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ABSTRACT Network security becomes indispensable to our daily interactions and networks. As attackers
continue to develop new types of attacks and the size of networks continues to grow, the need for an effective
intrusion detection system has become critical. Numerous studies implemented machine learning algorithms
to develop an effective IDS; however, with the advent of deep learning algorithms and artificial neural
networks that can generate features automatically without human intervention, researchers began to rely on
deep learning. In our research, we took advantage of the Convolutional Neural Network’s ability to extract
spatial features and the Long Short-Term Memory Network’s ability to extract temporal features to create
a hybrid intrusion detection system model. We added batch normalization and dropout layers to the model
to increase its performance. Based on the binary and multiclass classification, the model was trained using
three datasets: CIC-IDS 2017, UNSW-NB 15, and WSN-DS. The confusion matrix determines the system’s
effectiveness, which includes evaluation criteria such as accuracy, precision, detection rate, F1-score, and
false alarm rate (FAR). The effectiveness of the proposed model was demonstrated by experimental results
showing a high detection rate, high accuracy, and a relatively low FAR.

INDEX TERMS Intrusion detection system, deep learning, convolutional neural network, long-short term
memory, accuracy, false alarm rate, binary classification, multiclass classification.

I. INTRODUCTION

The rapid growth of technologies and information, such as
the internet of things, big data, and cloud computing, as well
as the increasing reliance of our daily communications on
networked services, have made networked computing essen-
tial, thereby increasing the significance of network security.
Any vulnerability or threat will affect the entire network [1].
Firewalls and encryption techniques are traditional security
mechanisms that face challenges where the attackers keep
developing complicated attacks [2]. Moreover, cybersecu-
rity researchers found the importance of developing efficient
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network intrusion detection systems (IDS) to provide secured
networks. Intrusion detection systems intend to provide avail-
ability, confidentiality, and integrity for the data transmitted
in networked computers by preventing unauthorized access
to a network, protecting the information and communication
systems in the network [3], and, most important, being able
to detect known and unknown attacks and threats with high
accuracy and a minimum false alarm rate [4].

Two approaches comprise the intrusion detection system:
misuse detection and anomaly detection. Misuse detection,
also known as signature-based detection, is the initial detec-
tion model where detection is based on known and stored
attacks and threats. This model has a low rate of false alarms
and a high detection rate. With the expansion of networks
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and services, unknown new attacks are being developed by
attackers, which makes the model susceptible to these attacks
[5]. To provide security for these networks, an intrusion
detection system must be effective and intelligent in detecting
and preventing known and unknown attacks, such as anomaly
detection. Despite a high false alarm rate, anomaly detection
can detect known and unknown attacks.

Artificial Intelligence (AI) has made it possible for com-
puters and machines to learn from a dataset with minimal
human intervention; intrusion detection systems have taken
advantage of this capability. Both machine learning (ML)
and deep learning (DL) are sub-fields of artificial intelligence
(AD), and both were utilized in the creation and development
of an effective intrusion detection system. The classification
and detection of network traffic in a machine learning system
are based on manually extracted features. While the deep
learning system, with its neural network, can extract features
from the dataset and then perform classification and detec-
tion, deep learning can enhance and improve the detection
accuracy of the model in comparison to machine learning [1].

Based on various approaches and learning techniques,
numerous models have been and continue to be developed to
create an effective intrusion detection system. Existing mod-
els have poor precision, low detection, and high false alarm
rates. In this paper, we attempt to address these concerns and
develop a more effective detection model. This paper pro-
poses a deep learning-based intrusion detection system that
employs two deep learning algorithms, Convolutional Neural
Network (CNN) and Long-Short Term Memory (LSTM).
Both algorithms extract temporal and spatial features of
network traffic to reduce the false alarm rate and increase
the detection rate. This paper evaluated the model using
the CIC-IDS2017, UNSW-NB15, and WSN-DS datasets and
compared the outcome to the CNN model, LSTM model,
and other learning algorithms. Our results demonstrated that
integrating two deep learning algorithms will improve the
detection rate and accuracy, making the model more accurate
and resistant to threats and attacks.

This paper is structured as follows: Section 2 provides
an overview of machine learning for network intrusion
detection. Our hybrid CNN-LSTM model is structured in
Section 3. Section 4 describes the dataset utilized in the
model’s development. Section 5 describes the experimental
design and evaluation of the model, while Section 6 concludes
this paper.

Il. INTRUSION DETECTION SYSTEM

Cybersecurity researchers are attempting to create a model
that can detect known and unknown network attacks and
prevent them from causing damage to the network. As will
be demonstrated next, the algorithms developed for IDS can
be divided into machine learning and deep learning.

A. MACHINE LEARNING-BASED IDS
Machine learning played and still plays a vital role in
intrusion detection systems. ML algorithms are based on
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supervised learning, such as Decision Tree, SVM, and
Naive Bayes, and unsupervised learning, such as K-means
clustering and Self Organized Map [4]. The primary func-
tion of machine learning algorithms is to enhance a sys-
tem’s detection capability. The trained data is used to detect
attacks and threats. Machine learning algorithms are typically
employed to solve regression, classification, and clustering
problems. Most prior work on machine learning relied on
the NSL-KDD, DARPA, and KDD-CUP99 datasets. Some
models produced satisfactory results, but these datasets are
out-of-date and contain only simple types of attacks [1],
[4]. Training an IDS for the current, continuously expanding
network requires a large dataset, and relying on traditional
machine learning algorithms that function correctly on small
datasets will not result in an efficient model [4].

