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ABSTRACT Advanced engineering systems possess a large number of components with complicated failure
dependencies. To accurately assess the system reliability, the degradation models of components should be
known in advance and the model parameters should be accurately estimated via a large quantity of historical
time-to-failure data. In real-world situations, due to limited data, lack of knowledge, and vague judgments
from experts, components’ degradation model parameters are, however, inevitably encountered with epis-
temic uncertainty and oftentimes quantified as evidential variables. In this article, upper and lower bounds of
system reliability, termed as reliability-box, are estimated when components’ degradation model parameters
are elicited from experts and quantified by evidential variables. In the first place, the constrained optimization
model is leveraged to assess the reliability-box of each component by giving the evidential variable of the
component’s degradation model parameters. Next, based on the system structure, the evidential network of
the system is constructed to propagate the epistemic uncertainty from the component level to the system
level. Therefore, the focal elements of the evidential variable of system reliability, i.e., the system reliability
bounds, can be assessed via the belief and plausibility functions to the mass function of the leaf node of the
evidential network. The effectiveness of the proposed methods is demonstrated by a rolling system in the
chip cutting detection module.

INDEX TERMS Reliability-box, epistemic uncertainty, evidential variable, evidential network,
Dempster-Shafer theory, chip cutting detection system.

I. INTRODUCTION
Reliability modelling and assessment are important activities
in the lifecycle management of advanced engineered systems.
Modern industrial applications, such as transportation sys-
tems and manufacturing systems, are increasingly complex
and sophisticated due to functional integration [1], [2]. Often-
times, the systems contain a hierarchical structure that can be
decomposed into a large number of modules with each mod-
ule consists of a set of components [3]. For instance, the com-
mercial aero-engine mainly consisting of six constituents,
i.e., engine fans, low-pressure compressor, high-pressure
compressor, combustion chamber, high-pressure turbine, and
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low-pressure turbine, while the engine fans, for example,
contain a lot of blades, bearings, and gears. The increas-
ing complexity of engineered systems brings various chal-
lenges to system reliability modelling and assessment. The
first challenge is the complicated failure dependency among
components, such as common cause failure modes, propa-
gated failure modes, isolation failure modes, and cascading
failure modes [4]. The second challenge is the rise of epis-
temic uncertainty associated with both the system reliability
models and degradation model parameters [5]. The epistemic
uncertainty of system reliability models refers to the failure
dependency of components is not deterministic, and several
candidates of system reliability models can be used to con-
struct the system reliability function [6], [7]. The epistemic
uncertainty of degradation model parameters arises when
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the time-to-failure data of the studied systems/components
is limited and the estimated degradation model parameters
are uncertain. Sometimes, especially for newly developed
systems with no time-to-failure data, experts are invited to
express their judgements on the degradation model parame-
ters, while the elicited information/knowledge may contain
epistemic uncertainty [8], [9], [10].

In general, the aleatory uncertainty, due to the input inher-
ent randomness, can be represented as probability models [5],
while the epistemic uncertainty, arising from inadequate
knowledge, subjectivity, ambiguity, fragmentary or dubious
information, is mainly quantified by non-probabilistic mod-
els, such as interval theory, fuzzy theory, and Dempster-
Shafer theory [11]. The aleatory uncertainty is oftentimes
related to observable quantities [12] and is considered as irre-
ducible, such as the temperature and flow rates. In contrast,
the epistemic uncertainty is oftentimes related to unobserv-
able quantities [12], such as degradation model parameters,
and can be reduced, even eliminated, in the sense that new
knowledge has been acquired. The probability theory is well
suited to quantify the aleatory uncertainty. However, accu-
rately estimating the parameter(s) of the probability distri-
bution needs a large population of historical data which is
impossible for modern engineered systems. Alternatively,
some non-probabilistic measures are frequently utilized for
epistemic uncertainty quantification of the model parameters
when the historical data is limited. The interval set theory [13]
is a well-known method to quantify the epistemic uncertainty
via using the lower and upper bounds of the model param-
eters. However, the interval set theory can only quantify the
epistemic uncertainty while aleatory and epistemic uncertain-
ties always coexist and couple together in engineering prac-
tices [4]. For example, in manufacturing systems, the length
and thickness of the critical structures are stochastic because
of manufacturing deviations and measurement errors while
the estimation of the stochasticmodel parameters is imprecise
due to limited data and data uncertainty [14].

Dempster-Shafer theory has been widely implemented
in engineering practices due to its strong capability
of quantifying both aleatory and epistemic uncertainties.
Dempster-Shafer theory is a unified framework that can
model probability information by assigning zero masses
to the non-singleton sets, and model logical statements
via using categorical mass functions [15], [16]. In the lit-
erature, there are plenty of works on studying reliabil-
ity modelling, reliability assessment, importance measures,
reliability optimization, and dynamic reliability assess-
ment under Dempster-Shafer theory framework. Simon and
Webber [17] are pioneers to leverage Dempster-Shafer the-
ory to quantify the epistemic uncertainty associated with the
failure rates of components’ lifetime distribution, and they
designed an evidential network (EN) to propagate the epis-
temic uncertainty from the component level to the system
level. Dersteracke and Sallak [18] developed the belief uni-
versal generating function (BUGF) method for multi-state
systems (MSSs) under epistemic uncertainty of components’

