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ABSTRACT Power load prediction plays an important role in the safety and stability of national power
system. However, due to the nonlinear and multi-frequency characteristics of the power system itself, power
load prediction is difficult. To address this problem, we propose a short-term power load prediction model
based on variational mode decomposition (VMD). First, original data are decomposed into intrinsic mode
function (IMF) of different frequencies using the VMD algorithm, and the decomposed sub-functions are
reconstructed. After smoothing the reconstructed data by Savitzky-Golay (S-G) filtering algorithm, the
change trend of raw data (CTRD) is obtained. Then, IMF, CTRD and raw data are used as inputs to
predict short-term power load by long short-term memory network (LSTM). Finally, the proposed prediction
model is compared with the other two groups of prediction models. The results show that the proposed
VMD-SG-LSTM prediction model has high fitting ability and high prediction accuracy, and is an effective

method for short-term power load prediction.

INDEX TERMS Power load prediction, variational mode decomposition, intrinsic mode function,

S-G filtering, long short-term memory network.

I. INTRODUCTION

In recent years, with the rapid development of science and
technology in the world and the increasing population, peo-
ple’s dependence on electricity in their daily lives has grad-
ually increased, which has led to a dramatic increase in
the global demand for electricity. In this environment, some
serious power problems can arise. For example, it is a very
important task for a countryto maintain the balance between
supply and demand in its power system. If the power gen-
eration capacity of the national power system is lower than
the supply demand, there will be large-scale blackouts, which
will affect people’s normal life and social production and
cause immeasurable losses. On the contrary, if the power gen-
eration capacity of the national power system is higher than
the supply demand, this will lead to the waste of resources
caused by leaving the power plants idle for a certain period
of time [1]. Therefore, how to accurately predict the future
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electricity demand so as to maintain the supply and demand
balance of the power system has become a top priority.

In the field of power load prediction, many prediction
methods have been proposed, including physical model
method, statistical method, and artificial intelligence method
[2], [3], [4], [5], [6], [7]. The physical model can be used
to accurately predict the power load, but the difficulty of
the physical model design is that it is difficult to accurately
describe the necessary information of the system components
in the face of a more complex model. Also, its transferabil-
ity is poor. When the designed model is applied to other
systems for prediction, its accuracy will be greatly reduced.
Statistical methods rely more on the periodicity and outliers
of data [8]. In the prediction process, statistical methods
tend to identify the intrinsic patterns from the historical data
of power load and compare them with other parameters,
and then summarize the data for prediction. However, the
relationship between power load and other parameters is
generally complex and nonlinear, and for these reasons, it is
difficult to obtain accurate predicted values with statistical
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methods [9]. Therefore, more and more scholars are using
artificial neural networks to predict energy consumption. The
reason is that artificial neural networks have the function of
autonomous learning. It can keep adjusting its model parame-
ters by learning historical data so as to gradually approach the
real value [10]. The neural networks can deal with complex
nonlinear problems and has certain portability. The trained
model can be transplanted to other energy consumption mod-
els and still ensure high prediction accuracy. Among many
researchers, Bian et al. [11] proposed a short-term power
load forecasting model based on K-means and FCM-BP. Its
advantage is that the improved mean clustering method can
filter out the local similar data in the data, so as to improve the
accuracy of power load forecasting by taking the important
features as the input of BP network. However, BP network
as a feedforward neural network has no obvious advantages
in time series data forecasting. Liao et al. [12] proposed
a multi-wavelet convolution neural network for power load
forecasting. Its advantage is that different types of wavelet are
used to reconstruct the original load data to obtain different
model inputs, and the ability of convolution neural network
feature extraction is used to improve the accuracy of power
load forecasting. However, compared with LSTM network,
convolutional neural network has lower advantages in learn-
ing time series data. These methods allow better adaption to
nonlinear spikes, more accurate modeling of data features,
and better prediction accuracy. In recent years, they have
become a major research direction in energy prediction.

