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ABSTRACT Power load prediction plays an important role in the safety and stability of national power
system. However, due to the nonlinear and multi-frequency characteristics of the power system itself, power
load prediction is difficult. To address this problem, we propose a short-term power load prediction model
based on variational mode decomposition (VMD). First, original data are decomposed into intrinsic mode
function (IMF) of different frequencies using the VMD algorithm, and the decomposed sub-functions are
reconstructed. After smoothing the reconstructed data by Savitzky-Golay (S-G) filtering algorithm, the
change trend of raw data (CTRD) is obtained. Then, IMF, CTRD and raw data are used as inputs to
predict short-term power load by long short-termmemory network (LSTM). Finally, the proposed prediction
model is compared with the other two groups of prediction models. The results show that the proposed
VMD-SG-LSTM prediction model has high fitting ability and high prediction accuracy, and is an effective
method for short-term power load prediction.
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INDEX TERMS Power load prediction, variational mode decomposition, intrinsic mode function,
S-G filtering, long short-term memory network.

I. INTRODUCTION14

In recent years, with the rapid development of science and15

technology in the world and the increasing population, peo-16

ple’s dependence on electricity in their daily lives has grad-17

ually increased, which has led to a dramatic increase in18

the global demand for electricity. In this environment, some19

serious power problems can arise. For example, it is a very20

important task for a countryto maintain the balance between21

supply and demand in its power system. If the power gen-22

eration capacity of the national power system is lower than23

the supply demand, there will be large-scale blackouts, which24

will affect people’s normal life and social production and25

cause immeasurable losses. On the contrary, if the power gen-26

eration capacity of the national power system is higher than27

the supply demand, this will lead to the waste of resources28

caused by leaving the power plants idle for a certain period29

of time [1]. Therefore, how to accurately predict the future30
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electricity demand so as to maintain the supply and demand 31

balance of the power system has become a top priority. 32

In the field of power load prediction, many prediction 33

methods have been proposed, including physical model 34

method, statistical method, and artificial intelligence method 35

[2], [3], [4], [5], [6], [7]. The physical model can be used 36

to accurately predict the power load, but the difficulty of 37

the physical model design is that it is difficult to accurately 38

describe the necessary information of the system components 39

in the face of a more complex model. Also, its transferabil- 40

ity is poor. When the designed model is applied to other 41

systems for prediction, its accuracy will be greatly reduced. 42

Statistical methods rely more on the periodicity and outliers 43

of data [8]. In the prediction process, statistical methods 44

tend to identify the intrinsic patterns from the historical data 45

of power load and compare them with other parameters, 46

and then summarize the data for prediction. However, the 47

relationship between power load and other parameters is 48

generally complex and nonlinear, and for these reasons, it is 49

difficult to obtain accurate predicted values with statistical 50
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methods [9]. Therefore, more and more scholars are using51

