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ABSTRACT With the advent of digital imaging, it has become fairly easy to modify the content of an image
in many different ways while leaving no obvious visual clue. This has further challenged many existing
image forensic techniques. The techniques which perform well with one specific kind of forgeries still suffer
from strong limitations when dealing with realistic tampered images. Therefore, an effective strategy for
tampering detection and localization requires the application of fusion technique. Although there have been
extensive researches on fusion technique on different fields, there has never been a systematic study about
fusion technique in image forensic domain. In this paper, we provide a thorough review on the state-of-
the-art of fusion methods applied in tampering image detection and localization domain. We then present
a practical comparison of two popular fusion techniques: Bayesian and Dempster-Shafer theory (DST)
based fusion. The comparison relies on two applications which leverage the two aforementioned fusion
techniques. In the first case, aggregating the decision maps of two forensic approaches: Photo Response
Non Uniformity (PRNU) and statistical features based approaches has improved the forgery detection
performance on saturated and dark regions of images. In the second case, integrating the decision maps
of the forensic approach using demosaicing artifacts and the forensic approach using SIFT descriptors and
local color dissimilarity maps has enhanced the detection performance on both copy-moved and copy-pasted
forgeries images. Experiments show that the DST based fusion performs better in the first case while the
Markov Random Field (MRF) based fusion performs better in the second case. It can be concluded that each
technique has its own advantages and the best choice depends on each situation and users’ requirements.
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INDEX TERMS Forgery localization, Dempster-Shafer theory, energyminimization, Bayesian fusion, photo
response non-uniformity, decision fusion.

I. INTRODUCTION21

Over past decades, the rapid growth and the advancement of22

powerful digital image processing tools has made it simpler23

and easier to forge an image while leaving no obvious visual24

clue. This has given rise in the number of forgery images25

in reality. In this context, image forgery has posed a serious26

impact on many areas, including: economics, politics or even27

criminal investigation. Therefore, verifying the authentic-28
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approving it for publication was Sedat Akleylek .

ity of an image has become increasingly important. There 29

has been accordingly increasing research in image forgery 30

detection and localization. Generally speaking, there are two 31

major approaches to study the trustworthiness of a candi- 32

date image: active approaches and passive approaches [1]. 33

Active approaches usually involve designing various kinds 34

of watermarks or perceptual hashes of the image content and 35

embedding them into the digital image. At the verification 36

stage, the former embedded watermarks or image hashes are 37

extracted and compared to determine whether the original 38

image has been tampered with [2], [3], [4]. In contrast to 39
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active approaches, the passive approaches are more widely40