With the rapid development of neural networks and the
continuous improvement of prediction accuracy, more and
more scholars have started to add wavelet transform, empiri-
cal mode decomposition, ensemble empirical mode decom-
position, variational mode decomposition and other [13],
[14], [15], [16], [17], [18], [19], [20] time series decom-
position methods into the prediction model to improve the
prediction effect. Bahrami et al. [21] proposed a method
based on wavelet transform and grey model combination for
short-term power load forecasting, which has the advantage
of using wavelet transform to eliminate the high frequency
components in power load data and improve the accuracy
of forecasting. However, due to the lack of adaptability of
wavelet transform itself, it has less advantages than other
decomposition algorithms. On this basis, Liang er al. [22]
proposed a short-term power load forecasting method based
on empirical mode decomposition and improved regression
neural network. The advantage of this method is that the orig-
inal data is decomposed into IMF with different frequencies
by empirical mode decomposition to weaken the volatility
of data and improve the prediction accuracy. However, the
empirical mode decomposition itself has a modal aliasing
phenomenon, which has less advantages than VMD. From the
above study, it can be seen that the inclusion of time series
decomposition method in the prediction model can better
improve the prediction accuracy of the model.

Due to the randomness and volatility of power load data,
this paper applies data enhancement techniques to the field of
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power load prediction and proposes a short-term power load
prediction model based on VMD-SG-LSTM. By using IMF,
CTRD and raw data as inputs, a new power load dataset is
constructed and the capability of LSTM to process long-term
sequences is used to predict short-term power load, thus
improving the fitting ability and prediction accuracy of the
model. Its main contributions are as follows:

(1) Animproved parameter selection method for Savitzky-
Golay filter is proposed. By setting the value of MAE,
the appropriate window width and polynomial fitting
order can be automatically allocated, which can ensure
the filtering effect and greatly save the selection time
of parameters.

(2) A short-term power load prediction model based on
VMD-SG-LSTM is proposed. By taking IMF, CTRD
and raw data as input, and using the ability of LSTM
to process long time series to predict short-term power
load, high prediction accuracy can be achieved.

(3) Compared with the other two groups of prediction
models, the VMD-SG-LSTM model not only has high
prediction accuracy, but also has good fitting effect on
the predicted peak and trough parts. Compared with the
other three latest prediction models, this model has the
best prediction performance.

The main contents of this paper are organized as follows.
Section II mainly introduces the algorithms used in this paper.
Section III presents the proposed VMD-SG-LSTM predic-
tion model and the performance evaluation method of the
model. Section IV presents the experimental and comparative
analysis of the proposed method. Finally, the conclusion is
given in Section V.

Il. PRINCIPLE OF MODEL CONSTRUCTION

A. VARIATIONAL MODE DECOMPOSITION

VMD is a variational structured signal processing method
which integrates the Hilbert transform method, the alter-
nating direction multiplier method, and the Wiener filter
method [23]. More specifically, the VMD decomposition
algorithm can decompose an actual signal or original data
into K bandwidth-based eigenmode functions. The advantage
of VMD is that it can decompose unstable and nonlinear
time-series signals and filter out some noise and interference
from the original signal. Theoretically, the modal aliasing
phenomenon can be effectively suppressed by selecting an
appropriate value of K [24]. The main flow of VMD decom-
position algorithm is as follows:

Assuming that the original signal is composed of K finite
bandwidth intrinsic mode components u (¢), the central fre-
quency of each IMF is wg, and the model u (¢) of the ana-
lyzed signal is calculated by Hilbert transform, the unilateral
spectrum can be expressed as:

S0 + L) x () )
Tt

In the analysis signal of the model is multiplied by the
operator e /%! and the model u; () can be modulated to the
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corresponding baseband:
[(3(0 + L) uka)] eIt @

The square norm L2 of the demodulation gradient is calcu-
lated and the bandwidth of each modal signal is estimated:

. 2
min {Z 0y |:<8(t) + L) * uk(t)i| e IOkt }
Tt 3)

LORCON s
s.t. Z up(t)y =s
k

In the above equation, {ux} = {uy, ua, ...ux} represents
the decomposed IMF, and {wy} = {w1, w2, . . . wi} represents
the central frequency of each component.