artificial neural networks to predict energy consumption. The52

reason is that artificial neural networks have the function of53

autonomous learning. It can keep adjusting its model parame-54

ters by learning historical data so as to gradually approach the55

real value [10]. The neural networks can deal with complex56

nonlinear problems and has certain portability. The trained57

model can be transplanted to other energy consumption mod-58

els and still ensure high prediction accuracy. Among many59

researchers, Bian et al. [11] proposed a short-term power60

load forecasting model based on K-means and FCM-BP. Its61

advantage is that the improved mean clustering method can62

filter out the local similar data in the data, so as to improve the63

accuracy of power load forecasting by taking the important64

features as the input of BP network. However, BP network65

as a feedforward neural network has no obvious advantages66

in time series data forecasting. Liao et al. [12] proposed67

a multi-wavelet convolution neural network for power load68

forecasting. Its advantage is that different types of wavelet are69

used to reconstruct the original load data to obtain different70

model inputs, and the ability of convolution neural network71

feature extraction is used to improve the accuracy of power72

load forecasting. However, compared with LSTM network,73

convolutional neural network has lower advantages in learn-74

ing time series data. These methods allow better adaption to75

nonlinear spikes, more accurate modeling of data features,76

and better prediction accuracy. In recent years, they have77

become a major research direction in energy prediction.78

With the rapid development of neural networks and the79

continuous improvement of prediction accuracy, more and80

more scholars have started to add wavelet transform, empiri-81

cal mode decomposition, ensemble empirical mode decom-82

position, variational mode decomposition and other [13],83

[14], [15], [16], [17], [18], [19], [20] time series decom-84

position methods into the prediction model to improve the85

prediction effect. Bahrami et al. [21] proposed a method86

based on wavelet transform and grey model combination for87

short-term power load forecasting, which has the advantage88

of using wavelet transform to eliminate the high frequency89

components in power load data and improve the accuracy90

of forecasting. However, due to the lack of adaptability of91

wavelet transform itself, it has less advantages than other92

decomposition algorithms. On this basis, Liang et al. [22]93

proposed a short-term power load forecasting method based94

on empirical mode decomposition and improved regression95

neural network. The advantage of this method is that the orig-96

inal data is decomposed into IMF with different frequencies97

by empirical mode decomposition to weaken the volatility98

of data and improve the prediction accuracy. However, the99

empirical mode decomposition itself has a modal aliasing100

phenomenon, which has less advantages thanVMD. From the101

above study, it can be seen that the inclusion of time series102

decomposition method in the prediction model can better103

improve the prediction accuracy of the model.104

Due to the randomness and volatility of power load data,105

this paper applies data enhancement techniques to the field of106

power load prediction and proposes a short-term power load 107

prediction model based on VMD-SG-LSTM. By using IMF, 108

CTRD and raw data as inputs, a new power load dataset is 109

constructed and the capability of LSTM to process long-term 110

sequences is used to predict short-term power load, thus 111

improving the fitting ability and prediction accuracy of the 112

model. Its main contributions are as follows: 113

(1) An improved parameter selection method for Savitzky- 114

Golay filter is proposed. By setting the value of MAE, 115

the appropriate window width and polynomial fitting 116

order can be automatically allocated, which can ensure 117

the filtering effect and greatly save the selection time 118

of parameters. 119

(2) A short-term power load prediction model based on 120

VMD-SG-LSTM is proposed. By taking IMF, CTRD 121

