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ABSTRACT Resource sharing among users serves as the foundation of cloud computing, which, however,
may also cause vulnerabilities to diverse co-residence attacks launched by malicious virtual machines (VM)
residing in the same physical server with the victim VMs. In this paper, we aim to defend against such
co-residence attacks through a secure, workload-balanced, and energy-efficient VM allocation strategy.
Specifically, we model the problem as an optimization problem by quantifying and minimizing three key
factors: (1) the security risks, (2) the power consumption and (3) the unbalanced workloads among different
physical servers. Furthermore, this work considers a realistic environmental setting by assuming a random
number of VMs from different users arriving at random timings, which requires the optimization solution to
be continuously evolving. As the optimization problem is NP-hard, we propose to first cluster VMs in time
windows, and further adopt the Ant Colony Optimization (ACO) algorithm to identify the optimal allocation
strategy for each time window. Comprehensive experimental results based on real world cloud traces validate

the effectiveness of the proposed scheme.

INDEX TERMS Computer security, cloud computing, co-residence attack, ant colony optimization.

I. INTRODUCTION

Cloud computing has become popular in both business and
personal services. Infrastructure as a Service (IaaS) in cloud
computing is a service model that grants multiple users’
access to a shared pool of physical resources in a dynamic
way. Such resource sharing allows the cloud to maximize
the system efficiency by fully utilizing available computing
resources. On the other hand, cloud users can dramatically
save costs by paying only for the resources that they are
using and releasing the idle resources to other users. These
advantages attract numerous businesses that want to reduce
costs on intensive computational operations.

However, such infrastructure-level computing resource
sharing, which is enabled through multi-tenancy (defined
as ‘“‘the practice of placing multiple tenants on the same
physical hardware™ [48]), also introduces new security risks.
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Attackers taking advantage of the co-residence opportunities
may perform diverse attacks against their co-tenants [1], [2],
[3], [8], [16], [20], [33], [40], [45], [49], threaten the security
of cloud infrastructure and undermine users’ confidence to
move to the cloud [9], [39], [46], [47]. For example, a mis-
configured hypervisor which hosts multiple Virtual Machines
(VM) from different tenants may serve as a conduit for infor-
mation leakage [11]. Chiang proposed Swiper attack with
which the attacker uses a carefully designed workload to incur
significant delays to the targeted co-resident application [8].
Ristenpart and Swift proposed an attack which modifies the
workload of a victim VM in a way that frees up resources
for the attacker’s VM [49]. Particularly, such co-residence
attacks have two unique characteristics: First, it is directly
enabled by the resource sharing among different users, and
will continuously exist unless users are isolated on different
Physical Machines (PM). Second, it mainly leverages the
legitimate resource requests. Therefore, conventional secu-
rity techniques, such as authentication, authorization and
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access control, can hardly detect and block co-residence
attacks without preventing normal access to the shared
resources [49].

There are a number of solutions proposed to defend
against co-residence attacks through performance isolation
which requires virtualized computing resource isolation
for storage, CPU, cache, memory, and access path net-
works [30], [53]. However, such solutions are typically either
impractical (e.g., high overhead or nonstandard hardware),
application-specific, or insufficient for fully mitigating the
risk. Furthermore, it requires that the resources can never be
overcommitted due to the possibility of concurrent requests
from multiple tenants. This requirement will inevitably leave
resources idle and sacrifice cloud performance and efficiency.
Due to the immaturity of virtualization technology and the
absence of physical isolation, smart adversaries are still able
to launch attacks that penetrate the virtual boundaries among
tenants [8], [23], [24], [29], [35], [55]. At the current state of
the art, there is no practical way to guarantee the uncondi-
tional security except avoiding multi-tenancy [40].

Recently, a few studies have been proposed to focus on
secure VM allocation strategies, which assign VMs to avail-
able physical machines (PMs) in a secured way to prevent
malicious users from achieving co-residence with normal
users [4], [21], [22]. Compared to performance isolation
approaches, this type of mechanisms does not require sig-
nificant changes of the existing hardware/software, and is
not limited to specific applications. Nevertheless, this line
of research has just been initiated recently and has very
limited amount of work. In addition, as the number of possible
allocations increases in a factorial way when the number of
available PMs/VMs becomes large, it has been verified as
an NP-hard problem to search for the best allocation [21],
[22]. Most of current studies resolve this issue only through
heuristic solutions.