B. DEEP LEARNING-BASED IDS

Deep learning is a subfield of machine learning that inter-
acts with multi-hidden-layer artificial neural networks [4].
In addition to data representations, deep learning algorithms
can also learn from unlabeled or unstructured data [6]. Deep
learning has many performance features that allow it to be
efficient enough to develop an IDS, such as the robustness
of the DL algorithms with high scalability and the ability to
deal with different types of data [7]. Deep learning algorithms
were mainly developed to solve complex problems, pat-
tern recognition, search engine, and machine translation [8].
Algorithms such as Deep belief networks (DBN), Restricted
Boltzmann machines (RBM), and Autoencoder (AE) are used
widely for extracting features [9]. Multi-Layer Perceptron is
used in different fields and mainly to minimize the error rate
during training [10].

Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN) are the most prevalent deep learning
algorithms. CNN'’s primary advantage is its ability to auto-
matically recognize spatial features without human interven-
tion, avoid overfitting by reducing the number of trainable
parameters, and improve generalization [8]. RNN is primarily
used in Natural Language Processing (NLP), speech process-
ing, and video analysis due to its ability to utilize sequential
network features [7], [11]. Due to the memory blocks in
RNN’s neural network, LSTM was developed as a solution
to the RNN’s vanishing gradient problem [11].

lll. METHODOLOGY
In our research, we construct an intrusion detection system
using CNN-LSTM layers. The IDS model’s methodology is
depicted in Figure 1.

A. DATASET PREPARATION

The initial step in constructing an effective intrusion detection
system is to select an appropriate dataset. The dataset should
include normal and malicious records representing what the
model will encounter in the real world. Our research uses the
CIC-IDS2017, UNSW-NB15, and WSN-DS datasets, all of
which are newly accessible. These datasets contain normal
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FIGURE 1. Methodology flowchart.

and malicious traffic data that is regarded as new and does
not contain a significant amount of redundant information.

1) CIC-IDS2017

CIC-IDS2017 encompasses eleven new attacks, including
Brute Force, PortScan, DoS, web attacks including XSS and
SQL Injection, FTP-Patator, and SSH-Patator. It was devel-
oped in 2017 by the Canadian Institute for Cybersecurity, and
its eighty features are used to monitor benign and malicious
traffic [6], [12].

2) UNSW-NB15

This dataset contains records of benign traffic and nine
types of attacks, such as Fuzzers, Analysis, Backdoor, DoS,
Exploits, etc. The Australian Centre for Cyber Security
(ACCS) created it in 2015. The records were collected from
three real-world websites, including BID (Symantec Corpo-
ration), CVE (Common Vulnerabilities and Exposures), and
MSD (Microsoft Corporation) (Microsoft Security Bulletin)
(41, [12].

3) WSN-DS

WSN-DS was developed in 2016 to detect normal and mali-
cious traffic by monitoring the number of nodes in wireless
networks with sensors. This dataset’s records are extracted
using the LEACH routing protocol, represented by 23 fea-
tures. There are standard records and four DoS attack types,
including flooding, Grayhole, blackhole, and TDMA [13].

B. DATA PREPROCESSING

1) LOAD DATASETS

The datasets we used were publicly available. The data is
stored in a CSV file in pcap format. In this step, Pandas
package was used to read each dataset’s details, and after
reading each dataset’s details, it was cleaned of any null and
duplicate values in preparation for the next step.

2) DATA ENCODING

This step is responsible for encoding labels in datasets. Deal-
ing with a deep neural network means dealing with numerical
values. Labels in each dataset are not numerical values, so by
using the One-Hot Encoder, we encoded the label column by
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changing the values from benign or malicious to be repre-
sented by numerical values.

3) DATA NORMALIZATION

Normalizing the data is a preprocessing technique used to
optimize within-range characteristics. The variance of the
data read from the CSV file, which has different standard
derivations and means, will impact the learning efficiency.
In our model, we scaled the input data using Standard Scalar,
resulting in a mean of zero and a standard deviation of one.
Based on ‘sklearn. preprocessing’ library Standard Scalar
was used to normalize the datasets.

4) FEATURE SELECTION

Feature selection is also referred to as feature reduction and
is responsible for selecting a set of features based on criteria.
This process enables rapid model construction and training
based on specific features, which reduces training and testing
time and improves performance. In our work, we used a
method called SelectKBest. SelectKBest was imported from
the ’sklearn. feature selection’ library which selects the best
features based on the highest score. We chose the source
function to perform classification and the number of features
based on K values. The output is an array containing the score
and the name of the feature, and we chose our features based
on that array

5) DATA SPLITTING

Our model’s datasets have been divided into 80% training
and 20% testing set. In addition, we divide the training set
into training and validation sets to tune our hyperparameters
during training to improve the model’s performance. Using
the Stratified K-Fold Cross Validation technique, the size of
both sets was determined based on the factor K.

C. HYBRID DEEP LEARNING MODEL

CNN can extract spatial features, while LSTM can extract
temporal characteristics. Due to CNN’s ability to extract
high-level features from large amounts of data, the model
begins with CNN. The first layer is the CNN layer; the
data will then pass through the convolution layer, where the
filters will extract the most critical features to generate a
feature map. This map will undergo max pooling to pre-
serve the most dominant features, followed by batch nor-
malization. The output will be sent to an LSTM layer to
extract temporal features, followed by a dropout layer to
prevent overfitting. This combination of CNN and LSTM
layers will be repeated three times with varying numbers
of neurons and filters, followed by a fully connected layer
that uses the SoftMax activation function to perform classi-
fication. Figure 2 depicts the structure of our deep learning
model.