and raw data as input, and using the ability of LSTM 122

to process long time series to predict short-term power 123

load, high prediction accuracy can be achieved. 124

(3) Compared with the other two groups of prediction 125

models, the VMD-SG-LSTM model not only has high 126

prediction accuracy, but also has good fitting effect on 127

the predicted peak and trough parts. Compared with the 128

other three latest prediction models, this model has the 129

best prediction performance. 130

The main contents of this paper are organized as follows. 131

Section II mainly introduces the algorithms used in this paper. 132

Section III presents the proposed VMD-SG-LSTM predic- 133

tion model and the performance evaluation method of the 134

model. Section IV presents the experimental and comparative 135

analysis of the proposed method. Finally, the conclusion is 136

given in Section V. 137

II. PRINCIPLE OF MODEL CONSTRUCTION 138

A. VARIATIONAL MODE DECOMPOSITION 139

VMD is a variational structured signal processing method 140

which integrates the Hilbert transform method, the alter- 141

nating direction multiplier method, and the Wiener filter 142

method [23]. More specifically, the VMD decomposition 143

algorithm can decompose an actual signal or original data 144

into K bandwidth-based eigenmode functions. The advantage 145

of VMD is that it can decompose unstable and nonlinear 146

time-series signals and filter out some noise and interference 147

from the original signal. Theoretically, the modal aliasing 148

phenomenon can be effectively suppressed by selecting an 149

appropriate value of K [24]. The main flow of VMD decom- 150

position algorithm is as follows: 151

Assuming that the original signal is composed of K finite 152

bandwidth intrinsic mode components uk (t), the central fre- 153

quency of each IMF is ωk , and the model uk (t) of the ana- 154

lyzed signal is calculated by Hilbert transform, the unilateral 155

spectrum can be expressed as: 156

(δ(t)+
j
π t

) ∗ uk (t) (1) 157

In the analysis signal of the model is multiplied by the 158

operator e−jωk t , and the model uk (t) can be modulated to the 159

VOLUME 10, 2022 102397



Q. Sun, H. Cai: Short-Term Power Load Prediction Based on VMD-SG-LSTM

corresponding baseband:160 [
(δ(t)+

j
π t

) ∗ uk (t)
]
e−jωk t (2)161

The square norm L2 of the demodulation gradient is calcu-162

lated and the bandwidth of each modal signal is estimated:163 
min
{uk },{ωk }

{∑
k

∥∥∥∥∂t [(δ(t)+ j
π t

)
∗ uk (t)

]
e−jωk t

∥∥∥∥2
}

s.t.
∑
k

uk (t) = s
(3)164

In the above equation, {uk} = {u1, u2, . . . uk} represents165

the decomposed IMF, and {ωk} = {ω1, ω2, . . . ωk} represents166

the central frequency of each component.167

The constrained optimization problem is transformed into168

an unconstrained optimization problem by introducing the169

Lagrange function λt and the second-order penalty factor α:170

L ({uk} , {ωk} , λ)171

= α
∑
k

∥∥∥∥∂t [(δ(t)+ j
π t

)
∗ uk (t)

]
e−jωk t

∥∥∥∥2172

+

∥∥∥∥∥s(t)−∑
k

uk (t)

∥∥∥∥∥
2

+

〈
λ(t), s(t)−

∑
k

uk (t)

〉
173

(4)174

The alternating direction multiplier method is used to175

update each component and its central frequency continu-176

ously, and finally the optimal solution of the unconstrained177

model is obtained. According to the frequency domain space,178

all components can be obtained from the following formula:179

ûn+1k (ω) =

ŝ(ω)−
∑
i6=k

ûi(ω)+
λ̂(ω)
2

1+ 2α(ω − ωk )2
(5)180

ωn+1k =

∫
∞

0 ω

∣∣∣un+1k (ω)
∣∣∣2 dω∫

∞

0

∣∣∣un+1k (ω)
∣∣∣2 dω (6)181

λ̂n+1(ω) = λ̂n(ω)+ λ

(
ŝ(ω)−

∑
k

ûn+1k (ω)

)
(7)182

The above steps are repeated until the iteration stopping183

condition is satisfied. Finally, we can decompose the original184

input signal into K IMFs by VMD algorithm. However, the185

selection of parameter K needs to be determined in advance,186

otherwise it will affect the performance of VMD decom-187

position. Therefore, this paper adopts a method to select188

K values based on the improved signal energy (ISE). The189

principle is that the parameter K can be determined when the190

ratio of residual energy to original energy is small enough191

and there is no obvious downward trend [25]. The formula192

is defined as follows: 193

Erse =

N∑
n=1

∣∣∣∣f [n]− K∑
k=1

uk [n]