Therefore, a secure and energy-efficient VM allocation
strategy to defend against the co-residence attacks is proposed
in this paper. The main contributions of this research are
summarized as follows.

« First, we propose to consider and quantify three key fac-

tors for secure VM allocation in energy-efficient cloud:
(1) the security risks introduced by the co-residence of
VMs from multiple users, (2) the overall power con-
sumption and (3) the workload inequality among differ-
ent PMs. The VM allocation problem is then modeled as
an optimization problem where the objective function is
to minimize these three factors at the same time.

o Second, this work assumes a realistic scenario where a
random number of VMs from different users may arrive
at the cloud end with random timings, which requires the
optimization solution to be dynamically evolving based
on both the existing allocation status and new allocation
requests.

o Third, as this optimization problem is NP-hard [22],
we aim to address the problem by balancing the opti-
mization goal, the computational complexity and the
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allocation delay. Specifically, we propose to first intro-
duce time windows to handle arriving VMs in clus-
ters. Then for each time window, the Ant Colony
Optimization (ACO) algorithm, an evolutionary algo-
rithm inspired by natural ant activities, is adopted to
identify the optimal allocation strategy for new VMs
based on the prior VM allocation status. Although ACO
has already been applied to address diverse optimiza-
tion problems, we are the first one to adopt it in the
secure cloud resource allocation scenario. Comprehen-
sive understanding and analysis on the physical mean-
ings of (1) the ACO algorithm and (2) the cloud secure
VM allocation scenario have been performed to facili-
tate such adoption.

« Fourth, comprehensive experiments based on real-world
cloud workload traces are conducted to study (1) the
impact of critical parameter settings; (2) the effective-
ness of the proposed scheme when compared to the state-
of-the-art secure VM allocation studies.

Il. BACKGROUND AND RELATED WORK

A. PERFORMANCE ISOLATION

Diverse studies have been conducted to prevent sensitive
information from being transferred through converted chan-
nels (i.e. side channels) between co-resident VMs at different
levels of cloud infrastructure. First, eliminating side channels
from hardware level [25], [30], [52] usually provides more
effective defense. However, due to the complex process of
introducing new hardware into existing cloud infrastructure,
the adoption of such schemes adds extra cost on hardware
and administration. Second, extensive researches have been
carried out at the hypervisor level. For example, XenPump
proposed as a module located in hypervisor [53], monitors
the hypercalls used by timing channels and adds latency to
potential malicious operations, which increases the error rate
in timing channels. In addition, Shacham ef al. proposed
to make the timer substantially more coarse by removing
resolution clocks on Xen-virtualized x86 machines, so that
malicious VMs can hardly obtain accurate time measure-
ment [50]. The key drawback of these schemes is that they
often require significant modifications on hypervisors. Third,
some schemes are proposed at VM OS level [54] or appli-
cation level [10]. For instance, the authors in [51] proposed
to hide real power consumption information from user VMs
by deploying a police VM to generate false information.
Such schemes do not require substantial changes in the cloud
infrastructure and are thus easy to be adopted. Nevertheless,
they often suffer from the heavy overhead caused by obfus-
cating side channel information at the upper level of the cloud
infrastructure.

B. VIRTUAL MACHINE ALLOCATION

Attackers who aim to launch co-residence attacks against
a certain target have to first place their malicious VMs
on the same physical host where the target VM locates.
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Co-residence attacks cannot succeed if this first step fails.
Therefore, researches are launched to design security aware
VM allocation policies which significantly increase the diffi-
culties for attackers to achieve co-residence.

Many VM allocation policies are studied to assign different
positions to VMs. For instance, a randomization way to assign
VMs has been proposed [4] to make VMs’ deployment unpre-
dictable to attackers. Han et al. have proposed a co-resident
attack resistant VM allocation policy [22], which distributes
VMs by optimizing security, workload balance and power
consumption needs of cloud servers. Li and Zhang et al. have
designed a Vickrey-Clarke-Groves (VCG) mechanism to
migrate VMs periodically, so that malicious VMs cannot stay
co-located with their target VM for a long time even if they
can achieve co-residence [27]. Chhabra et al. proposed an
allocation policy to reduces the probability of co-residence by
classifying legal VMs and attacker VMs based on historical
data, similar approaches often require significant computa-
tional analysis and previous knowledge on each incoming
request [7], which can be further improved.

