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ABSTRACT With the advent of digital imaging, it has become fairly easy to modify the content of an image
in many different ways while leaving no obvious visual clue. This has further challenged many existing
image forensic techniques. The techniques which perform well with one specific kind of forgeries still suffer
from strong limitations when dealing with realistic tampered images. Therefore, an effective strategy for
tampering detection and localization requires the application of fusion technique. Although there have been
extensive researches on fusion technique on different fields, there has never been a systematic study about
fusion technique in image forensic domain. In this paper, we provide a thorough review on the state-of-
the-art of fusion methods applied in tampering image detection and localization domain. We then present
a practical comparison of two popular fusion techniques: Bayesian and Dempster-Shafer theory (DST)
based fusion. The comparison relies on two applications which leverage the two aforementioned fusion
techniques. In the first case, aggregating the decision maps of two forensic approaches: Photo Response
Non Uniformity (PRNU) and statistical features based approaches has improved the forgery detection
performance on saturated and dark regions of images. In the second case, integrating the decision maps
of the forensic approach using demosaicing artifacts and the forensic approach using SIFT descriptors and
local color dissimilarity maps has enhanced the detection performance on both copy-moved and copy-pasted
forgeries images. Experiments show that the DST based fusion performs better in the first case while the
Markov Random Field (MRF) based fusion performs better in the second case. It can be concluded that each
technique has its own advantages and the best choice depends on each situation and users’ requirements.

INDEX TERMS Forgery localization, Dempster-Shafer theory, energy minimization, Bayesian fusion, photo
response non-uniformity, decision fusion.

I. INTRODUCTION

Over past decades, the rapid growth and the advancement of
powerful digital image processing tools has made it simpler
and easier to forge an image while leaving no obvious visual
clue. This has given rise in the number of forgery images
in reality. In this context, image forgery has posed a serious
impact on many areas, including: economics, politics or even
criminal investigation. Therefore, verifying the authentic-
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ity of an image has become increasingly important. There
has been accordingly increasing research in image forgery
detection and localization. Generally speaking, there are two
major approaches to study the trustworthiness of a candi-
date image: active approaches and passive approaches [1].
Active approaches usually involve designing various kinds
of watermarks or perceptual hashes of the image content and
embedding them into the digital image. At the verification
stage, the former embedded watermarks or image hashes are
extracted and compared to determine whether the original
image has been tampered with [2], [3], [4]. In contrast to
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active approaches, the passive approaches are more widely
used as they do not rely on any prior information. They
are mostly based on analyzing specific inherent clues or
traces that left during the creation of forgery images. In this
paper, we focus on forgery images detection based passive
approaches. In [5], Farid divided image forgery operation into
six different categories: compositing, morphing, retouching,
enhancing, computer generating and painting. Among these
categories, compositing operation, or alternatively image
tampering, is one of the most popular technique to forge
images as it is easier to process. In this paper, we mostly con-
sider tampering image category. In a tampered image, there
are the authentic parts and the tampered parts. If the tampered
parts are copied within the original image, it is named copy-
move tampering. If the tampered parts come from another
image, it is named cut-paste tampering or splicing. These
various forgery image operations would leave different traces
during the creation process. Thus a single forensic detector
would have difficulties giving good performance due to the
following reasons. Firstly, each forensic method usually deals
with a single type of manipulation or a single trace. It could
then perform well with a specific forgery operation but much
worse with others. For example, the copy-move detection
methods relying on duplicated regions detection will fail to
detect splicing images. Secondly, due to the advancement of
information technology recently, most of tampering images
are often the results of various processing tools. However,
in blind forgery image detection approach, we do not have
any prior information about which types of operation it has
been undergone. Therefore, it would be better to construct
a unified forensic detector system to be able to output a
global answer about its authenticity. Thirdly, an individual
forensic tool usually gives unreliable output as it only bases
on a specific characteristic of a typical trace. Particularly,
a single forensic detector is effective with a specific type of
images. For example, the methods based on analysing device
characteristics such as sensor pattern noise, Photo Response
Non-Uniformity noise (PRNU) [6], [7], [8], color filter array
(CFA) [9], [10] work well for RAW or TIFF images but
worse for detecting JPEG forgery images with low quality
compression. The algorithms based on exploiting the double
quantization artifacts hidden among the DCT coefficients in
forgery JPEG images to localize the tampered regions [11],
[12], [13] fail in detecting forgery images which is processed
in RAW and resave in JPEG. Methods based PRNU have high
false detection rate on saturated and dark regions [14]. Some
methods only detect tampered parts with large sizes while the
others detect better with small sizes. Therefore, if we want to
detect and localize the forgery image effectively, using a sin-
gle forensic detector may not be efficient. In order to improve
the robustness of the forgery image detection, it is neces-
sary to use the fusion technique to merge information from
different forensic tools. Fusion technique permits to either
aggregate multiple cues from different forgery operations or
integrate several decision output mappings of each single
detector thus can exploit useful information from different
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sources. Hence fusion becomes a significant technique to
improve the performance in forgery images detection and
localization. However, how to select the different sources of
information to be combined and which method to fuse to
obtain a good performance in image forgery detection are
not evident tasks. To the best of our knowledge, there has
never had a systematic study before on the fusion technique
applied in forgery image detection and localization. In this
paper, we perform a review on information fusion in forgery
image detection and localization. We hope to help students
and researchers to have an overview about how to apply infor-
mation fusion in forgery image detection. We then make a
practical comparison of Bayesian and Dempster Shafer The-
ory fusion techniques applied in localizing forgery images.

This paper is an extension of [34] in which we present
a systematic review on information fusion in forgery image
detection and localization. We also propose a fusion frame-
work to improve the forgery detection and localization by
integrating the decision maps of the forensic algorithms
which detect copy-paste and copy-move tampering. More
importantly, a comparative study of two fusion techniques
DST and Bayesian is presented. And finally, the experiment
results are tested on more datasets comparing to [34].