The constrained optimization problem is transformed into
an unconstrained optimization problem by introducing the
Lagrange function A; and the second-order penalty factor o:

L ({ur}, {wx}, 1)
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The alternating direction multiplier method is used to
update each component and its central frequency continu-
ously, and finally the optimal solution of the unconstrained
model is obtained. According to the frequency domain space,
all components can be obtained from the following formula:

@) — Y di(w) + 22
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The above steps are repeated until the iteration stopping
condition is satisfied. Finally, we can decompose the original
input signal into K IMFs by VMD algorithm. However, the
selection of parameter K needs to be determined in advance,
otherwise it will affect the performance of VMD decom-
position. Therefore, this paper adopts a method to select
K values based on the improved signal energy (ISE). The
principle is that the parameter K can be determined when the
ratio of residual energy to original energy is small enough
and there is no obvious downward trend [25]. The formula
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is defined as follows:

N K 2
Yo Uf[n] = ) u [n]
Erse = "= = k=1 x 100% 8)
> fn?
n=1

In the formula, Erse represents the ratio of residual energy
to original energy. When the ratio is less than 1%, we can
consider the ratio small enough. When the decreasing trend
tends to be level off from steep, the corresponding K value
can be selected as the number of IMFs.

B. SAVITZKY-GOLAY FILER

The S-G filter is characterized by the ability to filter out noise
and interference while ensuring that the shape and width of
the original signal does not change, thus the change trend
of the original signal can be more effectively preserved and
analyzed [26]. The principle of the S-G filter is to convolve a
certain length of filter with the data to be processed using
a weighted average algorithm of moving windows, while
fitting a weighted polynomial to the data to be processed
that minimizes the root mean square error of the fitted target,
thereby discarding some edge points far from the majority of
points [27]. The basic formula of the S-G filter is:

m
2 Cix Yy,
l=—m

i ©)
where Y* is the fitting value, Y is the original value of
the signal, and C is the coefficient of the S-G polynomial
fitting, indicating the coefficient of the ith filtering from the
beginning of the filter. m is the width of the half filtering
window, and N is the length of the filter, which is equal to the
width of the sliding array 2m + 1. Smoothing filtering with
the S-G algorithm improves the smoothness of the original
data and reduces noise interference. Another core of the
S-G algorithm is to set two parameters in the algorithm,
namely the window size and the polynomial fitting order.
For a given signal, the correct choice of two parameters will
directly lead to different filtering effects. When a low-order
large window is selected, the intensity of the absorption peak
diminishes and the absorption line becomes wider, leading to
distortion of the signal and difficult in retaining the required
information. When the parameters choose high-order small
window, although the original information of the signal is
better retained, the filtering effect on noise is also reduced.
So how to choose the S-G filter window size and polynomial
fitting order is the key to affect the filtering effect. In this
paper, an improved S-G filter parameter selection method is
proposed according to the actual control requirements. The
method flow chart is shown in figure 1.

In figure 1, the mean absolute error (MAE) is used as
the parameter selection criteria for the S-G filter. First, the
desired filtering effect X is input to the system, and then
the system automatically assigns the window size i and the
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FIGURE 1. Flow chart of improved S-G filter parameter selection method.

polynomial fitting order j in the order from smallest to largest.
The original signal, the allocated window size and the polyno-
mial fitting order are then brought into the S-G filter to obtain
the filtering value. Finally, the original signal and the filtering
value are brought into the MAE algorithm, and the final result
is calculated and compared with the desired filtering effect X.
When the final result is the same as X, the distribution value is
output. When the final result is different from X, the window
size and polynomial fitting order are redistributed until the
filtering effect is satisfied. This improved S-G filter param-
eter selection method can effectively save time in parameter
selection and also express CTRD more accurately.