∣∣∣∣2
N∑
n=1

f [n]2
× 100% (8) 194

In the formula, Erse represents the ratio of residual energy 195

to original energy. When the ratio is less than 1%, we can 196

consider the ratio small enough. When the decreasing trend 197

tends to be level off from steep, the corresponding K value 198

can be selected as the number of IMFs. 199

B. SAVITZKY-GOLAY FILER 200

The S-G filter is characterized by the ability to filter out noise 201

and interference while ensuring that the shape and width of 202

the original signal does not change, thus the change trend 203

of the original signal can be more effectively preserved and 204

analyzed [26]. The principle of the S-G filter is to convolve a 205

certain length of filter with the data to be processed using 206

a weighted average algorithm of moving windows, while 207

fitting a weighted polynomial to the data to be processed 208

that minimizes the root mean square error of the fitted target, 209

thereby discarding some edge points far from the majority of 210

points [27]. The basic formula of the S-G filter is: 211

Y ∗j =

m∑
i=−m

Ci × Yj+i

N
(9) 212

where Y ∗ is the fitting value, Y is the original value of 213

the signal, and C is the coefficient of the S-G polynomial 214

fitting, indicating the coefficient of the ith filtering from the 215

beginning of the filter. m is the width of the half filtering 216

window, and N is the length of the filter, which is equal to the 217

width of the sliding array 2m + 1. Smoothing filtering with 218

the S-G algorithm improves the smoothness of the original 219

data and reduces noise interference. Another core of the 220

S-G algorithm is to set two parameters in the algorithm, 221

namely the window size and the polynomial fitting order. 222

For a given signal, the correct choice of two parameters will 223

directly lead to different filtering effects. When a low-order 224

large window is selected, the intensity of the absorption peak 225

diminishes and the absorption line becomes wider, leading to 226

distortion of the signal and difficult in retaining the required 227

information. When the parameters choose high-order small 228

window, although the original information of the signal is 229

better retained, the filtering effect on noise is also reduced. 230

So how to choose the S-G filter window size and polynomial 231

fitting order is the key to affect the filtering effect. In this 232

paper, an improved S-G filter parameter selection method is 233

proposed according to the actual control requirements. The 234

method flow chart is shown in figure 1. 235

In figure 1, the mean absolute error (MAE) is used as 236

the parameter selection criteria for the S-G filter. First, the 237

desired filtering effect X is input to the system, and then 238

the system automatically assigns the window size i and the 239
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FIGURE 1. Flow chart of improved S-G filter parameter selection method.

polynomial fitting order j in the order from smallest to largest.240

The original signal, the allocatedwindow size and the polyno-241

mial fitting order are then brought into the S-G filter to obtain242

the filtering value. Finally, the original signal and the filtering243

value are brought into theMAE algorithm, and the final result244

is calculated and compared with the desired filtering effect X.245

When the final result is the same as X, the distribution value is246

output. When the final result is different from X, the window247

size and polynomial fitting order are redistributed until the248

filtering effect is satisfied. This improved S-G filter param-249

eter selection method can effectively save time in parameter250

selection and also express CTRD more accurately.251

C. LSTM NETWORK252

LSTM neural network is a special kind of recurrent neural253

network (RNN). But unlike RNN, LSTM can apply previous254

information to the current task, i.e., RNN has a certain mem-255

ory capability [28]. within contrast to other neural networks,256

long short-term memory neural networks introduce input257

gate, forget gate and output gate in each unit to control the258

input value, memory value and output value respectively [29].259

This makes the long short-term memory neural network have260

a strong memory function when dealing with time series-like261

models, and at the same time, it can solve some gradient262

vanishing problems according to the characteristics of the263

model. However, it also has the obvious advantage that the264

gradient disappears when the sequence it processes exceeds265

its own upper limit, and in terms of computation, as the266

network span becomes longer, the computation of the model267

FIGURE 2. LSTM neural network structure diagram.

