structure From Motion (SFM) is a common passive image-
based [12], [13] technique that is used to capture an object and
create a point-cloud representation of it. This method uses an
array of images taken at different angles of the object. It is a
low-cost and accurate technique that can be applied to most
use cases. In 2022, according to Mi and Gao, ‘“‘image-based
3D reconstruction is more widely used due to its low environ-
mental requirements” [14]. In 2017, Merras et al. [2] imple-
mented a 3D reconstruction system using genetic algorithms
with the help of the SFM technique. The research shows
quality output compared to previous literature related to SFM.
Yet, this method could not be applied to objects with similar
features/textures unless we provide the rotation and trans-
lation of each camera system. This problem was addressed
to some extent by El Hazzat et al. [15]. Also, image-based
method estimations are computationally expensive and can
consist of many outliers [16].

C. MIRRORS FOR 3D RECONSTRUCTION

In 2018, Nguyen implemented a 3D reconstruction method
using a single depth sensor along with multiple mirrors [17].
However, in such implementations, the occlusion effect can
cause a certain level of unreliability when scanning phys-
ical objects. Furthermore, the inclusion of mirrors in the
infrastructure introduces additional complexity to the system
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due to variables such as object size, external reflections,
mirror size, etc. Our proposed method uses multiple sen-
sor arrays to eliminate the need for any sensor movement
during the data acquisition phase. This method does not
contain any mechanical components as seen in some previ-
ous implementations. A similar implementation was created
by Hu et al. [18] and a full-body scanner using mirrors was
implemented by Xie et al. [19]. Tan et al. noted that mirrors
introduce a significant number of errors to depth sensing and
3D reconstruction [20].

D. RECONSTRUCTION WITH MULTIPLE SENSORS

3D model reconstruction using multiple sensor arrays pro-
duces different sets of problems, including the calibration
and identifying the sensor poses along with each other and
the merging of different meshes into a single closed mesh.
According to Auvinet et al. [21], two-camera configurations
did not provide sufficient details of a person’s surroundings.
Therefore, we utilized four inward sensor setups to increase
the visibility of the object we were interested in. In 2012,
Tong et al. [22] proposed a 3D scanning system using multi-
ple Kinects positioned at varying heights. In this research, the
author used several sensors to capture different object levels
instead of all angles at once, demanding the use of a rotation
table. Eventually, the object needed to be in a static pose in
order to be fully captured, which resulted in the process being
time-consuming.

E. MESH ALIGNMENT FOR MULTIPLE SENSORS

To align a point-cloud generated by each sensor, we attempted
to use the most common mesh aligning method. Iterative
Closest Point (ICP) is a common mesh alignment technique
that computes the similarity of points in the mesh and uses
this to align each of the meshes [23]. However, its main
drawback is that it cannot align the meshes as expected if
the sensor-generated meshes do not contain any similar depth
points (vertices). This can happen if the sensor provides incor-
rect depth points in the region of interest (ROI). Research
that was conducted by Kim et al. implemented a multi-
view 3D reconstruction system with an edge line calibration
system [16]. This research demonstrated good results and
involved the use of Poisson surface reconstruction to create
a closed mesh. The Poisson reconstruction is not suitable for
every single object model as it introduces incorrect shapes
into the final model. Taking these facts into consideration,
we used an image reference-based calibration method to align
meshes generated from a multiple-sensor array. Similar work
has been completed by Kowalski [24]. They developed a
fast and inexpensive 3D data acquisition system with mul-
tiple Kinect V2 systems using a combination of image-based
calibration and ICP. The use of ICP, in this case, did not
negatively impact the results due to the accuracy of the Kinect
V2. However as mentioned above, the ICP algorithm could
potentially deform the model if provided with less accurate
depth data. In their implementation, it is necessary to calibrate
and estimate the camera poses prior to the object scanning
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phase. In contrast, our calibration technique only utilized
image processing to automate the entire reconstruction pro-
cess to be performed at the data acquisition stage by executing
the calibration and the object scanning simultaneously.

