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ABSTRACT Massive proliferation of Variable Energy Resources (VERs) in modern power systems has
posed a variety of challenges to the reliable operation of the power grid and has, at times, jeopardized the
system flexibility. Flexibility is the system’s ability to respond to and cope with the imbalances between
supply and demand while managing the uncertainty and variability of VERs and maintaining the power
system’s security and reliability within the acceptable margins. Leveraging the system’s available resources
and capabilities, the system operators must take strategic actions to mitigate the impacts of VERs on the grid
flexibility at a reasonable cost. The concept of flexibility is somewhat novel, which calls for profound studies
and analyses to address different aspects of flexibility, but not limited to definition and characterization of
standard metrics and indices to measure the power grid flexibility, flexibility-centred operation and planning
models for the power grid, etc. This paper provides a comprehensive review of the state-of-the-art research
on power system flexibility, including existing definitions and quantification measures, flexible resources,
and flexibility products and services in electricity markets.
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INDEX TERMS Electricity markets, flexibility, reliability, uncertainty, variability, variable energy resources
(VERs).

I. INTRODUCTION15

Contemporary power systems are generally made up as a16

combination of fossil-based generating units with renewable17

energy resources to balance varying demand at different18

timescales. However, large-scale integration of VERs, par-19

ticularly solar and wind, has exposed the power system to20

an immense variability and uncertainty in the power gener-21

ation portfolio which has consequently jeopardized the grid22

security [1]. The VER generation concerns the power grid23

in different operational horizons, e.g., the movement of a24

cloud above a Photovoltaic (PV) power plant in seconds25

or erraticism of wind power output in months [2]. System-26

wide impacts of VERs are featured with a wide spatiotem-27

poral heterogeneity, e.g., temporary variabilities challenge28
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the system capability in terms of frequency control services; 29

however, generation variabilities in intra-hours involve the 30

ability of supply to follow demand and operational reserves’ 31

capacity appropriation. The deeper the penetration of VERs 32

in a power system, the more drastic change in the shape of the 33

net-load (load minus VER). High penetration of the VERs 34

makes it extra arduous to maintain an equilibrium between 35

supply and demand since larger VER deployment comes 36

with greater rate of variability and superior forecast errors 37

on the generation outputs. These challenges have led to an 38

introduction of the term ‘‘flexibility’’ in power systems with 39

the goal to maintain economic and secure operation while 40

coping with increasing levels of fluctuations imposed by 41

extensive integration of non-dispatchable renewables [3]. It is 42

inferred that the provision of flexibility depends on the net- 43

load characteristics. Foremost features of the net-load which 44

influence the system flexibility are net-load variation rate, 45
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daily breadth of the highest and lowest net-load values and the46