states. Mi et al. [3] developed another type of EN model
by constructing the conditional belief table and conditional
plausibility table to respectively calculate the system’s belief
reliability and plausible reliability. Recently, Mi et al. [4]
developed some special ENmodels that can handle both epis-
temic uncertainty of components’ states and common cause
failure (CCF). Xiahou et al. [19], [20], [21] have published a
series of works on system reliability modelling, redundancy
allocation, and remaining useful life (RUL) prediction by
using Dempster-Shafer theory to fuse multiple-source impre-
cise information. Qiu et al. [6], [22] extended the component
assignment problem (CAP) under Dempster-Shafer theory
framework. CAP is a special reliability optimization prob-
lem aiming at maximizing system reliability by assigning
the appropriate positions for components with different reli-
ability functions. It should be noted that all these reliability
modelling and optimization methods under Dempster-Shafer
theory framework were conducted by using the interval-to-
mass transformation method. That is to say, all the above
works assumed that the component reliability, component
states probability, or the components’ degradation model
parameters are interval values. The interval-valued data are,
then, converted into a discrete Dempster-Shafer structure by
assuming the component states or system states as the frame
of discernment (FoD).

The evidential variable is another measure to quantify
the epistemic uncertainty of components’ degradation model
parameters under the continuous Dempster-Shafer structure.
In contrast to the interval set theory, the evidential vari-
able additionally assigns each possible interval value with
a specific mass function. The merits of using the eviden-
tial variable to model the epistemic uncertainty are twofold:
1) the evidential variable carries more information than the
interval set theory, whereas it requires fewer data to be con-
structed than the probability theory; 2) the evidential vari-
able is also suitable for experts to express their knowledge
with uncertainty. The experts are only needed to judge how
many interval values and their specific bounds with each
has its probability. Compared with the discrete Dempster-
Shafer structure, the evidential variable is a more generalized
framework to model continuous random variables with epis-
temic uncertainty. When the lower and upper bounds of each
focal element of the evidential variable are identical, the evi-
dential variable degenerates to the discrete Dempster-Shafer
structure [23], [24].

In the literature, only a few research attempts have been
made on studying the reliability assessment using the evi-
dential variable. Liu and Wang [25] studied the reliability
estimation of engineering systems via two types of reliability-
related data, i.e., the lifetime testing data and degradation test-
ing data. The stochastic degradation process of components
was characterized by the Wiener process and the associated
parameters were described as evidential variables. Thereby,
the Dempster rule of combination was used to fuse the mass
functions constructed from lifetime testing data and degrada-
tion testing data. Liu et al. [26] further extended the method
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in [25] by fusing more sources of information, including the
accelerated degradation test (ADT) data, the accelerated life
test (ALT) data, and expert knowledge. However, it should be
noted that these methods based on evidential variables were
only suitable for continuous deteriorating systems where the
systemwas considered as a whole and cannot be broken down
into subsystems and components.

In this article, we aim to assess the multi-component sys-
tems’ reliability when the components’ degradation model
parameters contained epistemic uncertainty. We use the evi-
dential variable to quantify the epistemic uncertainty asso-
ciated with the components’ degradation model parameters.
Experts are invited to express their judgments on the inter-
vals and the mass function of the evidential variables. A
constrained optimization model is constructed to assess the
evidential variable of the components’ reliability. On the
other hand, in order to assess the system reliability, we con-
struct the evidential network of multi-component systems
and use it to propagate the epistemic uncertainty from the
component level to the system level. Therefore, the eviden-
tial variable of the system reliability is assessed. Finally, the
system reliability-box is constructed by using the belief and
plausibility functions on the evidential variable of the sys-
tem reliability. It bears noting that Simon and Bicking [24]
have proposed the system reliability assessment based on
the p-box and evidential network. The p-box variable was
transformed into the evidential variable, and the evidential
network was utilized to assess the focal elements of the sys-
tem reliability. In our work, we directly use the evidential
variable to model the epistemic uncertainty of the component
degradation model parameters, and utilize the constrained
optimization model to assess the component reliability-box.
To sum up, the unique contributions of this work lie in three
aspects:

1) We assess the system reliability-box under the evi-
dential variable framework to consider the epistemic uncer-
tainty associated with the components’ degradation model
parameters.

2) We use the evidential variable to quantify the epistemic
uncertainty of the components’ degradation model parame-
ters, and a constrained optimization model is formulated to
assess the component reliability-box.

3) We construct the EN of multi-component systems, and
the system reliability-box is assessed by leveraging the belief
and plausibility functions.

The remainder of this article is rolled out as fol-
lows. Section II gives the theoretical backgrounds of the
Dempster-Shafer theory and the evidential variable. The com-
ponents’ reliability-box is assessed by a constrained opti-
mization model in Section III. Section IV presents the EN,
and the system reliability box is assessed based on the belief
and plausibility function. A real-world engineering system,
i.e., a rolling system in the chip cutting detection module,
is presented to demonstrate the effectiveness of the proposed
method in Section V. Section VI concludes this article and
provides a set of future works.

II. DEMPSTER-SHAFER THEORY
The Dempster-Shafer theory, also called evidence theory or
belief function theory, was originated by A. Dempster and
his Ph.D. student G. Shafer to model aleatory and epis-
temic uncertainties by using the set theory and probabil-
ity theory. The probability theory can represent aleatory
uncertainty well, whereas it was argued by many authors
that it cannot represent lack of information/knowledge,
small sample, imprecise data, and expertise with uncer-
tainty [15]. Dempster-Shafer theory includes the classic prob-
ability theory and set theory as special cases. Moreover,
the fuzzy set theory is also a type of special case of the
Dempster-Shafer theory when the focal sets are nested.
In addition, the probability-box theory is also included in the
Dempster-Shafer theory with continuous evidential variables.
Therefore, the Dempster-Shafer theory can be considered as
a generalized framework to represent aleatory and epistemic
uncertainties, also called hybrid uncertainty, under various
real-world situations.