F. GENERATE CLOSED STITCHED MODEL

To use a model in an augmented or virtual reality application,
it is necessary to create a stitched and closed 3D model. If the
model contains unstitched points, there is a chance for it
to display unnatural deformations during interactions inside
the application. We used a merging technique similar to the
work done by Brandao et al. [25], but with the addition of
Laplacing mesh smoothing [26] to generate a better output
than the above methods.

G. SENSOR PLUGIN MODE

We also incorporated the ability of our system to plug in any
depth sensor instead of being limited to a single sensor model.
This advantage introduced the possibility of swapping out
the sensor for a better depth sensor module and utilizing the
new sensor’s superior performance to generate an improved
clothing model. We designed our implementation to operate
using parallel data acquisition instead of series data acqui-
sition to increase the time efficiency of 3D scanning. As a
prerequisite, the sensor model should support the parallel
handshake with the computer, and it should be able to capture
depth and color frames from all the sensors at once. Most
sensor manufacturers have defined these values beforehand.
Our selected Intel RealSense D435 sensor can perform par-
allel data acquisition [27] with up to four sensors without a
reduction in frame rate.

lll. METHODOLOGY

We wanted to be able to use the 3D models generated by our
3D reconstruction implementation for an augmented reality
application. We chose a clothing article as the physical object
and our goal was to generate a 3D model of it for use in a
virtual dressing room application that we had already imple-
mented [28]. This section discusses the process of creating
a 3D model that we followed to generate the 3D clothing
article. Figure 1, shows the flow diagram of the implemented
system.

A. CAPTURE DEPTH & COLOR FRAMES ACQUISITION

1) SENSOR CALIBRATION

Calibration of the sensor is a necessary step for any 3D recon-
struction system [29]. In most sensor variants, a hardware
design specification indicates the calibrating methods. For
our implementation, the guidelines provided by Intel were
used to calibrate the Intel RealSense D435 sensors [30].

2) EQUIPMENT SETUP

It is necessary for the sensor setup to cover all the views of the
object since this is an essential step when capturing each sur-
face of the physical object from all angles. Our system used
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FIGURE 1. Flow-diagram of the 3D reconstruction system.

four Intel RealSense D435 sensors in 360° view positions
placed approximately 90° apart and kept the object within
1.5 m of all the sensors (see Figure 2). Increasing the number
of sensors causes the frame rate to reduce, [27] and in order to
obtain the required number of frames, we need to expose the
object to the sensor for a longer period of time. However, it is
important to consider that longer exposure times introduce the
possibility of unintended effects on the sensor output. This
resulted in an effort to find the minimum number of frames
required to obtain saturated results. With that, we collected
the required color and depth frames to generate the 3D mesh.

B. GENERATE THE 3D MESH

To create the 3D mesh, it is necessary to generate the RGB-D
images using depth and color frames. However, each frame
contains depth information that is not necessary, and process-
ing this data would consume additional computing resources.
This is accomplished by removing unwanted depth points
from the depth frame and color points from the color frame.
We removed these unnecessary depth points by selecting a
depth clipping distance threshold and using a simple depth
clipping algorithm 1 as shown below.

Algorithm 1 Algorithm for Depth Clipping

Input: Depth frame, color frame

Output: Clipped — depth frame, color frame
1. Initialization: n = height x width
2: fori=0ton—1do
3: if (z > clip_threshold) then

4 Set color_frame[i] = RGB(0, 0, 0)
5 Set depth_frameli] = Z(0)

6: end if

7: end for

Thereafter, we generated the RGB-D image using the
clipped depth and color frames. We created the 3D mesh
using the RGB-D image by converting it into a colored point-
cloud using Open3D library [31] and mapped each point
with the color frame’s pixel indices to generate the faces
accordingly.
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FIGURE 2. Multiple inward sensors arrangement.