keeps increasing. The LSTM model structure is shown in 268

figure 2. 269

As can be seen from the graph, LSTM network contains 270

three gate functions, from left to right, the forgetting gate, 271

the input gate and the output gate, and ft , it and ot represent 272

the state values of the forgetting gate, the input gate and the 273

output gate respectively. The sigmoid layer in the forgetting 274

gate Ct−1 determines the information to be forgotten in the 275

past historical data, while the current layer xt and the output 276

ht−1 of the previous layer are used as input to the forgetting 277

gate. The output of the forgetting door is: 278

ft = σ
(
Wf [xt , ht−1]T + bf

)
(10) 279

In the input gate, the function is to update the data state in 280

three steps. First, the input gate updates the information to be 281

remembered by the result of sigmoid layer, and then a new 282

candidate value is generated by the tanh layer. Finally, a new 283

data state is obtained by adding the part to be forgotten and 284

the part to be remembered. The formula is as follows: 285

it = σ
(
Wi [xt , ht−1]T + bi

)
(11) 286

C̃t = tanh
(
Wc [xt , ht−1]T + bc

)
(12) 287

Ct = Ct−1 × ft + it × C̃t (13) 288

In the output gate, the sigmoid layer is used to determine 289

which part of the output data state Ct is, and then the tanh 290

layer is used to scale the updated data state value between 291

[−1,1] and multiply it with the output of the sigmoid layer to 292

obtain the final output ht , the formula is as follows: 293

ot =
(
Wo [xt , ht−1]T + bo

)
(14) 294

ht = ot × tanh (Ct) (15) 295

III. POWER LOAD PREDICTION MODEL 296

A. STRUCTURE OF PREDICTION MODEL 297

The VMD-SG-LSTM power load prediction model is pro- 298

posed by combining decomposition algorithm, filtering algo- 299

rithm, data enhancement and neural network techniques. The 300

model mainly consists of decomposition module, enhance- 301

ment module and prediction module. Its structure is shown in 302

figure 3. It can accurately predict the future short-term power 303

load, and the model structure is described below. 304

In the decomposition module, the VMD algorithm is used 305

to decompose the original data to obtain IMFs of different 306

frequencies. Using IMF as input can improve the accuracy 307

VOLUME 10, 2022 102399



Q. Sun, H. Cai: Short-Term Power Load Prediction Based on VMD-SG-LSTM

FIGURE 3. Structure diagram of VMD-SG-LSTM power load prediction
model.