1) CONVOLUTIONAL NEURAL NETWORK
CNN has two components: convolution and pooling. The con-
volution layer applies a set of filters through a mathematical
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FIGURE 2. CNN-LSTM layers structure.

operation. The process involves applying the filter to the
input matrix to produce the feature map. It begins when the
kernel slides over the input matrix in horizontal and vertical
directions. At this point, the dot product between the input
matrix and the kernel is calculated based on the multiplication
of their elements and then summed into a single scalar value;
this process is repeated until sliding is no longer possible.
These new output matrix values represent the feature map. A
threshold-based activation function will process the feature
map to determine whether the neuron will fire or not [6],
[7]. In our model, we used ReLU as an activation function,
as follows: ReLU(z;) = max(0,z;). Therefore, the equation
after the activation function will be:

Z=h (foqwiv,- +b> (1)

where h represents the activation function, w is the weights,
v is the input data, b is the bias, and p and g are the sizes
of the input data matrix. Then pooling layer comes after
performing the convolution on the data. The purpose of the
pooling layer is to decrease the generated matrix’s size to
prevent overfitting and enhance learning. The Max pooling
technique will reduce the sample size without affecting the
weights [14].

2) BATCH NORMALIZATION

Batch Normalization (BN) is primarily used to avoid covari-
ance shifts resulting from changing the input from one layer
to the next layer in a deep neural network, as these shifts
make the learning process unstable and reduce the learning
efficiency. BN will accelerate the optimization procedure and
reduce generalization errors [15]. In addition, it will adjust
CNN output by scaling the data in the input layer to a unit
norm, followed by LSTM layer processing. The mathematical
representations of batch normalization are in the formulas
next. X represents the data generated from the Max pooling
layer, up and §p are mean and variance of batch, respec-
tively, € to ensure that the denominator in the formula is
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The result of equation 2 will be processed with two variables
y and B. This process will generate an output Y, where y and
B are used for better learning output by training them in the
learning process.

X = )

A

Y=yX+8 3)

3) LONG-SHORT TERM MEMORY

The central concept of LSTM is its capacity to translate and
cache inputs using memory cells over time. This memory
cell will be processed by gates whose activation function is
represented by gates. As shown in Figure 4, LSTM consists of
four gates: forget gate, update gate, tanh gate, and output gate.
In these networks, the learning process occurs by adjusting
the weights and the value of the activation function so that
the temporal features between input and output data can be
effectively produced [3], [16], [17].

In the LSTM network, input and output values are the
vectors of the same size set by X(¢). Forget gate will decide
which information to keep and which to delete by combining
X (t) with the previously hidden state X (f — 1). Moreover,
the output will be generated based on the sigmoid function
and multiplied with the previous cell state C(r — 1). The
update gate considers the input gate, which will determine
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TABLE 1. Confusion matrix.

TABLE 2. Experimental scenario.

Predicted as Positive Predicted as Negative

Labeled as Positive True Positive (TP) False Negative (FN)

Labeled as Negative ~ False Positive (FP) True Negative (TN)

the information needed to be added to generate C(¢). This
generation will be based on the sigmoid function and tanh
function based on tanh gate. The multiplication of these gates
will be added to the output resulting from multiplying forget
gate with C(# —1) to generate C(¢). The current cell state C (¢)
goes through tanh activation function and then multiplied by
the output of the sigmoid activation function of the output
gate to generate the currently hidden state h(t) representing
the output of the LSTM network. The following equation
represents the formula of the output:

O)=cB+UxX(@)+W xh(t—1)) “)

4) DROPOUT

Neurons are dropped randomly during the training process in
each epoch using this technique [9]. This process is necessary
for deep neural networks to prevent overfitting, in which
the network learns too well, limiting its capacity to identify
variables in new samples [8]. In our research, we added a
layer with a 0.2 dropout rate.

5) FULLY CONNECTED LAYER

The final layer operates on the extracted map features. Fully
connected (FC) means that each neuron in this layer is con-
nected to all neurons in the layer beneath it. This layer is
responsible for implementing classification, performed using
the Softmax activation function [3], [9]. The input data will be
transformed into a one-dimensional layer to classify the data
into the appropriate class and assign output probabilities, with
the output from this layer representing the final output.

D. EVALUATION

The confusion matrix indicators, as shown in Table 1, are used
to evaluate the performance of IDS. TP represents benign
records incorrectly classified as malicious, FP represents
benign records incorrectly classified as malicious, TN rep-
resents malicious records incorrectly classified as benign,
and FN represents malicious records incorrectly classified as
benign.

From the confusion matrix indicators, we obtain accuracy
(ACC), detection rate (DR), precision (Pr), and false alarm
rate (FAR). ACC refers to the ratio of true predictions of the
records. DR is the ability to predict only positive records in
their entirety. Pr is the ability to avoid mislabeling negative
records as positive, whereas FAR is the ratio of normal traffic
misclassifications.

TP + TN

ACC =
TP+ TN + FP + FN

&)
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CLASSIFICATION
Binary Multiclass
DATASET No. of | Type of | No. of | Type of records
records | records records
CIC-IDS 2 Normal 6 Normal, web attack,
2017 and SSH-Patator, FTP-
malicious Patator, and
PortScan
UNSW- 2 Normal 10 Normal, Generic,
NB15 and Exploits, Fuzzers,
malicious DoS,
Reconnaissance,
Analysis, Backdoor,
shellcode, worms
WSN-DS 2 Normal 5 Normal, Flooding,
and TDMA
malicious (scheduling),
Grayhole,
Blackhole

TABLE 3. Accuracy of CIC-IDS2017 binary classification based on different
learning algorithms.