C. LSTM NETWORK

LSTM neural network is a special kind of recurrent neural
network (RNN). But unlike RNN, LSTM can apply previous
information to the current task, i.e., RNN has a certain mem-
ory capability [28]. within contrast to other neural networks,
long short-term memory neural networks introduce input
gate, forget gate and output gate in each unit to control the
input value, memory value and output value respectively [29].
This makes the long short-term memory neural network have
a strong memory function when dealing with time series-like
models, and at the same time, it can solve some gradient
vanishing problems according to the characteristics of the
model. However, it also has the obvious advantage that the
gradient disappears when the sequence it processes exceeds
its own upper limit, and in terms of computation, as the
network span becomes longer, the computation of the model
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FIGURE 2. LSTM neural network structure diagram.

keeps increasing. The LSTM model structure is shown in
figure 2.

As can be seen from the graph, LSTM network contains
three gate functions, from left to right, the forgetting gate,
the input gate and the output gate, and f;, i; and o, represent
the state values of the forgetting gate, the input gate and the
output gate respectively. The sigmoid layer in the forgetting
gate C;_1 determines the information to be forgotten in the
past historical data, while the current layer x; and the output
h;_1 of the previous layer are used as input to the forgetting
gate. The output of the forgetting door is:

fr=o (Wr b i) + by ) (10)

In the input gate, the function is to update the data state in
three steps. First, the input gate updates the information to be
remembered by the result of sigmoid layer, and then a new
candidate value is generated by the tanh layer. Finally, a new
data state is obtained by adding the part to be forgotten and
the part to be remembered. The formula is as follows:

iv = o (Wilxe, 11"+ by) an
¢, = tanh (WC L b1+ bc) (12)
C,=Cioy xfi+ir x Gy (13)

In the output gate, the sigmoid layer is used to determine
which part of the output data state C; is, and then the tanh
layer is used to scale the updated data state value between
[—1,1] and multiply it with the output of the sigmoid layer to
obtain the final output %,, the formula is as follows:

o = (Wolxt, 11" +b) (14)
ht = 0 X tanh (Ct) (15)

Ill. POWER LOAD PREDICTION MODEL
A. STRUCTURE OF PREDICTION MODEL
The VMD-SG-LSTM power load prediction model is pro-
posed by combining decomposition algorithm, filtering algo-
rithm, data enhancement and neural network techniques. The
model mainly consists of decomposition module, enhance-
ment module and prediction module. Its structure is shown in
figure 3. It can accurately predict the future short-term power
load, and the model structure is described below.

In the decomposition module, the VMD algorithm is used
to decompose the original data to obtain IMFs of different
frequencies. Using IMF as input can improve the accuracy
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FIGURE 3. Structure diagram of VMD-SG-LSTM power load prediction
model.

of prediction. At the same time, as a decomposition technol-
ogy with noise reduction function, it can remove part of the
interference existing in the power load, thereby improving the
reliability of the data. In the process of decomposing original
data using VMD algorithm, parameter K is determined by
formula (8), that is, parameter K can be determined when the
ratio of residual energy to original energy is small enough and
there is no obvious downward trend.

In the enhancement module, the decomposed sub-
functions are superimposed and reconstructed to obtain the
denoised power load data. Then, the S-G filtering algorithm
is used to smooth the denoised power load data to obtain
CTRD, which is used to improve the fitting ability and pre-
diction accuracy of the model. Finally, the IMF and CTRD
are added to the raw data set to obtain a new data set, thus
achieving the effect of data enhancement. In the design of the
enhancement module, the difficulty lies in how to calculate
the CTRD quickly and effectively, and the key lies in selecting
the appropriate window size and polynomial fitting order.
Here we propose an improved S-G filter parameter selection
method, and the specific process is shown in figure 1.