uncertainty of the net-load forecast errors [4]. Disregarding47

the aforementioned factors in the prognostication of the net-48

load, the system may encounter flexibility shortages. Power49

systems with flexibility shortages will have to exercise the50

VER curtailment during periods with downward ramp capac-51

ity requirement and load curtailments during periods with52

upward ramp capacity shortage [5], [6]. In [7], Lannoye et al.53

conferred the role of flexibility in power systems. In [8],54

a review on power system flexibility is conducted, but the55

research lacks the applications of the flexibility services in56

the energy markets. With the main focus on flexibility appli-57

cations, authors in [9] epitomize flexibility products used in58

the electricity markets, while other flexibility aspects e.g.,59

metrics and definitions, were neglected. Akrami et al. in [10]60

overviewed the concept of flexibility in many aspects that61

can be enhancedwith new quantificationmetrics of flexibility62

and some notable services in the generation sector. Besides,63

their review suggests categorization of flexibility resources64

into two general groups, which might seem questionable due65

to the integrated and interdependent operation of the electric66

grid with heating sector. In [11], Emmanuel et al. discussed67

the application of flexibility in power systems, while it can68

be further extended to grid infrastructure and energy storage69

solutions.70

In this paper, our goal is to present a clear-cut definition71

of flexibility capturing the latest updates on this concept.72

Besides, this research attempts to divvy the available metrics73

of flexibility which are essentially transacted in power system74

services and its related markets. Furthermore, with respect75

to the new rules and recent structural changes in some of76

the notable energy markets (in which the flexibility products77

are generally transacted), some flexibility services need to78

be reconsidered which will be extensively discussed in this79

paper. This paper also suggests the flexibility metrics within80

the system and in multiple interdependent sectors. While81

the modern energy systems widely consist of electrical and82

thermal sectors, this research also reviews the concept of83

thermal flexibility for further flexibility applications.84

An exhaustive definition of flexibility is presented in85

Section II, and Section III discusses the potentials of flexibil-86

ity. Section IV discusses the cost of flexibility options, and87

Section V is devoted to flexibility metrics and Section VI tar-88

gets the power system services in which flexibility is provided89

or traded. Section VII is focused on flexibility timescales and90

the final section concludes the paper.91

II. DEFINITIONS OF FLEXIBILITY92

With the increasing integration of VERs in energy systems,93

the concept of flexibility has been receiving more atten-94

tion in recent years. Experts in this area have tried to pro-95

vide all-inclusive definitions on this concept. Based on [12],96

flexibility defines a power system’s aptitude to manage the97

variability and uncertainty in both demand and supply, while98

preserving an acceptable reliability echelon at an equitable99

cost over various time scales. Another explanation in [13]100

declares that flexibility should acclimatize to numerous con- 101

ceivable situations at a defined marginal price. Declaring 102

additional explanation on this concept, flexibility stands for 103

a proficiency that consistently and lucratively handles the 104

net-load forecast errors through different timescales [14]. 105

Although these studies have provided respectable definitions 106

on the concept of flexibility, the key role of the definition is 107

missing in the literature. The authors in [15] proposed that 108

the time prospects in which flexibility is provisioned needs to 109

be defined properly, and the flexibility needs to be discussed 110

in these time scales. So that, the time scales need to be 111

known to realize the suitable perception of flexibility. On this 112

basis, Milligan et al. [16] portrays time scales for flexibility 113

to be seconds (inertia response as a barrier in opposition to 114

system frequency disproportions [17]) to multiple years (sys- 115

tem planning prospect). It is noticeable that as the research 116

in [15] is not devising an improved definition on the concept 117

of flexibility in comparison with researches in [12], [13], 118

and [14], the definitions of flexibility needed to be emerged 119

with the precise definition of time scales. 120

Another definition in [18] describes deliverable energy 121

flexibility equal to the total flexibility which is obtainable to 122

propose to daily energy markets while disregarding endan- 123

gering the technical constraints in the distribution system. 124

The definition disparities can be observed in and attributed to 125

the differences in the operation of energy systems facilities. 126

Hence, the potential in providing flexibility should be discov- 127

ered in each sector. Besides the existing concept of flexibility 128

introduced and discussed earlier in the literature, another 129

form of flexibility can be investigated within the heating sec- 130

tor of the energy systems, namely thermal flexibility. Thermal 131

flexibility is mainly obtained from flexible heat generators, 132

interconnections, and the combination of heat generators and 133

thermal storage units [19], [20]. Accordingly, flexibility may 134

be described as a system’s ability to remain functionable amid 135

rapid fluctuations and manage all system components so as 136

not to surpass their operational constraints, while employing 137

all of its infrastructure’s potential in all time perspectives, 138

such as from seconds to multiple years, without accruing 139

additional costs to the system’s owner(s). 140

III. MAIN POTENTIAL IN PROVIDING FLEXIBILITY 141

IN POWER SYSTEMS 142

Traditionally, power systems are considered flexible if the 143

operators implement Ancillary Services (AS) to handle sud- 144

den contingencies, such as unexpected generator or transmis- 145

sion line failures, and real-time supply-demand inequities due 146

to erroneous projection of the demand. As a requirement, 147

power system operators consider some amount of reserved 148

capacity to afford regulation AS. This capacity is managed 149

by Distribution System Operators (DSOs) and Transmission 150

System Operators (TSOs); besides, this capacity is employed 151

to recover the power system in case of imbalances via Fre- 152

quency Containment Reserves (FCRs) and to reinstate the 153

frequency back to its nominal rate [21]. In modern energy 154
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systems with massive integration of VERs, however, power155