CIC-IDS 2017 Binary classification (%)
No. of CNN- LSTM-
layers CNN LSTM LSTM CNN
1 97.42 98.89 98.40 99.02
2 99.15 99.19 99.49 99.20
3 98.95 99.01 99.59 99.56
TP
DR= — (6)
TP +~ FN
FP
FAR = ———— @)
FP + TN
TP
Pr=—— 8)
TP + FP

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We constructed our model on an evaluation platform com-
prised of a Dell Inspiron 15 3511 with an Intel(R) Core (TM)
i7-1165G7 processor running at 2.80 GHz and 8.00 GB of
RAM. The model for deep learning was implemented using
the TensorFlow, Pandas, and Keras libraries.

We have evaluated the models using two classification
methods: binary and multiclass. The datasets were divided
into two classes for binary classification: benign and attack.
As shown in Table 2, the dataset is labeled as benign or as one
type of attack for multiclass classification.

1) COMPARISON BASED ON DIFFERENT LEARNING
ALGORITHMS
In the initial phase of our research, we compared the per-
formance of datasets based on CNN-alone, LSTM-alone,
LSTM-CNN, and CNN-LSTM to determine which model
provided the best results. The outcomes are presented in
Tables 3, 4, and 5.

Table 3 shows the accuracy of the CIC-IDS 2017 binary
dataset. The highest accuracy achieved by CNN-LSTM struc-
tures with three layers was 99.59 %, followed by LSTM-CNN
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TABLE 4. Accuracy of UNSW-NB15 binary classification based on
different learning algorithms.

TABLE 7. Feature Selection based on binary UNSW-NB15.

TABLE 5. Accuracy of WSN-DS binary classification based on different
learning algorithms.

WSN-DS Binary classification (%)
No. of CNN- LSTM-
layers CNN LST™M LSTM CNN
1 99.53 99.62 99.58 99.64
2 99.34 99.34 99.53 99.60
3 99.60 99.60 99.61 99.59
TABLE 6. Feature Selection based on binary CIC-IDS2017.
CIC-IDS 2017 Binary classification (%)
No. of F1- Training
ACC Pr DR FAR .
feature score Time (s)
24 97.32 | 95.87 99.0 95.80 0.83 763
40 99.40 | 99.60 99.30 99.60 0.45 322
50 99.59 | 99.58 99.54 99.62 0.12 467
60 99.60 | 99.30 99.0 99.3 0.3 472
78 99.56 | 99.60 99.52 99.52 0.13 2070

structures with three layers at 99.56 %. Finally, CNN-LSTM
structures with two layers at 99.49 %.

The results for UNSW-NB binary dataset are in Table 4.
Three layers of CNN-LSTM achieved the highest accuracy at
93.68 %, followed by three layers of LSTM-CNN at 93.67%,
three layers of CNN-only at 93.65 %, and two layers of
CNN-LSTM at 93.65 %.

WSN-DS shows distinct behavior. The LSTM-CNN struc-
ture with a single layer structure achieved the highest accu-
racy of 99.64%, followed by CNN-LSTM with 99.61% for
three layers and 99.62% for one layer of LSTM, as shown in
Table 5. After comparing four learning algorithms, we con-
tinued our research using the CNN-LSTM hybrid structure.

2) CNN-LSTM BASED ON SELECTED FEATURES

The second phase of our testing involved the selection of
model-building features. Initially, utilizing the CIC-IDS2017
dataset and only one layer of CNN-LSTM, we conducted five
experiments with 24, 40, 50, 60, and 78 features. We con-
ducted three experiments with 24, 32, and 42 features for
UNSW-NB15. Based on WSN-DS, we tested six, twelve, and
eighteen features; the results are presented in the following
tables. The selection of features was determined by Selec-
tKBest, which selected the highest score.

The results based on the binary CIC-IDS2017 dataset are
displayed in Table 6. 24 features scored 97.32 % for accu-
racy and 99 % for detection rate, respectively. Forty features
achieve an accuracy and detection rate of 99.4% and 99.3%,

99842

UNSW-NBI15 Binary classification (%)
UNSW-NBI1S5 Binary classification (%) No. of ACC Pr DR Fl- FAR T?ammg
No. of CNN LSTM CNN- LSTM- feature score Time (s)
layers LSTM CNN 24 93.57 95.0 94.5 95.0 6.8 244
1 93.10 93.18 93.62 93.49 32 93.69 94.9 94.90 94.90 | 6.85 450
2 93.19 93.36 93.65 93.58 42 93.70 95.56 94.84 95.60 6 404
3 93.65 93.34 93.68 93.67

respectively. For 50 features, the accuracy and detection rate
was 99.59 percent and 99.54 percent, respectively. For 60 fea-
tures, the accuracy and detection rates were 99.6 percent and
99 percent, while for 78 features, they were 99.56 percent
and 99.52 percent, respectively. Based on previous results,
60 features provided the highest accuracy, while 50 features
provided the highest detection rate, the lowest false alarm
rate, and the highest F1-score value. For the remainder of the
experiments, testing was conducted with 50 features.

The results based on the binary UNSW-NB15 dataset are
displayed in Table 7. For UNSW-NB15, we decided to utilize
all 42 features from this dataset. Starting with one layer of
CNN-LSTM, 24 features achieved an accuracy of 93.57 %
and a detection rate of 94.5 %. For 32 features, the accuracy
and detection rate was 93.69 and 94.80 %, while for 42 fea-
tures, they were 93.7 and 94.84 %, respectively. The lowest
FAR value among 42 features was 6. In addition, when we
examined the training time, 42 features required less time to
train the data than 32 features, so we continued testing with
42 features.