Basic belief assignment (BBA) is the basic building block
of the Dempster-Shafer theory. A BBA is also called mass
function m(A) that maps the power set of the framework of
discernment (FoD) � to the interval [0, 1]. Generally, the
mass function has the following two axioms:∑

A⊂�

m(A) = 1, (1)

m(∅) = 0. (2)

Element A with that m(A) > 0 is called a focal element.
Some special cases of mass function are defined as follows.
Bayesian mass is defined as the mass function with the focal
elements are all singletons. Fuzzy sets are those mass func-
tions with nested focal elements. Categorical mass function
means the unity mass is assigned to only one focal element,
i.e., m(A) = 1 where A ⊂ �. Simple mass function means
only two subsets can be the focal elements and one of them
is the FoD.

For the mass function m(A), two functions, namely the
belief and plausibility functions, can be defined as:

Bel(A) =
∑
B⊂A

m(B), (3)

Pl(A) =
∑

B∩A6=∅

m(B). (4)

Belief function Bel(A) measures the least commitment of
hypothesis A. Plausibility function Pl(A) measure the most
plausibility of hypothesis A. these two measures have the
inequality Bel(A) ≤ Pl(A), which means what is certain is
plausible. Moreover, these two functions are dual functions
that Bel(A) = 1− Pl(Ā), where Ā is the complement of set A
in the FoD �. Furthermore, the quantity of Pl(A) − Bel(A)
oftentimes represents the epistemic uncertainty value of
set A.
Up to here, the mass function, belief function, and the plau-

sibility function are defined over discrete spaces, that is, all
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FIGURE 1. An illustration of the evidential variable X with
non-overlapping focal elements.

FIGURE 2. An illustration of the evidential variable X with overlapping
focal elements.

the possible values of subset A are discrete. Another type of
mass function is defined over the continuous space R. Such a
mas function is called the evidential variable in the Dempster-
Shafer theory. Details of the definition of evidential variables
are given below.

The evidential variable is defined as the mass function
whose focal elements are all closed intervals. In general, the
evidential variable X has C(X ) number of closed intervals Aj
(j = 1, 2, . . . ,C(X )) with each Aj has its associated mass
function m(Aj) and

∑
jm(Aj) = 1. For each focal element,

we have Aj = [Lj,Uj], where Lj and Uj are the lower and
upper bound of interval Aj, respectively. An illustration of
the evidential variable X with nonoverlapping focal elements
is given in Fig. 1. Another type of evidential variable is that
with overlapping focal elements, as illustrated in Fig. 2. The
evidential variable is used to quantify the epistemic uncer-
tainty associated with the degradation model parameters. For
instance, if the lifetime of a component follows the expo-
nential distribution, where the failure rate of the exponen-
tial distribution is quantified by an evidential variable as <
[1.6, 1.8], 0.3 >;< [1.8, 2.0], 0.3 >;< [2.0, 2.2], 0.4 >.
The evidential variable represents that the expert believes that
the failure rate was located in the interval [1.6,1.8] with a
mass function of 0.3, in the interval [1.8, 2.0] with a mass
function of 0.3, while in the interval [2.0, 2.2] with a mass
of 0.4.

The relation among the evidential variable, random vari-
able, and the interval variable is depicted in Fig. 3. It can
be seen that the informativeness of an evidential variable is
between those of a random variable and an interval variable.
The random variable is more informative than the evidential
variable, while the evidential variable is more informative
than the interval variable. Moreover, the interval variable is
a special evidential variable with only one focal element with
a mass of unity. The evidential variable can be converted into
a random variable with the probability density function (PDF)
fX can be created via the uniformity approach:

fX (x) =
C(A)∑
j=1

δj(x)m(Aj)
/
(Uj − Lj), (5)

FIGURE 3. Comparison among the evidential variable, random variable,
and the interval variable.

where δj(x) = 1 if x ∈ Aj and 0 otherwise. It can be seen
that the uniformity approach is to assume a uniform distribu-
tion over each focal element according to its mass function.
Note that the transformation of the evidential variable to the
random variable is conducted by transforming the epistemic
uncertainty associated with the focal elements to the aleatory
uncertainty of the focal elements. In (5), the intervals of con-
tained focal elements are nonoverlapped. For the case that
the intervals overlapping, the authors in [27] have proposed a
least committed method to convert the evidential variable to
a random variable by accumulating the mass functions of the
overlapping parts.

The evidential variable is difficult to be visualized
and is not intuitively understand by engineers. In fact,
the probability-box (p-box) is oftentimes used to visual-
ize the evidential variable by converting the mass functions
into the lower and upper bounds of the cumulative distribution
function (CDF). In general, a p-box can be represented by a
pair of CDFs [F(x), F̄(x)] where F(x) < F̄(x) for all x ∈ R.
In this article, the p-boxes are all discrete, that is, the lower
and upper bounds of CDFs are both stair-wise functions. For
example, assuming that the mean time to failure (MTTF) of
a component is elicited from an expert. The expert states that
the probabilities of the MTTF of this component is lower
than 6, 12, and 24 hours, and the corresponding statements
are:

0 ≤ Pr{0 ≤ MTTF ≤ 10} ≤ 0.2;

0.2 ≤ Pr{0 ≤ MTTF ≤ 20} ≤ 0.4;

0.6 ≤ Pr{0 ≤ MTTF ≤ 30} ≤ 0.8.