used as they do not rely on any prior information. They41

are mostly based on analyzing specific inherent clues or42

traces that left during the creation of forgery images. In this43

paper, we focus on forgery images detection based passive44

approaches. In [5], Farid divided image forgery operation into45

six different categories: compositing, morphing, retouching,46

enhancing, computer generating and painting. Among these47

categories, compositing operation, or alternatively image48

tampering, is one of the most popular technique to forge49

images as it is easier to process. In this paper, we mostly con-50

sider tampering image category. In a tampered image, there51

are the authentic parts and the tampered parts. If the tampered52

parts are copied within the original image, it is named copy-53

move tampering. If the tampered parts come from another54

image, it is named cut-paste tampering or splicing. These55

various forgery image operations would leave different traces56

during the creation process. Thus a single forensic detector57

would have difficulties giving good performance due to the58

following reasons. Firstly, each forensic method usually deals59

with a single type of manipulation or a single trace. It could60

then perform well with a specific forgery operation but much61

worse with others. For example, the copy-move detection62

methods relying on duplicated regions detection will fail to63

detect splicing images. Secondly, due to the advancement of64

information technology recently, most of tampering images65

are often the results of various processing tools. However,66

in blind forgery image detection approach, we do not have67

any prior information about which types of operation it has68

been undergone. Therefore, it would be better to construct69

a unified forensic detector system to be able to output a70

global answer about its authenticity. Thirdly, an individual71

forensic tool usually gives unreliable output as it only bases72

on a specific characteristic of a typical trace. Particularly,73

a single forensic detector is effective with a specific type of74

images. For example, the methods based on analysing device75

characteristics such as sensor pattern noise, Photo Response76

Non-Uniformity noise (PRNU) [6], [7], [8], color filter array77

(CFA) [9], [10] work well for RAW or TIFF images but78

worse for detecting JPEG forgery images with low quality79

compression. The algorithms based on exploiting the double80

quantization artifacts hidden among the DCT coefficients in81

forgery JPEG images to localize the tampered regions [11],82

[12], [13] fail in detecting forgery images which is processed83

in RAWand resave in JPEG.Methods based PRNU have high84

false detection rate on saturated and dark regions [14]. Some85

methods only detect tampered parts with large sizes while the86

others detect better with small sizes. Therefore, if we want to87

detect and localize the forgery image effectively, using a sin-88

gle forensic detector may not be efficient. In order to improve89

the robustness of the forgery image detection, it is neces-90

sary to use the fusion technique to merge information from91

different forensic tools. Fusion technique permits to either92

aggregate multiple cues from different forgery operations or93

integrate several decision output mappings of each single94

detector thus can exploit useful information from different95

sources. Hence fusion becomes a significant technique to 96

improve the performance in forgery images detection and 97

localization. However, how to select the different sources of 98

information to be combined and which method to fuse to 99

obtain a good performance in image forgery detection are 100

not evident tasks. To the best of our knowledge, there has 101

never had a systematic study before on the fusion technique 102

applied in forgery image detection and localization. In this 103

paper, we perform a review on information fusion in forgery 104

image detection and localization. We hope to help students 105

and researchers to have an overview about how to apply infor- 106

mation fusion in forgery image detection. We then make a 107

practical comparison of Bayesian and Dempster Shafer The- 108

ory fusion techniques applied in localizing forgery images. 109

This paper is an extension of [34] in which we present 110

a systematic review on information fusion in forgery image 111

detection and localization. We also propose a fusion frame- 112

work to improve the forgery detection and localization by 113

integrating the decision maps of the forensic algorithms 114

which detect copy-paste and copy-move tampering. More 115

importantly, a comparative study of two fusion techniques 116

DST and Bayesian is presented. And finally, the experiment 117

results are tested on more datasets comparing to [34]. 118

The remainder of this paper is organized as follows. 119

Section II gives a brief definition of information fusion and 120

discussion onwhat andwhen to fuse. In Section III, we review 121

fusion methods which have been applied in forgery image 122

detection and localization. We then make a practical com- 123

parison of Bayesian and Dempster Shafer Theory fusion 124

techniques applied in localizing forgery images in Section IV. 125

Finally Section V concludes our work. 126

II. FUSION IN IMAGE FORGERY DETECTION 127

In this section, we first definewhat information fusion is, then 128

discuss what source of information to be fused and when to 129

fuse in forgery image detection and localization problem. 130

A. DEFINITION OF INFORMATION FUSION 131

There have been existed many definitions of data fusion. 132

The authors in [15] gave a general definition of information 133

fusion as ‘‘the science of combining measurements, signals, 134

or observations from different sources to obtain a result that 135

is in some sense better than what could have been achieved 136

without this combination.’’ Due to this advantages, fusion 137

is a crucial topic in many scientific fields including sen- 138

sors fusion, data fusion in internet of things [16], remote 139

sensing [17], [18], [19], medical images fusion [20], [21], 140

biometric fusion [22], fusion in steganalysis [23] and fusion 141

in digital image forensics [24], [25], [26], [27]. 142

B. INFORMATION SOURCE TO FUSE 143

1) Multi-cue An image is usually forged by using many 144

different image processing tools, thus it leave various 145

traces. For example, a spliced image can be created by 146

cutting a region from an uncompressed or jpeg image 147

and pasting into a jpeg host image and then resaving in 148
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jpeg. This causes the double quantization traces [28],149

[29], [30], [31]. If the copied part in the spliced image150

comes from different camera, it leaves the camera sen-151

sor traces. The authors in [24] proposed a statistical152

fusion framework to integrate multiple cues suitable for153

forgery detection, such as double quantization artifacts154

and camera response function inconsistency.155

2) Multi-scale To localize an image we use the sliding156

window manner. There is a tradeoff between choosing157

the size of the windows and the accuracy. If the size is158

too large, it cannot detect small forgery parts. If the size159

is too small, there may be not enough data for statistics160

analysis. The authors in [26] and [27] proposed to161

fuse multiple candidate tampering maps resulting from162

the analysis with different sizes of sliding windows163

to obtain a more reliable tampering map with better164

localization resolution.165

3) Multi-algorithm In the jpeg forensics, forgery creation166

could leave different jpeg compression traces such as167

double quantization [28], non alignement jpeg grid [29]168

and ghost jpeg traces [30]. In [27] the authors pro-169

posed the Dempster Shafer Theory Fusion to exploit170

all available information from these traces to achieve a171

more reliable decision of the authenticity of an image.172

In [32], the authors combine the algorithm based PRNU173

and the one based CFA. The authors [33] integrated174

the tampering maps of statistical feature-based detector175

and copy-move forgery detector. In [34] the authors176

fused tampering maps obtained from PRNU and sta-177

tistical feature-based detectors.178

C. LEVELS OF FUSION179

There are generally three stages in the forgery image detec-180

tion and localization pipeline at which information can be181

fused, including feature-level fusion, score-level fusion and182

decision-level fusion.183

1) Feature-level fusion involves training a single classi-184

fier in a concatenated feature space. Fusion at feature185

levels could improve the detection performance but186

becomes computationally demanding due to exponen-187

tial growth of the dimensionalities of the training set.188

2) Score-level fusion (or is also called measurement-level189

fusion [35]) is performed by aggregating the outputs190

of individual forensic detectors, which are trained sep-191

arately. These scalar outputs could be classification192

score or probability.193

3) Decision-level fusion is performed at the latest stage194

to merge binary results which are thresholded of each195

forensic detector. Fusion at this level is computationally196

efficient however it reduces some amount of detailed197

information at early levels such as features, scores.198

III. FUSION METHODS199

Despite the evident potential benefit of fusing information200

in forgery image detection and intensive research has been201

done, the knowledge of how to exploit the information, how 202

to perform information fusion are still at very preliminary 203

stages in digital image forensic field. In this sequel, we review 204

several mathematical theories for fusing information applied 205

in forgery image detection and localization problem. 206

There are twomain categories of fusion methods in forgery 207

image detection and localization problem due to its charac- 208

teristics. Firstly, the decision outputs of forensic algorithms 209

are usually unreliable and imprecise because of limited tech- 210

nical algorithm or particular characteristics of the considered 211

images (e.g. type of compression or saturated regions). There- 212

fore, the information sources to be fused such as traces and 213

decision maps are often imprecise and uncertain. There are 214

then approaches capable of representing specific aspects of 215

imperfect data such as methods based on probability theory, 216

Dempster-Shafer evidence theory and fuzzy set theory, etc. 217

Secondly, the image forgery detection and localization can be 218

seen as a classification problem in which it outputs the label 219

(e.g. tampered or not tampered) or even a label probability of 220

each pixel in the considered image. Hence methods of fusing 221

multiple classifiers are also studied to improve the robustness 222

in detecting and localizing forgery images. In the follow- 223

ing, we discuss four fusion methods including rule-based 224

fusion methods, probability-based methods, evidence reason- 225

ing methods, classification based methods. 226

A. RULE-BASED FUSION METHODS 227

The rule-based fusion method includes a variety of basic 228

rules of combining such as linear weighted fusion (sum and 229

product), MAX,MIN, AND, OR. In [36] and [37] the authors 230

fuse the output maps of three forensic tools, based on sensor 231

noise, machine-learning and block-matching, respectively. 232

A decision fusion strategy is then implemented using the 233

simple rule AND, based on suitable reliability indexes asso- 234

ciated with the binary masks. In [38], the authors proposed to 235

fuse three detectors which are PRNU based approach, Patch 236

Match based approach and Near-Duplicate based approach. 237

The tampering maps are merged with the AND operator, 238

according to a confidence value obtained evaluating the maps 239

on a training set of tampered images whose ground truth 240

tampering mask is known. 241

B. PROBABILITY-BASED METHODS 242

Probability-basedmethods rely on the probability distribution 243

which is defined based on the Kolmogorov axioms to express 244

data uncertainty. Among those, Bayesian fusion which lies 245

the Bayes estimator is one of the most powerful fusion 246

methodologies, especially for the fusion of heterogeneous 247

information sources. In fusion problem applied in detecting 248

and localizing tampering images, we are usually interested in 249

combining information such as traces, features, decision out- 250

puts, etc. of several quantities of interest Z = {Z1, . . . ,Zn}. 251

It is assumed that the information of each quantity of interest 252

Zi is di =
(
d1i , d

2
i , . . . , d

K
i

)
. In Bayesian fusion approach, 253

it is of our interest to compute the quantityP (Z | d1, . . . , dn). 254

In the following, we discuss two approaches related to 255
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Bayesian fusionmethodologywhich can be applied in forgery256