The final feature selection testing was based on binary
WSN-DS. Eighteen features determined the optimal perfor-
mance of a model. 18 features achieved 99.58 and 98.27 %
accuracy and detection rate, compared to 88.89 and 97.04 %
detection rate and 98.11 and 97.60 % accuracy for 12 and 6
features, respectively. In addition, the entire feature set was
used for this dataset to train the IDS model.

We evaluated the Adam optimizer and RMSprop-based
model. Adam optimizer was used to achieve the previous
results. The accuracy and detection rates for one layer of
CNN-LSTM based on RMSprop and CIC-IDS 2017 were
99.52 % and 99 % for CIC-IDS 2017, 93.57 % and 93 % for
UNSW-NBI15, and 99.60 % and 98.27 % based on WSN-DS,
respectively. Therefore, we chose to continue using the Adam
optimizer due to its superior accuracy and detection rate.

3) CNN-LSTM BASED ON THE NUMBER OF LAYERS AND
HYPERPARAMETER

This section demonstrates the third portion of our testing,
based on the number of layers, neurons, FC layers, and
dropout layer rate.

The outcomes presented in Table 9 were very similar. The
best performance was 99.6 % for three layers with a dropout
rate of 0.2 and one FC layer, followed by 99.55 % for two
layers with a dropout rate of 0.2 and two FC layers, and
finally 99.56 % for one layer with a dropout rate of 0.2
and two FC layers. In order to select the structure with the
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TABLE 8. Feature selection based on binary WSN-DS.

TABLE 11. Structure selection based UNSW-NB15 dataset.

WSN-DS Binary classification (%) UNSW-NBIS5 Binary classification
No. of F1- Training No. of No. of Dropout FC Training Testing
features ACC Pr DR score FAR Time (s) layers Neurons rate layer accuracy % | accuracy %
6 97.60 80.5 97.04 97.6 2.6 57 02 1 93.31 93.62
12 98.11 90.59 88.89 98.8 5.9 84 1 16 ) 2 93.41 93.54
18 99.58 97.35 98.27 98 0.98 112 05 1 92.96 93.34
) 2 92.80 93.16
. 1 93.48 93.71
TABLE 9. Structure selection based on the CIC-IDS2017 dataset. 0.2
5 16.32 2 93.47 93.62
’ 05 1 93.04 93.35
CIC-IDS 2017 Binary classification : 2 92.79 92.62
No. of No. of Dropout FC Training Testing 1 93.18 93.63
layers Neurons rate layer accuracy % | accuracy % 3 16.32. 64 0.2 2 93.51 93.65
02 1 99.52 99.03 oo 05 1 92.87 93.05
1 16 2 99.44 99.56 ) 2 92.32 9281
05 1 98.61 99.16 02 1 93.10 93.30
2 99.2 99.46 4 16, 32, 64, : 2 93.39 93.57
02 1 99.47 99.52 128 05 1 92.74 93.19
5 16.32 2 99.38 99.55 ) 2 9225 92.90
’ 05 1 98.57 98.95
) 2 99.2 99.53
1 99.50 99.60
0.2 ) 99.00 99.38 TABLE 12. Accuracies of selected structure of UNSW-NB15 dataset.
3 16,32, 64 05 1 98.74 98.68
) 2 98.84 98.86 UNSW-NBIS5 Binary classification (%)
02 1 99.11 9945 No.of | Train | Train Test Test Valid. Valid. FAR
16, 32, 64, ) 2 99.28 99.51
4 128 1 0853 9903 Neuron | ACC Loss ACC Loss ACC Loss
05 2 98.80 98.74 16,32 | 93.5 | 127 | 9371 | 127 | 9366 | 127 63
16,
93.5 13 93.65 13 93.60 12 6.5
TABLE 10. Accuracies of selected structure of CIC-IDS2017 dataset. 32,64
16,
932 12.9 93.63 0.13 93.70 11 6.2
CIC-IDS 2017 Binary classification (%) 32,64
No.of | Train Train Test Test Valid. Valid. FAR
Neuron | ACC Loss ACC Loss ACC Loss .
TABLE 13. Structure selection based WSN-DS dataset.
16 99.4 2.1 99.56 | 0.015 99.57 1.49 0.12
16,32 | 99.4 2.2 99.55 | 0.015 | 99.54 1.6 0.122 UNSW-NBIS5 Binary classification
16, 995 12 9960 | 0.013 99.60 12 0.11 No. of No. of Dropout FC Training Testing
32, 64 layers Neurons rate layer accuracy % | accuracy %
1 99.53 99.58
0.2
. N 1 6 2 99.52 99.47
hlghest performance, we ar}alyzed additional Qata, as shown 1 9935 99.58
in Table 10. Table 10 indicates that the optimal structure 0.5 5 9921 99.63
consists of three .lay('ers with a dropou.t rat§ of 0.2 and one 0 1 99.51 99.53
FC layer. The validation accuracy was identical to the testing - ) 9946 99.62
accuracy at 99.60 %, and the FAR was the smallest at 0.11. 2 16,32 : 9921 99,30
The same test was conducted on the binary UNSW-NB15 0.5 5 98.99 9927
dataset, and the outcomes are presented in Table 11. Accord- ’ 99.60 99.61
ing to the table, the three highest testing accuracies were 0.2 ) 99.41 99.55
93.71 % for one layer with a 0.2 dropout rate and one FC 3 16, 32, 64 : 09,12 99.41
layer, 93.65 % for one layer with a 0.2 dropout rate and two 0.5 5 99A0 | 99' 7
FC layers, and 93.63 % for one FC layer with 0.2 dropout rate | 99' = 99'32
and three CNN-LSTM layers. Based on the results presented 16,32 64 0.2 5 . 9' " 5 9' i
in Table 12, we decided to continue training based on three 4 ’ : 2é ’ : 9 9' 0 5 9'1 3
layers of CNN-LSTM for UNSW-NB15. Despite not having 0.5 5 98.99 99'10

the highest testing or training accuracy, the three structures
had the highest validation accuracy with 93.7 %, the lowest
loss with 11, and the lowest FAR with 6.2.