In the prediction module, the newly generated power load
data set is taken as input and brought into the LSTM neural
network for prediction. The ability of feature extraction of
LSTM time series is used to further improve the prediction
accuracy, so as to obtain the final power load prediction value.
In the design of the prediction module, the parameters of the
prediction model need to be set to achieve better prediction
results, and the specific parameter adjustment process will be
introduced in Section IV.
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B. EVALUATION INDEX OF PREDICTION MODEL

In this experiment, it is also necessary to evaluate the predic-
tion ability of VMD-SG-LSTM model, so that the pros and
cons of each model can be seen by comparison. In this paper,
two evaluation methods are selected, namely Mean Absolute
Scaled Error (MASE) and Mean Absolute percentage error
(MAPE) [30]. Among them, MASE is an evaluation method
based on MAE. Its characteristic is that the greater the error is,
the greater the value is, where y; is the real value of the current
moment, y;_ is the real value of the previous moment, and y;
is the predicted value of the current moment. MASE formula
is as follows:

M=

1lv_ 9 — yil

MASE = !
5 2 i — il
i=2

—_

(16)

=T

MAPE considers not only the error between the predicted
value and the actual value, but also the ratio between the
error and the actual value. It is generally believed that MAPE
measures the accuracy of the prediction. The smaller the
MAPE value, the higher the prediction accuracy. The formula
is as follows:

~

Yi — Vi
Yi

N
100%
MAPE = ? 3 (17)

N 4
i=1

IV. EXPERIMENTS AND NALYSIS

A. DATA PROCESSING

In order to verify the feasibility and effectiveness of the pro-
posed power load prediction model, this experiment uses the
power load situation of the Belgian power grid company Elia
for forecasting and analysis [31]. It includes the measured net
generation from local power stations that inject power to the
Elia grid, the netto inflows from the distribution to the Elia
grid and the netto import at the borders. The dataset mainly
recorded the power load every 15 minutes from January 1,
2020 to December 31, 2021, with a total length of 70176 and
three missing values, all processed using the mean value
method. The power load situation of grid company Elia is
shown in figure 4.

Figure 4 can be analyzed in terms of power load trend and
power load size. From the power load trend, Elia’s power
load shows a cyclical characteristic. From the power load
size, the minimum power load of Elia is less than 0.4AMW
and the maximum power load is nearly 1.4MW. It can be
seen that its variation range and magnitude are particularly
obvious. At the same time, many abnormal values can be
found in the diagram. Through the analysis we judge that
Elia’s power load is nonlinear and unstable, which will have
a certain impact on power load prediction, but at the same
time this difference can also detect the performance of the
prediction model more comprehensively.

B. MODEL PARAMETERS SETTING
In the parameter setting of the VMD-SG-LSTM model,
the K value in the VMD algorithm is determined by the
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FIGURE 4. Power load diagram of power grid company Elia.

improved ISE rule. The original time series is decomposed
into multiple IMF components by the VMD algorithm, and
the decomposed IMF components are reconstructed to obtain
the denoised power load data. Then, the reconstructed data are
smoothed by the improved S-G filtering algorithm to obtain
the CTRD, and then the IMF, CTRD and the raw data are
used as inputs. Finally, the LSTM network is used to predict
the short-term power load to obtain the final power load
prediction value.

In the selection of K value, first set other parameters of
VMD, set penalty factor o as 2000, set other parameters
as default values, and then calculate the ratio of remaining
energy to original energy with K value from 1 to 9. The ratio
of residual energy to original energy is shown in figure 5.
ISE stipulates that when the ratio is less than 1%, Erse can
be considered to be small enough at this time, and when the
declining trend tends to be level off gradually from steep,
the corresponding K value can be selected as the number of
IMFs at this time. As can be seen from the figure, when K
is 2, the Erse at this time is less than 1%, but there is no
obvious downward trend. When K is 4, the Erse value flat
at this time, and 4 is finally selected as the number of IMFs
through comparison. After the K value is selected, the original
power load data are decomposed by the VMD algorithm, and
the decomposed components are shown in figure 6.

