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ABSTRACT Massive proliferation of Variable Energy Resources (VERs) in modern power systems has
posed a variety of challenges to the reliable operation of the power grid and has, at times, jeopardized the
system flexibility. Flexibility is the system’s ability to respond to and cope with the imbalances between
supply and demand while managing the uncertainty and variability of VERs and maintaining the power
system’s security and reliability within the acceptable margins. Leveraging the system’s available resources
and capabilities, the system operators must take strategic actions to mitigate the impacts of VERs on the grid
flexibility at a reasonable cost. The concept of flexibility is somewhat novel, which calls for profound studies
and analyses to address different aspects of flexibility, but not limited to definition and characterization of
standard metrics and indices to measure the power grid flexibility, flexibility-centred operation and planning
models for the power grid, etc. This paper provides a comprehensive review of the state-of-the-art research
on power system flexibility, including existing definitions and quantification measures, flexible resources,
and flexibility products and services in electricity markets.

INDEX TERMS Electricity markets, flexibility, reliability, uncertainty, variability, variable energy resources

(VERs).

I. INTRODUCTION

Contemporary power systems are generally made up as a
combination of fossil-based generating units with renewable
energy resources to balance varying demand at different
timescales. However, large-scale integration of VERs, par-
ticularly solar and wind, has exposed the power system to
an immense variability and uncertainty in the power gener-
ation portfolio which has consequently jeopardized the grid
security [1]. The VER generation concerns the power grid
in different operational horizons, e.g., the movement of a
cloud above a Photovoltaic (PV) power plant in seconds
or erraticism of wind power output in months [2]. System-
wide impacts of VERs are featured with a wide spatiotem-
poral heterogeneity, e.g., temporary variabilities challenge
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the system capability in terms of frequency control services;
however, generation variabilities in intra-hours involve the
ability of supply to follow demand and operational reserves’
capacity appropriation. The deeper the penetration of VERs
in a power system, the more drastic change in the shape of the
net-load (load minus VER). High penetration of the VERs
makes it extra arduous to maintain an equilibrium between
supply and demand since larger VER deployment comes
with greater rate of variability and superior forecast errors
on the generation outputs. These challenges have led to an
introduction of the term ““flexibility” in power systems with
the goal to maintain economic and secure operation while
coping with increasing levels of fluctuations imposed by
extensive integration of non-dispatchable renewables [3]. It is
inferred that the provision of flexibility depends on the net-
load characteristics. Foremost features of the net-load which
influence the system flexibility are net-load variation rate,
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daily breadth of the highest and lowest net-load values and the
uncertainty of the net-load forecast errors [4]. Disregarding
the aforementioned factors in the prognostication of the net-
load, the system may encounter flexibility shortages. Power
systems with flexibility shortages will have to exercise the
VER curtailment during periods with downward ramp capac-
ity requirement and load curtailments during periods with
upward ramp capacity shortage [5], [6]. In [7], Lannoye et al.
conferred the role of flexibility in power systems. In [8],
a review on power system flexibility is conducted, but the
research lacks the applications of the flexibility services in
the energy markets. With the main focus on flexibility appli-
cations, authors in [9] epitomize flexibility products used in
the electricity markets, while other flexibility aspects e.g.,
metrics and definitions, were neglected. Akrami et al. in [10]
overviewed the concept of flexibility in many aspects that
can be enhanced with new quantification metrics of flexibility
and some notable services in the generation sector. Besides,
their review suggests categorization of flexibility resources
into two general groups, which might seem questionable due
to the integrated and interdependent operation of the electric
grid with heating sector. In [11], Emmanuel et al. discussed
the application of flexibility in power systems, while it can
be further extended to grid infrastructure and energy storage
solutions.