Based on WSN-DS, as shown in Table 13, the highest
testing accuracy was achieved using one CNN-LSTM layer
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with a dropout rate of 0.5 and two FC layers. Then, 2
CNN-LSTM layers with 0.2 dropouts were followed by 2 FC
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TABLE 14. Accuracies of selected structure of UNSW-NB15 dataset.

WSN-DS Binary classification (%)
No.of | Train Train Test Test Valid. Valid.
Neuron | ACC Loss ACC Loss ACC Loss FAR
16 99.2 2.9 99.63 1.7 99.58 1.7 0.96
16,32 | 99.5 2.12 99.62 1.6 99.58 1.69 1.05
32124 99.6 2.1 99.61 1.9 99.60 1.9 0.90

layers. And finally, three CNN-LSTM layers with a dropout
rate of 0.2 and one FC layer.

Comparing the highest three testing accuracy in terms of
validation accuracy, loss, and FAR, we determined that the
three layers had the highest validation accuracy at 99.60%
and the lowest FAR at 0.90.

4) CNN-LSTM BASED ON STRATIFIED K-FOLD CROSS

After determining the optimal number of layers, neurons,
FC layers, and dropout rate, we continued testing while vary-
ing the Stratified K-Fold cross parameter. The metrics for
CIC-IDS based on binary and multiclass classification are
displayed in Table 15. The highest accuracy was 99.64 %
at K = 8 and K = 4, while the highest detection rate was
99.70 % for binary classification and 99.95 % for multiclass
classification at K = 8. At K = 8 for binary classifi-
cation and K=10 for multiclass classification, the smallest
FAR achieved was 0.1. Tables also display the F1 score and
precision values.

According to Table 16, there is a discernible distinction
between binary and multiclass in the UNSW-NB15 dataset.
At K = 6, the highest accuracy for binary classes was
achieved with 93.95 %, compared to 82.2 % at K =
4 for multiclass. The highest detection rates achieved at
K = 8 based on binary and multiclass classification were
94.53 and 82.41 %, respectively. For FAR, the lowest value
was found at K = 8 for binary classes and K = 4 for
multiclass, with a value of 2.2.

K had varying effects on the outcomes of the WSN-DS
simulation. Based on Table 17, the best binary and multiclass
accuracy were achieved at K = 10 with 99.67 % and 99.43 %,
respectively. The highest detection rates occur at K = 10 and
K = 8, with 98.14 % and 98.83 %, respectively. The lowest
FAR achieved with K = 6 in binary and K = 2 in multiclass
was 0.11 and 0.67, respectively.

The effect of modifying K-Fold on each record type in the
datasets is depicted in the following figures.

Figures 5 and 6 illustrate the effect of training the model
with CIC-IDS2017 data. Each type of record achieved a high
detection rate and low FAR values, demonstrating robust
implementation. There was a slight change in detection rates
as K-Fold increased, but SFH-Patator had the most significant
impact. For FAR, increasing K decreased the values of every
record.
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FIGURE 5. Effect of K-Fold cross on detection rate based on CIC-IDS2017
dataset.
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FIGURE 6. Effect of K-Fold cross on false alarm rate based on
CIC-IDS2017 dataset.
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FIGURE 7. Effect of K-Fold cross on detection rate based on UNSW-NB15
dataset.

Figure 7 demonstrates that the detection rate for most
record types at UNSW-NB is effective, particularly for
records with a large number of records. Worm and DoS have
the lowest detection rates, with detection rates approaching
zero as K increases. The model classified these attacks as
reconnaissance attacks based on the confusion matrix results.
Figure 8 depicts K-fold versus FAR for the identical records,
where DoS obtained the highest values of FAR.

Figure 9 and Figure 10 illustrate the WSN-DS performance.
Increasing the number of K-Folds enhanced the performance
of Blackhole attacks while decreasing the performance of
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TABLE 15. Changing K-Fold cross based on CIC-IDS2017 dataset.