systems are considered flexible if they:156

• meet the peak net-loads cost-effectively and in a timely157

manner.158

• avoid load and supply curtailments.159

• sustain the supply-demand balance at different160

timescales.161

• certify the accessibility of adequate ramp up/down162

capacities.163

• ensure accessibility of enough fast-ramp and fast-start164

units.165

• properly incorporate demand response programs while166

operating genuinely in an Active Distribution Network167

(ADN) with participation from smart loads [22].168

• grants an acceptable level of AS at different time169

scales [23].170

• operate under an elegant market, in which the flexibility171

is not compromised by market ineptitudes.172

• have a well-planned transmission network to ensure the173

flexibility is not only available but also deliverable [24].174

Main resources for supplying flexibility in energy systems175

can be categorized into:176

• Supply Side177

• Energy Storage Systems (ESSs)178

• Demand Side179

• Grid Facilities180

• Market Products.181

A. SUPPLY-SIDE182

Supply side concerns the presentation of facilities enclosing183

the generation sector in power systems. Gas turbines are184

counted as the most flexible generators, while large steam185

turbines, e.g., nuclear power plant turbines, are likely to186

provide flexibility [25]. Besides, Combined Heat and Power187

(CHP) units are potential resources to couple the electrical188

and thermal assets in energy systems with the aim to provide189

levels of electrical and thermal flexibility [26].190

As the VERs’ probabilistic nature has increased the191

demand for flexibility services a flexible generation main-192

tenance schedule system in supply-side also must be put in193

place [27]. It is also noticeable that the implementation of194

proper tools in modeling and scheduling of the supply-side195

infrastructures can lead to a flexible system [28]. For instance,196

the accuracy of the maintenance scheduling of supply-side197

utilities will increase with proper modeling and forecasting of198

the production of renewable energy resources by using deep199

learning approaches [29].200

B. ENERGY STORAGE SYSTEMS201

ESSs can adapt to the real-time variability of renewable202

energy resources and demandwhile reducing day-ahead oper-203

ation costs, leading to greater flexibility, resilience, scala-204

bility, and privacy, among other benefits [30]. Moreover,205

generators’ ramping up and ramping down will append an206

additional cost to the system, which could be avoided by207

strategic utilization of ESS [31]. When concerned with VER 208

generation, the ESSs may be employed to assist higher VER 209

penetration by extenuating their impacts on the grid oper- 210

ation [32]. VERs penetration effects are characterized in 211

different time horizons ranging from seconds to years. 212

At the time scales of seconds, the ESS can provide inertia 213

in case of sudden power fluctuations [33], thereby relaxing 214

the role of generators in terms of system frequency response 215

services [34]. Inertia, in a comprehensive sense, denotes the 216

kinetic energy stored in the rotating mass of the synchronous 217

generators to compensate the frequency deviation from its 218

nominal value when huge disturbances occur [35], [36]. 219

Higher penetration rate of wind energy in power systems 220

causes a significant diminution in the average power inertia 221

as wind turbines are not able to respond to the frequency 222

fluctuations [37], [38]. 223

At the intra-minute prospect, ESSs are mainly uti- 224

lized to provide operational reserves, e.g., pumped-storage 225

hydropower, Compressed Air Energy Storage (CAES), Bat- 226

tery Energy Storage Systems (BESSs), and thermal storages 227

deliver flexibility over extended periods. Thermal ESSs e.g., 228

hot water storages and most recently Concentrating Solar 229

Power Storage (CSPS) systems, play a key role in providing 230

thermal and electrical flexibility when power and thermal 231

systems are coupled [39], [40], [41]. 232

At the minutes to hours timescale, BESSs can hypothet- 233

ically provide numerous services, i.e., the ones pumped- 234

storage hydropower offers [42], for instance, providing 235

multiple AS simultaneously [43], offering the mobility by 236

utilizing batteries in Electric Vehicles (EVs), empowering the 237

penetration of renewables in microgrids, among others. How- 238

ever, at high VER levels, sole dependency upon ESS to elim- 239

inate load/supply curtailments might become economically 240

and practically futile [44]. Significance of the ESSs in Italian 241