The remainder of this paper is organized as follows.
Section II gives a brief definition of information fusion and
discussion on what and when to fuse. In Section III, we review
fusion methods which have been applied in forgery image
detection and localization. We then make a practical com-
parison of Bayesian and Dempster Shafer Theory fusion
techniques applied in localizing forgery images in Section IV.
Finally Section V concludes our work.

Il. FUSION IN IMAGE FORGERY DETECTION

In this section, we first define what information fusion is, then
discuss what source of information to be fused and when to
fuse in forgery image detection and localization problem.

A. DEFINITION OF INFORMATION FUSION

There have been existed many definitions of data fusion.
The authors in [15] gave a general definition of information
fusion as ‘“‘the science of combining measurements, signals,
or observations from different sources to obtain a result that
is in some sense better than what could have been achieved
without this combination.” Due to this advantages, fusion
is a crucial topic in many scientific fields including sen-
sors fusion, data fusion in internet of things [16], remote
sensing [17], [18], [19], medical images fusion [20], [21],
biometric fusion [22], fusion in steganalysis [23] and fusion
in digital image forensics [24], [25], [26], [27].

B. INFORMATION SOURCE TO FUSE
1) Multi-cue An image is usually forged by using many
different image processing tools, thus it leave various
traces. For example, a spliced image can be created by
cutting a region from an uncompressed or jpeg image
and pasting into a jpeg host image and then resaving in
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jpeg. This causes the double quantization traces [28],
[29], [30], [31]. If the copied part in the spliced image
comes from different camera, it leaves the camera sen-
sor traces. The authors in [24] proposed a statistical
fusion framework to integrate multiple cues suitable for
forgery detection, such as double quantization artifacts
and camera response function inconsistency.

2) Multi-scale To localize an image we use the sliding
window manner. There is a tradeoff between choosing
the size of the windows and the accuracy. If the size is
too large, it cannot detect small forgery parts. If the size
is too small, there may be not enough data for statistics
analysis. The authors in [26] and [27] proposed to
fuse multiple candidate tampering maps resulting from
the analysis with different sizes of sliding windows
to obtain a more reliable tampering map with better
localization resolution.

3) Multi-algorithm In the jpeg forensics, forgery creation
could leave different jpeg compression traces such as
double quantization [28], non alignement jpeg grid [29]
and ghost jpeg traces [30]. In [27] the authors pro-
posed the Dempster Shafer Theory Fusion to exploit
all available information from these traces to achieve a
more reliable decision of the authenticity of an image.
In [32], the authors combine the algorithm based PRNU
and the one based CFA. The authors [33] integrated
the tampering maps of statistical feature-based detector
and copy-move forgery detector. In [34] the authors
fused tampering maps obtained from PRNU and sta-
tistical feature-based detectors.

C. LEVELS OF FUSION

There are generally three stages in the forgery image detec-
tion and localization pipeline at which information can be
fused, including feature-level fusion, score-level fusion and
decision-level fusion.

1) Feature-level fusion involves training a single classi-
fier in a concatenated feature space. Fusion at feature
levels could improve the detection performance but
becomes computationally demanding due to exponen-
tial growth of the dimensionalities of the training set.

2) Score-level fusion (or is also called measurement-level
fusion [35]) is performed by aggregating the outputs
of individual forensic detectors, which are trained sep-
arately. These scalar outputs could be classification
score or probability.

3) Decision-level fusion is performed at the latest stage
to merge binary results which are thresholded of each
forensic detector. Fusion at this level is computationally
efficient however it reduces some amount of detailed
information at early levels such as features, scores.

lll. FUSION METHODS
Despite the evident potential benefit of fusing information
in forgery image detection and intensive research has been
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done, the knowledge of how to exploit the information, how
to perform information fusion are still at very preliminary
stages in digital image forensic field. In this sequel, we review
several mathematical theories for fusing information applied
in forgery image detection and localization problem.

There are two main categories of fusion methods in forgery
image detection and localization problem due to its charac-
teristics. Firstly, the decision outputs of forensic algorithms
are usually unreliable and imprecise because of limited tech-
nical algorithm or particular characteristics of the considered
images (e.g. type of compression or saturated regions). There-
fore, the information sources to be fused such as traces and
decision maps are often imprecise and uncertain. There are
then approaches capable of representing specific aspects of
imperfect data such as methods based on probability theory,
Dempster-Shafer evidence theory and fuzzy set theory, etc.
Secondly, the image forgery detection and localization can be
seen as a classification problem in which it outputs the label
(e.g. tampered or not tampered) or even a label probability of
each pixel in the considered image. Hence methods of fusing
multiple classifiers are also studied to improve the robustness
in detecting and localizing forgery images. In the follow-
ing, we discuss four fusion methods including rule-based
fusion methods, probability-based methods, evidence reason-
ing methods, classification based methods.

A. RULE-BASED FUSION METHODS

The rule-based fusion method includes a variety of basic
rules of combining such as linear weighted fusion (sum and
product), MAX, MIN, AND, OR. In [36] and [37] the authors
fuse the output maps of three forensic tools, based on sensor
noise, machine-learning and block-matching, respectively.
A decision fusion strategy is then implemented using the
simple rule AND, based on suitable reliability indexes asso-
ciated with the binary masks. In [38], the authors proposed to
fuse three detectors which are PRNU based approach, Patch
Match based approach and Near-Duplicate based approach.
The tampering maps are merged with the AND operator,
according to a confidence value obtained evaluating the maps
on a training set of tampered images whose ground truth
tampering mask is known.

B. PROBABILITY-BASED METHODS

Probability-based methods rely on the probability distribution
which is defined based on the Kolmogorov axioms to express
data uncertainty. Among those, Bayesian fusion which lies
the Bayes estimator is one of the most powerful fusion
methodologies, especially for the fusion of heterogeneous
information sources. In fusion problem applied in detecting
and localizing tampering images, we are usually interested in
combining information such as traces, features, decision out-
puts, etc. of several quantities of interest Z = {Z, ..., Z,}.
It is assumed that the information of each quantity of interest
Ziisd; = (d},d?,...,dJ). In Bayesian fusion approach,
itis of our interest to compute the quantity P (Z | d1, . .., dp).
In the following, we discuss two approaches related to
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Bayesian fusion methodology which can be applied in forgery
image detection and localization problem.