CIC-IDS 2017
K Binary classification (%) Multiclass classification (%)
ACC PR DR Fl-score FAR ACC PR DR F1-score FAR
2 99.60 99.51 99.66 99.5 0.11 99.58 99.78 99.65 99.90 0.11
4 99.64 99.60 99.67 99.5 0.34 99.56 99.62 99.87 99.94 0.12
6 99.63 99.57 99.68 99.6 0.35 99.18 98.23 98.59 98.76 0.20
8 99.64 99.56 99.70 99.6 0.10 99.60 99.84 99.95 99.98 0.12
10 99.48 99.25 99.69 99.3 0.5 99.52 99.42 99.64 99.22 0.10
TABLE 16. Changing K-Fold cross based on UNSW-NB15 dataset.
UNSW-NBI15
Binary classification (%) Multiclass classification (%)
K ACC PR DR Fl-score FAR ACC PR DR Fl-score FAR
2 93.63 93.44 93.56 93.20 6.2 81.20 80.46 81.47 78.33 2.34
4 93.93 93.56 93.89 94.00 6.35 82.20 82.12 82.33 80.43 222
6 93.95 93.22 93.46 93.31 6.45 82.0 81.69 81.99 80.69 2.3
8 93.78 94.69 94.53 94.77 6.0 81.83 81.59 82.41 80.87 23
10 93.59 93.89 93.67 93.88 6.45 81.99 82.69 82.12 80.33 23
TABLE 17. Changing K-Fold cross based on WSN-DS dataset.
WSN-DS dataset
Binary classification (%) Multiclass classification (%)
K ACC PR DR F1-score FAR ACC PR DR F1-score FAR
2 99.48 96.49 98.04 97 0.37 98.30 98 98 98 0.67
4 99.56 97.54 97.61 98 0.24 98.12 97.71 97.87 98.2 091
6 99.63 98.86 97.08 98 0.11 98.28 99 98.42 97.89 0.69
8 99.58 97.66 97.77 98 0.24 98.35 98.72 98.83 98.44 0.80
10 99.67 98.18 98.14 98 0.18 98.43 99.12 98.03 98.32 0.75
15 ] — (||~ benign 1001 &— —— benign
O— fuzzers —&— Flooding
—%— Analysis 90 4 —¢ TDMA
107 —— Backdoor —— Grayhole
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K-Fold Cross

FIGURE 8. Effect of K-Fold cross on false alarm rate based on
UNSW-NB15 dataset.

Grayhole attacks. Similar detection rate values were observed
for other records. Almost every K-Fold yielded poor results.
We aim to enhance the model’s ability to detect all attack

types.

5) CNN-LSTM BASED ON EPOCH
After observing the impact of increasing the K-Fold cross,
we examined the impact of increasing the number of epochs.
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FIGURE 9. Effect of K-Fold cross on detection rate based on WSN-DS
dataset.

Based on the previous values, we decided to continue testing
with K = 8.

Figures 4.11 and 4.12 illustrate the effect of increasing
the number of epochs on the binary classification detection
rate and FAR. On UNSW-NB15, the number of epochs had
the most significant impact, as the detection rate increased
from 94.53 % at 5 epochs to 95.81 % at 60 epochs (refer to
Figure 4.11). At 5 and 60 epochs, the accuracy of CIC-IDS
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FIGURE 10. Effect of K-Fold cross on false alarm rate based on WSN-DS
dataset.
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FIGURE 11. Effect of changing epoch on detection rate based on binary
classification.
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FIGURE 12. Effect of changing epoch on false alarm rate based on binary
classification.

was 99.7 and 99.93 %, while that of WSN-DS was 98.14 and
97.86 %, respectively. Figure 4.12 demonstrates that the
UNSW-NBI15 dataset and other datasets obtained the highest
FAR values.
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FIGURE 13. Effect of changing epoch on detection rate based on
multiclass classification.
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FIGURE 14. Effect of changing epoch on false alarm rate based on
multiclass classification.

Figures 13 and 14 show that multiclass and binary clas-
sification performance is identical. UNSW-NB15 obtained
the lowest detection rate values and the highest FAR values.
As shown in the figures below, increasing epochs did not
affect CIC-IDS2017 and WSN-DS.

The confusion matrices of the three datasets are shown in
Figure 15. It demonstrates that the classification of the major-
ity of record types was accurate, but PortScan attacks were
predicted to be normal records. Figure 16 demonstrates that
the most prevalent attack types were Exploits, Fuzzers, DoS,
and worms, which the model classified as Reconnaissance
attacks.

Due to the model’s ability to accurately classify all types of
records in the dataset, as depicted in Figure 17, the majority
of records in each type were accurately predicted.

6) BENCHMARKING EVALUATION

As shown in the following tables, we compared the efficacy
of our model to that of prior studies. The overall performance
of our model surpasses that of other recent studies.
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FIGURE 15. Confusion matrix for CIC-1DS2017 based on 5 epochs and
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FIGURE 16. Confusion matrix for UNSW-NB15 based on 5 epoch and K=8.

Based on the dataset with 5 epochs, K = 8, and
binary classification, we conducted a comparison. Beginning
with UNSW-NB15, our model’s performance exceeded other
machine learning and deep learning structures. The accuracy
of our CNN-LSTM-based model is 93.78 %, compared to
85.77 % for the Deep Belief Network (DBN) and 89.08 % for
the Autoencoder with Deep Neural Network (ICVAE-DNN),
and 82.42 % for the Support Vector Machine model (SVM).
CNN-LSTM achieved the lowest values for FAR, with iden-
tical results. The detection rate yielded a slightly lower value
than other models. However, the overall performance of our
model was superior to that of other studies because we
stacked CNN and LSTM layers, as shown in Table 18, based
on UNSW-NB15.

The CIC-IDS2017 data set is utilized for another com-
parison. Table 19 demonstrates the robustness of our binary
classification-based CIC-IDS2017 model. CNN-LSTM
achieves 99.64 % accuracy, which is higher than Multilayer
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FIGURE 17. Confusion matrix for WSN-DS based on 5 epoch and K=8.

TABLE 18. Benchmarking based on the UNSW-NB15 dataset.

Author Algorithm ACC FAR DR
1 SVM 62.42 * 88.58
2 ICVAE-DNN 89.08 19.01 95.68
DBN 85.77 30.32 98.90
Our work CNN-LSTM 93.78 6.0 94.53
TABLE 19. Benchmarking based on the CIC-1DS2017 dataset.
Author Algorithm ACC FAR DR
[3] KNN 80.91 * 91.28
[4] REP Tree 96.67 1.145 94.47
[5] MLP 85.24 7.35 77.83
Our work CNN-LSTM 99.64 0.10 99.70
TABLE 20. Benchmarking based on the WSN-DS dataset.
Author Algorithm ACC DR
LR 97.0 71.7
[4] NB 83.1 76.5
DT 99.1 95.1
Our work CNN-LSTM 99.58 97.77

Perceptron (MLP) with 85.24 % accuracy, Rep Tree
with 96.67 % accuracy, and K-Nearest Neighbor (kNN)
with 80.16 % accuracy. FAR and detection rate based on
CNN-LSTM also produced superior results compared to
other models.