Ancillary Services Market (ASM)’s Balancing Market (BM) 242

is a real-world example of their role in endowing flexibility 243

when balancing services are deployed [45]. 244

C. DEMAND SIDE 245

Demand response (DR) program or demand-side flexibility 246

is used along with ESSs to mitigate the concerns VER may 247

impose to the power grid. DR programs enable shifting of the 248

demand pattern to cope with the mismatch between demand 249

and supply [46]. DR is a promising approach enabling elec- 250

tricity customers to adjust their energy consumption sub- 251

jected to financial incentives or long-term agreements [47]. 252

In modern energy systems, these customers can be new 253

energy system structures, namely energy hubs which can 254

run a price-based demand response model based on energy 255

market elasticity [48]. DR usage can be spread over providing 256

AS, e.g., regulation services. A major challenge in DR is the 257

coordination of the loads in distribution grids with different 258

voltage levels. In particular, the coordination of various-size 259

loads may hurdles achieving the expected frequency response 260

rates of the system and reaching reserve capacity reduction 261

goals [49], [50]. Aggregators contract with energy customers 262
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to inclining their flexible consumption or production; aggre-263

gators then amalgamate energy consumers’ flexibility and264

renovate it for market services, e.g., for Balance Responsible265

Parties (BRP) [51]. Aggregators also integrate VER tech-266

nologies, which afford energy system operators a profitable267

structure, relaxing the need for additional capacities. Besides,268

they exploit the demand-side flexibility by contracting with269

the demand sites [52], [53].270

D. GRID FACILITIES271

The intermittency and variability of VERs are often regarded272

as a fundamental inhibitive, preventing their high penetra-273

tion and integration to the power grid. The aforementioned274

concerns lead to a VER penetration cap called ‘‘economic275

carrying capacity of the energy grid’’, the violation of which276

may jeopardize the grid performance [54]. Grid facilities’277

flexibility refers to the existence of facilities that can facilitate278

power transfer and increase VER penetration into the grid279

while maintaining acceptable operational conditions, e.g.,280

frequency profile, along with maximum benefit to the net-281

work [55]. A substantial case of this provision is managing282

power flows through high-voltage, direct current (HVDC) by283

virtue of its flexible regulatory capabilities and HVAC trans-284

mission switching in a hybrid HVAC/HVDC transmission285

grid [56]. Also, Evangelopoulos et al. [57] introduce a thor-286

ough framework to procure and carefully manage flexibility287

services from distributed energy resources in distribution288

network to work effectively along with the grid facilities.289

E. MARKET PRODUCTS290

As stated earlier, Demand Side Response (DSR) permits291

energy clients to increase, decrease, or alter their energy con-292

sumption in real-time via smart metering. DSR also facilitates293

preserving a safe, maintainable, and inexpensive energy sup-294

ply through demand peak shaving while the system is facing295

power production shortages which leads to a copious and296

inexpensive power tide. A vast demand site, minor enterprise,297

or an aggregator is donor of this product [58]. The flexibility298

measure typically involved with this product is response time.299

A market product particularly designed to address real-time300

flexibility challenges is Flexible Ramping Product (FRP).301

As depicted in Figure 1, the FRP ensures ramping availability302

to encounter divined net-load from its prediction uncertainty.303

The FRP delivers potential ramp, concerning uncertainty304

as a result of net-load errors. The FRP is always recognized305

with Flexible Ramp Up (FRU) and Flexible Ramp Down306

(FRD) which attempt to address the upward and downward307

ramp capacity requirements of the system. The FRP lowers308

the operational cost of the system by preventing potential309

real-time energy price spikes and load curtailments. The310

FRP providers e.g., California Independent System Operator311

(CAISO), are compensated for providing flexibility in the312

form of FRP in both planning and operation processes based313

on their energy opportunity costs. This product is procured to314

cover forecasted net-load errors and associated uncertainty up315

to a certain confidence level [59], [60]. Capacitymarket as the316

FIGURE 1. Role of FRP provision in power systems.