In this paper, our goal is to present a clear-cut definition
of flexibility capturing the latest updates on this concept.
Besides, this research attempts to divvy the available metrics
of flexibility which are essentially transacted in power system
services and its related markets. Furthermore, with respect
to the new rules and recent structural changes in some of
the notable energy markets (in which the flexibility products
are generally transacted), some flexibility services need to
be reconsidered which will be extensively discussed in this
paper. This paper also suggests the flexibility metrics within
the system and in multiple interdependent sectors. While
the modern energy systems widely consist of electrical and
thermal sectors, this research also reviews the concept of
thermal flexibility for further flexibility applications.

An exhaustive definition of flexibility is presented in
Section II, and Section III discusses the potentials of flexibil-
ity. Section IV discusses the cost of flexibility options, and
Section V is devoted to flexibility metrics and Section VI tar-
gets the power system services in which flexibility is provided
or traded. Section VII is focused on flexibility timescales and
the final section concludes the paper.

Il. DEFINITIONS OF FLEXIBILITY

With the increasing integration of VERSs in energy systems,
the concept of flexibility has been receiving more atten-
tion in recent years. Experts in this area have tried to pro-
vide all-inclusive definitions on this concept. Based on [12],
flexibility defines a power system’s aptitude to manage the
variability and uncertainty in both demand and supply, while
preserving an acceptable reliability echelon at an equitable
cost over various time scales. Another explanation in [13]
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declares that flexibility should acclimatize to numerous con-
ceivable situations at a defined marginal price. Declaring
additional explanation on this concept, flexibility stands for
a proficiency that consistently and lucratively handles the
net-load forecast errors through different timescales [14].
Although these studies have provided respectable definitions
on the concept of flexibility, the key role of the definition is
missing in the literature. The authors in [15] proposed that
the time prospects in which flexibility is provisioned needs to
be defined properly, and the flexibility needs to be discussed
in these time scales. So that, the time scales need to be
known to realize the suitable perception of flexibility. On this
basis, Milligan et al. [16] portrays time scales for flexibility
to be seconds (inertia response as a barrier in opposition to
system frequency disproportions [17]) to multiple years (sys-
tem planning prospect). It is noticeable that as the research
in [15] is not devising an improved definition on the concept
of flexibility in comparison with researches in [12], [13],
and [14], the definitions of flexibility needed to be emerged
with the precise definition of time scales.

Another definition in [18] describes deliverable energy
flexibility equal to the total flexibility which is obtainable to
propose to daily energy markets while disregarding endan-
gering the technical constraints in the distribution system.
The definition disparities can be observed in and attributed to
the differences in the operation of energy systems facilities.
Hence, the potential in providing flexibility should be discov-
ered in each sector. Besides the existing concept of flexibility
introduced and discussed earlier in the literature, another
form of flexibility can be investigated within the heating sec-
tor of the energy systems, namely thermal flexibility. Thermal
flexibility is mainly obtained from flexible heat generators,
interconnections, and the combination of heat generators and
thermal storage units [19], [20]. Accordingly, flexibility may
be described as a system’s ability to remain functionable amid
rapid fluctuations and manage all system components so as
not to surpass their operational constraints, while employing
all of its infrastructure’s potential in all time perspectives,
such as from seconds to multiple years, without accruing
additional costs to the system’s owner(s).

IlIl. MAIN POTENTIAL IN PROVIDING FLEXIBILITY

IN POWER SYSTEMS

Traditionally, power systems are considered flexible if the
operators implement Ancillary Services (AS) to handle sud-
den contingencies, such as unexpected generator or transmis-
sion line failures, and real-time supply-demand inequities due
to erroneous projection of the demand. As a requirement,
power system operators consider some amount of reserved
capacity to afford regulation AS. This capacity is managed
by Distribution System Operators (DSOs) and Transmission
System Operators (TSOs); besides, this capacity is employed
to recover the power system in case of imbalances via Fre-
quency Containment Reserves (FCRs) and to reinstate the
frequency back to its nominal rate [21]. In modern energy
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systems with massive integration of VERs, however, power
systems are considered flexible if they:
« meet the peak net-loads cost-effectively and in a timely

manner.
« avoid load and supply curtailments.

o sustain the supply-demand balance at different
timescales.

o certify the accessibility of adequate ramp up/down
capacities.