image detection and localization problem.257

1) THE CASE OF UNRELIABLE INFORMATION SOURCES258

As aforementioned, the output of forensic tools are often259

affected by uncertainty and impreciseness. In the sequel,260

we consider an example to show that Bayesian fusion method261

is able to handle uncertainties. Assume that we want to fuse262

the decision output of two forensic tools Z = {A,B}. The263

forensic tool A has the information d1 = (t1, r1) where t1264

is the tampering output map and r1 is the reliability of the265

output of tool A. Similarly, the information contribution of266

forensic tool B is d2 = (t2, r2). In Baysian fusion approach,267

one has to compute the posterior distribution P (Z | d1, d2)268

using Bayes’ theorem269

P (Z | d1, d2) =
P (d1 | Z, d2)P (d2 | Z)P (Z)

P (d1, d2)
270

=
P (d1 | Z)P (d2 | Z)P (Z)

P (d1, d2)
271

∝ P (d1 | Z)P (d2 | Z)272

Here we ignore some constants such as P (d1, d2) and P (Z)273

which is assumed to follow the uniform distribution on Z =274

{A,B}. We also assume that the information from each tool275

is conditionally independent given Z, e.g. P (d1 | Z, d2) =276

P (d1 | Z). By modelling the distribution P (d i | Z), we can277

then estimate the posterior distribution P (Z | d1, d2). For278

more detail, the reader can see the example that has been279

given in a similar form in [39].280

2) RELATION TO AN OPTIMIZATION APPROACH TO281

INFORMATION FUSION282

One of the goals of fusion problem is to find the optimal283

result via combining several available data. This is the reason284

why the Bayesian fusion problem resorts to Bayesian max-285

imum a posteriori (MAP) estimation problem. For example,286

at decision-level fusion, the authors in [26], [27], and [33] aim287

at computing the optimal tampering map x given a set data d288

of candidte maps obtained from different forensic detectors289

or from various scales of sliding windows. The posterior290

and prior distributions are the basis for further calculations.291

In [26], [27], and [33], the authors modeled the prior with292

a Markov Random Field (MRF) and then represented it in293

terms of Gibbs potentials. By this transformation, Bayesian294

MAP estimation corresponds to energy minimization prob-295

lem. In other words, the Bayesian fusion methodology is296

directly related to energy functional formalism. The authors297

in [24] also resolve the fusion problem to MAP estimation298

but they adopted the Discriminative Random Field (DRF)299

framework and thereby choosing the model for posterior300

distribution instead of the prior one. The logistic models are301

used for posterior probabilities.302

C. EVIDENCE REASONING METHODS303

Evidence reasoning methods include the method based304

Dempster-Shafer (DS) theory, which is amathematical theory305

for modeling uncertain and combining evidence from dif- 306

ferent sources to arrive at a degree of belief. Different from 307

Bayesian method, DS theory deals with measures of ‘‘belief’’ 308

which may not obey the classical probability axioms to repre- 309

sent uncertain knowledge. It assigns mass function to repre- 310

sent distribution of belief thereby not requiring to specify the 311

prior probability in advance. However, it does require mass 312

values to be assigned in a meaningful way to the elements of 313

the system. 314

In [27], the authors proposed a fusion framework based 315

DS theory to combine the output of several forensic tools 316

at measurement level thereby permitting to exploit as much 317

information about the tool reliability and about the compati- 318

bility between the traces of tampering. More precisely, three 319

combinations are carried out hierarchically in their frame- 320

work including incorporation of the output of each forensic 321

tool with its reliability, combination of different tools looking 322

for the same tampering traces and combination of different 323

traces. Each combination is merged by using Dempster’s 324

rule and Basic Belief Assignment (BBA) is redefined on 325

the same frame using marginalization and vacuous extension 326

before being combined. The final decision is then made by 327

comparing the two belief values of two sets: T is the union of 328

all propositions in which at least one trace is detected and N 329

is the single proposition in which none of the traces is found. 330

These belief values Bel(T ) and Bel(N ) are calculated over 331

the BBA of the final mass function. A region is decided to be 332

tampered when Bel(T ) > Bel(N ). 333

In [40], the authors also proposed a fusion framework 334

based DS theory, yet, they not only fuse output of different 335

forensic tools but also integrate several background informa- 336

tion into the framework such as tool-based information, trace- 337

based information and semantic-based information. Taking 338

into account these side information which influences the 339

reliability of the forensic tools, the forensic performance is 340

enhanced. Particularly, some local properties of the image 341

such as saturated or textured regions affect accuracy of the 342

forgery localization maps. Thus the values of output map are 343

adjusted by mapping this local background information to a 344

BBAon the frame of the considered trace by using themethod 345

proposed in [41]. Moreover, the global background affects 346

the output map when the estimated statistical model of the 347

tampered pixels and that of the original pixels are not well 348

separated. They then model the global information by defin- 349

ing a new BBA. In addition, the compatibility relationships 350

between traces are modeled as a BBA using Dempster’s rule. 351

Finally, the fused map is refined by exploiting the content of 352

the analyzed image. 353

D. CLASSIFICATION BASED METHODS 354

Classification-based methods include fuzzy logic based on 355

theory of fuzzy set and algorithms using machine learn- 356

ing such as K-Nearest Neighbor (KNN), Support Vector 357

Machines (SVM) and Naive Bayes (NB), etc. 358

The image forgery detection and localization can be seen 359

as a classification problem in which it outputs the label 360
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TABLE 1. Fusion techinques and their applications.