other market product offers resource convenience in serving 317

as power supply, in grid contingencies. This guarantees per- 318

manency of grid’s reliability with the provision of sufficient 319

resources to satisfy imminent energy needs. Midcontinent 320

Independent System Operator (MISO) is an example for 321

dealing with such market service, in which providers enjoin 322

the market by increasing power production and reducing 323

the power consumption. Contributors include new genera- 324

tors, retrofitted and enriched generators, DR aggregators, and 325

Regional Transmission Enhancement Planners (RTEP) [61]. 326

Generally, market products are derived from some policies 327

that are potential solutions to enhance the power grid flex- 328

ibility e.g., using the available resources, specifically, ramp 329

capacity of dispatchable power plants, rapid response ESSs, 330

spinning reserves, DR, power facility reinforcement, and 331

launching new flexibility products in the electricity market in 332

order to holistically provide certain levels of flexibility [62], 333

[63], [64]. 334

IV. COST OF FLEXIBILITY OPTIONS 335

As stated earlier, the flexibility options are established to 336

maintain a cost-effective system. The provision of the flex- 337

ibility in different power system sectors is recently been 338

more imperative while nations are moving toward reduc- 339

ing emissions and Net Zero Energy (NZE) programs [65]. 340

In this manner, higher proportions of VER are anticipated 341

to raise the value of options to increase the flexibility of 342

the energy systems, while reflecting economic advantages 343

of energy system flexibility alternatives is essential [66]. 344

A comparative analysis by the scholars in [67] show that 345

demand response application (demand side), retrofitting the 346

thermal units (supply-side), ESSs, and establishment of new 347

grid facilities and interconnections are economically and 348

technically sorted from top to bottom, respectively. Relative 349

studies by [68], [69] show that as climate goals are modest, 350

demand side flexibility options provision has a significant 351

influence on system costs, but sector couplingwith the district 352

heat sector and investment in grid facilities have a growing 353

impact among other flexibility options, when climate tar- 354

gets are more ambitious. As a result, the sector coupling 355

needs accurately assessing the storage requirements, which 356
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leads to more flexibility from ESSs with more system cost357