After decomposing the original power load data into four
IMF signals and one residual signal by VMD algorithm, the
denoised power load data can be obtained by reconstructing
the four IMF signals. The denoised power load data are shown
in figure 7.

It can be seen that by noise reduction of the raw power
load data, some fluctuations and outliers in the raw data can
be removed, so that the curve after noise reduction becomes
smoother and also retains the important information of the
raw data to the maximum extent. However, there are still
some jagged fluctuations that are not easy to remove after
noise reduction, which makes the prediction model unable
to accurately represent the CTRD. At this time, we use the
improved S-G filtering algorithm to smooth the original data
after noise reduction. The sawtooth fluctuation after noise
reduction is shown in figure 8.

To smooth the noise-reduced original data, it is necessary
to select a suitable MAE as the evaluation index. In order to
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FIGURE 5. Ratio of residual energy to original energy.

Original data IMF1

| | g it

0 10000 20000 30000 40000 50000 60000 70000 0 10000 20000 30000 40000 50000 60000 70000
time/15min time/15min

IMF2 IMF3

Lo B

0 10000 20000 30000 40000 50000 60000 70000 0 10000 20000 30000 40000 50000 60000 70000
time/15min time/15min

IMF4 Residual

025
0i25 0.00
0:00 -025

—0.25 -0.50

0 10000 20000 30000 40000 50000 60000 70000 0 10000 20000 30000 40000 50000 60000 70000
time/15min time/15min

°

o
o

FIGURE 6. Each component after VMD decomposition.

reflect the CTRD more clearly and retain the important infor-
mation of the raw data to the maximum extent, we compare
different MAE parameters with the noise-reduced original
data, as shown in figure 9.

It can be seen that when MAE is 0.02, the important
information of the noise reduction data can be well retained,
but the performance in removing the jagged fluctuation is not
good, and there are still obvious fluctuations. When MAE is
0.04, it can be found that the jagged fluctuations are com-
pletely eliminated, but some important information of the
noise reduction data is also lost. Therefore, in order to better
reflect the CTRD and maximize the retention of important
information from the raw data, the evaluation index of MAE
is finally set to 0.03. At this point, using the improved S-G
parameter selection method, the window size and the poly-
nomial fitting order can be quickly calculated to be 25 and 2,
respectively. Then, each parameter is brought into the S-G
filter for smoothing, and finally the change trend of the raw
data is obtained. It can be seen that the jagged fluctuations
after noise reduction have been significantly improved. At the
same time, the important information of the raw data is
retained to the maximum extent, and the change trend of the
original data can be reflected more. The decomposed IMF
components and CTRD are added to the raw power load data
to obtain a new power load data set. The new power load data
set is shown in Table 1.

When constructing a new power load data set, it is also
necessary to bring the data set into the LSTM model for
short-term power load prediction. In the design of LSTM
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FIGURE 7. Power load data after noise reduction.
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FIGURE 8. Sawtooth fluctuation after noise reduction.
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FIGURE 9. Change of MAE in noise reduction data.

prediction model, the number of hidden layers is set to two
layers, namely the LSTM layer and the full connection layer.
It is generally believed that increasing the number of hidden
neurons can reduce the training error and test error of the
neural network to improve the prediction accuracy of the
model. In this paper, MAE is used as the standard of model
performance evaluation to select the number of hidden layer
neurons. The number of neurons in each layer is selected as
shown in Table 2 and 3.