FIGURE 3. ArUco marker (Dictionary 6 x 6 250 - id 1) used in calibrating
sensor position.

C. MESH TRANSFORMATION AND ALIGNMENT

When the scanning platform is equipped with multiple stereo
depth sensors, it is necessary to estimate the positions of all
the sensors according to their location and rotation relative to
a reference plane.

For the sensor pose correction, it was imperative to detect
the relative positions of each sensor and correct the offset
using a specific transformation matrix using rotation and
translation matrices for each sensor. In a generic multi-view
construction system, if a sensor’s position or alignment is
changed, it becomes necessary to re-calibrate and re-estimate
the poses of the sensor system. However, we used a sim-
ple placement strategy for sensors to mitigate this problem.
We used two ArUco markers (dictionary 6 x 6 250 with id
‘1’ as shown in Figure 3) on the two sides of a plane with an
exact 180° rotation and complete overlap of the two images as
seen in Figure 4. At the bottom of ArUco marker, we placed
the object we needed to scan. Figure 5 shows a view of the
actual setup of the system. This marker and sensor placement
is helpful to capture the ArUco markers from all the sensors
at the same time. Each sensor’s pose estimation is performed
at the moment data is collected for reconstruction instead of
using a separate calibrate phase.

The displayed images and its four corners were identified
from each sensor’s color stream using an image processing
technique. These corner points were then converted into 3D
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FIGURE 4. (a) front (b) back, of the clothing article with ArUco markers.

FIGURE 5. Actual view of the sensor setup with a clothing article.

space coordinates using (1),

. ((x—cx)xeds y—cy) xZxds |
= ) 4
fe 5y
where (x, y) is a point of the color frame. The z value refers to
the depth of point (x, y) in the depth frame along the x — axis
and y — axis. The focal lengths of the camera are f; and f,
while ¢y, and ¢, denote the camera’s optical center in pixels
along the x — axis and y — axis. ds is the depth scale of the
sensor module. We can derive each focal and optical center
of the sensor using the sensor’s depth intrinsic parameters
Using the above corner derivation, we could generate
all four corners per sensor, (Pg, P1, P2, P3) as displayed in
Figure 6. Yet, these corner values were not consistent due to
the sensor depth error with time. To resolve this, we collected
more than one frame from each sensor and calculated the
cumulative moving average (CMA) using (2) for each depth
pixel while removing invalid outliers if any[p,] = 0. We used
that CMA filter to find accurate space coordinates for all four
corners, including the center point of the ArUco marker.

X ds) (1)

—1).C,—
Cn _ (I’l ) nn l+pn (2)

Here, C,, is the CMA of n frames where (n > 1) and p,, is
a corner value of the n”* frame.
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FIGURE 6. ArUco marker with four corners and defined vector directions.

Vectors x, y, and z for rotations are calculated as:

X=P3—Py 3)

y =P —Py 4

N X X

= 22 )
X x yl

From the four corners Py, Py, P>, P3, we calculated the
center point P, of the ArUco marker. With this, we can write
the transformation matrix M as,

T

xx y1 z1 O 1 0 0 —P.
x y2» z2 0 0 1 0 =Py

M = 6
v ovs oz 0l o o 1 —p.| ©
o 0 o0 1 0O 0 O 1

For the individual sensor, we calculated the transformation
matrix (M) using the rotation (R) and translation (7") matrices
derived from each sensor. Here, the translation matrix (7)) can
be determine by the distance from the sensor to the center of
the ArUco marker and the rotation matrix (R) can be deter-
mined using the orthogonal Procrustes problem method [32].