charge [70]. It can be concluded that depending on the cli-358

mate goals, scarcity of financial resources, and availability of359

energy resources, the flexibility options can be used by the360

governments.361

V. FLEXIBILITY METRICS362

State-of-the-art research and existing literature mainly assess363

power system flexibility in terms of ramping capability, and364

power and energy capacity [71]. However, these terms do365

not capture the effects of delay in DR action and system366

contingency response, while the Response Time (RT) do.367

In [72], [73], [74], [75], [76], [77], [78], and [79], several368

flexibility indices are acknowledged. Authors introduced the369

RT as a new metric to quantify system flexibility [72]. Like-370

wise, the authors in [73] proposed a new flexibility index,371

named Insufficient Ramping Resource Expectation (IRRE),372

that evaluates power grid’s failure to overcome the variability373

in demand and supply. A conceptual metric presented in [74]374

based on system’s general operational norms, namely, power375

limit, ramp rate, start-up time and dispatchability. Another376

quantifiable flexibility measure which is introduced in [75]377

is defined as Lack of Ramp Probability (LORP) wherein378

no inter-zonal transmission constraint is considered. This379

operational index is used to quantify inter-temporal ramp-380

ing flexibility at the real-time dispatch time scale. Another381

index defined in [76], based on the System Capability Ramp382

(SCR), quantifies accessibility of the flexibility by repre-383

senting the possibility of a ramping capability shortage due384

to major system uncertainties e.g., Failure of Power Plants385

(FoPP) and VERs forecast error in a certain period. Another386

metric mentioned in [77] is Ramping Capability Shortage387

Expectation (RCSE) that embodies the possibility of ramp388

shortages once facing uncertainties at particular time inter-389

vals. The authors in [78] introduced a new flexibility metric390

called Flexibility Area Index (FIA) which is defined as the391

combination of power system units’ flexibility, and reflects392

the whole systems’ ability to manage the VERs curtail-393

ment by FRU and FRD components. In the case of thermal394

flexibility, a new index, namely Building Energy Flexibil-395

ity Index (BEFI), can be used to represent the quantity of396

available thermal flexibility from thermal storages, inside397

the buildings [79]. A fleeting delineation of the technical398

basis of the above flexibility metrics and indices is annexed399

in Table 1.400

VI. FLEXIBILITY SERVICES401

Flexibility services can be categorized into voltage and402

frequency response, reserves, reactive power services and403

system security [9], [80]. These services guarantee that the404

availability and delivery of the flexibility is consistent in405

all time prospects. Some studies suggest revisions in these406

services to facilitate and widen the standard’s implementa-407

tion e.g., reevaluating the permitted trip clearing time setting408

ranges in IEEE standards [81]. These changes benefit the sys-409

tem in providing more flexibility through the power system.410

TABLE 1. Flexibility indices.

A. FREQUENCY RESPONSE SERVICES 411

Frequency response services uphold the system constancy 412

and counteract frequency changes through active power gen- 413

eration or demand adjustment. These services are mainly 414

categorized as dynamic and static products. The dynamic 415

frequency response focuses on the response ability in the 416

intra minutes (or even in seconds); however, static frequency 417

response focuses on degradations lower than a particular 418

frequency limit [82]. Dynamic Frequency Response (DFR) 419

is further classified as Rapid Frequency Response (RFR), 420

Primary Frequency Response (PFR), Secondary Frequency 421

Response (SFR), High FrequencyResponse (HFR) andRapid 422

High Frequency Response (RHFR) for which the accessibil- 423

ity times are in 5, 10, 30, 5 and 10 seconds, respectively. These 424

operational timescales are illustrated in Figure 2. 425

FIGURE 2. Dynamic frequency response services time action.

Mandatory Frequency Response (MFR) ensues through 426

active power changes of generators, especially transmission- 427

connected sizable generators. They should be capable of 428

providing enduring power in response to a pre-set frequency 429

deviation limit. UK national grid Energy System Operator 430

(ESO) and Australian Energy Market Commission (AEMC) 431

are some example MFR service providers. Providers join into 432

the market on a monthly basis via online Frequency Response 433

Price Submission (FRPS) [83]. 434

Firm Frequency Response (FFR) is a service open to 435

small generators (<1MW) and is accessible by Balancing 436
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Mechanism Units (BMUs) and non-BMUs. It should be437

noted that, BMUs consist of generating units and utiliza-438

tion metering [84]. Providers report the transmission and439

distribution system’s energy flows via a monthly-tendered440

procedure; PFR, SFR and HFR frequency services [85]. Gen-441

erally, the term ‘‘tender’’ refers to platforms through which442

providers are requested to confirm that all the information443

and their technical requirements are accurate to the best of444

their knowledge before submission to be able to contract in445

the market. The providers can tender in an electronic platform446

e.g., Ariba platform by Systems, Applications, and Product447

corporation (SAP) in Short Term Operating Reserve (STOR)448

services [86].449

High impact contingencies (e.g., loss of large generating450

units) instigate large frequency deviations. Consequently,451

these deviations affect service delivery to the consumers452

which needs to be tackled via Frequency Control by Demand453

Management (FCDM) [87]. FCDM providers are contracted454

to automatically respond under frequency deviation circum-455

stances and assist in recovering the system frequency within456

the agreeable range, by momentarily end a portion of their457

working procedure to reduce demand on the network [88].458

Enhanced Frequency Response (EFR) service offers a fast459

response in supporting the power grid during low system iner-460

tia times sustained for 15 minutes. The service enhances the461

transition back to the normal frequency after sudden fluctua-462

tions. EFR reduces the grid charges and is procured through463

economic offers [89]. A summary of frequency response464

services is presented in Table 2.465

TABLE 2. Frequency response services.