1) THE CASE OF UNRELIABLE INFORMATION SOURCES

As aforementioned, the output of forensic tools are often
affected by uncertainty and impreciseness. In the sequel,
we consider an example to show that Bayesian fusion method
is able to handle uncertainties. Assume that we want to fuse
the decision output of two forensic tools Z = {A, B}. The
forensic tool A has the information d; = (¢, r;) where £
is the tampering output map and r; is the reliability of the
output of tool A. Similarly, the information contribution of
forensic tool B is dy = (t7, rp). In Baysian fusion approach,
one has to compute the posterior distribution P (Z | d, d>)
using Bayes’ theorem

P |Z,d>)Pd>|Z)P(Z)
P, d>)
_ P\ |Z)Pdy|Z)P(Z)
- Py, d>)
« P |Z)Pd>|Z)

P(Z|d dy) =

Here we ignore some constants such as P (d, d») and P (Z)
which is assumed to follow the uniform distribution on Z =
{A, B}. We also assume that the information from each tool
is conditionally independent given Z, e.g. P(d | Z,d>) =
P (d | Z). By modelling the distribution P (d; | Z), we can
then estimate the posterior distribution P (Z | d,d>). For
more detail, the reader can see the example that has been
given in a similar form in [39].

2) RELATION TO AN OPTIMIZATION APPROACH TO
INFORMATION FUSION

One of the goals of fusion problem is to find the optimal
result via combining several available data. This is the reason
why the Bayesian fusion problem resorts to Bayesian max-
imum a posteriori (MAP) estimation problem. For example,
at decision-level fusion, the authors in [26], [27], and [33] aim
at computing the optimal tampering map x given a set data d
of candidte maps obtained from different forensic detectors
or from various scales of sliding windows. The posterior
and prior distributions are the basis for further calculations.
In [26], [27], and [33], the authors modeled the prior with
a Markov Random Field (MRF) and then represented it in
terms of Gibbs potentials. By this transformation, Bayesian
MAP estimation corresponds to energy minimization prob-
lem. In other words, the Bayesian fusion methodology is
directly related to energy functional formalism. The authors
in [24] also resolve the fusion problem to MAP estimation
but they adopted the Discriminative Random Field (DRF)
framework and thereby choosing the model for posterior
distribution instead of the prior one. The logistic models are
used for posterior probabilities.

C. EVIDENCE REASONING METHODS
Evidence reasoning methods include the method based
Dempster-Shafer (DS) theory, which is a mathematical theory
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for modeling uncertain and combining evidence from dif-
ferent sources to arrive at a degree of belief. Different from
Bayesian method, DS theory deals with measures of “belief”
which may not obey the classical probability axioms to repre-
sent uncertain knowledge. It assigns mass function to repre-
sent distribution of belief thereby not requiring to specify the
prior probability in advance. However, it does require mass
values to be assigned in a meaningful way to the elements of
the system.

In [27], the authors proposed a fusion framework based
DS theory to combine the output of several forensic tools
at measurement level thereby permitting to exploit as much
information about the tool reliability and about the compati-
bility between the traces of tampering. More precisely, three
combinations are carried out hierarchically in their frame-
work including incorporation of the output of each forensic
tool with its reliability, combination of different tools looking
for the same tampering traces and combination of different
traces. Each combination is merged by using Dempster’s
rule and Basic Belief Assignment (BBA) is redefined on
the same frame using marginalization and vacuous extension
before being combined. The final decision is then made by
comparing the two belief values of two sets: T is the union of
all propositions in which at least one trace is detected and N
is the single proposition in which none of the traces is found.
These belief values Bel(T) and Bel(N) are calculated over
the BBA of the final mass function. A region is decided to be
tampered when Bel(T) > Bel(N).

In [40], the authors also proposed a fusion framework
based DS theory, yet, they not only fuse output of different
forensic tools but also integrate several background informa-
tion into the framework such as tool-based information, trace-
based information and semantic-based information. Taking
into account these side information which influences the
reliability of the forensic tools, the forensic performance is
enhanced. Particularly, some local properties of the image
such as saturated or textured regions affect accuracy of the
forgery localization maps. Thus the values of output map are
adjusted by mapping this local background information to a
BBA on the frame of the considered trace by using the method
proposed in [41]. Moreover, the global background affects
the output map when the estimated statistical model of the
tampered pixels and that of the original pixels are not well
separated. They then model the global information by defin-
ing a new BBA. In addition, the compatibility relationships
between traces are modeled as a BBA using Dempster’s rule.
Finally, the fused map is refined by exploiting the content of
the analyzed image.

D. CLASSIFICATION BASED METHODS
Classification-based methods include fuzzy logic based on
theory of fuzzy set and algorithms using machine learn-
ing such as K-Nearest Neighbor (KNN), Support Vector
Machines (SVM) and Naive Bayes (NB), etc.

The image forgery detection and localization can be seen
as a classification problem in which it outputs the label
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TABLE 1. Fusion techinques and their applications.

Ref. Fusion techniques Applications
[36], [37] Rule-based fusion using AND rule to fuse the output maps of forensic tools.
[38] Rule-based fusion using AND rule to fuse the output maps of PRNU, Patch Match and Near-Duplicate based approaches.
[25], [26], [32] Bayesian fusion using MRF to model prior and resolve the fusion problem to MAP estimation.
[24] Bayesian fusion resolve the fusion problem to MAP estimation but adopted the Discriminative Random Field framework.
[27] DST fusion combine output maps to exploit information between traces of tampering.
[40] DST fusion combine background information such as tool, trace and semantic-based information.
[42] Classification based fusion classified tampered and not tampered pixels based on fuzzy integral.
[43] [35] Classification based fusion merge the outputs of several forensic tools in order to handle their uncertainty and impreciseness.
[44] Classification based fusion use the Sugneo and Choquet integrals to merge tool outcomes at the measurement level.
[45] Classification based fusion multiple classifier fusion.
[46] Classification based fusion using some combination rules including WMV, BKS and Naive Bayes Combiner, Product and Sum.
[49] Classification based fusion using BKS representation fusion to integrate two best approaches in the copy move detection.
[33] Classification based fusion integrated the tampering maps of SF-based detector and copy-move forgery detector.
[50], [51] Classification based fusion applying fusion in deep learning and CNN to localize forger images.