of prediction. At the same time, as a decomposition technol-308

ogy with noise reduction function, it can remove part of the309

interference existing in the power load, thereby improving the310

reliability of the data. In the process of decomposing original311

data using VMD algorithm, parameter K is determined by312

formula (8), that is, parameter K can be determined when the313

ratio of residual energy to original energy is small enough and314

there is no obvious downward trend.315

In the enhancement module, the decomposed sub-316

functions are superimposed and reconstructed to obtain the317

denoised power load data. Then, the S-G filtering algorithm318

is used to smooth the denoised power load data to obtain319

CTRD, which is used to improve the fitting ability and pre-320

diction accuracy of the model. Finally, the IMF and CTRD321

are added to the raw data set to obtain a new data set, thus322

achieving the effect of data enhancement. In the design of the323

enhancement module, the difficulty lies in how to calculate324

the CTRDquickly and effectively, and the key lies in selecting325

the appropriate window size and polynomial fitting order.326

Here we propose an improved S-G filter parameter selection327

method, and the specific process is shown in figure 1.328

In the prediction module, the newly generated power load329

data set is taken as input and brought into the LSTM neural330

network for prediction. The ability of feature extraction of331

LSTM time series is used to further improve the prediction332

accuracy, so as to obtain the final power load prediction value.333

In the design of the prediction module, the parameters of the334

prediction model need to be set to achieve better prediction335

results, and the specific parameter adjustment process will be336

introduced in Section IV.337

B. EVALUATION INDEX OF PREDICTION MODEL 338

In this experiment, it is also necessary to evaluate the predic- 339

tion ability of VMD-SG-LSTM model, so that the pros and 340

cons of each model can be seen by comparison. In this paper, 341

two evaluation methods are selected, namely Mean Absolute 342

Scaled Error (MASE) and Mean Absolute percentage error 343

(MAPE) [30]. Among them, MASE is an evaluation method 344

based onMAE. Its characteristic is that the greater the error is, 345

the greater the value is, where yi is the real value of the current 346

moment, yi−1 is the real value of the previous moment, and ŷi 347

is the predicted value of the current moment. MASE formula 348

is as follows: 349

MASE =

1
N

N∑
i=1

∣∣ŷi − yi∣∣
1

N−1

N∑
i=2
|yi − yi−1|

(16) 350

MAPE considers not only the error between the predicted 351

value and the actual value, but also the ratio between the 352

error and the actual value. It is generally believed that MAPE 353

measures the accuracy of the prediction. The smaller the 354

MAPE value, the higher the prediction accuracy. The formula 355

is as follows: 356

MAPE =
100%
N

N∑
i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣ (17) 357

IV. EXPERIMENTS AND NALYSIS 358

A. DATA PROCESSING 359

In order to verify the feasibility and effectiveness of the pro- 360

posed power load prediction model, this experiment uses the 361

power load situation of the Belgian power grid company Elia 362

for forecasting and analysis [31]. It includes the measured net 363

generation from local power stations that inject power to the 364

Elia grid, the netto inflows from the distribution to the Elia 365

grid and the netto import at the borders. The dataset mainly 366

recorded the power load every 15 minutes from January 1, 367

2020 to December 31, 2021, with a total length of 70176 and 368

three missing values, all processed using the mean value 369

method. The power load situation of grid company Elia is 370

shown in figure 4. 371

Figure 4 can be analyzed in terms of power load trend and 372

power load size. From the power load trend, Elia’s power 373

load shows a cyclical characteristic. From the power load 374

size, the minimum power load of Elia is less than 0.4MW 375

and the maximum power load is nearly 1.4MW. It can be 376

seen that its variation range and magnitude are particularly 377

obvious. At the same time, many abnormal values can be 378

found in the diagram. Through the analysis we judge that 379

Elia’s power load is nonlinear and unstable, which will have 380

a certain impact on power load prediction, but at the same 381

time this difference can also detect the performance of the 382

prediction model more comprehensively. 383

B. MODEL PARAMETERS SETTING 384

In the parameter setting of the VMD-SG-LSTM model, 385

the K value in the VMD algorithm is determined by the 386
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FIGURE 4. Power load diagram of power grid company Elia.

improved ISE rule. The original time series is decomposed387

into multiple IMF components by the VMD algorithm, and388

the decomposed IMF components are reconstructed to obtain389

the denoised power load data. Then, the reconstructed data are390

smoothed by the improved S-G filtering algorithm to obtain391

the CTRD, and then the IMF, CTRD and the raw data are392

used as inputs. Finally, the LSTM network is used to predict393

the short-term power load to obtain the final power load394

prediction value.395

In the selection of K value, first set other parameters of396

VMD, set penalty factor α as 2000, set other parameters397

as default values, and then calculate the ratio of remaining398

energy to original energy with K value from 1 to 9. The ratio399

of residual energy to original energy is shown in figure 5.400

ISE stipulates that when the ratio is less than 1%, Erse can401

be considered to be small enough at this time, and when the402

declining trend tends to be level off gradually from steep,403

the corresponding K value can be selected as the number of404

IMFs at this time. As can be seen from the figure, when K405

is 2, the Erse at this time is less than 1%, but there is no406

obvious downward trend. When K is 4, the Erse value flat407

at this time, and 4 is finally selected as the number of IMFs408

through comparison. After theK value is selected, the original409

power load data are decomposed by the VMD algorithm, and410

the decomposed components are shown in figure 6.411

After decomposing the original power load data into four412

IMF signals and one residual signal by VMD algorithm, the413

denoised power load data can be obtained by reconstructing414

the four IMF signals. The denoised power load data are shown415

in figure 7.416

It can be seen that by noise reduction of the raw power417

load data, some fluctuations and outliers in the raw data can418

be removed, so that the curve after noise reduction becomes419

smoother and also retains the important information of the420

raw data to the maximum extent. However, there are still421

some jagged fluctuations that are not easy to remove after422

noise reduction, which makes the prediction model unable423

to accurately represent the CTRD. At this time, we use the424

improved S-G filtering algorithm to smooth the original data425

after noise reduction. The sawtooth fluctuation after noise426

reduction is shown in figure 8.427

To smooth the noise-reduced original data, it is necessary428

to select a suitable MAE as the evaluation index. In order to429

FIGURE 5. Ratio of residual energy to original energy.