B. RESERVE466

Reserve service indicates supplementary resource require-467

ment when the power grid encounters energy disproportions468

in a short period. Reserve services are categorized into two469

general classes, i.e., fast products and short-term products.470

Fast reserve product providers have to offer at least 50 MW471

of the power for up to 2 minutes [90]. An application of the472

reserve services can be further investigated in heating sector473

of the energy systems. In [91], a model for district heating474

systems is introduced to enhance the thermal flexibility of the 475

CHP units through participation in reserve services. STOR 476

is offered in case of generation surplus or shortage. STOR 477

providers must be available all throughout market openings 478

i.e., daily hours during which the supply margin is expected 479

to be tighter and, upon request, they must be able to deliver 480

full active power for up to 2 hours [92]. Other short-term 481

operating reserves, different from STOR category, are high- 482

lighted in Figure 3, e.g., Enhanced Operation STOR [93], 483

STOR runaway [94] and, Balancing Mechanism (BM) start- 484

up [95]. Demand Side Balancing Reserve (DSBR) provides 485

supplementary reserve in order to balance the unlikely sit- 486

uations in which there is insufficient capacity to meet the 487

demand. DSBR concerns large energy users who could vol- 488

untarily reduce electricity consumption, solely in the winter 489

period, with a payment in return [96]. Supplemental Balanc- 490

ing Reserve (SBR) provides generating capacity; however, 491

DSBR provides an opportunity for major energy consumers 492

and aggregators to get paid in return for their contributions to 493

moderating the energy consumption during peak times [97]. 494

SBR is utilized when all market-based actions exhausted, 495

where generators are dispatched in economic order (i.e., uti- 496

lization price and duration required). 497

FIGURE 3. Different categories of short-term operating reserves.

DSBR and SBR, together, present Contingency Balancing 498

Reserves (CBR) as a transitional product to regulate the 499

grid frequency during contingencies. Industrial and commer- 500

cial entities which can structure the rules of AS programs 501

can serve as DSBR providers. Energy system operator in 502

National-grid ESO is no longer procuring this service, as they 503

transition to capacity markets. 504

C. VOLTAGE CONTROL AND REACTIVE POWER 505

BALANCE SERVICES 506

The necessity of reactive power services arises from presence 507

of the generators with quite high nominal rating, the connec- 508

tion of the DGs along with DGs configuration [98]. Hence, 509

many services have been propelled. Obligatory Reactive 510

Power Service (ORPS) maintain voltage fluctuations at a cer- 511

tain level and the providers of this service should supply their 512

rated output power under certain operational circumstances. 513

Enhanced Reactive Power Service (ERPS) is procured and 514
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applied where reactive power capability exceeds minimum515