(e.g. tampered or not tampered) or even a label probability
of each pixel in the considered image. In [42] Chetty and
Singh classified tampered and not tampered pixels based on
fuzzy integral. They first fuzzified features extracted from
different forensic algorithms and then generated the mem-
bership functions and fuzzy integral. The input pixels are
classified into a specific class if that class has the maxi-
mum output of fuzzy integral. In [35] and [43] Barni and
Costanzo presented a fuzzy fusion system at measurement
level to merge the outputs of several forensic tools in order to
handle their uncertainty and impreciseness. They constructed
the membership function from pairs (detection, reliability)
provided by forensic algorithms and then used the if-then
rules to compute the outcome. This outcome is then defuzzi-
fied by being compared with a threshold to obtain the final
decision. Kuar and Gupta [44] proposed a fusion framework
based on fuzzy integrals for passive-blind image tamper
detection. Different from the work of Chetty and Singh,
they used the Sugneo and Choquet integrals as the aggre-
gation operators to merge tool outcomes at the measurement
level.

As each detector has its own advantages and disadvan-
tages, combination of different detectors is necessary to
explore their complementary properties. A multiple classifier
fusion [45] can be used to improve the robustness of forgery
localization performance as it may generate more accurate
classification than each of the individual classifiers. Classifier
fusion is often based on combination rules like the product,
sum, Weighted Majority Voting (WMYV), Behavior Knowl-
edge Space (BKS) and Naive Bayes Combiner (NB), etc.

In [46], the authors combined several forensic tools such
as detector based on Block Artifact Grid introduced by
JPEG compression [47], detector based on the double quan-
tization effect introduced when the original and the tam-
pered regions in images were coded at different compression
ratios [30], [31], detector based on finding traces of resam-
pling in the image [48] and detector based on PRNU [14]. The
fusion decision is implemented using several combination
rules including Weighted Majority Voting (WMYV), Behavior
Knowledge Space (BKS) and Naive Bayes Combiner (NB),
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Product and Sum. The authors in [25] compare the majority
voting fusion, average fusion, supervised learning fusion and
clustering analysis fusion using K-means with the fusion
based energy minimization.

The traditional classifier fusion approaches did not con-
sider the conditional and spatial dependence of tampered
pixels with respect to their neighborhood pixels. The authors
in [49] solve this problem by proposing the Behavior
Knowledge Space representation fusion to integrate two best
approaches in the copy move detection: block-based and
points of interest detection methods.

The authors [33] integrated the tampering maps of statis-
tical feature-based detector (M%) and copy-move forgery
detector (MPM). They first projected the score of original
and tampered pixels of the training forgery images on the
MFea — MPM plane, then manually designed a decision curve
with fewer parameters which is effective and faster compar-
ing to linear and non-linear classifiers such as SVM. The
experimental results show that this fusion strategy gives better
performance than the fusion based DRF and fusion based
supervised learning.

Recently, there have been several papers applying fusion in
deep learning and CNN to localize forger images [50], [51].
In [50] Liu and Pun proposed a deep fusion network for splic-
ing forgery localization. Particularly, the deep convolutional
neural networks called Base-Net are first trained to extract
forensic features including JPEG compression artifacts and
noise discrepancy. Then the trained convolutional kernels
from the Base-Nets are used to construct the fusion-net to fuse
these forensic features.

Table 1 summarizes the fusion techniques and their
applications.

IV. BAYESIAN AND DST FUSION AND APPLICATION

In this section, we compare the two dominate fusion tech-
niques for multi-algorithms: Bayesian fusion and DST fusion
at decision-level fusions. We study the Bayesian fusion
as an optimization approach as mentioned in the sub-
section III-B2 which corresponds to energy minimization
problem.
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A. ENERGY MINIMIZATION BASED FUSION

Forgery localization problem can be seen as a labeling prob-
lem where we label 1 as a tampered pixel and 0 as an
authentic pixel. Multi-algorithm fusion means to find the best
labeling given decision maps of several forensic algorithms.
The energy minimization based fusion tries to incorporate
the knowledge from given data and the prior to look for the
optimal labeling map. This framework is used in multi-scale
fusion [25], [26]. Particularly, denote vector t € {0, l}N a
tampering map of the image which is vectorized of size N.
Denote vector m®) e {0, 1}V be the tampering map of the
forensic algorithm k™. The optimal tampering map aggregat-
ing from K forensic algorithms is the one maximizing the
posterior probability given a set of tampering maps m®):

f:argmaxP(Hm(k):k:l,...,K) D
te{0, 1}V

Ignoring the constant term P (m), the problem can be rewrit-
ten as:

i:argmaxp(m<k>:k=1,...,K|t)P(t) )
te(0, 1}

Assume the independence between m;, we have

t = arg max l_[

P(ml?"):k=1,...,1<|tl-)P(t) 3)
tefo, 1}V =1

Assume the independence between methods, we have:

P (m,?") | ti) Pt (4)

t = arg max 1_[ 1_[
te{0. 1}V =1 k=1

The prior is usually assumed the smoothness of neighboring
pixels and is then modeled with a Markov random field in
which the decision at each pixel depends only on its direct
neighborhood. It is noted that MRF formulation and Gibbs
energy formulation are equivalent due to the Hammersely-
Clifford theorem. Thus P (t) is modeled as follows:

7ZVc(t)
Pty=2z"te VO =z71¢ cc Q)

where Z is a normalizing constant, V. is a clique which is

defined as a subset of pixels such that any two distinct pixels
are mutual neighbors. Then

- Z VC (t)

K
t = arg max 1_[ l_[ P (ml(k) | li) Z e e (©6)

te{0, 1}V =1 k=1

Taking a negative logarithm of (6), the fusion problem can be
solved by minimizing the following function:

N K
dVew =YD togp (m 1) )

ceC i=1 k=1

Similar to the work of [25], [6], [26], we use the Ising
model [52] which considers single-element and two-element
cliques.
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k) (

Denote E (| —logP (| 1;). The multi-
algorithms fusion becomes minimizing the following energy
function:

N K N N
Y Ema) e a8 Y -yl ®
i=1 k=1 i=1 i=1 jeN;

where N; contains top, bottom, left, right neighbor pixels
of i. The parameter « controls the preference towards sparser
tampering maps and the paraleter 8 controls the interaction
strength of neighboring pixels.