From Table 2 and Table 3, it can be seen that the
MAE value is the smallest when the number of neurons in
LSTM layer is 11 and the number of neurons in the fully
connected layer is 10. Therefore, the number of neurons in
the LSTM layer is set to 11, and the number of neurons
in the full connection layer is set to 10. At this time, the
LSTM prediction model is designed and completed, and the
new power load data set is brought into the LSTM model for
training and testing. If the new power load data set is directly
used as the input of the model, it will lead to the internal
overflow of the computer and cannot be trained. Therefore,
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it is necessary to generate samples for the data set. When
the length of each training sample is set to 672 and the step
length of sliding window is set to 1, a set of data sets with
the size of [69503, 672, 6 ] can be obtained. According to the
ratio of 90 % and 10 %, the new power load data set is divided
into training set and test set. At the same time, the Min-Max
function is used to normalize the data to accelerate the speed
of gradient descent to obtain the optimal solution [32]. The
normalization formula is as follows:
X = _* 7 Xmin (18)
Xmax — Xmin
At the same time, in order to improve the training effect
of the model, this experiment the mini-batch training method
and the Adam optimizer to train the model. The number of
samples Batch size for each input model is set to 128, and the
number of iterations is set to 1000. The error curve of model
training is shown in figure 10. It can be seen that the model
is basically convergent and stable after 1000 iterations, and
there is no overfitting problem.

C. COMPARISON OF PREDICTION MODELS

In this experiment, in order to better verify the feasibility and
effectiveness of the proposed prediction model, the improved
prediction model and the latest prediction model are com-
pared with the VMD-SG-LSTM model to predict the power
load in the next hour, and MASE and MAPE are used to
evaluate the prediction performance of each model. Firstly,
the LSTM model and VMD-LSTM model before improve-
ment are compared with VMD-SG-LSTM model, and the
prediction results are shown in figure 11.

It can be seen from figure 11 that the prediction perfor-
mance of LSTM is poor, and there is obvious oscillation in
the process of power load prediction, which will increase the
instability of prediction and lead to large deviation from the
actual value. Compared with the LSTM model, the prediction
accuracy of VMD-LSTM model is higher, which is because
the VMD algorithm can extract the characteristic information
of the original signal, so as to further improve the prediction
accuracy. The VMD-SG-LSTM model proposed in this paper
adds the S-G algorithm on the basis of the original prediction
model, which can be closer to the real value curve in the peak
part. At the same time, it also makes the prediction curve
smoother, and has a certain fitting effect in predicting some
values with large time span.

Secondly, in the comparison of the latest prediction mod-
els, this paper uses the VMD-Bi-LSTM prediction model
proposed by Tang et al. [33], the VMD-CISSA-LSSVM pre-
diction model proposed by Wang et al. [34] and the VMD-
GWO-SVR prediction model proposed by Zhou et al. [35] to
compare with the VMD-SG-LSTM. Each parameter is set
according to the value in the article to predict the power
load in the next hour. The prediction results are shown
in figure 12.

It can be seen from figure 12 that the four models have
high prediction accuracy, but careful observation shows that
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TABLE 1. New power load data.

Number  IMF 1 IMF 2 IMF 3 IMF4 CTRD/MW Elia Grid Load/ MW
1 -0.4649  0.2353  0.2123  0.1091 826795545 8209190
2 -0.4655 0.2322  0.2066  0.1021 8174069.48 8155130
3 -0.4665 0.2266  0.1960  0.0892  8082959.70 8084900
4 -0.4672  0.2189  0.1811  0.0719 7994626.11 8016320
5 -0.4677 0.2094 0.1626  0.0515  7909068.70 7985210
6 -0.4682 0.1978  0.1406  0.0289  7826287.48 7886800
7 -0.4687 0.1844  0.1157 0.0056 7746282.44 7799050
70170 -0.6012 0.1085 -0.0639 0.0342 7251993.52 7388656
70171 -0.5996  0.1039 -0.0826 0.0874 7280233.29 7430679
70172 -0.5989  0.0991 -0.0999 0.1341 7316584.53 7411482
70173 -0.5988  0.0947 -0.1153 0.1726 7361047.23 7528237
70174 -0.6000  0.0898 -0.1289 0.2003  7413621.39 7461745
70175 -0.6018  0.0853 -0.1396 0.2174 7474307.01 7417540
70176 -0.6032  0.0824  -0.1458 0.2252  7543104.09 7314050
TABLE 2. Selection of neuron number in LSTM layer. 0.00030 —
Number of e
neurons in ~ Epochs  Batch size MAE 0000201
LSTM layer ﬁ 0.00015
1 1000 128 4564345
3 1000 128 44221.16
5 1000 128 41870.88 £:00005 ¥
7 1000 128 40054.71 0.00000 L , : : : :
9 1000 128 38314.82 0 T
11 1000 128 36812.70
13 1000 128 38443.50 FIGURE 10. Error curve of model training.
15 1000 128 40337.95
TABLE 3. Selection of neuron number in fully connected layer. s oo
Number of L
neurons in fully ~ Epochs  Batch size MAE T
connected layer £
0 1000 128 36917.31 o
2 1000 128 34762.92 6o :
4 1000 128 31439.48 .
6 1000 128 30385.62 ° * * fmensmin ‘"’ *
180 }888 }gg ;gig?gg FIGURE 11. Predict the power load for the next hour.
12 1000 128 28663.15
14 1000 128 30613.49