The expert also provides that the MTTF of this component is
no more than 35 hours, and is no less than 5 hours, therefore,
we have F(35) = F̄(35) = 1 and F(5) = F̄(5) = 0.
The above statements correspond to a discrete p-box which
is depicted in Fig. 4. The p-box illustrated in Fig. 4 can be
converted into an evidential variable with mass function on
interval-valued focal elements. Figure 5 gives the correspond-
ing evidential variable of the p-box in Fig. 4. Mathematically,
given a general p-box [F(x), F̄(x)], we have the any value α
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FIGURE 4. The p-box provided by the expert.

of focal element [F−1(α), F̄−1(α)] with the mass function of:

m([F−1(α), F̄−1(α)])

= L({x|F−1(x) = F−1(α), F̄−1(x) = F̄−1(α)}), (6)

where L({x|F−1(x) = F−1(α), F̄−1(x) = F̄−1(α)}) is the
length of the interval of which the upper and lower bounds of
inverse CDFs are exactly the same. Note that, an evidential
variable can also be converted into a p-box [F(α), F̄(α)] that:

F̄(α) =
∑

[x]∈�,x≤α

m([x]) = Pl((−∞, x]), (7)

F(α) =
∑

[x]∈�,x̄≤α

m([x]) = Bel((−∞, x]), (8)

where Bel((−∞, x]) and Pl((−∞, x]) are the belief and plau-
sible CDFs, respectively.

FIGURE 5. The corresponding evidential variable of the p-box in Fig. 4.

III. RELIABILITY-BOX OF COMPONENTS
In this section, we aim to assess the reliability-box of com-
ponents when the components’ degradation model parame-
ters are represented by evidential variables. In engineering
practice, expert knowledge is oftentimes used to determine
the parameters of the components’ lifetime distribution when
the time-to-failure data are limited. As the parameters associ-
atedwith the components’ degradationmodels are continuous
variables, we use the evidential variable to quantify the epis-
temic uncertainty of the expert knowledge on the possible val-
ues of the parameters of components’ lifetime distributions.
In general, the lifetime of components can be characterized
by some specific distributions, such as exponential distribu-
tion and Weibull distribution. The component reliability is,
therefore, a function of the lifetime distribution parameters θ

and time t . We use RC (t) = L(θ, t) to describe that the
component reliability is calculated by the parameters θ and
time t with a specific probability law L. Suppose that the
evidential variable of parameter θ is described as m([θj]) =
m([θjL , θjU ]), where j = 1, 2, . . . ,C(θ ). The purpose is to
calculate the evidential variable of the component reliabil-
ity, denoted as m([RC,j(t)]) = m([RC,jL(t),RC,jU (t)])(j =
1, 2, . . . ,C(RC (t))), via the evidential variable of the param-
eter θ and time t . For the evidential variable of the com-
ponent reliability, we have to determine three quantities in
m([RC,i(t)]). The first quantity is themass function associated
with each focal element of the component reliability, i.e.,
m([RC,i(t)]), which is exactly the same as m([θj]) because
we do not have any operations on the mass functions of the
component reliability. The second term is the lower bound of
the component reliability of each focal element, i.e., RC,jL(t).
In general, RC,jL(t) can be determined by a constrained opti-
mization, which is mathematically written as:

RC,jL(t) = min(RC (t) = L(θ, t))
s.t. θjL ≤ θ ≤ θjU . (9)

The third quantity is RC,jU (t), which can be also determined
by a constrained optimization as:

RC,jL(t) = max(RC (t) = L(θ, t))
s.t. θjL ≤ θ ≤ θjU . (10)

For instance, if the lifetime of the component follows the
exponential distribution with the parameter θ , where θ is the
MTTF of the component. Thereby, the component reliability
function can be described as: RC (t) = exp(−θ−1t). Then,
the evidential variable of the component reliability can be
formulated as:

m([RC,j(t)]) = m([RC,jL(t),RC,jU (t)])

= m([exp(-(θjL)−1t), exp(-(θjU )−1t)]). (11)

For example, considering the evidential variable of theMTTF
given in Fig. 4 at a given time instant t = 10 hours. We can
calculate the evidential variable of the component reliability
as following.

m([5, 20]) = 0.2→ m([RC,1(10)])

= m([0.135, 0.607]) = 0.2;

m([10, 30]) = 0.2→ m([RC,2(10)])

= m([0.368, 0.717]) = 0.2;

m([20, 30]) = 0.2→ m([RC,3(10)])

= m([0.607, 0.717]) = 0.2;

m([20, 35]) = 0.2→ m([RC,4(10)])

= m([0.607, 0.752]) = 0.2;

m([30, 35]) = 0.2→ m([RC,5(10)])

= m([0.717, 0.752]) = 0.2.

The above evidential variable of the component reliabil-
ity can be converted into a p-box via (7) and (8), and the
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corresponding discrete p-box of the component reliability is
visualized in Fig. 6.

FIGURE 6. The corresponding evidential variable of the component
reliability given the evidential variable of the MTTF of the component in
Fig.5.

If the lifetime of the component obeys the Weibull dis-
tribution with the scale parameter and shape parameter are
quantified as evidential variables, the evidential variable of
the component reliability can be also constructed. First, the
reliability function of the component with Weibull distribu-
tion can be described as:

RC (t) = exp
[
−
(
t
/
θ
)β]

, (12)

where θ is the scale parameter, and β is the shape parameter.
If both the scale parameter and shape parameter are evidential
variables, the evidential variable of the component reliability
can be formulated as m([RC,j(t)]) = m([RC,jL(t),RC,jU (t)]),
where [RC,jL(t),RC,jU (t)] can be identified by the following
optimization model:

[RC,jL(t),RC,jU (t)] = min/max (RC (t) = exp
[
−
(
t
/
θ
)β])

s.t.