Results in Table 20 show the performance base on the
WSN-DS dataset. The accuracy achieved by our model was
99.58% outperforming other machine learning algorithms,
whereas 97% was achieved by Logistic Regression (LR),
83.1% based on Naive Bayes, and 99.1% based on Decision
Tree (DT). Also, CNN-LSTM obtained the highest detec-
tion rate with 97.77%. Our results outperformed the bench-
marked studies due to the structure of stacking layers of
CNN and LSTM followed by DNN, cleaning the dataset,
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choosing the best features, adding dropout, and adding batch
normalization.

7) DISCUSSION

The primary objective of the research is to create an effec-
tive intrusion detection system that can distinguish between
normal and malicious traffic. The number of new attacks
discovered every day has increased the complexity of cyber-
security problems and traditional intrusion detection systems
have a high false alarm rate, causing security analysts to
ignore harmful attacks and leaving the system vulnerable to
any type of attack. Data used to train intrusion systems is
considered out of date and contains redundant information
resulting in insufficient training and an ineffective training
and evaluation process. Researchers have recently begun to
develop intrusion detection systems based on deep learning.
Recent research shows that deep learning outperforms con-
ventional learning techniques in terms of detecting malicious
traffic and classifying received traffic in massive data and
continuous attacks. Many studies have used CNN and LSTM
configurations, the difference is that they did so separately.
In our model, we created a hybrid structure in which we
combined the two algorithms, which means that in each
step, CNN and LSTM will be used to process the data.
In our study, we employed the Convolutional Neural Network
(CNN) and Long Short-Term Memory (LSTM) algorithms
(LSTM). Using three layers of hybrid CNN and LSTM, the
structure of the model achieved our goal of delivering a model
with a high detection rate and low accuracy. Preprocessing
steps on datasets were performed, including encoding, nor-
malizing data, and selecting the best features to train the
model. The output was fed to the first layer of CNN to
perform spatial feature extraction, then the LSTM layer to
perform temporal feature extraction, and finally the FC layer
to perform classification.

CIC-IDS2017 achieved the highest accuracies of 99.64 %
for binary classification and 99.60 % for multiclass classifica-
tion throughout 5 epochs. At the same time, the precision and
F1- scores were 99.56 % and 99.6 % for binary classification
and 99.84 % and 99.98 % for multiclass classification, respec-
tively. Based on the binary and multiclass classification, the
highest detection rate was achieved at K = 8 with 99.70%
and 99.95%, and the lowest false alarm rate was achieved at
0.10% and 0.12%.

Based on 5 epochs of UNSW-NB15, the highest binary and
multiclass detection rates at K = 8 were 94.53 and 82.41 %,
respectively. The highest binary and multiclass classification
accuracies achieved were 93.95 % at K = 6 and 82.20 %
at K = 4, respectively. In contrast, the highest precision
and Fl-score for binary classes were 94.69 and 94.77 % at
K = 8, whereas they were 82.69 and 80.87 % at K = 10 and
K =8, respectively, for binary and multiclass classification.
The lowest false alarm rate for binary was 6 % at K = 8 and
222 % at K = 4.

Based on 5 epochs of binary WSN-DS at K = 10, the
highest accuracy, detection rate, and F1-score were achieved:
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99.67 %, 98.14 %, and 98 %, respectively. The highest
precision and lowest false alarm rate were also achieved:
98.86 % and 0.11 %, respectively. On the other hand, Mul-
ticlass classification achieved the highest detection rate and
Fl-score at K = 8: 98.83 and 98.44 %, respectively, and
the highest accuracy and precision at K = 10: 98.43 and
99.12 %, respectively. K = 2 had the lowest rate of false
alarms, 0.67 %.

V. CONCLUSION AND FUTURE WORK

This study developed an intrusion detection system based on
the CNN and LSTM deep learning algorithms. We stacked
CNN and LSTM layers in our model and took advantage of
CNN’s ability to extract spatial features and LSTM’s ability
to extract temporal features. We implemented batch normal-
ization, dropout layers, and standardization to improve our
model. The model was evaluated using the UNSW-NB15,
CIC-IDS2017, and WSN-DS datasets, all of which contained
benign and attack records. As a first step, we tested the behav-
ior of these datasets based on CNN, LSTM, CNN-LSTM,
and LSTM-CNN. The results indicated that the CNN-LSTM
hybrid model provided the highest detection rate and accu-
racy. Based on this, we evaluated the hybrid model based on
binary and multiclass classification scenarios. With 5 epochs,
we obtained 99.64 %, 94.53 %, and 99.67 % accuracy for
binary classification using the CIC-IDS2017, UNSW-NB,
and WSN-DS datasets, respectively. Although the model was
unable to provide a high detection rate for certain types of
attacks, such as web attacks in CIC-IDS2017 and worms,
backdoors, and analysis in UNSW-NB15, the detection rate,
and FAR results are encouraging. The effect of K-Fold
cross-validation and increasing the number of epochs were
examined, and the results indicated that the performance
would initially improve before becoming stable. In the future,
we intend to improve the model’s performance in terms of its
low detection rate and high FAR resulting from the dataset’s
imbalanced records.
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