FIGURE 6. Each component after VMD decomposition.

reflect the CTRDmore clearly and retain the important infor- 430

mation of the raw data to the maximum extent, we compare 431

different MAE parameters with the noise-reduced original 432

data, as shown in figure 9. 433

It can be seen that when MAE is 0.02, the important 434

information of the noise reduction data can be well retained, 435

but the performance in removing the jagged fluctuation is not 436

good, and there are still obvious fluctuations. When MAE is 437

0.04, it can be found that the jagged fluctuations are com- 438

pletely eliminated, but some important information of the 439

noise reduction data is also lost. Therefore, in order to better 440

reflect the CTRD and maximize the retention of important 441

information from the raw data, the evaluation index of MAE 442

is finally set to 0.03. At this point, using the improved S-G 443

parameter selection method, the window size and the poly- 444

nomial fitting order can be quickly calculated to be 25 and 2, 445

respectively. Then, each parameter is brought into the S-G 446

filter for smoothing, and finally the change trend of the raw 447

data is obtained. It can be seen that the jagged fluctuations 448

after noise reduction have been significantly improved. At the 449

same time, the important information of the raw data is 450

retained to the maximum extent, and the change trend of the 451

original data can be reflected more. The decomposed IMF 452

components and CTRD are added to the raw power load data 453

to obtain a new power load data set. The new power load data 454

set is shown in Table 1. 455

When constructing a new power load data set, it is also 456

necessary to bring the data set into the LSTM model for 457

short-term power load prediction. In the design of LSTM 458
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FIGURE 7. Power load data after noise reduction.

FIGURE 8. Sawtooth fluctuation after noise reduction.

FIGURE 9. Change of MAE in noise reduction data.