« ensure accessibility of enough fast-ramp and fast-start
units.

« properly incorporate demand response programs while
operating genuinely in an Active Distribution Network
(ADN) with participation from smart loads [22].

o grants an acceptable level of AS at different time
scales [23].

« operate under an elegant market, in which the flexibility
is not compromised by market ineptitudes.

« have a well-planned transmission network to ensure the
flexibility is not only available but also deliverable [24].

Main resources for supplying flexibility in energy systems
can be categorized into:
e Supply Side
e Energy Storage Systems (ESSs)
e Demand Side
e Grid Facilities
o Market Products.

A. SUPPLY-SIDE

Supply side concerns the presentation of facilities enclosing
the generation sector in power systems. Gas turbines are
counted as the most flexible generators, while large steam
turbines, e.g., nuclear power plant turbines, are likely to
provide flexibility [25]. Besides, Combined Heat and Power
(CHP) units are potential resources to couple the electrical
and thermal assets in energy systems with the aim to provide
levels of electrical and thermal flexibility [26].

As the VERs’ probabilistic nature has increased the
demand for flexibility services a flexible generation main-
tenance schedule system in supply-side also must be put in
place [27]. It is also noticeable that the implementation of
proper tools in modeling and scheduling of the supply-side
infrastructures can lead to a flexible system [28]. For instance,
the accuracy of the maintenance scheduling of supply-side
utilities will increase with proper modeling and forecasting of
the production of renewable energy resources by using deep
learning approaches [29].

B. ENERGY STORAGE SYSTEMS

ESSs can adapt to the real-time variability of renewable
energy resources and demand while reducing day-ahead oper-
ation costs, leading to greater flexibility, resilience, scala-
bility, and privacy, among other benefits [30]. Moreover,
generators’ ramping up and ramping down will append an
additional cost to the system, which could be avoided by
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strategic utilization of ESS [31]. When concerned with VER
generation, the ESSs may be employed to assist higher VER
penetration by extenuating their impacts on the grid oper-
ation [32]. VERs penetration effects are characterized in
different time horizons ranging from seconds to years.

At the time scales of seconds, the ESS can provide inertia
in case of sudden power fluctuations [33], thereby relaxing
the role of generators in terms of system frequency response
services [34]. Inertia, in a comprehensive sense, denotes the
kinetic energy stored in the rotating mass of the synchronous
generators to compensate the frequency deviation from its
nominal value when huge disturbances occur [35], [36].
Higher penetration rate of wind energy in power systems
causes a significant diminution in the average power inertia
as wind turbines are not able to respond to the frequency
fluctuations [37], [38].

At the intra-minute prospect, ESSs are mainly uti-
lized to provide operational reserves, e.g., pumped-storage
hydropower, Compressed Air Energy Storage (CAES), Bat-
tery Energy Storage Systems (BESSs), and thermal storages
deliver flexibility over extended periods. Thermal ESSs e.g.,
hot water storages and most recently Concentrating Solar
Power Storage (CSPS) systems, play a key role in providing
thermal and electrical flexibility when power and thermal
systems are coupled [39], [40], [41].

At the minutes to hours timescale, BESSs can hypothet-
ically provide numerous services, i.e., the ones pumped-
storage hydropower offers [42], for instance, providing
multiple AS simultaneously [43], offering the mobility by
utilizing batteries in Electric Vehicles (EVs), empowering the
penetration of renewables in microgrids, among others. How-
ever, at high VER levels, sole dependency upon ESS to elim-
inate load/supply curtailments might become economically
and practically futile [44]. Significance of the ESSs in Italian
Ancillary Services Market (ASM)’s Balancing Market (BM)
is a real-world example of their role in endowing flexibility
when balancing services are deployed [45].