During this process we captured and generated the 3D
point-clouds of the object that connected to the ArUco marker
from each sensor. We used the color image pixel indices along
with point-cloud indices to generate the mesh (point-cloud
with faces) from the point-cloud. Then the matrices (M) from
all the sensors were saved and the mesh transformation was
applied for each mesh generated by its respective sensor to
bring all the meshes into one reference plane. Additionally,
we added 180° rotation components to sensors S3 and S4 as
they were located on the opposite side of the sensors S1 and
S2 (See Figure 2). This generated four aligned but separated
meshes similar to the physical object that was scanned.

D. DRIFT-EFFECT REMOVAL

After generating the transformed meshes, we observed an
issue where each mesh had a tendency to “drift” on faces at
the edge. In the Intel RealSense D433, this drift-effect can be
seen prominently when the surface is located close to another
surface. The principle of the depth measuring technique used
in the RealSense D435 sensor is stereoscopy and it uses
infrared rays (IR) to generate depth results. To minimize the
above ‘“drift-effect” on the mesh edge-line, we attempted to
identify the parameter causing the drift. The proposed method
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FIGURE 7. Scanning plane is near the wall. The red color oval shows the
drift-effect of the depth data.

reduces the disparities of drift-effects and generates a filtered
mesh by removing the unnecessary faces.

To remove these unnecessary faces in meshes we generate
previous section, a localization threshold (Th) was associated
with each face by comparing the distance between every
three points in a face. We propose (7) to set the localization
threshold as shown below.

Th,, = SC x \/argmin [|zq

Nzl 1zs1] N

where Th,, is the threshold value for the m'™ face, SC is the
“Sensor Constant” which needs to be defined per sensor
module, and z4, z,, and z; denote the distances of the three
vertices of the m™ face from the origin (0, 0, 0).

This value was compared with any edge size of the m" face
as shown in (8).

=z, iz‘v_zq|) 3

Here, z,, is the maximum edge distance of the m"" face.

Zm = argmax (|zq - zr| s Nzs

1) GENERATING THE SENSOR CONSTANT (SC)
To reduce this drift-effect, we used a localization-based
threshold to create the facets and derived an equation with
a term of “SC” which is specific to the sensor model. It is
necessary to identify this “SC” value for a particular sensor.

A syntactic ground truth mesh is created using an angled
plane kept near a wall to determine this drift-effect, as shown
in Figure 7. A mesh is then generated by scanning the plane
without applying any modifications. Subsequently, by remov-
ing the unwanted faces in the mesh, a syntactic mesh is
generated for comparison with the resultant meshes created
by varying the “SC”’; at the point z = Th. For this purpose,
we used a software called MeshLab [33] to generate the
ground truth according to the actual measurements. The mesh
is used to calculate faces and vertices to find the most suitable
mesh generated by varying the “SC”.

Finally, using the algorithm we removed the face if:

z>Th ©))
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FIGURE 8. Neighbor points around vertex ‘p".

E. MESH MERGING - STITCHING ALGORITHM

In this phase, we fixed the separation of each mesh to create
a single closed mesh. These separations can occur during
the position calibration phase and due to disparities in-depth
readings. To rectify this, we proposed a technique that iden-
tified the edge line of each mesh by searching for all the
vertices that have less than six neighboring vertices, which
were considered to be edge line vertices.

As seen in Figure 8, points 1 and 2 do not possess six neigh-
boring vertices as seen in the others. This technique allows us
to identify the edge line vertices when the mesh is built with a
triangle mesh. Moreover, the KD-tree algorithm [34] is used
to get the nearest point of the neighboring mesh and to find the
closest four vertices from both meshes. As seen in Figure 9,
the nearest vertex for A0 in the same mesh is BO. Al and B1
are the nearest vertices for AO and BO from the neighboring
mesh (See algorithm 2).