We use the graph-cut based solver [53], [54] from UGM
toolbox [55] to find the optimal tampering map. This
approach uses a MRF to model the prior thus we call it
interchangeably as MRF based fusion approach.

Ji) =

B. FUSION METHOD BASED DEMPSTER-SHAFER THEORY
1) ELEMENTS OF DEMPSTER-SHAFER THEORY

DST which is an effective theoretical framework for fusing
and reasoning with uncertain and/or imprecise information
was introduced by Dempster and Shafer [56], [57]. In this
subsection, we briefly review its two main components: the
degrees of belief representation and the Dempster’s rule for
combining such degrees of belief when they are based on
independent sources. Let X be a variable taking values in
a finite domain 2 = {wy,..., wy,}, called the frame of
discernment. Evidence about X may be represented by a mass
function m : 2% — [0, 1] such that

Zm A =1 9)

ACQ
Each number m(A) denotes a degree of belief attached to
the hypothesis that X € A. m is said to be normalized if
m(¥) = 0. This property will be assumed hereafter, unless
otherwise specified. Corresponding to a mass function m,
we can associate belief functions Bel : 2 — [0, 1] defined
as follows

Bel (A) =) m(B) (10)
BCA

Quantity Bel(A) can be interpreted as the degree to which
the evidence supports A.

In order to combine the evidence coming from multiple
independent sources of information, we can use Dempster’s
combination rule to merge them. Let m; and m; be two mass
functions derived from independent items of evidence. They
can be fused to induce a new mass function m, defined as

1
myz (A) = T-x Z

~ % B,cc2,BnC=A

where K = >
B,CC2,BNC=f
the degree of conflict between evidence m; and my. When

K =1, we define m> (A) = 0.

In the following subsections, two applications using
Bayesian and DST fusion are presented. In the first appli-
cation, the decision maps of two forensic algorithms PRNU

my (Bymy (C) (1)

my (B)ymy (C), K < 1 measures
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and Statistical Features (SF) based forgery detectors are
integrated. The experiment is tested on our created dataset
taken from three cameras Canon EOS-100D, Nikon D5200
and Panasonic DMC-GMI1. In the second application, the
decision maps of two forensic detectors for cut-paste and
copy-move forgeries are aggregated. The experiment is
tested on the public Realistic Tampering Dataset! created by
Korus et al. [26].

C. APPLICATION I: FUSION TWO FORENSIC ALGORITHMS
PRNU AND SF BASED FORGERY DETECTORS

To compare the performance of Bayesian and DST fusion,
we consider to aggregate two image forgery detectors, one
based on PRNU and the other based on SF.

1) PRNU-BASED FORGERY DETECTION

The PRNU which is a camera imaging sensor imperfection
can be considered as a unique sensor pattern of each individ-
ual camera thereby being used for forgery detection. The idea
is that the tampered regions could destroy or change position
of the PRNU in the image. Therefore, by testing on which
part of the image the PRNU is changed, one is able to reveal
the tampered regions. We consider a simplified model of the
image acquisition pipeline [58].

y=0+kx+n (12)

where y is a captured image, x is its idealized noise-free
version, k is the camera PRNU, 7 is an additive noise term
which accounts for all types of disturbances, and products
between images, unless otherwise stated, are pixel-wise. The
PRNU £ can be estimated from N images obtained by the

camerayi, ..., yy using the maximum likelihood principle.
N
ML (13)
PIMERT
n=1Yn

where r,, = y,—f (y,) is the noise residual of the image y;,, f is
a denoising filter. In the following, for the sake of simplicity,
we assume that the estimation of the camera PRNU has no
error, i.e., k=«

The PRNU of the image under test is compared with the
reference PRNU in a sliding-window based manner. The
forgery detection at each pixel y; j is formulated as a binary
hypothesis testing problem applied to a block B centered
around the pixel y; ;.

Hy:rg =np

(14)
Hy:rg=2zp+nB

where rp, zp and np are the restrictions of r, z, and 1 respec-
tively, to the block B, z = yk is the signal of interest (also
called the reference PRNU). If the PRNU is absent in the
block B (hypothesis Hp), its central pixel is labeled as being
tampered. If the PRNU is present in B (hypothesis Hj), its
central pixel is labeled as being genuine. The detection test is

1 http://pkorus.pl/downloads/dataset-realistic-tampering
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based on normalized correlation
pij = corr (rg, zB) (15)

The probability density function (pdf) of p;; under hypothesis
H) is estimated by correlating the camera PRNU and the noise
residuals coming from other cameras. The pdf of p; under
hypothesis H;p is heavily influenced by the block content.
In deed, even in the genuine blocks, the correlation might be
very low when these blocks are dark, saturated, or textured.
The authors in [58] estimated a predictor based on local
images features, such as texture, flatness and intensity, and
then computed the expected value p;; of the correlation under
hypothesis H| hoping to reduce the false alarm in these cases.
The decision map MPRNU is then defined as follows

(16)

yprvu _ )0 i < vi AND > 2
v 1 else

where y; is the threshold selected with a Neyman-Pearson
approach to obtain the desired false acceptance rate (FAR),
y» is a threshold chosen heuristically to avoid labeling non-
tampered (MgRN U = 1) pixels as tampered (MgRN U =0).