C. DEMAND SIDE

Demand response (DR) program or demand-side flexibility
is used along with ESSs to mitigate the concerns VER may
impose to the power grid. DR programs enable shifting of the
demand pattern to cope with the mismatch between demand
and supply [46]. DR is a promising approach enabling elec-
tricity customers to adjust their energy consumption sub-
jected to financial incentives or long-term agreements [47].
In modern energy systems, these customers can be new
energy system structures, namely energy hubs which can
run a price-based demand response model based on energy
market elasticity [48]. DR usage can be spread over providing
AS, e.g., regulation services. A major challenge in DR is the
coordination of the loads in distribution grids with different
voltage levels. In particular, the coordination of various-size
loads may hurdles achieving the expected frequency response
rates of the system and reaching reserve capacity reduction
goals [49], [50]. Aggregators contract with energy customers

99259



IEEE Access

M. B. Hadi et al.: Comprehensive Review on Power System Flexibility: Concept, Services, and Products

to inclining their flexible consumption or production; aggre-
gators then amalgamate energy consumers’ flexibility and
renovate it for market services, e.g., for Balance Responsible
Parties (BRP) [51]. Aggregators also integrate VER tech-
nologies, which afford energy system operators a profitable
structure, relaxing the need for additional capacities. Besides,
they exploit the demand-side flexibility by contracting with
the demand sites [52], [53].

D. GRID FACILITIES

The intermittency and variability of VERs are often regarded
as a fundamental inhibitive, preventing their high penetra-
tion and integration to the power grid. The aforementioned
concerns lead to a VER penetration cap called ‘“‘economic
carrying capacity of the energy grid”, the violation of which
may jeopardize the grid performance [54]. Grid facilities’
flexibility refers to the existence of facilities that can facilitate
power transfer and increase VER penetration into the grid
while maintaining acceptable operational conditions, e.g.,
frequency profile, along with maximum benefit to the net-
work [55]. A substantial case of this provision is managing
power flows through high-voltage, direct current (HVDC) by
virtue of its flexible regulatory capabilities and HVAC trans-
mission switching in a hybrid HVAC/HVDC transmission
grid [56]. Also, Evangelopoulos et al. [57] introduce a thor-
ough framework to procure and carefully manage flexibility
services from distributed energy resources in distribution
network to work effectively along with the grid facilities.

E. MARKET PRODUCTS
As stated earlier, Demand Side Response (DSR) permits
energy clients to increase, decrease, or alter their energy con-
sumption in real-time via smart metering. DSR also facilitates
preserving a safe, maintainable, and inexpensive energy sup-
ply through demand peak shaving while the system is facing
power production shortages which leads to a copious and
inexpensive power tide. A vast demand site, minor enterprise,
or an aggregator is donor of this product [58]. The flexibility
measure typically involved with this product is response time.
A market product particularly designed to address real-time
flexibility challenges is Flexible Ramping Product (FRP).
As depicted in Figure 1, the FRP ensures ramping availability
to encounter divined net-load from its prediction uncertainty.
The FRP delivers potential ramp, concerning uncertainty
as a result of net-load errors. The FRP is always recognized
with Flexible Ramp Up (FRU) and Flexible Ramp Down
(FRD) which attempt to address the upward and downward
ramp capacity requirements of the system. The FRP lowers
the operational cost of the system by preventing potential
real-time energy price spikes and load curtailments. The
FRP providers e.g., California Independent System Operator
(CAISO), are compensated for providing flexibility in the
form of FRP in both planning and operation processes based
on their energy opportunity costs. This product is procured to
cover forecasted net-load errors and associated uncertainty up
to a certain confidence level [59], [60]. Capacity market as the
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FIGURE 1. Role of FRP provision in power systems.