(e.g. tampered or not tampered) or even a label probability361

of each pixel in the considered image. In [42] Chetty and362

Singh classified tampered and not tampered pixels based on363

fuzzy integral. They first fuzzified features extracted from364

different forensic algorithms and then generated the mem-365

bership functions and fuzzy integral. The input pixels are366

classified into a specific class if that class has the maxi-367

mum output of fuzzy integral. In [35] and [43] Barni and368

Costanzo presented a fuzzy fusion system at measurement369

level to merge the outputs of several forensic tools in order to370

handle their uncertainty and impreciseness. They constructed371

the membership function from pairs (detection, reliability)372

provided by forensic algorithms and then used the if-then373

rules to compute the outcome. This outcome is then defuzzi-374

fied by being compared with a threshold to obtain the final375

decision. Kuar and Gupta [44] proposed a fusion framework376

based on fuzzy integrals for passive-blind image tamper377

detection. Different from the work of Chetty and Singh,378

they used the Sugneo and Choquet integrals as the aggre-379

gation operators to merge tool outcomes at the measurement380

level.381

As each detector has its own advantages and disadvan-382

tages, combination of different detectors is necessary to383

explore their complementary properties. A multiple classifier384

fusion [45] can be used to improve the robustness of forgery385

localization performance as it may generate more accurate386

classification than each of the individual classifiers. Classifier387

fusion is often based on combination rules like the product,388

sum, Weighted Majority Voting (WMV), Behavior Knowl-389

edge Space (BKS) and Naive Bayes Combiner (NB), etc.390

In [46], the authors combined several forensic tools such391

as detector based on Block Artifact Grid introduced by392

JPEG compression [47], detector based on the double quan-393

tization effect introduced when the original and the tam-394

pered regions in images were coded at different compression395

ratios [30], [31], detector based on finding traces of resam-396

pling in the image [48] and detector based on PRNU [14]. The397

fusion decision is implemented using several combination398

rules including Weighted Majority Voting (WMV), Behavior399

Knowledge Space (BKS) and Naive Bayes Combiner (NB),400

Product and Sum. The authors in [25] compare the majority 401

voting fusion, average fusion, supervised learning fusion and 402

clustering analysis fusion using K-means with the fusion 403

based energy minimization. 404

The traditional classifier fusion approaches did not con- 405

sider the conditional and spatial dependence of tampered 406

pixels with respect to their neighborhood pixels. The authors 407

in [49] solve this problem by proposing the Behavior 408

Knowledge Space representation fusion to integrate two best 409

approaches in the copy move detection: block-based and 410

points of interest detection methods. 411

The authors [33] integrated the tampering maps of statis- 412

tical feature-based detector (MFea) and copy-move forgery 413

detector (MPM ). They first projected the score of original 414

and tampered pixels of the training forgery images on the 415

MFea
−MPM plane, then manually designed a decision curve 416

with fewer parameters which is effective and faster compar- 417

ing to linear and non-linear classifiers such as SVM. The 418

experimental results show that this fusion strategy gives better 419

performance than the fusion based DRF and fusion based 420

supervised learning. 421

Recently, there have been several papers applying fusion in 422

deep learning and CNN to localize forger images [50], [51]. 423

In [50] Liu and Pun proposed a deep fusion network for splic- 424

ing forgery localization. Particularly, the deep convolutional 425

neural networks called Base-Net are first trained to extract 426

forensic features including JPEG compression artifacts and 427

noise discrepancy. Then the trained convolutional kernels 428

from the Base-Nets are used to construct the fusion-net to fuse 429

these forensic features. 430

Table 1 summarizes the fusion techniques and their 431

applications. 432

IV. BAYESIAN AND DST FUSION AND APPLICATION 433

In this section, we compare the two dominate fusion tech- 434

niques for multi-algorithms: Bayesian fusion and DST fusion 435

at decision-level fusions. We study the Bayesian fusion 436

as an optimization approach as mentioned in the sub- 437

section III-B2 which corresponds to energy minimization 438

problem. 439
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A. ENERGY MINIMIZATION BASED FUSION440

Forgery localization problem can be seen as a labeling prob-441

lem where we label 1 as a tampered pixel and 0 as an442

authentic pixel. Multi-algorithm fusion means to find the best443

labeling given decision maps of several forensic algorithms.444

The energy minimization based fusion tries to incorporate445

the knowledge from given data and the prior to look for the446

optimal labeling map. This framework is used in multi-scale447

fusion [25], [26]. Particularly, denote vector t ∈ {0, 1}N a448

tampering map of the image which is vectorized of size N .449

Denote vector m(k) ∈ {0, 1}N be the tampering map of the450

forensic algorithm k th. The optimal tampering map aggregat-451

ing from K forensic algorithms is the one maximizing the452

posterior probability given a set of tampering mapsm(k):453

t̂ = argmax
t∈{0,1}N

P
(
t | m(k)

: k = 1, . . . ,K
)