C. ENERGY-EFFICIENT CLOUD COMPUTING

Besides security, energy-efficient cloud computing has
recently attracted great attention as data centers consume a
large amount of electricity and generate giant power bills
every year at companies like Google, Facebook, Amazon, etc.
Data centers consumed more than 2% of the US total elec-
tricity consumption [19]. Different energy-efficient solutions
have been applied at ventilation, liquid-cooling systems, and
building construction [36]. However, such construction level
modification will generate a large amount of cost. Further-
more, cooling systems will also consume a significant amount
of electricity. Without conducting hardware level modifica-
tion, a power-aware VM scheduling algorithm could signifi-
cantly reduce energy consumption with minimum financial
cost and little performance impact. Recent research shows
that VM scheduling algorithms have great impact on overall
energy consumption of a data center [6]. Therefore, energy-
efficiency is used as an important factor for our scheduling
algorithm to evaluate the overall performance and efficiency.

D. ANT COLONY ALGORITHM AND ITS APPLICATIONS
The Ant Colony Optimization (ACO) is a meta-heuristic
algorithm for finding optimized solutions of computational
problems. It is inspired by one behavior of ants, in which
they leave pheromone on favorable paths for other members
to follow [12]. ACO has been applied to a wide range of
optimization problems which are mostly NP-hard. With the
initial application to the Traveling Salesman Problem (TSP)
[13], ACO has also been applied to solve other problems
like sequential order problem (SOP) [18], vehicle routing
problem [5], [17], resource constraint project scheduling
problem [31].

In cloud computing, ant colony optimization is widely used
in task scheduling [37], [38]. Li proposed a Load Balancing
Ant Colony Optimization (LBACO) algorithm to achieve task
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scheduling in dynamic cloud system while in consideration
of load balancing at the same time [26]. Feller has applied
ACO in workload placement and the results show that this
approach provides superior energy efficiency [15]. Similar
applications can also be seen in [34] and [32] where ACO
has been adopted to address cloud scheduling tasks. However,
they do not consider the security aspect.

To the best of our knowledge, this is the first work to apply
ACO to address the secure VM allocation issue in cloud.
Based on its high efficiency and effectiveness in addressing
NP-hard problems, we believe ACO is an appropriate tool to
allocate cloud VMs so that the cloud’s overall security, power
consumption and workload balance are optimized.

E. OUR EARLIER WORK

In [28], which is the conference version of the work,
we proposed the optimized energy-efficient and security-
aware VM allocation strategy against co-residence attack.
The preliminary results indicated that the presented research
is able to achieve the balance among cloud security, energy-
efficiency, and workload balance. The journal version is
significantly different from our conference version in the
following aspects. First, from the model aspect, rather than
assuming all VMs arriving at the same time, this work con-
siders a more realistic real-time scenario as a random num-
ber of VMs from different users arriving at the cloud with
random timings, which requires the solution to dynamically
evolve according to the existing VM allocation status and
the incoming new VM requests. Second, from the solution
aspect, to balance computational complexity, real time delay
and the optimization results, we first introduce time windows
to handle VMs in clusters and then apply ACO algorithm
for each time window to manage VM allocation. A more in-
depth understanding of the ACO algorithm, how and why itis
mapped to address the proposed problem have been discussed
in a more comprehensive way, which well explained the
fundamental working mechanisms of the proposed scheme.
Third, as a proof of concept, the conference version only
provided basic performance evaluations. More sophisticated
experiments and data analysis based on real world cloud
workload traces have been conducted in this journal draft.
Each of the key parameters of the proposed scheme has been
tested and discussed. Additional state-of-the-art comparison
scheme has been implemented and compared with the pro-
posed scheme. The results are discussed in details. Last but
not least, more comprehensive reviews and analysis of the
state-of-the-art literature have been conducted.