2) SF-BASED FORGERY DETECTION

The SF based forgery detection is an approach in which
we first extract some inherent features of image blocks that
are likely to be modified when an image undergoes tam-
pering and then use these features to proceed a two-class
pristine/forged training procedure. It can be said that this is
a universal approach in which we can detect many types of
forgeries though the accuracy is not high. Among various
statistical feature sets proposed in steganalysis, in this paper
we adopt the statistical features named Spatial Color Rich
Model (SCRM) [59] which work quite effectively in forgery
detection [33]. SCRM is an extension of SRM. The SRM
features from the R, G, and B channel are first added together
and then concatenated three dimensional co-occurrences of
residuals computed from all three color channels. These
features are then used for training procedure. Based on a
sliding-window manner, the training samples are extracted
from tampered and pristine blocks of size 64 x 64 pixel
with a step of 16-pixel and then fed into an ensemble clas-
sifier [60] with linear discriminant analysis base learners for
identifying whether an image block is genuine or fake. The
image under test / is divided into 64 x 64 pixel sliding
windows with a step of 16-pixel. For each sliding window,
the pre-trained ensemble classifier outputs a vote score v €
{—np, —np +1,...,np — 1, np} where np is the number of
base learners in the ensemble classifier. The decision map
M5F is computed as follows.

K
1 1
SF __ §
Mi,j = E (E 2 Vi + nb) (17)

where K is the number of blocks containing pixel /; j, and vy
is the vote score for the k" block that contains ;. e
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3) DST BASED FUSION

The framework proposed in this subsection aims at fusing
the evidence coming from the PRNU-based forgery detection
and the SF-based forgery detection. We believe that aggre-
gating the evidence from the SF-based approach will help to
decrease the false alarm rate on the saturated and dark regions
of images. The fusion procedure can be described as follows.

o Constructing mass functions m; and my from the evi-
dence of each approach: the PRNU-based forgery detec-
tion and the SF-based forgery detection.

o Using Dempster’s combination rule to induce a fused
mass function mpp from m; and m,.

o Computing the belief function corresponding to the mass
function my;.

« Making final decision bases on the belief function.

What we are interested in this section is that whether the
pixel /; j in test image [ is tampered or not tampered. We can
model this scenario by defining a variable X with frame
£2 = {it, nt} where it is the proposition “the pixel /;; is
tampered”, and nt is the proposition “the pixel /;; is not
tampered”’. We want to quantify how much we are confident
in these propositions.

The mass function m; and my are respectively constructed
from the decision maps of the PRNU-based forgery detection
and the SF-based forgery detection.

1  forX = {it}

ny forX = {nt} (18)

my (X) = :

| forX = {ir}
m2 (X) = :nz for X = {nt} (19)

where

Ml-l}RNU, n=1-—n

m=1-—n (20)

=

SF
=M,

The degree of conflict K and the fused mass function m5 is
computed as follows

K = tinp + thn (21)
. In 515
t = =
mi2 () = T = T m —am
niny niny
m nt}) = = 22
() = —¢ T —— (22)

The belief function in this case is equal to the fused mass
function: Bel ({it}) = my> ({it}) and Bel ({nt}) = myo ({nt}).
The quantity Bel ({it}) is the degree to which the evidence
supports that the pixel I;; is tampered. We then make a
decision that a pixel is tampered if its degree of belief of tam-
pering is greater than that of non tampering, i.e. Bel ({it}) >
Bel ({nt}) + A, where X is a threshold chosen heuristically.

4) MRF BASED FUSION
Taking m() = MPRNU and m® = M5F where MPRNU and
MSF are vectorized, and solving the optimal problem defined
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in eq. (8). We use the data term as in [26] and [27]:
Er (m;, t;) = —logmax (Wyin, Yr (my, 1;)) (23)
with ¥,,,;, € [0, 1] and

— ? fort; =0
T
v (mj, 1) = m — 1 forty = 1 (24)
— Jforti=
2(1-1) !

5) EXPERIMENTAL RESULTS

In this subsection, we will report some preliminary experi-
ments to compare the performance of two fusion techniques.
Our experiments were carried out on the dataset of the UTT
which includes of images taken from three cameras, a Canon
EOS-100D, a Nikon D5200 and a Panasonic DMC-GM1. The
first row of Fig. 1 is some examples of realistic tampering
images created by hand in modern photo-editing software
in which their original images taken from the dataset of
UTT. We first have estimated the PRNU of each camera
over 100 images and then have extracted 25000 correlation
samples over 25 images coming from other cameras and
25000 samples coming from the same camera to train the
correlation predictor as proposed in [58].

We present in this section results only for one of the
cameras, a Canon EOS-100D. For our experiments we used
200 tampered images and 200 pristine ones. The forgeries
have been created with a copy-and-paste process and are
all rectangular with size of 128 x 128. We evaluated the
percentage of correctly detected forged pixels in the tampered
images (Pp) and the percentage of falsely identified pixels
in the pristine ones (Ppy), varying the relevant parameters of
the algorithms that is, the y1, y» in the PRNU-based forgery
detection algorithm, and the threshold A in the DST fusion
and the parameter o, § in the Bayesian fusion.

In Fig. 1, we show the evaluation on several realistic tam-
pered images (second row). The original images (first row)
are taken from Canon EOS-100D camera and then are forged
by inserting objects using the popular photo editing software
GIMP. The third and fourth columns show the output maps
of the SF and the PRNU based approaches. As can be seen,
each individual approach has its own limitation. The PRNU
based approach correctly detects the tampered regions but the
false alarm rate is hard to avoid due to the saturated regions
(see Fig. 2) and dark regions (see Fig. 3). In contrast, the SF
based approach does not localize tampered regions with high
accuracy but it does not have problem with saturated and dark
regions. The integrated map fused from the PRNU and SF
approaches in the fifth row shows a significant improvement
of the DST fusion method. The last row are the decision
maps integrated using MRF based fusion. We can see that,
on these selected forgery images, MRF based fusion performs
worse than DST based fusion did. It is worth mentioning that
we did not apply any morphological operation in the fusion
approach.