(1)454

Ignoring the constant term P (m), the problem can be rewrit-455

ten as:456

t̂ = argmax
t∈{0,1}N

P
(
m(k)
: k = 1, . . . ,K | t

)
P (t) (2)457

Assume the independence between mi, we have458

t̂ = argmax
t∈{0,1}N

N∏
i=1

P
(
m(k)i : k = 1, . . . ,K | ti

)
P (t) (3)459

Assume the independence between methods, we have:460

t̂ = argmax
t∈{0,1}N

N∏
i=1

K∏
k=1

P
(
m(k)i | ti

)
P (t) (4)461

The prior is usually assumed the smoothness of neighboring462

pixels and is then modeled with a Markov random field in463

which the decision at each pixel depends only on its direct464

neighborhood. It is noted that MRF formulation and Gibbs465

energy formulation are equivalent due to the Hammersely-466

Clifford theorem. Thus P (t) is modeled as follows:467

P (t) = Z−1e−U(t) = Z−1e
−
∑
c∈C

Vc(t)
(5)468

where Z is a normalizing constant, Vc is a clique which is469

defined as a subset of pixels such that any two distinct pixels470

are mutual neighbors. Then471

t̂ = argmax
t∈{0,1}N

N∏
i=1

K∏
k=1

P
(
m(k)i | ti

)
Z−1e

−
∑
c∈C

Vc(t)
(6)472

Taking a negative logarithm of (6), the fusion problem can be473

solved by minimizing the following function:474

∑
c∈C

Vc (t)−
N∑
i=1

K∑
k=1

logP
(
m(k)i | ti

)
(7)475

Similar to the work of [25], [6], [26], we use the Ising476

model [52] which considers single-element and two-element477

cliques.478

Denote E
(
m(k)i , ti

)
= − logP

(
m(k)i | ti

)
. The multi- 479

algorithms fusion becomes minimizing the following energy 480

function: 481

N∑
i=1

K∑
k=1

E
(
m(k)i , ti

)
+ α

N∑
i=1

ti + β
N∑
i=1

∑
j∈Ni

| ti − tj | (8) 482

where Ni contains top, bottom, left, right neighbor pixels 483

of i. The parameter α controls the preference towards sparser 484

tampering maps and the paraleter β controls the interaction 485

strength of neighboring pixels. 486

We use the graph-cut based solver [53], [54] from UGM 487

toolbox [55] to find the optimal tampering map. This 488

approach uses a MRF to model the prior thus we call it 489

interchangeably as MRF based fusion approach. 490

B. FUSION METHOD BASED DEMPSTER-SHAFER THEORY 491

1) ELEMENTS OF DEMPSTER-SHAFER THEORY 492

DST which is an effective theoretical framework for fusing 493

and reasoning with uncertain and/or imprecise information 494

was introduced by Dempster and Shafer [56], [57]. In this 495

subsection, we briefly review its two main components: the 496

degrees of belief representation and the Dempster’s rule for 497

combining such degrees of belief when they are based on 498

independent sources. Let X be a variable taking values in 499

a finite domain Ω = {ω1, . . . , ωn}, called the frame of 500

discernment. Evidence about X may be represented by a mass 501

function m : 2Ω → [0, 1] such that 502∑
A⊆Ω

m (A) = 1 (9) 503

Each number m(A) denotes a degree of belief attached to 504

the hypothesis that X ∈ A. m is said to be normalized if 505

m(∅) = 0. This property will be assumed hereafter, unless 506

otherwise specified. Corresponding to a mass function m, 507

we can associate belief functions Bel : 2Ω → [0, 1] defined 508

as follows 509

Bel (A) =
∑
B⊆A

m (B) (10) 510

Quantity Bel(A) can be interpreted as the degree to which 511

the evidence supports A. 512

In order to combine the evidence coming from multiple 513

independent sources of information, we can use Dempster’s 514

combination rule to merge them. Let m1 and m2 be two mass 515

functions derived from independent items of evidence. They 516

can be fused to induce a new mass function m12 defined as 517

m12 (A) =
1

1− K

∑
B,C⊆Ω,B∩C=A

m1 (B)m2 (C) (11) 518

where K =
∑

B,C⊆Ω,B∩C=∅
m1 (B)m2 (C) , K < 1 measures 519

the degree of conflict between evidence m1 and m2. When 520

K = 1, we define m12 (A) = 0. 521

In the following subsections, two applications using 522

Bayesian and DST fusion are presented. In the first appli- 523

cation, the decision maps of two forensic algorithms PRNU 524
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and Statistical Features (SF) based forgery detectors are525