prerequisite of MVAr lagging capabilities [99].516

D. SECURITY PROVIDE SERVICES517

Some flexibility services can help prevent consecutive trip-518

ping of the generating units, disruption of the generators,519

transmission congestion and power shortages, e.g., providing520

Black Start support by VER units, Inter-trip guarantees the521

generators’ disconnection from the power grid, Constraint522

Management is procured for efficient and economic operation523

of the power transmission system [100], [101], [102].524

VII. FLEXIBILITY TIMESCALES525

According to [7], the operational flexibility acclaims the abil-526

ity of a system’s utilities to manage the net-load uncertainty527

and variability under deep VERs integration. Reference [12]528

intuits that more augmented operational flexibility leads to529

a more secure power system. Consequently, to enhance the530

operational flexibility, one first needs to define proper mea-531

sures to evaluate the network’s existing level of flexibility532

and the associated inefficiencies. According to [58], [103],533

[104], [105], [106], three general categories on the existing534

methods are introduced i.e., visualized methods, metrics and535

comprehensive models. Visualization methods, e.g., illustra-536

tion of dynamic upward and downward ramping capability537

curve [107], [108], are easy to understand but need lots of538

information. Comprehensivemethods [109], [110] are widely539

used when overall margins on accommodations of VERs’540

uncertainty and variability are desired. Finally, metrics e.g.,541

operational flexibility, are another approach to evaluate the542

current level of flexibility and offer a better understanding on543

how to improve the flexibility of the system infrastructures544

[111], [112].545

Operational flexibility can be defined in different time546

scales, including long term, long to medium term, medium547

to short term and short to very short term [113]. A brief548

schematic with analytical solutions and corresponding high-549

lights is depicted in Figure 4. Experiments have shown that550

the planning timeframe is the most economically advanta-551

geous way to take flexibility into account [114]. Considering552

yearly horizon, system requirements of sufficient flexible553

resources are ensured to operate properly with high shares of554

VER generation. The output of VERs is inexorably stochas-555

tic, which causes reliability challenges in power system oper-556

ations over years. In power grids with low levels of flexibility,557

during the periods with high VER generation spikes, large558

amounts of generation may be curtailed in order to maintain559

a balance between supply and demand [115].560

To overcome this challenge, regulators might need to561

encourage investment in flexibility enhancement programs by562

providing certain tariffs/incentives, increase time and space563

granularity in market design, and re-designing capacity mar-564

kets [116]. Energy system operator should balance the sea-565

sonal energy capriciousness on monthly basis operations,566

arising from uncertainties of hydro units scheduling [117].567

With high penetration of VERs in power systems and their568

FIGURE 4. Operational flexibility timescales.

impacts on net-load uncertainty and variability in hours and 569

intra-hours prospects, market operations should be analysed 570

in real time. The necessity of day-ahead decisions comes 571

from the fact that hourly scheduling protocols in real-time 572

operation are insufficient to provide system operators with 573

the required flexibility to manage their system effectively 574

[118], [119]. Designing intra-day markets is crucial in terms 575

of leveraging the full flexibility potential of the power grid. 576

Besides, setting a shorter span between gate closure and 577

actual market transactions can notably enhance the flexibility 578

in this timescale. According to [6], it can be justified that 579

this setting is preferred as the changes in VERs, especially 580

in wind, could be extremely large in real-time, which is 581

not reflected in the offline sight (day-ahead) of the system 582

operation. This vision concerns the timescale of the sys- 583

tem operation which directly alters the system flexibility. 584

In minutes to seconds, utilization of AS is necessary for reli- 585

able and flexible grid operation, particularly compensating 586

unexpected imbalances between demand and supply. Reg- 587

ulators must introduce new products and deploy operating 588

reserves to incentivize flexibility providers to partake. Gen- 589

erally, an ingenious service launched into practice by several 590

ISOs e.g., National Grid ESO, is the Fast FrequencyResponse 591

(FFR) delivered by BESSs andVERs [120]. Flexibility is pro- 592

visioned in PJM, CAISO and EPEX in day-ahead, intraday, 593

and the intraday continuous market auctions [121]. 594

VIII. CONCLUSION 595

Most recently, the research community has recognized the 596

need for flexibility in power systems while renewable energy 597

sources are being aggressively integrated worldwide. High- 598

lighting the latest updates on the concept of flexibility, this 599

paper tried to epitomize the required information about the 600

electrical and thermal flexibility and the services in which this 601

concept is impudent. This research focused on unifying the 602

available meanings and metrics of flexibility and introducing 603

the markets wherein the flexibility is traded in the form 604

of power system utilities options. It should be noted that a 605

unified framework to evaluate power systems flexibility and 606
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demonstrate it with a global index is yet to be addressed.607

Although there are numerous studies conducted addressing608

different aspects of flexibility, there still exist large gaps609

in mathematical techniques to evaluate operational flexibil-610

ity which need research attention. The effect of transactive611

energy markets on the operational flexibility of the system,612

thermodynamic conditions across a variety of energy stor-613

age technologies, effects of reactive power, and optimizing614

facilities in an intra-connection design of energy systems615

should be further examined. Financial policies by the system616

operators to incentivize the prosumers to participate in energy617

market transactions, and deployment of energy hubs are other618

suggestions for further research.619
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