In Fig. 4 we show the ROCs (receiver operating char-
acteristics) of the PRNU-based approach and of the fusion

99275



IEEE Access

A.-T. Phan-Ho, F. Retraint: Comparative Study of Bayesian and Dempster-Shafer Fusion on Image Forgery Detection

FIGURE 1. Realistic examples of localizing tampering images. The first row are original images, the second row are tampered images, the third row are
detection maps by SF-based approach, the fourth row are maps detected by PRNU-based approach, the fifth row are maps created by the DST based
fusion and the last row are the decision maps integrated using MRF based fusion.

approaches computed on the complete test set (200 forgery
images and 200 genuine images). We can see in Fig. 4
that the performance of two fusion techniques are quite
similar.

In Fig. 5 we show the ROC curves of the PRNU-based
approach and of the DST and Bayesian fusion techniques
computed on the 10 forgery images and 10 genuine images
whose saturated and dark regions are considerable. We can
see in Fig. 5 that the DST and Bayesian fusion approaches
significantly outperform the single PRNU-based approach.
The DST fusion has better performance comparing to the
Bayesian fusion in the sense that with the probability of false
alarm in the range [0.12, 0.4], the DST fusion technique gives
greater detection probability.
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It is noted that choosing what to fuse is also an art. It had
better to analyze the strength and weakness of each algorithm
before deciding to fuse them. As mentioned before, the weak-
ness of PRNU algorithm is to make high false alarm rate on
the saturated and the dark regions while the SF based detec-
tor does not. Therefore, integrating these two maps could
enhance the detection performance. If we test on the dataset
where there are not considerably saturated and dark regions,
it is hard to see the significant improvement because the SF
based algorithm does not have a chance of leveraging its
advantage. This explains why the tested results on 200 images
in general do not show much improvement comparing to the
results on 10 images whose saturated and dark regions are
considerable.
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FIGURE 2. An example of falsely detected of PRNU based detector on
saturated regions which are limited by blue curves.

FIGURE 3. An example of falsely detected of PRNU based detector on
dark regions which are limited by blue curves.

FIGURE 4. ROC for PRNU-based forgery detection algorithm and the DST
and Bayesian fusion one on 200 images.

0 01 02 03 04 05 06 07 08 09 1

FIGURE 5. ROC for PRNU-based forgery detection algorithm and the DST
and Bayesian fusion one on 10 images.

Beside that, we also use the Fl-score to evaluate the
detection performance [61]. F1-score is the harmonic mean
of Precision (P) and Recall (R) which are computed from
the confusion matrix of True Positive (TP), False Positive
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(FP),True Negative (TN) and False Negative (FN) as follows:

TP TP
P=— andR= —— 25)
TP + FP TP + FN
P-R 2TP
Fi =2 (26)

P+R _ 2TP+FN + FP

The F1-score takes a high value when Precision and Recall
are both important. The higher F1-score, the more efficient
the algorithm is. Please see Table 2 for the meaning of the
measure used in forgery localization performance.

TABLE 2. Measure to evaluate forgery localization performance.

TP | number of tampered pixels correctly localized
FN | number of unlocalized tampered pixels
FP | number of authentic pixels wrongly localized
TN | number of unlocalized authentic pixels
P probability that localized pixels are tampered
R probability that tampered pixels are localized

Table 3 shows the Fl-score evaluated on the 10 forgery
images and 10 genuine images whose saturated and dark
regions are considerable. We can see that although the F1-
score are low but it did show the significant improvement
of the fusion. The Fl-score of DST fusion is highest and
10 times greater than those of PRNU and SF based detectors.

TABLE 3. F;-score on the dataset of UTT.

Method Fi-score
PRNU based detector [58] 0.0056
SF based detector [59] 0.0057
DST based fusion of PRNU and SF 0.0309
MREF based fusion of PRNU and SF 0.0208

D. APPLICATION lII: FUSION TWO FORENSIC
ALGORITHMS DEMOSAICING ARTIFACTS AND
COPY-MOVE BASED FORGERY DETECTORS

As mentioned in the introduction, the tampered parts of an
image could either be copied within the original image, the
so-called copy-move tampering, or come from another image,
the so-called copy-paste tampering. The copy-move detection
methods usually rely on duplicated regions detection thereby
failing to detect copy-paste tampering images. On the other
hand, algorithms aiming at detecting copy-paste tampering
are limited to detect copy-move tampering images. Motivated
from this idea, we come up with the idea integrating decision
maps generated from algorithm detecting copy-paste and
copy-move tampering to enhance performance. In the context
of the project DEFACTO,? we find it necessary to combine
the decision maps from different research teams [62], [63] to
enhance the detection performance. In [62] Le et al. proposed
to use demosaicing artifacts (also known as color filter array
(CFA) interpolation) to detect tampered parts of images. Par-
ticularly, traces left by demosaicing are specific for different
camera brands and/or models. The lack of these traces or their

2https:// anr.fr/Project-ANR-16-DEFA-0002
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FIGURE 6. Fusion of forensic algorithms improves detection performance
by detecting both cut-paste and copy-move forgery regions. These two
tampering images are chosen from the dataset of Korus [26]. The first
rows are original images, the second row are tampered images, the third
row are ground-truth images, the fourth row are maps detected by [62],
the fifth row are maps detected by [63] and the last row are integrated
maps based on MRF fusion.

inconsistency for different image regions may indicate the
presence of tampering. In [63] Mahfoudi ef al. proposed to
utilize the SIFT key-points and descriptors and then filter the
result using a Local Dissimilarity Map to detect copy-move
tampering. However, each of these algorithms has its own
drawback. For example, we can see the first column in Fig. 6,
the algorithm [62] could not detect the copy-move tampering
and the algorithm [63] failed to detect the copy-paste in the
image (see the fifth row in Fig. 6). Therefore it is a good idea
to fuse these decision maps to improve the performance.

Let denote the decision maps generated from algorithm
in [62] and [63] respectively M ¥ (CP: copy-paste) and M M
(CM: copy-move). The procedure to aggregate these decision
maps based on DST and MREF fusion is totally similar to ones
presented in Sub-section IV-C3 and Sub-section IV-C4.

More particularly, for the DST fusion, we only replace the
maps in equation (20) as follows

= Migp,
n=MM m=1-n (27)

n=1-—n

Similarly, for the MRF fusion, we take mD = MP and
m?® = MM,
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TABLE 4. F;-score on data Korus.