{
θjL ≤ θ ≤ θjU

βjL ≤ β ≤ βjU
(13)

Note that, if there are more than one parameter are evidential
variables for the lifetime distribution, such as theWeibull dis-
tribution, the mass function and the number of focal elements
of the evidential variable of component reliability should be
granulated as:

m([RC,j(t)]) =
∏
j∈Nθ

m([θj]), (14)

and

C(RC (t)) =
∏
j∈Nθ

C(θj), (15)

where Nθ is the number of parameters in the studied life-
time distribution. For instance, for the two-parameterWeibull
distribution, the evidential variable of the shape parame-
ter and scale parameter are m(θ ) = {m([200, 250]) =
0.5,m([250, 300]) = 0.5}, m(β) = {m([1, 1.5]) =
0.5,m([1.5, 2]) = 0.5}. Hence, there are four focal elements
of the evidential variable of the component reliability with
each having a mass function of 0.25. if t = 100 hours, the

evidential variable of the component reliability is given as
following:

m([RC,1(10)]) = m([0.9512, 0.9920]) = 0.25;

m([RC,2(10)]) = m([0.9889, 0.9984]) = 0.25;

m([RC,3(10)]) = m([0.9608, 0.9939]) = 0.25;

m([RC,4(10)]) = m([0.9920, 0.9989]) = 0.25.

The above evidential variable of the component reliabil-
ity can be converted into a p-box via (7) and (8), and the
corresponding discrete p-box of the component reliability is
visualized in Fig. 7.

FIGURE 7. The evidential variable of the component reliability with
Weibull distribution.

IV. RELIABILITY-BOX OF THE SYSTEM BY EVIDENTIAL
NETWORK
In this section, the evidential variable of the system reliability
is assessed by given the evidential variables of component
reliabilities and the system structure. We separately assess
the mass functions and the focal elements of the evidential
variable of the system reliability. First, the focal elements of
the evidential variable of the system reliability, i.e., the lower
and upper bounds of the system reliability is assessed by the
ENmodel. Then, the mass functions associated with the focal
elements of the evidential variable of system reliability is
assessed by the mass functions of the evidential variables of
component reliabilities.

A. EVIDENTIAL NETWORK MODELS
The main purpose of assessing the evidential variable of the
system reliability is to assess the focal elements and its asso-
ciated mass function. The focal elements of the evidential
variable of system reliability contains the lower and upper
bounds of the system reliability. In general, given the sys-
tem structure function ϕS (·), the system reliability bounds,
denoted by [RS,jL(t),RS,jU (t)] can be assessed by an opti-
mization model [8]:

[RS,jL(t),RS,jU (t)]

= min /max RS (t) = ϕS (RC1(t), . . . ,RCM (t))
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s.t.



RC1,jL(t) ≤ RC1(t) ≤ RC1,jU (t)
RC2,jL(t) ≤ RC2(t) ≤ RC2,jU (t)

...

RCM ,jL(t) ≤ RCM (t) ≤ RCM ,jU (t)
RCm,jL(t)+ FCm,jU (t) = 1, m = 1, 2, . . . ,M
RCm,jU(t)+ FCm,jL(t) = 1, m = 1, 2, . . . ,M

,

(16)

where RCm(t) (m = 1, 2, . . . ,M ) is the component reliability
function and M is the number of components in the system;
RCm,jL(t) and RCm,jU (t) are the lower and upper bounds of the
component reliability, respectively; FCm,jL(t) and FCm,jU (t)
are the lower and upper bounds of the component failure
probability, respectively. In fact, resolving (16) can be com-
putational tedious when the number of componentsM is large
enough. In the literature, the EN model is an effective tool to
calculate the system reliability bound by given the mass func-
tions of the component reliabilities. In our work, we introduce
the EN model to assess the focal elements of the evidential
variable of the system reliability, i.e., the system reliability
bound, in a computationally efficient manner.

EN is initialized by Simon and Webber to represent and
propagate epistemic uncertainty of components’ states [17].
In general, EN can be viewed as a graphic representation
of mass function relationships. In contrast to the Bayesian
networks (BNs), The ENmodel has the same directed acyclic
graph (DAG). However, the EN represents the state depen-
dency among components, subsystems, and the system via
the conditional belief mass functions (CBMFs), rather than
the conditional probability functions in BNs. If themass func-
tions of the EN are Bayesian masses, the EN model degen-
erates to the traditional BNs. Therefore, due to the strong
modeling and inference capabilities, the ENmodel have been
extensively implemented for system reliability modelling and
assessment of multi-component systems to cope with the
hybrid uncertainty of component states [28], [29].