Algorithm 2 Algorithm for Stitching
Input: [Meshes], [Edge_line_vertices)
Output: [faces]

1. Initialization:

2: n = length(Meshes),

3: g = Stitching_separation

4: fori=0ton—1do

5 for j = 0 to length(Edge_line_vertices[i]) — 2 do

6: v1 = Get nearest vertex of j from i + 1 mesh
7 vy = Get nearest vertex of j + 1 from i + 1 mesh
8
9

d1 =D, v1) > D(vq, vp) - Calculate distance
: dry=D( + 1,v7)
10 if di < Gap and d) < g then
11: faces < [j, vi, v2]
12: faces < [j,va,j+ 1]
13: end if
14: end for

15: end forreturn faces

The identified vertex indices are used to create new faces
for the mesh, and subsequently, all the meshes are concate-
nated and stitched by adding the new faces to the resultant
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FIGURE 9. Identifying nearest vertices using KD-tree and creating the
faces.

mesh. The final mesh is smoothened out by applying the
Laplacian mesh smoothing algorithm.

IV. RESULTS AND DISCUSSION

Parallel data acquisition with a multiple sensor system using
a single USB port may slow down the actual frame rate
captured from a single sensor at a time. In order to obtain an
adequate number of frames/images with a higher frame rate
from multiple sensor arrays using a single USB protocol, it is
recommended to retain the maximum sensor count according
to the provided technical specification. We used parallel data
acquisition to capture data for 3D reconstruction because
only four Intel RealSense D435 stereo depth sensors and
a USB 3.1 connector can deliver the required frame rate
(approximately 75-79 fps from any sensor for both color and
depth frames). In this setup, we used a USB hub with an
external power source that connects all four sensors since all
the sensors draw power simultaneously. The Intel RealSense
D435 sensor showed no adverse performance issues when
connected in parallel with a single USB hub since this con-
figuration is supported by the sensor’s SDK. We observed
that proper ambient lighting conditions must be maintained
as poor light exposure can negatively affect the final 3D
reconstruction, as mentioned in Intel’s white paper [35].

A. THE OPTIMAL NUMBER OF REQUIRED FRAMES
Generally, the sensors do not provide fixed values for the
depth due to various factors affecting the sensor readings.
With the CMA filter, we were able to minimize this anomaly
by arriving at an optimum number of required frames (see
Figure 10).

As seen in Figures 10 and 11, the sensor’s resultant distance
converges at different values as the measuring distance varies.
Figure 10(b) shows the convergence at a distance of 1m, while
Figure 11(a) and Figure 11(b) display the convergences for
1.25m and 1.5m respectively. For all depths, the depth results
converge approximately after the 200" iteration. At this
point, we limited the maximum depth to 1.5 m because our
data was collected within 1 m to 1.5 m depths. We assumed
this is common for all four sensors and choose the 200" depth
frame as the minimum number of depth frames required for
the Intel RealSense D435 sensor to perform optimally.
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FIGURE 10. 1 m distances vs number of frames (a) without CMA filter
(b) with CMA filter.

It is evident from Figure 12 that acquiring a higher number
of frames (or long exposure) can affect depth accuracy. Using
the minimum required number of frames is helpful in the
reconstruction process since it can minimize the variation in
accuracy that potentially occurs due to the effect of sensor
heat or any other external factors (i.e. room temperature fluc-
tuations, variations in humidity). The depth data acquisition
is commenced by setting the maximum depth distance from
each sensor to the object of interest to be 1.5 m as there is a
higher error rate at longer distances.

B. DRIFT-EFFECT REMOVAL OUTPUT

In the graph plotting SC vs inverse-loss (see Figure 13), the
board refers to the angled board plane we used for the ground
truth and the base is the white background drift that was
observed between the wall and the board in Figure 7. These
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FIGURE 11. Distance vs number of frames with the CMA filter. (a) 1.25m
(b) 1.5m.

inverse-loss values for the board plane were calculated using
the ratios between the number of vertices that needed to be
retained and the number of vertices in the ground truth. The
white base inverse-loss values were calculated by the ratios
between the number of vertices that needed to be removed
and the number of vertices in the ground truth.