Ill. MODELING

In this section, we will present the proposed secure VM
allocation strategy in details. In particular, we would like to
first discuss the system model and assumptions; then model
the secure allocation issue as an optimization problem; and
present how to adopt ACO algorithm to solve the optimization
problem in an efficient way.
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A. ASSUMPTIONS

As one of the first few works to systematically model the
secure and energy-efficient VM allocation problem at IaaS
level in cloud, we propose to make the following assumptions
to facilitate the establishment of the optimization model later.

First, we assume the cloud receives a random number of
VMs from different users at random timings. Periodically,
the cloud needs to assign n, VMs from n}, users arriving in
the time duration ¢ to a number of available PMs, so that the
VM assignment can minimize security risks, overall power
consumption and imbalance of workload among PMs. How
frequently the cloud should perform such assignment can be
determined to balance time delay, computational complexity
and the optimal solutions.

Second, for each time window ¢, the number of PMs
involved in the allocation, marked as ng, is not given.
As we assume that there are sufficient number of idle
PMs to host VMs, ng should be a value within the range

[né mins nﬁimax]. In particular, the minimum number of PMs,
nt .. is achieved when all the VMs are squeezed into the

minimal number of PMs to make the utilization as high as
possible. On the other hand, the maximum number of PMs,
1’ s i achieved when each VM is assigned to a different
PM. In other words, n! ,,,. = n’. This allocation achieves
maximum security since all VMs are isolated on different
PMs at the cost of highest power consumption and workload
imbalance.

Third, we assume each VM’s workload is dynamically
changing during run time based on the real world cloud
workload traces. Please note that such changes will lead to
fluctuations of the power consumption and workload balance,
and may occasionally cause overload of PMs which triggers
dynamic VM migrations among PMs in cloud. These above
assumptions make our model more realistic but also more
challenging to address.

Fourth, regarding the security aspect, we assume that all
VMs from a malicious user are malicious. The attack goal is
to have the malicious VMs achieve co-residence with VMs
from as many normal users as possible to facilitate later
attacks. In addition, from the defender side, we also assume
that according to historical data, the cloud is able to estimate
the percentage of malicious users, but does not know which
specific users are malicious. This assumption requires that
the proposed scheme can develop the best allocation strategy
based on different security context. In the case where the
cloud does not have a good estimation of the malicious user
percentage, this value can always be set as 100% to treat
security in the most conservative way, which will result in an
allocation solution that minimizes the co-locations of VMs
from different users.

B. OPTIMIZATION MODEL

With the above assumptions, we model the overall VM allo-
cation problem as an optimization problem, of which the
optimization goal is to minimize (1) the security risks, which
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is modeled as the probability of malicious VMs co-locating
with the VMs from normal users (i.e. Ry.), (2) the overall
power consumption of used PMs to run these VMs (i.e.
Sfrower(u)), and (3) the workload inequality among different
PMs (i.e. B,,). Therefore, we design the objective function of
this optimization problem as follows.

¢ = ws * Rgec +wp *f};ower(u) + ww * By, (D

where ¢ represents the objective function value or cost value,
ws, wp, and wy represent weights for the three factors
respectively.

Then the next question is how to quantify these three
factors in a reasonable way. In this work, we propose the
quantification of these factors as follows.

1) QUANTIFICATION OF SECURITY

Specifically, as we assume a uniform distribution of mali-
cious users, we model the probability of malicious VMs co-
locating with normal users (i.e. the security risks) as

Z?;l(niofloc -1
ng *x (ny, — 1)

Rsec = mal (2)
where P, indicates the estimated malicious user percent-
age; ng and n,, represent the number of PMs and users, respec-
tively; and nlC o—loc Indicates the number of co-located users at
PM i. Since we consider a PM with only one user as secure, a
“-1” is introduced in both the numerator and the denominator
parts for normalization purpose. We can see that (1) in the
ideal case, where each PM hosts no more than one user’s
VMs, Ry is 0; (2) in the worst case, where each PM hosts
VMs from all the users, Ry is 1; and (3) Ry, will increase
when either the percentage of malicious users or the number
of co-located users at each PM increases.