integrated. The experiment is tested on our created dataset526

taken from three cameras Canon EOS-100D, Nikon D5200527

and Panasonic DMC-GM1. In the second application, the528

decision maps of two forensic detectors for cut-paste and529

copy-move forgeries are aggregated. The experiment is530

tested on the public Realistic Tampering Dataset1 created by531

Korus et al. [26].532

C. APPLICATION I: FUSION TWO FORENSIC ALGORITHMS533

PRNU AND SF BASED FORGERY DETECTORS534

To compare the performance of Bayesian and DST fusion,535

we consider to aggregate two image forgery detectors, one536

based on PRNU and the other based on SF.537

1) PRNU-BASED FORGERY DETECTION538

The PRNU which is a camera imaging sensor imperfection539

can be considered as a unique sensor pattern of each individ-540

ual camera thereby being used for forgery detection. The idea541

is that the tampered regions could destroy or change position542

of the PRNU in the image. Therefore, by testing on which543

part of the image the PRNU is changed, one is able to reveal544

the tampered regions. We consider a simplified model of the545

image acquisition pipeline [58].546

y = (1+ k)x + η (12)547

where y is a captured image, x is its idealized noise-free548

version, k is the camera PRNU, η is an additive noise term549

which accounts for all types of disturbances, and products550

between images, unless otherwise stated, are pixel-wise. The551

PRNU k can be estimated from N images obtained by the552

camera y1, . . . , yN using the maximum likelihood principle.553

k̂ =

∑N
n=1 rnyn∑N
n=1 y

2
n

(13)554

where rn = yn−f (yn) is the noise residual of the image yn, f is555

a denoising filter. In the following, for the sake of simplicity,556

we assume that the estimation of the camera PRNU has no557

error, i.e., k̂ = k .558

The PRNU of the image under test is compared with the559

reference PRNU in a sliding-window based manner. The560

forgery detection at each pixel yi,j is formulated as a binary561

hypothesis testing problem applied to a block B centered562

around the pixel yi,j.563 {
H0 : rB = ηB
H1 : rB = zB + ηB

(14)564

where rB, zB and ηB are the restrictions of r , z, and η respec-565

tively, to the block B, z = yk is the signal of interest (also566

called the reference PRNU). If the PRNU is absent in the567

block B (hypothesis H0), its central pixel is labeled as being568

tampered. If the PRNU is present in B (hypothesis H1), its569

central pixel is labeled as being genuine. The detection test is570

1http://pkorus.pl/downloads/dataset-realistic-tampering

based on normalized correlation 571

ρij = corr (rB, zB) (15) 572

The probability density function (pdf) of ρij under hypothesis 573

H0 is estimated by correlating the camera PRNUand the noise 574

residuals coming from other cameras. The pdf of ρij under 575

hypothesis H1 is heavily influenced by the block content. 576

In deed, even in the genuine blocks, the correlation might be 577

very low when these blocks are dark, saturated, or textured. 578

The authors in [58] estimated a predictor based on local 579

images features, such as texture, flatness and intensity, and 580

then computed the expected value ρ̂ij of the correlation under 581

hypothesisH1 hoping to reduce the false alarm in these cases. 582

The decision mapMPRNU is then defined as follows 583

MPRNU
ij =

{
0 ρij < γ1 AND ρ̂ij > γ2

1 else
(16) 584

where γ1 is the threshold selected with a Neyman-Pearson 585

approach to obtain the desired false acceptance rate (FAR), 586

γ2 is a threshold chosen heuristically to avoid labeling non- 587

tampered (MPRNU
ij = 1) pixels as tampered (MPRNU

ij = 0). 588

2) SF-BASED FORGERY DETECTION 589

The SF based forgery detection is an approach in which 590

we first extract some inherent features of image blocks that 591

are likely to be modified when an image undergoes tam- 592

pering and then use these features to proceed a two-class 593

pristine/forged training procedure. It can be said that this is 594

a universal approach in which we can detect many types of 595

forgeries though the accuracy is not high. Among various 596

statistical feature sets proposed in steganalysis, in this paper 597

we adopt the statistical features named Spatial Color Rich 598

Model (SCRM) [59] which work quite effectively in forgery 599

detection [33]. SCRM is an extension of SRM. The SRM 600

features from the R, G, and B channel are first added together 601

and then concatenated three dimensional co-occurrences of 602

residuals computed from all three color channels. These 603

features are then used for training procedure. Based on a 604

sliding-window manner, the training samples are extracted 605

from tampered and pristine blocks of size 64 × 64 pixel 606

with a step of 16-pixel and then fed into an ensemble clas- 607

sifier [60] with linear discriminant analysis base learners for 608

identifying whether an image block is genuine or fake. The 609

image under test I is divided into 64 × 64 pixel sliding 610

windows with a step of 16-pixel. For each sliding window, 611

the pre-trained ensemble classifier outputs a vote score v ∈ 612

{−nb,−nb + 1, . . . , nb − 1, nb} where nb is the number of 613

base learners in the ensemble classifier. The decision map 614

MSF is computed as follows. 615

MSF
i,j =

1
2nb

(
1
K

K∑
k=1

vk + nb

)
(17) 616

where K is the number of blocks containing pixel Ii,j, and vk 617

is the vote score for the k th block that contains Ii,j. 618
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3) DST BASED FUSION619

The framework proposed in this subsection aims at fusing620

the evidence coming from the PRNU-based forgery detection621

and the SF-based forgery detection. We believe that aggre-622

gating the evidence from the SF-based approach will help to623

decrease the false alarm rate on the saturated and dark regions624

of images. The fusion procedure can be described as follows.625

• Constructing mass functions m1 and m2 from the evi-626

dence of each approach: the PRNU-based forgery detec-627

tion and the SF-based forgery detection.628

• Using Dempster’s combination rule to induce a fused629

mass function m12 from m1 and m2.630

• Computing the belief function corresponding to themass631

function m12.632

• Making final decision bases on the belief function.633

What we are interested in this section is that whether the634

pixel Ii,j in test image I is tampered or not tampered. We can635

model this scenario by defining a variable X with frame636

Ω = {it, nt} where it is the proposition ‘‘the pixel Ii,j is637

tampered’’, and nt is the proposition ‘‘the pixel Ii,j is not638

tampered’’. We want to quantify how much we are confident639

in these propositions.640

The mass function m1 and m2 are respectively constructed641

from the decision maps of the PRNU-based forgery detection642

and the SF-based forgery detection.643

m1 (X) =

{
t1 forX = {it}

n1 forX = {nt}
(18)644

m2 (X) =

{
t2 forX = {it}

n2 forX = {nt}
(19)645

where646

t1 = MPRNU
i,j , n1 = 1− t1647

t2 = MSF
i,j , n2 = 1− t2 (20)648

The degree of conflict K and the fused mass function m12 is649

computed as follows650

K = t1n2 + t2n1 (21)651

m12 ({it}) =
t1t2

1− K
=

t1t2
1− t1n2 − t2n1

652

m12 ({nt}) =
n1n2
1− K

=
n1n2

1− t1n2 − t2n1
(22)653

The belief function in this case is equal to the fused mass654

function: Bel ({it}) = m12 ({it}) and Bel ({nt}) = m12 ({nt}).655

The quantity Bel ({it}) is the degree to which the evidence656

supports that the pixel Ii,j is tampered. We then make a657

decision that a pixel is tampered if its degree of belief of tam-658

pering is greater than that of non tampering, i.e. Bel ({it}) >659

Bel ({nt})+ λ, where λ is a threshold chosen heuristically.660

4) MRF BASED FUSION661

Taking m(1)
= MPRNU and m(2)

= MSF where MPRNU and662

MSF are vectorized, and solving the optimal problem defined663

in eq. (8). We use the data term as in [26] and [27]: 664

Eτ (mi, ti) = − logmax (Ψmin, Ψτ (mi, ti)) (23) 665

with Ψmin ∈ [0, 1] and 666

Ψτ (mi, ti) =


1−

mi
2τ

for ti = 0

1+
mi − 1
2 (1− τ)

for ti = 1
(24) 667

5) EXPERIMENTAL RESULTS 668

In this subsection, we will report some preliminary experi- 669

ments to compare the performance of two fusion techniques. 670

Our experiments were carried out on the dataset of the UTT 671

which includes of images taken from three cameras, a Canon 672

EOS-100D, a NikonD5200 and a Panasonic DMC-GM1. The 673

first row of Fig. 1 is some examples of realistic tampering 674

images created by hand in modern photo-editing software 675

in which their original images taken from the dataset of 676

UTT. We first have estimated the PRNU of each camera 677

over 100 images and then have extracted 25000 correlation 678

samples over 25 images coming from other cameras and 679

25000 samples coming from the same camera to train the 680

correlation predictor as proposed in [58]. 681

We present in this section results only for one of the 682

cameras, a Canon EOS-100D. For our experiments we used 683

200 tampered images and 200 pristine ones. The forgeries 684

have been created with a copy-and-paste process and are 685

all rectangular with size of 128 × 128. We evaluated the 686

percentage of correctly detected forged pixels in the tampered 687

images (PD) and the percentage of falsely identified pixels 688

in the pristine ones (PFA), varying the relevant parameters of 689

the algorithms that is, the γ1, γ2 in the PRNU-based forgery 690

detection algorithm, and the threshold λ in the DST fusion 691

and the parameter α, β in the Bayesian fusion. 692

In Fig. 1, we show the evaluation on several realistic tam- 693

pered images (second row). The original images (first row) 694

are taken from Canon EOS-100D camera and then are forged 695

by inserting objects using the popular photo editing software 696

GIMP. The third and fourth columns show the output maps 697

of the SF and the PRNU based approaches. As can be seen, 698

each individual approach has its own limitation. The PRNU 699

based approach correctly detects the tampered regions but the 700

false alarm rate is hard to avoid due to the saturated regions 701

(see Fig. 2) and dark regions (see Fig. 3). In contrast, the SF 702

based approach does not localize tampered regions with high 703

accuracy but it does not have problemwith saturated and dark 704

regions. The integrated map fused from the PRNU and SF 705

approaches in the fifth row shows a significant improvement 706

of the DST fusion method. The last row are the decision 707

maps integrated using MRF based fusion. We can see that, 708

on these selected forgery images,MRF based fusion performs 709

worse than DST based fusion did. It is worth mentioning that 710

we did not apply any morphological operation in the fusion 711

approach. 712

In Fig. 4 we show the ROCs (receiver operating char- 713

acteristics) of the PRNU-based approach and of the fusion 714
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FIGURE 1. Realistic examples of localizing tampering images. The first row are original images, the second row are tampered images, the third row are
detection maps by SF-based approach, the fourth row are maps detected by PRNU-based approach, the fifth row are maps created by the DST based
fusion and the last row are the decision maps integrated using MRF based fusion.