Figure 14 shows how the SC works with the algorithm.
It is not recommended to use the algorithm with lower value
which results in a loss of detail or a higher value which results
in incorrect details to be retained in the final output.

According to Figure 13, SC = 0.016m'/? was identified to
be the most compatible for use with the Intel RealSense D435
sensor. This value was chosen as it provides the maximum
inverse-loss for the most interesting vertices (Board vertices)
while minimizing the information loss from valid vertices,
since it is recommended to retain valid/invalid vertices rather
than losing valid vertices. This value is used in (9) to filter out
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FIGURE 12. Distances vs long exposure. 2 m vs 1000 frames
(a) perspective 1 (b) perspective II.

unwanted faces at the edge and to generate a more accurate
3D model from the scanned object, as seen in Figure 15.
We also found that this drift-effect occurs due to light diffrac-
tion at the edges of the object surfaces with respect to the sen-
sor viewing point. Figure 16 depicts a similar phenomenon
that was observed in the Kinect V2 sensor, which occurs in
most generic depth sensors (Time of Flight, Structured light)
as they utilize a similar technology (IR emitters) to generate
the depth data.

We compared our algorithm’s output with the “CMU
Panoptic Dataset” [36], [37] which is a generic accepted
dataset for the Kinect v2. This public dataset contains com-
plex raw 3D points to validate our algorithm. This data was
converted to a mesh and the implemented algorithm was
applied to the mesh with the given calibration (See Figure 17).

As seen in Figure 17(b), our algorithm was able to fairly
smoothen the edges of the input mesh in Figure 17(a).
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FIGURE 13. Determine the Sensor Constant (SC) - Best X line shows the
maximum of inverse-loss point of the “board”

(@ (b) © (d)
FIGURE 14. Applying SC for Figure 7 and generated outputs when
(a) SC=0.001 m'/2 (b) SC = 0.007 m'/2 (c) SC = 0.012 m1/2
(d) SC =0.027 m"/2,

(a) (b)
FIGURE 15. Maximum drift-effect removal observed when
SC = 0.016 m'/2 from Figure 7 sensor output (a) left View (b) right view.

FIGURE 16. Kinect V2 sensor demonstrating the drift-effect at the edge.

C. FINAL STITCHED 3D MODEL
As shown in Figure 18, the center separation was stitched
using our stitching algorithm. Finally, we used the Laplace
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()

FIGURE 17. CMU Panoptic Data - Piano-4 (a) a view of original data mesh
reconstructed (b) a view of applying the algorithm to mesh in (a).

(a) (b)

FIGURE 18. (a) before stitching meshes (b) after applying the stitching
algorithm.

mesh process to apply the final smoothing to the generated
model. This process can be slow if the model is complex.
However, since this is a post-processing technique, it is not
necessary for the sensor to remain turned on. The vertices
are not always in order, and it is essential to keep track
of each vertex and face indices when adding or removing
features from the mesh. Figure 19 shows the final result of
our scanned clothing article, which can now be imported into
an augmented or virtual reality application.

Figure 20 shows the usage of a 3D reconstructed clothing
model in an implemented virtual dressing room.

D. IMPLEMENTATION COMPARISON
In Table 1, we have compared and summarized features of the
proposed technique with previous literature.

Our proposed technique is able to capture the entire object
in less than three seconds as we have used a multiple par-
allel data acquisition technique instead of a single stream
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(a)

(b)

/-y
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(c)

FIGURE 19. Generated final mesh (a) Front side view (b) Front view
(c) back side view of the clothing article.

FIGURE 20. Virtual dressing room output with the scanned clothing
article.

TABLE 1. Characteristics comparison of the implemented method.