other market product offers resource convenience in serving
as power supply, in grid contingencies. This guarantees per-
manency of grid’s reliability with the provision of sufficient
resources to satisfy imminent energy needs. Midcontinent
Independent System Operator (MISO) is an example for
dealing with such market service, in which providers enjoin
the market by increasing power production and reducing
the power consumption. Contributors include new genera-
tors, retrofitted and enriched generators, DR aggregators, and
Regional Transmission Enhancement Planners (RTEP) [61].
Generally, market products are derived from some policies
that are potential solutions to enhance the power grid flex-
ibility e.g., using the available resources, specifically, ramp
capacity of dispatchable power plants, rapid response ESSs,
spinning reserves, DR, power facility reinforcement, and
launching new flexibility products in the electricity market in
order to holistically provide certain levels of flexibility [62],
[63], [64].

IV. COST OF FLEXIBILITY OPTIONS

As stated earlier, the flexibility options are established to
maintain a cost-effective system. The provision of the flex-
ibility in different power system sectors is recently been
more imperative while nations are moving toward reduc-
ing emissions and Net Zero Energy (NZE) programs [65].
In this manner, higher proportions of VER are anticipated
to raise the value of options to increase the flexibility of
the energy systems, while reflecting economic advantages
of energy system flexibility alternatives is essential [66].
A comparative analysis by the scholars in [67] show that
demand response application (demand side), retrofitting the
thermal units (supply-side), ESSs, and establishment of new
grid facilities and interconnections are economically and
technically sorted from top to bottom, respectively. Relative
studies by [68], [69] show that as climate goals are modest,
demand side flexibility options provision has a significant
influence on system costs, but sector coupling with the district
heat sector and investment in grid facilities have a growing
impact among other flexibility options, when climate tar-
gets are more ambitious. As a result, the sector coupling
needs accurately assessing the storage requirements, which
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leads to more flexibility from ESSs with more system cost
charge [70]. It can be concluded that depending on the cli-
mate goals, scarcity of financial resources, and availability of
energy resources, the flexibility options can be used by the
governments.

V. FLEXIBILITY METRICS

State-of-the-art research and existing literature mainly assess
power system flexibility in terms of ramping capability, and
power and energy capacity [71]. However, these terms do
not capture the effects of delay in DR action and system
contingency response, while the Response Time (RT) do.
In [72], [73], [74], [75], [76], [77], [78], and [79], several
flexibility indices are acknowledged. Authors introduced the
RT as a new metric to quantify system flexibility [72]. Like-
wise, the authors in [73] proposed a new flexibility index,
named Insufficient Ramping Resource Expectation (IRRE),
that evaluates power grid’s failure to overcome the variability
in demand and supply. A conceptual metric presented in [74]
based on system’s general operational norms, namely, power
limit, ramp rate, start-up time and dispatchability. Another
quantifiable flexibility measure which is introduced in [75]
is defined as Lack of Ramp Probability (LORP) wherein
no inter-zonal transmission constraint is considered. This
operational index is used to quantify inter-temporal ramp-
ing flexibility at the real-time dispatch time scale. Another
index defined in [76], based on the System Capability Ramp
(SCR), quantifies accessibility of the flexibility by repre-
senting the possibility of a ramping capability shortage due
to major system uncertainties e.g., Failure of Power Plants
(FoPP) and VERSs forecast error in a certain period. Another
metric mentioned in [77] is Ramping Capability Shortage
Expectation (RCSE) that embodies the possibility of ramp
shortages once facing uncertainties at particular time inter-
vals. The authors in [78] introduced a new flexibility metric
called Flexibility Area Index (FIA) which is defined as the
combination of power system units’ flexibility, and reflects
the whole systems’ ability to manage the VERs curtail-
ment by FRU and FRD components. In the case of thermal
flexibility, a new index, namely Building Energy Flexibil-
ity Index (BEFI), can be used to represent the quantity of
available thermal flexibility from thermal storages, inside
the buildings [79]. A fleeting delineation of the technical
basis of the above flexibility metrics and indices is annexed
in Table 1.