For an EN model, the DAG consists of M + N +
1 nodes, denoted as {X1,X2, . . . ,XM , S1, S2, . . . , SN , S}, and
Z directed edges, where node Xi (i = 1, 2, . . . ,M ) represents
the ith component; node Si (i = 1, 2, . . . ,N ) represents the
ith subsystem; node S represents the entire system. Each root
node Xi (i = 1, 2, . . . ,M ) represents a variable that contains
all the singletons and non-singletons of the ith component
under the Dempster-Shafer theory. A directed edge from node
Xj to node Si is leveraged to represent the failure dependency
between the components and subsystems. Here, node Si is the
child node of Xj, whereas Xjis a parent node of Si, denoted
as pa(Si) = Xj. In ENs, CBMFs provide the quantitative
measure of the failure dependencies among components, sub-
systems, and system, which are formed as a conditional belief
mass table (CBMT). For ENs, nodes Si and S both have
CBMTs as they are child nodes of components, denoted as
m(Si|pa(Si)) and m(S|pa(S)), respectively. For the root node,
i.e., node Xi (i = 1, 2, . . . ,M ), they do not own parent
nodes, and therefore, we should define the marginal mass

distributions of these nodes. In fact, the marginal mass dis-
tribution of components has been calculated in Section III.
To compute the marginal mass distribution of the child nodes,
i.e., nodes Si (i = 1, 2, . . . ,N ) and node S, in an EN model,
we have to decompose the multi-component system into a
combination of series and parallel structures [24].

The components in a system are connected with a series-
parallel structure. Without loss of generality, we study two
types of systems, i.e., series system and parallel system, and
any sophisticated system can be decomposed into these two
types of systems. Firstly, considering two components con-
nected in series, components C1 and C2 are assumed to
have only two states, i.e., either perfectly functioning {1} or
completely failed {0}. However, due to the epistemic uncer-
tainty regarding the components’ states, an uncertain state
{0, 1} is introduced to represent the epistemic uncertainty
associated with the component reliability. Thus, the FoD of
the two components is � = {{0}, {1}}. Based on the struc-
ture function of series systems, the fault tree of a series sys-
tem can be constructed by an ‘‘OR’’ gate. To quantify the
dependency between the parent nodes and child node, the
CBMT [30], [31] of the EN model for the ‘‘OR’’ gate is
tabulated in Table 1. Based on the CBMT of the OR gate,
the mass function of the child node can be computed.

TABLE 1. CBMT of ‘‘OR’’ gate.

If the two components, i.e., components C1 and C2, are
connected in parallel, the fault tree of the parallel system can
be modeled by an ‘‘AND’’ gate. In the same manner, the
‘‘AND’’ gate can be converted to an EN model. The corre-
sponding CBMT can be constructed based on the structure
function of parallel systems, and it is tabulated in Table 2
[30], [31].

Based on the CBMTs of the series and parallel systems,
the mass function of the subsystem Si can be assessed by the
inference algorithm as:

m(Si) =
∑
pa(Si)

m(Si|pa(Si))× ∏
pa(Si)

m(pa(Si))

, (17)
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TABLE 2. CBMT of ‘‘AND’’ gate.

where m(pa(Si)) is the mass functions of the parent nodes of
Si, i.e., the mass function of components, and m(Si|pa(Si)) is
the CBMT of node Si. If nodes Si is the child node of a series-
connected system, then, m(Si|pa(Si)) corresponds to Table 1.
If nodes Si is the child node of a parallel-connected system,
m(Si|pa(Si)) corresponds to Table 2.
For the node S, its mass function can also be inferred by

the inference algorithm as:

m(S) =
∑
pa(S)

m(S|pa(S))× ∏
pa(S)

m(pa(S))

, (18)

wherem(pa(S)) is the mass functions of node S, i.e., the mass
function of subsystems, andm(S|pa(S)) is the CBMT of node
S, and it corresponds to one of Tables 1 and 2. Based on the
mass function of the leaf nodes, the system reliability bounds
can be assessed by using the belief and plausibility function.
Specifically, the lower bounds of the system reliability can be
assessed by:

BelS,jL(t) =
∑
i={1}

m(S(t) = i), (19)

where as the upper bound of the system reliability, denoted
by Pl(RS (x)), can be calculated by:

PlS,jU (t) =
∑

i={1} or i={0,1}

m(S(t) = i). (20)

For the focal elements of the evidential variable of the
system reliability, i.e., [RS,jL(t),RS,jU (t)], it should be cal-
culated by the focal elements of the evidential variable of
component reliability, i.e., RCm,jL(t) and RCm,jU (t). First, for
each component m, the mass distribution can be inferred as:

mCm(t)

= {FCm,jL(t),RCm,jL(t),RCm,jU (t)− RCm,jL(t)}

= {1− RCm,jU (t),RCm,jL(t),RCm,jU (t)− RCm,jL(t)},

(21)

where mCm(t) represents the mass distribution of the compo-
nent reliability at time instant t . Based on the EN model, the

system reliability bounds can be found via inputting the mass
distributions of all components, and the focal elements of the
evidential variable of system reliability [RS,jL(t),RS,jU (t)]
can be assessed by:

[RS,jL(t),RS,jU (t)] = [BelS,jL(t),PlS,jU (t)]. (22)

Thereby, when input all the combinations of all component
focal elements of its evidential variables, all focal elements
of the evidential variable of the system reliability can be
assessed.

B. MASS FUNCTION OF THE SYSTEM RELIABILITY
The ENmodel only assesses the focal elements of the eviden-
tial variable of the system reliability, while the mass function
of the evidential variable of the system reliability still remains
unsolved. In this section, the mass function of the evidential
variable of the system reliability is computed by all the mass
functions of the evidential variable of component reliability
as following:

m([RS,j(t)]) =
∏
m∈M

m([RCm,j(t)]). (23)

Note that, the number of focal elements of the evidential
variable of system reliability is the product of the numbers
of focal elements in the evidential variable of component
reliability., i.e.,

C(RS (t)) =
∏
m∈M

C(RCm(t)), (24)

where C(RCm(t)) is the number of focal elements of the evi-
dential variable of the m th component and C(RS (t)) is the
number of focal elements of the evidential variable of system
reliability. Based on (22) and (23), the evidential variable of
system reliability can be assessed.