approaches computed on the complete test set (200 forgery715

images and 200 genuine images). We can see in Fig. 4716

that the performance of two fusion techniques are quite717

similar.718

In Fig. 5 we show the ROC curves of the PRNU-based719

approach and of the DST and Bayesian fusion techniques720

computed on the 10 forgery images and 10 genuine images721

whose saturated and dark regions are considerable. We can722

see in Fig. 5 that the DST and Bayesian fusion approaches723

significantly outperform the single PRNU-based approach.724

The DST fusion has better performance comparing to the725

Bayesian fusion in the sense that with the probability of false726

alarm in the range [0.12, 0.4], the DST fusion technique gives727

greater detection probability.728

It is noted that choosing what to fuse is also an art. It had 729

better to analyze the strength and weakness of each algorithm 730

before deciding to fuse them. As mentioned before, the weak- 731

ness of PRNU algorithm is to make high false alarm rate on 732

the saturated and the dark regions while the SF based detec- 733

tor does not. Therefore, integrating these two maps could 734

enhance the detection performance. If we test on the dataset 735

where there are not considerably saturated and dark regions, 736

it is hard to see the significant improvement because the SF 737

based algorithm does not have a chance of leveraging its 738

advantage. This explains why the tested results on 200 images 739

in general do not show much improvement comparing to the 740

results on 10 images whose saturated and dark regions are 741

considerable. 742

99276 VOLUME 10, 2022



A.-T. Phan-Ho, F. Retraint: Comparative Study of Bayesian and Dempster-Shafer Fusion on Image Forgery Detection

FIGURE 2. An example of falsely detected of PRNU based detector on
saturated regions which are limited by blue curves.

FIGURE 3. An example of falsely detected of PRNU based detector on
dark regions which are limited by blue curves.

FIGURE 4. ROC for PRNU-based forgery detection algorithm and the DST
and Bayesian fusion one on 200 images.

FIGURE 5. ROC for PRNU-based forgery detection algorithm and the DST
and Bayesian fusion one on 10 images.

Beside that, we also use the F1-score to evaluate the743

detection performance [61]. F1-score is the harmonic mean744

of Precision (P) and Recall (R) which are computed from745

the confusion matrix of True Positive (TP), False Positive746

(FP),True Negative (TN) and False Negative (FN) as follows: 747

P =
TP

TP+ FP
and R =

TP
TP+ FN

(25) 748

F1 = 2
P · R
P+ R

=
2TP

2TP+ FN + FP
(26) 749

The F1-score takes a high value when Precision and Recall 750

are both important. The higher F1-score, the more efficient 751

the algorithm is. Please see Table 2 for the meaning of the 752

measure used in forgery localization performance. 753

TABLE 2. Measure to evaluate forgery localization performance.

Table 3 shows the F1-score evaluated on the 10 forgery 754

images and 10 genuine images whose saturated and dark 755

regions are considerable. We can see that although the F1- 756

score are low but it did show the significant improvement 757

of the fusion. The F1-score of DST fusion is highest and 758

10 times greater than those of PRNU and SF based detectors. 759

TABLE 3. F1-score on the dataset of UTT.

D. APPLICATION II: FUSION TWO FORENSIC 760

ALGORITHMS DEMOSAICING ARTIFACTS AND 761

COPY-MOVE BASED FORGERY DETECTORS 762

As mentioned in the introduction, the tampered parts of an 763

image could either be copied within the original image, the 764

so-called copy-move tampering, or come from another image, 765

the so-called copy-paste tampering. The copy-move detection 766

methods usually rely on duplicated regions detection thereby 767

failing to detect copy-paste tampering images. On the other 768

hand, algorithms aiming at detecting copy-paste tampering 769

are limited to detect copy-move tampering images. Motivated 770

from this idea, we come up with the idea integrating decision 771

maps generated from algorithm detecting copy-paste and 772

copy-move tampering to enhance performance. In the context 773

of the project DEFACTO,2 we find it necessary to combine 774

the decision maps from different research teams [62], [63] to 775

enhance the detection performance. In [62] Le et al. proposed 776

to use demosaicing artifacts (also known as color filter array 777

(CFA) interpolation) to detect tampered parts of images. Par- 778

ticularly, traces left by demosaicing are specific for different 779

camera brands and/or models. The lack of these traces or their 780

2https://anr.fr/Project-ANR-16-DEFA-0002
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FIGURE 6. Fusion of forensic algorithms improves detection performance
by detecting both cut-paste and copy-move forgery regions. These two
tampering images are chosen from the dataset of Korus [26]. The first
rows are original images, the second row are tampered images, the third
row are ground-truth images, the fourth row are maps detected by [62],
the fifth row are maps detected by [63] and the last row are integrated
maps based on MRF fusion.

inconsistency for different image regions may indicate the781

presence of tampering. In [63] Mahfoudi et al. proposed to782

utilize the SIFT key-points and descriptors and then filter the783

result using a Local Dissimilarity Map to detect copy-move784

tampering. However, each of these algorithms has its own785

drawback. For example, we can see the first column in Fig. 6,786

the algorithm [62] could not detect the copy-move tampering787

and the algorithm [63] failed to detect the copy-paste in the788

image (see the fifth row in Fig. 6). Therefore it is a good idea789

to fuse these decision maps to improve the performance.790

Let denote the decision maps generated from algorithm791

in [62] and [63] respectivelyMCP (CP: copy-paste) andMCM
792

(CM: copy-move). The procedure to aggregate these decision793

maps based on DST andMRF fusion is totally similar to ones794

presented in Sub-section IV-C3 and Sub-section IV-C4.795

More particularly, for the DST fusion, we only replace the796

maps in equation (20) as follows797

t1 = MCP
i,j , n1 = 1− t1798

t2 = MCM
i,j , n2 = 1− t2 (27)799

Similarly, for the MRF fusion, we take m(1)
= MCP and800

m(2)
= MCM .801

TABLE 4. F1-score on data Korus.