VI. FLEXIBILITY SERVICES

Flexibility services can be categorized into voltage and
frequency response, reserves, reactive power services and
system security [9], [80]. These services guarantee that the
availability and delivery of the flexibility is consistent in
all time prospects. Some studies suggest revisions in these
services to facilitate and widen the standard’s implementa-
tion e.g., reevaluating the permitted trip clearing time setting
ranges in IEEE standards [81]. These changes benefit the sys-
tem in providing more flexibility through the power system.
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TABLE 1. Flexibility indices.

Name Basis on Basis on Basis on
Time Ramp Power
Minimum Power 4
Limit
ramp rate 4
start-up time 4
RT v
IRRE 4 4
LORP 4
SCR 4
RCSE v
FAI v v v
BEFI 4 4

A. FREQUENCY RESPONSE SERVICES

Frequency response services uphold the system constancy
and counteract frequency changes through active power gen-
eration or demand adjustment. These services are mainly
categorized as dynamic and static products. The dynamic
frequency response focuses on the response ability in the
intra minutes (or even in seconds); however, static frequency
response focuses on degradations lower than a particular
frequency limit [82]. Dynamic Frequency Response (DFR)
is further classified as Rapid Frequency Response (RFR),
Primary Frequency Response (PFR), Secondary Frequency
Response (SFR), High Frequency Response (HFR) and Rapid
High Frequency Response (RHFR) for which the accessibil-
ity times arein 5, 10, 30, 5 and 10 seconds, respectively. These
operational timescales are illustrated in Figure 2.

60

N/A

50

N/A
30 30 Minutes
20 20 ’
20
10 | 10
10 . .
o IR [ | H -
RFR RHFR PFR HFR SFR

M Operational Time After Event (seconds) M Sustained Time (seconds)

FIGURE 2. Dynamic frequency response services time action.

Mandatory Frequency Response (MFR) ensues through
active power changes of generators, especially transmission-
connected sizable generators. They should be capable of
providing enduring power in response to a pre-set frequency
deviation limit. UK national grid Energy System Operator
(ESO) and Australian Energy Market Commission (AEMC)
are some example MFR service providers. Providers join into
the market on a monthly basis via online Frequency Response
Price Submission (FRPS) [83].

Firm Frequency Response (FFR) is a service open to
small generators (<1MW) and is accessible by Balancing
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Mechanism Units (BMUs) and non-BMUs. It should be
noted that, BMUs consist of generating units and utiliza-
tion metering [84]. Providers report the transmission and
distribution system’s energy flows via a monthly-tendered
procedure; PFR, SFR and HFR frequency services [85]. Gen-
erally, the term “tender” refers to platforms through which
providers are requested to confirm that all the information
and their technical requirements are accurate to the best of
their knowledge before submission to be able to contract in
the market. The providers can tender in an electronic platform
e.g., Ariba platform by Systems, Applications, and Product
corporation (SAP) in Short Term Operating Reserve (STOR)
services [86].

High impact contingencies (e.g., loss of large generating
units) instigate large frequency deviations. Consequently,
these deviations affect service delivery to the consumers
which needs to be tackled via Frequency Control by Demand
Management (FCDM) [87]. FCDM providers are contracted
to automatically respond under frequency deviation circum-
stances and assist in recovering the system frequency within
the agreeable range, by momentarily end a portion of their
working procedure to reduce demand on the network [88].

Enhanced Frequency Response (EFR) service offers a fast
response in supporting the power grid during low system iner-
tia times sustained for 15 minutes. The service enhances the
transition back to the normal frequency after sudden fluctua-
tions. EFR reduces the grid charges and is procured through
economic offers [89]. A summary of frequency response
services is presented in Table 2.

TABLE 2. Frequency response services.