V. AN ILLUSTRATIVE EXAMPLE
In chip manufacturing, the chip cutting and testing processes
are key procedures after the silicon wafer has been man-
ufactured. In general, these two processes are done via a
chip cutting detection module in the assembly factory [32].
The chip cutting detection module mainly consists of four
subsystems, i.e., the cutting system, driving system, testing
system, and the rolling system, as shown in Fig.8. The chip
cutting detection module has only one assembly line. In the
assembly line, each chip is transmitted by magnetic belt, and
the belt is driven by stepper motor to ensure a reasonable
space between chips. In the chip cutting detection module,
the chip is detected by the testing system first, and the chip
functioning error is detected in this process. The defective
chip will be discarded and the non-defective products will be
sent to the cutting system. The cutting system is compatible
with a material roll within 60mm and uses diagonal blade
cutting to ensure the cutting quality. All material rolls with
chips are driven by the driving system and rolling systemwith
stepper motors.
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FIGURE 8. The chip cutting detection module.

FIGURE 9. The rolling system of the chip cutting detection module.

The rolling system, as delineated in Fig.9, is equipped
with an anti-deflection sensor, feeding wheel, motor, grav-
ity wheel, and weight disks. The anti-deflection sensor can
adjust the coil position in real time by adjusting the motor
to prevent the deviation of chips. Gravity wheel is used to
tighten the material belt. Weight disks can be loaded on the
gravity wheel, and the weight can be increased or decreased
according to the width of the material roll. The rolling system
is most susceptible to degradation and its reliability is critical
to the chip quality. However, the chip manufacturing factory
does not have enough time-to failure data of the rolling sys-
tem, and they invited some experts to elicit their knowledge
on the reliability-related information of the components in the
rolling system.

The rolling system mainly consists of five types of com-
ponents, and it has two gravity wheels. The ant-deflection
sensor is an electronic device, and its lifetime follows the
exponential distribution. The gravity wheel, feeding wheel,
and the weight disks are relatively mature products and their
lifetime also follows the exponential distribution. The two
gravity wheels are the same components with the same degra-
dation law. The motor is a mechanical system with a Weibull
distributed lifetime. The experts are invited to express their
knowledge of the components’ degradation model parame-
ters. However, due to lack of knowledge, vague judgements

TABLE 3. The evidential variable of component degradation model
parameters.

of experts, the elicited data contain epistemic uncertainty and
they are quantified as evidential variables as given in Table 3.
In Table 3, AD, FW, MO, GW, and WD, respectively, repre-
sent the anti-deflection sensor, feeding wheel, motor, gravity
wheel, and weight disks. As given in Table 3, the units AD,
GW, and WD are all exponentially distributed components
with interval-valued failure rates (In this case, the eviden-
tial variable degenerates to the interval variable with only
one focal element). The evidential variables of units FW and
MO have two focal elements and their associated mass func-
tions. The evidential variables of all components’ degradation
model parameters are illustrated in Fig. 10.

Given the evidential variables of components’ degradation
model parameters, the evidential variable of the component
reliability can be assessed via (9), (10), (14), and (15), and the
results at the given time instant t = 100 hours are presented
in Fig. 11. As shown in Fig. 11, the evidential variables of
units AD, GW, and WD have only one focal element because
the evidential variables of the failure rates of these compo-
nents are only interval-valued. For units FW and MO, the
evidential variables of the component reliability have two
focal elements with the mass function are exactly the same
as these of the evidential variables of components’ degrada-
tion model parameters. All the evidential variables of compo-
nents’ reliability at time instant t = 100 hours are given as
follows:

m([RAD,1(100)]) = m([0.8025, 0.8187]) = 1;

m([RFW ,1(100)]) = m([0.7788, 0.8187]) = 0.5;

m([RFW ,2(100)]) = m([0.8187, 0.8607]) = 0.5;

m([RMO,1(100)]) = m([0.9829, 0.9932]) = 0.3;

m([RMO,2(100)]) = m([0.9845, 0.9945]) = 0.7;

m([RGW ,1(100)]) = m([0.7408, 0.7788]) = 1;

m([RWD,1(100)]) = m([0.8106, 0.8353]) = 1.

To assess the reliability-box of the rolling system, the EN
model should be constructed first. The EN model of the
rolling system is depicted in Fig. 12. As shown in Fig.12,
X1 and X2 represent the two gravity wheels. X3, X4, X5,
and X6 represent the anti-deflection sensor, feeding wheel,
motor, and weight disks, respectively. In accordance with the
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FIGURE 10. The evidential variables of all components’ degradation model parameters: (a) failure rate of Unit AD; (b) failure rate
of Unit FW; (c) Shape parameter of Unit MO; (d) Scale parameter of Unit MO; (e) Failure rate of Unit GW; (f) Failure rate of Unit WD.

FIGURE 11. The evidential variables of all components’ reliabilities at time instant t = 100 hours: (a) Unit AD; (b) Unit FW;
(c) Unit MO; (d) Unit GW; (e) Unit WD.

functional dependency of the rolling system, the two gravity
wheels are connected in parallel, and the failure dependency
is described by an AND gate. The gravity wheels are con-
nected with the anti-deflection sensor, feeding wheel, motor,
and weight disks in a series configuration, the OR gate is used
to manifest the failure dependency among these components.

S1, S2, S3, and S4 represent the subsystems, and node S repre-
sents the entire system. All the subsystems are connected in
series, and the failure dependency is described as an OR gate.