prediction model, the number of hidden layers is set to two459

layers, namely the LSTM layer and the full connection layer.460

It is generally believed that increasing the number of hidden461

neurons can reduce the training error and test error of the462

neural network to improve the prediction accuracy of the463

model. In this paper, MAE is used as the standard of model464

performance evaluation to select the number of hidden layer465

neurons. The number of neurons in each layer is selected as466

shown in Table 2 and 3.467

From Table 2 and Table 3, it can be seen that the468

MAE value is the smallest when the number of neurons in469

LSTM layer is 11 and the number of neurons in the fully470

connected layer is 10. Therefore, the number of neurons in471

the LSTM layer is set to 11, and the number of neurons472

in the full connection layer is set to 10. At this time, the473

LSTM prediction model is designed and completed, and the474

new power load data set is brought into the LSTM model for475

training and testing. If the new power load data set is directly476

used as the input of the model, it will lead to the internal477

overflow of the computer and cannot be trained. Therefore,478

it is necessary to generate samples for the data set. When 479

the length of each training sample is set to 672 and the step 480

length of sliding window is set to 1, a set of data sets with 481

the size of [69503, 672, 6 ] can be obtained. According to the 482

ratio of 90% and 10%, the new power load data set is divided 483

into training set and test set. At the same time, the Min-Max 484

function is used to normalize the data to accelerate the speed 485

of gradient descent to obtain the optimal solution [32]. The 486

normalization formula is as follows: 487

x, =
x − xmin

xmax − xmin
(18) 488

At the same time, in order to improve the training effect 489

of the model, this experiment the mini-batch training method 490

and the Adam optimizer to train the model. The number of 491

samples Batch size for each input model is set to 128, and the 492

number of iterations is set to 1000. The error curve of model 493

training is shown in figure 10. It can be seen that the model 494

is basically convergent and stable after 1000 iterations, and 495

there is no overfitting problem. 496

C. COMPARISON OF PREDICTION MODELS 497

In this experiment, in order to better verify the feasibility and 498

effectiveness of the proposed prediction model, the improved 499

prediction model and the latest prediction model are com- 500

pared with the VMD-SG-LSTM model to predict the power 501

load in the next hour, and MASE and MAPE are used to 502

evaluate the prediction performance of each model. Firstly, 503

the LSTM model and VMD-LSTM model before improve- 504

ment are compared with VMD-SG-LSTM model, and the 505

prediction results are shown in figure 11. 506

It can be seen from figure 11 that the prediction perfor- 507

mance of LSTM is poor, and there is obvious oscillation in 508

the process of power load prediction, which will increase the 509

instability of prediction and lead to large deviation from the 510

actual value. Compared with the LSTMmodel, the prediction 511

accuracy of VMD-LSTM model is higher, which is because 512

the VMD algorithm can extract the characteristic information 513

of the original signal, so as to further improve the prediction 514

accuracy. The VMD-SG-LSTMmodel proposed in this paper 515

adds the S-G algorithm on the basis of the original prediction 516

model, which can be closer to the real value curve in the peak 517

part. At the same time, it also makes the prediction curve 518

smoother, and has a certain fitting effect in predicting some 519

values with large time span. 520

Secondly, in the comparison of the latest prediction mod- 521

els, this paper uses the VMD-Bi-LSTM prediction model 522

proposed by Tang et al. [33], the VMD-CISSA-LSSVM pre- 523

diction model proposed by Wang et al. [34] and the VMD- 524

GWO-SVR prediction model proposed by Zhou et al. [35] to 525

compare with the VMD-SG-LSTM. Each parameter is set 526

according to the value in the article to predict the power 527

load in the next hour. The prediction results are shown 528

in figure 12. 529

It can be seen from figure 12 that the four models have 530

high prediction accuracy, but careful observation shows that 531
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TABLE 1. New power load data.

TABLE 2. Selection of neuron number in LSTM layer.

TABLE 3. Selection of neuron number in fully connected layer.

the VMD-SG-LSTM model is closer to the real curve. This532

is because the VMD-SG-LSTM model has a certain fitting533

effect in predicting some values with large time span, which534

will make the predicted curve more gentle and closer to the535

actual value. The prediction performance of the four models536

is shown in Table 4.537

FIGURE 10. Error curve of model training.

FIGURE 11. Predict the power load for the next hour.

Table 4 records the performance evaluation of the four 538

prediction models in the next one hour. In the prediction and 539

evaluation of the next one hour, the prediction performance 540

of VMD-SG-LSTM model is reduced by 0.057, 0.071 and 541

0.076 in MASE compared with VMD-Bi-LSTM, VMD- 542

CISSA-LSSVMandVMD-GWO-SVR, and 0.067, 0.084 and 543

0.087 in MAPE. In summary, the prediction performance of 544

VMD-SG-LSTM model is better than that of the other three 545

models. 546
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FIGURE 12. Comparison of the latest prediction models.

TABLE 4. Evaluation indexes of power load predicted by each model.

V. CONCLUSION547

Aiming at the characteristics of randomness and volatility of548

power load data, this paper applies data enhancement tech-549

niques to the field of power load prediction model based on550

VMD-SG-LSTM. Specifically, the original data are decom-551

posed into IMFs with different frequencies by VMD data552

preprocessing technique to improve the predictability of the553

data. The decomposed sub-functions are reconstructed, and554

the reconstructed data are smoothed by the S-G filtering555

algorithm to obtain CTRD. Then the IMF, CTRD and the556

original data are used as inputs to predict the short-term557

power load using the LSTM network to obtain the final558

predicted value. In addition, the prediction performance of559

the proposed model is compared with that of LSTM, VMD-560

LSTM and EMD-LSTM models. The main conclusions are561

as follows:562

(1) LSTM prediction model has the ability of time series563

feature extraction, which can predict power load, but564

when predicting some values with large time span, the565

prediction performance gradually decreases;566

(2) In the VMD-LSTM prediction model, since the VMD567

algorithm can extract the feature information of the568

original signal, the prediction performance is better569

than that of the single LSTM prediction model;570

(3) Compared with the VMD-LSTM model, the VMD-571

SG-LSTM model proposed in this paper adds the S-G572

algorithm on the basis of the original prediction model.573

It can make the peak part closer to the real value curve,574

and also make the prediction curve more flat. It has575

a certain fitting effect in predicting some values with 576

large time span; 577

(4) Compared with the other three latest predictionmodels, 578

the proposed VMD-SG-LSTM model has higher pre- 579

diction accuracy and stronger prediction performance. 580

However, the proposed method has certain limitations due 581

to the need to process the current and past power load data in 582

real time in the test set before making predictions. In future 583

work, it is planned to combine some improved decomposition 584

methods with the latest prediction models to further improve 585

the accuracy of short-term power load prediction. In addition, 586

the influence of different input parameters on the prediction 587

model will be carefully studied to further improve the predic- 588

tion performance of the model. 589
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