1) EXPERIMENTAL RESULTS 802

The experiment is tested on images containing both 803

copy-move and copy-paste tampering chosen from the dataset 804

generated by Korus et al. [26]. Such chosen images would 805

leverage the performance of fusion algorithms because 806

the individual algorithms in [63] and in [62] fail to 807

detect copy-paste and copy-move tampering respectively (see 808

Fig. 6) while the integrated of these two algorithms could 809

detect both tampering operations. 810

The F1-score in Table 4 shows that the MRF based fusion 811

gives the highest F1-score while the DST based fusion gives 812

the lowest F1-score. Figure. 7 visually illustrates that the 813

MRF based fusion algorithm gives better performance than 814

the DST based fusion and individual algorithm [62], [63]. 815

This significant improvement of the MRF based fusion is 816

mainly based on the following reasons: First, the prior of the 817

tampering map is modeled with a MRF thereby exploiting 818

spatial dependencies of neighborhood pixels. This helps a 819

lot to decrease the number of non-detected tampered pixels 820

comparing to the algorithm [62]. For instance, comparing 821

to the ground-truth images in the third column of Fig. 7, 822

we see that the MRF fusion (the last column) is able to 823

detect splicing pixels that the algorithm in [62] missed (the 824

forth column). Second, the MRF fusion could integrate both 825

copy-paste and copy-move tampering parts (see first column 826

of Fig. 6 and first and last column of Fig. 7). Third, the DST 827

based fusion in this context fails to improve the performance 828

because the DST is limited to combine the conflict evidence. 829

More specifically, we are considering to combine the decision 830

maps of the algorithm [62] which could detect copy-paste 831

tampering but not copy-move and those of [63] which could 832

detect copy-move but not copy-paste tampering. Therefore, 833

there are usually the conflict parts in these maps. That is the 834

reason why the decision maps generated from DST fusion 835

(the sixth column of Fig. 7) are usually all black. 836

E. DISCUSSION 837

In this subsection, we will discuss the differences and sim- 838

ilarities between the DST and MRF fusion techniques and 839

explain the advantages and disadvantages of each fusion 840

technique in two considered experiments. 841

Both fusion techniques have a certain initial requirement. 842

While the Bayesian technique requires the prior probabili- 843

ties, the DST technique requires masses to be assigned in a 844

meaningful way to the various states, including an undecided 845

state. However, in this work we only consider two states 846

that are tampered and not tampered. The implementation of 847

DST fusion is quite simple comparing to the Bayesian fusion. 848
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FIGURE 7. The decision maps of some images from the dataset of Korus [26].

In Bayesian fusion method we have to pay a cost for building849

the edge struct of Markov Random Field and the computing850

complexity for finding the optimization on the graph.851

In the first experiment, on a particular dataset, DSTmethod852

outperforms the Bayesian fusion method. In this case, the853

maps obtaining from two forensic algorithms usually have854

some common tampered parts and some conflicting parts (see855

Fig. 1). Those conflicting parts include false detection parts856

of the PRNU on the saturated regions and false detection parts857

of the SF based detector. The DST fusion technique succeeds858

in choosing the common parts and ignoring the conflicting859

parts thereby enhancing the performance. However, this is860

not the case of Bayesian fusion. From a Bayesian perspective,861

the Bayesian fusion needs more prior information about this862

conflict. In other words, the Bayesian fusion requires the863

knowledge about the reliability of the both forensic detec-864

tors, i.e., what is the probability that the forensic algorithm865

decides the given pixel is tampered. The readers can find866

more explanation about Bayesian approach to fuse conflicting867

information in [64]. Thus we think that it is possible that868

Bayesian fusion technique can be improved its performance869

if we are given more prior information about each tampering870

map [25], [26].871

In the second experiment, theMRF based fusion gives con-872

siderable improvement comparing to the DST based fusion873

technique. It turns out that the strength of the DST based874

fusion method mentioned in the first experiment is its dis-875

advantage in the second experiment. More particularly, the876

limitation in dealing with the conflict evidence prevents the877

DST based fusion from combining the copy-paste and copy-878

move tampering. The disadvantage of the MRF based fusion879

method in the first experiment is the strength for the second880

experiment. Exploiting the spatial dependencies of neighbor-881

hood pixels of MRF based fusion method has significantly882

enhanced the detection performance in the second context.883

Therefore, it could be said that the choice of the best fusion884

technique depends on the problem under consideration, on the885

properties and characteristics of each individual algorithm.886

V. CONCLUSION 887

This paper has provided a systematic review on the state-of- 888

the-art of fusion techniques applying in detecting and local- 889

izing forgery images domains. We then have proposed two 890

effective fusion techniques, DST and Bayesian, to aggregate 891

the tampering maps. Two fusion scenarios have been consid- 892

ered and experimental results have been tested on two differ- 893

ent datasets. In the first scenario, the fusion method is applied 894

to aggregate the decision maps of PRNU based approach and 895

SF based approach. Preliminary experimental results have 896

shown that DST fusion method outperforms the Bayesian 897

fusion method on a particular dataset. This improvement is 898

mainly due to the fact that the DST fusion method has signif- 899

icantly decreased the false positive rate on the saturated and 900

dark regions which is one of the most challenging limitation 901

of the PRNU based approach. In the second scenario, the 902

fusion method is applied to integrate the decision maps of the 903

algorithm based on demosaicing artifacts and the one based 904

on SIFT key-points and descriptors. The experimental results 905

have shown that MRF fusion has considerably performed 906

better than the DST fusion. The ability to exploit the spatial 907

dependencies of neighborhood pixels in the decision maps 908

has leveraged the detection performance ofMRF based fusion 909

technique. 910

We have concluded that the final choice for a fusion 911

framework depends on the scenarios, the properties of each 912

individual forensic algorithm and requirements of the user. 913

In this paper, we have just considered the very basic setting 914

and conditions on two fusion methods. As a topic for further 915

research, we shall devote to analyzing more deeply on each 916

fusion method. Particularly, the limitation of the traditional 917

DST fusionwhen dealingwith conflict evidence shall be stud- 918

ied further [65]. Moreover, we shall consider more advanced 919

combination rules in DST fusion such as the transferable 920

belief model (TBM) [66] and Dezert-Smarandache theory 921

(DSmT) [67]. Various dataset and more prior information 922

for Bayesian method will be provided to have a thorough 923

comparison between these two methods. 924
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