Name Operational Base Specification
Timeframe service
DFR 5-30 sec RFR-PFR- Base of some
SFR-HFR- frequency
RFHR responses services
MFR 10-30 sec PFR, SFR Applied specific
or HFR days of month
FFR 10-30 sec PFR, SFR Applied single or
or HFR multiple months
(Depending on the
contract with ESO)
FCDM Within 2 seconds SFR Delivering
of instruction minimum 3 MW
within 30 minutes
EFR within 1 second DFR Capability of
of frequency delivering | MW
deviation up to 50 MW
B. RESERVE

Reserve service indicates supplementary resource require-
ment when the power grid encounters energy disproportions
in a short period. Reserve services are categorized into two
general classes, i.e., fast products and short-term products.
Fast reserve product providers have to offer at least 50 MW
of the power for up to 2 minutes [90]. An application of the
reserve services can be further investigated in heating sector
of the energy systems. In [91], a model for district heating
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systems is introduced to enhance the thermal flexibility of the
CHP units through participation in reserve services. STOR
is offered in case of generation surplus or shortage. STOR
providers must be available all throughout market openings
i.e., daily hours during which the supply margin is expected
to be tighter and, upon request, they must be able to deliver
full active power for up to 2 hours [92]. Other short-term
operating reserves, different from STOR category, are high-
lighted in Figure 3, e.g., Enhanced Operation STOR [93],
STOR runaway [94] and, Balancing Mechanism (BM) start-
up [95]. Demand Side Balancing Reserve (DSBR) provides
supplementary reserve in order to balance the unlikely sit-
uations in which there is insufficient capacity to meet the
demand. DSBR concerns large energy users who could vol-
untarily reduce electricity consumption, solely in the winter
period, with a payment in return [96]. Supplemental Balanc-
ing Reserve (SBR) provides generating capacity; however,
DSBR provides an opportunity for major energy consumers
and aggregators to get paid in return for their contributions to
moderating the energy consumption during peak times [97].
SBR is utilized when all market-based actions exhausted,
where generators are dispatched in economic order (i.e., uti-
lization price and duration required).

procured provided by
through tender STOR site
process owner

Provided by loads with less than 3 MW

capacities, capable to provide response

within 2 seconds and minimum for 30
minutes

acts as residual balancer in order to
ensure plant availability and meet
demand and reserve requirements

FIGURE 3. Different categories of short-term operating reserves.

DSBR and SBR, together, present Contingency Balancing
Reserves (CBR) as a transitional product to regulate the
grid frequency during contingencies. Industrial and commer-
cial entities which can structure the rules of AS programs
can serve as DSBR providers. Energy system operator in
National-grid ESO is no longer procuring this service, as they
transition to capacity markets.

C. VOLTAGE CONTROL AND REACTIVE POWER

BALANCE SERVICES

The necessity of reactive power services arises from presence
of the generators with quite high nominal rating, the connec-
tion of the DGs along with DGs configuration [98]. Hence,
many services have been propelled. Obligatory Reactive
Power Service (ORPS) maintain voltage fluctuations at a cer-
tain level and the providers of this service should supply their
rated output power under certain operational circumstances.
Enhanced Reactive Power Service (ERPS) is procured and
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applied where reactive power capability exceeds minimum
prerequisite of MVAr lagging capabilities [99].

D. SECURITY PROVIDE SERVICES

Some flexibility services can help prevent consecutive trip-
ping of the generating units, disruption of the generators,
transmission congestion and power shortages, e.g., providing
Black Start support by VER units, Inter-trip guarantees the
generators’ disconnection from the power grid, Constraint
Management is procured for efficient and economic operation
of the power transmission system [100], [101], [102].

VII. FLEXIBILITY TIMESCALES

According to [7], the operational flexibility acclaims the abil-
ity of a system’s utilities to manage the net-load uncertainty
and variability under deep VERSs integration. Reference [12]
intuits that more augmented operational flexibility leads to
a more secure power system. Consequently, to enhance the
operational flexibility, one first needs to define proper mea-
sures to evaluate the network’s existing level of flexibility
and the associated inefficiencies. According to [58], [103],
[104], [105], [106], three general categories on the existing
methods are introduced i.e., visualized methods, metrics and
comprehensive models. Visualization methods, e.g., illustra-
tion of dynamic upward and downward ramping capability
curve [107], [108], are easy to understand but need lots of
information. Comprehensive methods [109], [110] are widely
used when overall margins on accommodations of VERS’
uncertainty and variability are desired. Finally, metrics e.g.,
operational flexibility, are another approach to evaluate the
current level of flexibility and offer a better understanding on
how to improve the flexibility of the system infrastructures
[111], [112].