Based on the ENmodel and evidential variable of the com-
ponent reliability, the mass functions of the root nodes, i.e.,
the mass functions of the component state can be assessed via
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FIGURE 12. The EN model of the rolling system in the chip cutting
detection module.

the interval-to-mass transformation:

[RAD,1L(100),RAD,1U (100)] = [0.8025, 0.8187]

→ {0.1813, 0.8025, 0.0162}

[RFW ,1L(100),RFW ,1U (100)] = [0.7788, 0.8187]

→ {0.1813, 0.7788, 0.0399}

[RFW ,2L(100),RFW ,2U (100)] = [0.8187, 0.8607]

→ {0.1393, 0.8187, 0.0420}

[RMO,1L(100),RMO,1U (100)] = [0.9829, 0.9932]

→ {0.0068, 0.9829, 0.0103}

[RMO,2L(100),RMO,2U (100)] = [0.9845, 0.9945]

→ {0.0055, 0.9845, 0.0100}

[RGW ,1L(100),RGW ,1U (100)] = [0.7408, 0.7788]

→ {0.2212, 0.7408, 0.0380

[RWD,1L(100),RWD,1U (100)] = [0.8106, 0.8353]

→ {0.1647, 0.8106, 0.0247}

The system reliability bounds can be computed by (19) and
(20), and the evidential variable of the system reliability can
be assessed by (22), (23), and (24). For instance, given the
focal elements and mass functions of the component reliabil-
ity at time instant t = 100 hours, the evidential variable of
the system reliability is given as follows:

m([RS,1(100)]) = m([0.4645, 0.5289]) = 0.15;

m([RS,2(100)]) = m([0.4653, 0.5296]) = 0.35;

m([RS,3(100)]) = m([0.4882, 0.5560]) = 0.15;

m([RS,4(100)]) = m([0.4891, 0.5567]) = 0.35.

The evidential variable of the system reliability can be
visualized by the evidential variable to p-box transformation
as given in (7) and (8), the result is depicted in Fig. 13. It is
shown that the reliability-box of the rolling system of the
chip cutting detection system has 4 focal elements, with each
has an interval-valued system reliability. As given in Fig. 13,
the rolling system has the lowest reliability value of 0.4645,
whereas the highest reliability value is 0.5567 at time instant
t = 100 hours.

The computational time of the proposed method can be
compared with that of computing the focal elements of

FIGURE 13. The reliability-box of the rolling system at time instant
t = 100 hours.

FIGURE 14. The reliability-box of the rolling system at time instant
t = 100 hours with overlapping focal elements.

system reliability by the constrained optimization model,
i.e., (16). In this case study, the computational time of the
proposed method is 1.3948 seconds, while 40.2361 seconds
for the constrained optimization model. It shows that the
proposed evidential network model is more computationally
efficient that the constrained optimization model.

If the focal elements of the evidential variable of FW is
overlapping, say <[1.5 × 10−3, 2.5 × 10−3],0.5>;<[2.0 ×
10−3, 3 × 10−3],0.5>, the corresponding reliability-box of
the system can also be assessed, and the result is given in
Fig.14. As shown in Fig.14, the upper bound CDF of the
system reliability is the same as that in Fig.13, while the
lowest reliability of the system is 0.4418.

VI. CONCLUSION AND FUTURE WORK
This article presented the reliability assessment of hierarchi-
cal systems under the epistemic uncertainty associated with
the components’ degradation model parameters. The eviden-
tial variable, represented by a set of possible intervals with
its associated mass functions, was leveraged to quantify the
epistemic uncertainty of the components’ degradation model
parameters. First, a constrained optimization model was con-
structed to assess the evidential variable of component relia-
bility given the evidential variables of the degradation model
parameters. Then, we introduce the EN model to construct
the causal dependency between the system reliability and
component reliability, and the reliability bound of the system
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reliability was calculated by utilizing the belief and plausi-
bility functions on the lea nodes of the EN model. Finally,
the mass function associated with each focal element of the
system reliability, i.e., the system reliability bounds, was
assessed by using the mass function of the evidential variable
of the component reliability. The final system reliability-box
was constructed via the evidential variable to p-box trans-
formation. A rolling system in the chip cutting detection
module was exemplified to demonstrate the effectiveness of
the proposed methods. The results showed that the proposed
method can accurately assess the system reliability-box with
the given evidential variables of components’ degradation
model parameters.

In this article, the evidential variable was only used to
quantify the epistemic uncertainty of components’ degrada-
tion model parameters, it can be also used to quantify other
types of reliability-related information/knowledge, such as
the MTTF of components, components’ failure probability,
and sojourning time of components’ states. However, how
to integrate all these types of information under the eviden-
tial variable framework still remains unsolved. Therefore,
one of our future works is to assess the system reliability-
box by fusing the multiple sources of information/knowledge
under the evidential variable framework. Furthermore, the
studied system in our work is binary-state, our future work
is to extend the proposed method under the multi-state sys-
tems [33], [34], [35]. The curse of dimension of the number
of focal elements should be carefully treated in the context of
multi-state systems. Some approximate algorithms [36], [37]
can be used to approximate the mass functions and the focal
elements of the evidential variables, and therefore, the system
reliability-box can be assessed in a computationally efficient
fashion. Lastly, the reliability-related decision-makings, such
as inspections and maintenance planning under the evidential
variable framework, are still worth exploring. Note that as we
have the lower and upper bounds of the system reliability
results, robust optimization is a promising way to address
decision-makings under epistemic uncertainty.
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