Characteristic

Results in literature

Proposed work

Data acquisition
speed - The speed
of capturing
required frames of

Takes more than
5 seconds (ie. -
Sensor rotation
technique [8], [38],

Less than 3 seconds

the entire object [39])
. Sensors and
Implementation i
complexity - additional
Har(fwarey hardware are
mechanical required. Rotation Minimal hardware -
. mechanism four static sensors
requirements apd (Motors/Rotation
setup complexity of Tables) [S]-[11]

the systems

Mirrors [17]-[19]

Size limitations -
The dimensions and
the weights
limitations of the
scanning object
using the setup

Limited to rotation
table limitations [8],
such as weight, di-
mensions of the ta-
ble

No weight limit and
any object can be
scanned up to 5
meters length and
width

Mesh alignment
process - Aligning
the multiple meshes
to create a single
concatenate mesh

ICP-based
alignments [24]

Image-based
calibration

Feature similarity
requirement

In methods such
as SFM [14]-
[16], [40], feature
similarity required

Feature similarity is
not required to con-
catenate meshes

Sensor scalability
and changeability

Algorithm tests for
predefined sensors
(i.e. - Kinect Sensor
[11], [22])

Based on color and
depth frames. There
is no limit to in-
creasing the number
of color and depth
streams

with rotation tables or rotation sensors. We used only four
fixed Intel RealSense D435 sensors in the experimental setup
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without any other tools or mechanics. Our system can be
used to scan any object without a weight limitation as it does
not require a specific table or a stand to support the object.
However, as this specific implementation is connected with
a USB C-type cable that is 5 meters long, the maximum
distance at which an object can be placed is limited by the
length of the USB cable. Further, we have used an image-
based mesh alignment process which is promising compared
to ICP because ICP-based mesh alignments do not perform
satisfactorily if the mesh exhibits a considerable number of
outliers. The proposed technique does not require any similar-
ity in the scanning object as it uses RGB-D images and sensor
poses to generate the mesh. Moreover, the system is scalable
as it uses color and depth streams while the algorithm can be
reused with any type of sensor module as long as it provides
color and depth streams.

In addition to the improvements mentioned above, the
proposed method consists of a drift-effect removal technique
along with a stitching algorithm to create a closed-stitched
3D model.

V. CONCLUSION

In this research, we implemented an improved 3D recon-
struction system that can 3D reconstruct any physical object
using an inward multi-view depth sensor array. With this
implementation, we proposed techniques to clip the unwanted
depth information, detect the sensor pose, perform edge qual-
ity refinement, and generate closed, stitched 3D models of
physical objects that can be used in any reality application.
We used an array of four Intel RealSense D435 sensors in
parallel, which was able to satisfy the optimal frame count
by collecting more than 200 frames per sensor within three
seconds. As a result, the proposed method can scan a com-
plete 3D model within three seconds, which is a considerable
reduction in scanning time when compared to alternative
methods. Thereafter, it can generate the complete 3D model
within one minute depending on the availability of com-
pute resources. However, this takes place during the post-
processing stage and so does not require the object to be
visible. A well-calibrated system generates an elegant 3D
mesh. However, the Intel RealSense D435 does not provide
satisfactory depth data due to distortion caused by noise and
factors such as the drift-effect. Furthermore, the D435 sensor
encountered significant issues when distinguishing edges of
nearby planes with different depths. We were able to success-
fully implement a solution for drift-effect removal by deriving
a threshold (7h) value. This value was obtained using the
Sensor Constant (SC) which was calculated specifically for
the Intel RealSense D435 sensor. An accurate and detailed
3D model can be generated from the proposed technique
if the system makes use of a more accurate depth sensor
module. Since our proposed system only depends on color
and depth frames as the input, the sensor can be swapped
out with any number of alternative sensor modules while
still using the same implementation, provided that the sensor
modules in question meet the minimum requirements for the
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system. However, the drift-effect removal and mesh merging
stitching algorithm is not directly applicable for real-time
applications as it is computationally expensive. Our future
work would focus on developing a more efficient real-time
3D reconstruction implementation.
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