Operational flexibility can be defined in different time
scales, including long term, long to medium term, medium
to short term and short to very short term [113]. A brief
schematic with analytical solutions and corresponding high-
lights is depicted in Figure 4. Experiments have shown that
the planning timeframe is the most economically advanta-
geous way to take flexibility into account [114]. Considering
yearly horizon, system requirements of sufficient flexible
resources are ensured to operate properly with high shares of
VER generation. The output of VERs is inexorably stochas-
tic, which causes reliability challenges in power system oper-
ations over years. In power grids with low levels of flexibility,
during the periods with high VER generation spikes, large
amounts of generation may be curtailed in order to maintain
a balance between supply and demand [115].

To overcome this challenge, regulators might need to
encourage investment in flexibility enhancement programs by
providing certain tariffs/incentives, increase time and space
granularity in market design, and re-designing capacity mar-
kets [116]. Energy system operator should balance the sea-
sonal energy capriciousness on monthly basis operations,
arising from uncertainties of hydro units scheduling [117].
With high penetration of VERs in power systems and their
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impacts on net-load uncertainty and variability in hours and
intra-hours prospects, market operations should be analysed
in real time. The necessity of day-ahead decisions comes
from the fact that hourly scheduling protocols in real-time
operation are insufficient to provide system operators with
the required flexibility to manage their system effectively
[118], [119]. Designing intra-day markets is crucial in terms
of leveraging the full flexibility potential of the power grid.
Besides, setting a shorter span between gate closure and
actual market transactions can notably enhance the flexibility
in this timescale. According to [6], it can be justified that
this setting is preferred as the changes in VERs, especially
in wind, could be extremely large in real-time, which is
not reflected in the offline sight (day-ahead) of the system
operation. This vision concerns the timescale of the sys-
tem operation which directly alters the system flexibility.
In minutes to seconds, utilization of AS is necessary for reli-
able and flexible grid operation, particularly compensating
unexpected imbalances between demand and supply. Reg-
ulators must introduce new products and deploy operating
reserves to incentivize flexibility providers to partake. Gen-
erally, an ingenious service launched into practice by several
ISOse.g., National Grid ESO, is the Fast Frequency Response
(FFR) delivered by BESSs and VERSs [120]. Flexibility is pro-
visioned in PJM, CAISO and EPEX in day-ahead, intraday,
and the intraday continuous market auctions [121].

VIIl. CONCLUSION

Most recently, the research community has recognized the
need for flexibility in power systems while renewable energy
sources are being aggressively integrated worldwide. High-
lighting the latest updates on the concept of flexibility, this
paper tried to epitomize the required information about the
electrical and thermal flexibility and the services in which this
concept is impudent. This research focused on unifying the
available meanings and metrics of flexibility and introducing
the markets wherein the flexibility is traded in the form
of power system utilities options. It should be noted that a
unified framework to evaluate power systems flexibility and
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demonstrate it with a global index is yet to be addressed.
Although there are numerous studies conducted addressing
different aspects of flexibility, there still exist large gaps
in mathematical techniques to evaluate operational flexibil-
ity which need research attention. The effect of transactive
energy markets on the operational flexibility of the system,
thermodynamic conditions across a variety of energy stor-
age technologies, effects of reactive power, and optimizing
facilities in an intra-connection design of energy systems
should be further examined. Financial policies by the system
operators to incentivize the prosumers to participate in energy
market transactions, and deployment of energy hubs are other
suggestions for further research.
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