the VMD-SG-LSTM model is closer to the real curve. This
is because the VMD-SG-LSTM model has a certain fitting
effect in predicting some values with large time span, which
will make the predicted curve more gentle and closer to the
actual value. The prediction performance of the four models
is shown in Table 4.
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Table 4 records the performance evaluation of the four
prediction models in the next one hour. In the prediction and
evaluation of the next one hour, the prediction performance
of VMD-SG-LSTM model is reduced by 0.057, 0.071 and
0.076 in MASE compared with VMD-Bi-LSTM, VMD-
CISSA-LSSVM and VMD-GWO-SVR, and 0.067, 0.084 and
0.087 in MAPE. In summary, the prediction performance of
VMD-SG-LSTM model is better than that of the other three
models.
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FIGURE 12. Comparison of the latest prediction models.

TABLE 4. Evaluation indexes of power load predicted by each model.

Prediction model Evaluation indicator ~ Error
VMD-SG-LSTM MAPERE  0i46h
VMD-BI-LSTM MAPERE 0530
VMD-CISSA-LSSVM sl o
VMD-GWO-SVR MAPERS 050

V. CONCLUSION

Aiming at the characteristics of randomness and volatility of
power load data, this paper applies data enhancement tech-
niques to the field of power load prediction model based on
VMD-SG-LSTM. Specifically, the original data are decom-
posed into IMFs with different frequencies by VMD data
preprocessing technique to improve the predictability of the
data. The decomposed sub-functions are reconstructed, and
the reconstructed data are smoothed by the S-G filtering
algorithm to obtain CTRD. Then the IMF, CTRD and the
original data are used as inputs to predict the short-term
power load using the LSTM network to obtain the final
predicted value. In addition, the prediction performance of
the proposed model is compared with that of LSTM, VMD-
LSTM and EMD-LSTM models. The main conclusions are
as follows:

(1) LSTM prediction model has the ability of time series
feature extraction, which can predict power load, but
when predicting some values with large time span, the
prediction performance gradually decreases;

(2) In the VMD-LSTM prediction model, since the VMD
algorithm can extract the feature information of the
original signal, the prediction performance is better
than that of the single LSTM prediction model;

(3) Compared with the VMD-LSTM model, the VMD-
SG-LSTM model proposed in this paper adds the S-G
algorithm on the basis of the original prediction model.
It can make the peak part closer to the real value curve,
and also make the prediction curve more flat. It has
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a certain fitting effect in predicting some values with
large time span;

(4) Compared with the other three latest prediction models,
the proposed VMD-SG-LSTM model has higher pre-
diction accuracy and stronger prediction performance.

However, the proposed method has certain limitations due
to the need to process the current and past power load data in
real time in the test set before making predictions. In future
work, it is planned to combine some improved decomposition
methods with the latest prediction models to further improve
the accuracy of short-term power load prediction. In addition,
the influence of different input parameters on the prediction
model will be carefully studied to further improve the predic-
tion performance of the model.
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