Method Fy-score
[62] Le et. al 0.2323
[63] Mahfoudi et.el 0.2948
DST fusion method [62] and [63] 0.0650
MREF fusion method [62] and [63] 0.3912

1) EXPERIMENTAL RESULTS

The experiment is tested on images containing both
copy-move and copy-paste tampering chosen from the dataset
generated by Korus et al. [26]. Such chosen images would
leverage the performance of fusion algorithms because
the individual algorithms in [63] and in [62] fail to
detect copy-paste and copy-move tampering respectively (see
Fig. 6) while the integrated of these two algorithms could
detect both tampering operations.

The F1-score in Table 4 shows that the MRF based fusion
gives the highest F1-score while the DST based fusion gives
the lowest Fl-score. Figure. 7 visually illustrates that the
MREF based fusion algorithm gives better performance than
the DST based fusion and individual algorithm [62], [63].
This significant improvement of the MRF based fusion is
mainly based on the following reasons: First, the prior of the
tampering map is modeled with a MRF thereby exploiting
spatial dependencies of neighborhood pixels. This helps a
lot to decrease the number of non-detected tampered pixels
comparing to the algorithm [62]. For instance, comparing
to the ground-truth images in the third column of Fig. 7,
we see that the MRF fusion (the last column) is able to
detect splicing pixels that the algorithm in [62] missed (the
forth column). Second, the MRF fusion could integrate both
copy-paste and copy-move tampering parts (see first column
of Fig. 6 and first and last column of Fig. 7). Third, the DST
based fusion in this context fails to improve the performance
because the DST is limited to combine the conflict evidence.
More specifically, we are considering to combine the decision
maps of the algorithm [62] which could detect copy-paste
tampering but not copy-move and those of [63] which could
detect copy-move but not copy-paste tampering. Therefore,
there are usually the conflict parts in these maps. That is the
reason why the decision maps generated from DST fusion
(the sixth column of Fig. 7) are usually all black.

E. DISCUSSION

In this subsection, we will discuss the differences and sim-
ilarities between the DST and MRF fusion techniques and
explain the advantages and disadvantages of each fusion
technique in two considered experiments.

Both fusion techniques have a certain initial requirement.
While the Bayesian technique requires the prior probabili-
ties, the DST technique requires masses to be assigned in a
meaningful way to the various states, including an undecided
state. However, in this work we only consider two states
that are tampered and not tampered. The implementation of
DST fusion is quite simple comparing to the Bayesian fusion.
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Ground-truth

Original

Tampered

FIGURE 7. The decision maps of some images from the dataset of Korus [26].

In Bayesian fusion method we have to pay a cost for building
the edge struct of Markov Random Field and the computing
complexity for finding the optimization on the graph.

In the first experiment, on a particular dataset, DST method
outperforms the Bayesian fusion method. In this case, the
maps obtaining from two forensic algorithms usually have
some common tampered parts and some conflicting parts (see
Fig. 1). Those conflicting parts include false detection parts
of the PRNU on the saturated regions and false detection parts
of the SF based detector. The DST fusion technique succeeds
in choosing the common parts and ignoring the conflicting
parts thereby enhancing the performance. However, this is
not the case of Bayesian fusion. From a Bayesian perspective,
the Bayesian fusion needs more prior information about this
conflict. In other words, the Bayesian fusion requires the
knowledge about the reliability of the both forensic detec-
tors, i.e., what is the probability that the forensic algorithm
decides the given pixel is tampered. The readers can find
more explanation about Bayesian approach to fuse conflicting
information in [64]. Thus we think that it is possible that
Bayesian fusion technique can be improved its performance
if we are given more prior information about each tampering
map [25], [26].

In the second experiment, the MRF based fusion gives con-
siderable improvement comparing to the DST based fusion
technique. It turns out that the strength of the DST based
fusion method mentioned in the first experiment is its dis-
advantage in the second experiment. More particularly, the
limitation in dealing with the conflict evidence prevents the
DST based fusion from combining the copy-paste and copy-
move tampering. The disadvantage of the MRF based fusion
method in the first experiment is the strength for the second
experiment. Exploiting the spatial dependencies of neighbor-
hood pixels of MRF based fusion method has significantly
enhanced the detection performance in the second context.
Therefore, it could be said that the choice of the best fusion
technique depends on the problem under consideration, on the
properties and characteristics of each individual algorithm.
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V. CONCLUSION

This paper has provided a systematic review on the state-of-
the-art of fusion techniques applying in detecting and local-
izing forgery images domains. We then have proposed two
effective fusion techniques, DST and Bayesian, to aggregate
the tampering maps. Two fusion scenarios have been consid-
ered and experimental results have been tested on two differ-
ent datasets. In the first scenario, the fusion method is applied
to aggregate the decision maps of PRNU based approach and
SF based approach. Preliminary experimental results have
shown that DST fusion method outperforms the Bayesian
fusion method on a particular dataset. This improvement is
mainly due to the fact that the DST fusion method has signif-
icantly decreased the false positive rate on the saturated and
dark regions which is one of the most challenging limitation
of the PRNU based approach. In the second scenario, the
fusion method is applied to integrate the decision maps of the
algorithm based on demosaicing artifacts and the one based
on SIFT key-points and descriptors. The experimental results
have shown that MRF fusion has considerably performed
better than the DST fusion. The ability to exploit the spatial
dependencies of neighborhood pixels in the decision maps
has leveraged the detection performance of MRF based fusion
technique.

We have concluded that the final choice for a fusion
framework depends on the scenarios, the properties of each
individual forensic algorithm and requirements of the user.

In this paper, we have just considered the very basic setting
and conditions on two fusion methods. As a topic for further
research, we shall devote to analyzing more deeply on each
fusion method. Particularly, the limitation of the traditional
DST fusion when dealing with conflict evidence shall be stud-
ied further [65]. Moreover, we shall consider more advanced
combination rules in DST fusion such as the transferable
belief model (TBM) [66] and Dezert-Smarandache theory
(DSmT) [67]. Various dataset and more prior information
for Bayesian method will be provided to have a thorough
comparison between these two methods.
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