2) QUANTIFICATION OF POWER CONSUMPTION

The power cost evaluation is based on the power measure-
ment of a PM at eleven CPU utilization levels at 0%, 10%,
20% ...100% [41] since only CPU utilization is sufficient to
evaluation whole computing system’s power cost [14]. Since
measuring power cost at all utilization levels are neither cost-
effective nor practical, we use linear interpolation (Eq. 3) to
estimate the corresponding power cost that is at an unmea-
sured utilization level U by using the measured power costs
Py, and P; at the higher utilization U}, and lower utilization U;.

P, —P; PyU — P1U,
u) = — 3
fPower( ) Un — U, Un — U, ( )
The power cost is normalized as
i1 |Pi — Pregt
Prormalized = s=l “4)

Phpest X ng

where P; represents the current power cost of the ith PM and
Ppest represents the most effective power cost [41] that has
the highest performance to power ratio. We can see that the
greater the difference between P; and Pp.y, the less power
efficient the current server is.
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3) QUANTIFICATION OF WORKLOAD INEQUALITY
At the end, the cost of workload inequality is normalized as

where wi; represents the workload of VM i; and wi represents
the average workload for all the ny PMs. We can see that
either an extremely large or extremely small workload will
dramatically increase the cost of the workload inequality.

C. DYNAMIC VMs IN REAL TIME

As proved in other existing studies [21], [22], we recognize
the optimization issue modeled in the above section as an
NP-complete problem. However, the problem is even more
complex as in reality, cloud servers continuously receive
dynamic VM requests and the workload of existing VMs is
also dynamically changing.

To make the model more realistic, we assume that users’
requests arrive at the cloud end with random timings. Fur-
thermore, the request from each user may be realized through
a random number of VMs. In particular, we 1) adopt Pois-
son distribution to simulate the incoming VMs’ arrival rate;
2) introduce time window concept to group incoming requests
to balance optimal assignment solution, computational com-
plexity and allocation delay; 3) use real world cloud traces for
VM workload simulations.

1) ARRIVAL TIMING
We adopt Poisson distribution, a discrete probability distribu-
tion that expresses the probability of a given number of events
occurring in a fixed interval of time, to simulate the arrival
time of VMs. Furthermore, the number of VMs arrives in one
time interval does not affect that in any other time intervals.
In particular, VM arrival rate A is used to tune the workload
by varying the inter arrival time based on Poisson Distribution
as presented in the following equation where R is a random
number between 0 and 1, e is the base of natural logarithm,
A is greater than 0. Greater A means smaller inter-arrival time
between VMs which results in more intense VMs in the same
period of time. Therefore, parameter A tunes the real-world
workloads to better evaluate our strategies performance.

IntervalTime = —log.(R/A). (6)

2) TIME WINDOW

Since VMs are continuously arriving, we propose to handle
VM requests in groups through time windows. VMs arriving
in the same time window will be processed together. Such
solution requires a careful design of the time window length.
The search of an optimal allocation strategy can have more
flexibility when more VMs are available, which may lead to
better performance in achieving the optimization goals. How-
ever, waiting to gather too many VMs will cause significant
delays to handle users’ requests. Meanwhile, with more num-
ber of VMs handled together, the computational complexity
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will also increase, leading to further delays. Therefore, there
is a trade-off between request delay and the optimization
performance of the resulted allocation strategy.

3) DATA TRACE

We simulate the workload of each VM based on PlanetLab
cloud workload which is a list of VM CPU utilization per-
centage values collected on March 3rd, 2011. Each workload
is 24-hour long and the interval of utilization measurement
is 300s. As a result, the utilization request of a VM may
change from time to time, which requires the VM allocation
algorithm to dynamically evaluate the workload at each PM
accordingly and migrate some allocated VMs in case of server
overloading.

D. ANT COLONY OPTIMIZATION

Next, we propose to adopt Ant Colony Optimization (ACO)
as a solution to the proposed optimization model. Inspired by
natural ant activities, ACO is an algorithm integrating both
heuristic information and randomness to find the optimized
solution to a problem [12]. The basic idea is that ants carry
back their food to colony through different random trails
initially, and meanwhile release pheromone on their trails.
After a while, trails that take ants less time to travel are
piled up with pheromone and become more attractive to ants
traveling later. In this way, the shorter trails are reinforced
again and again, so that eventually the shortest one will stand
out.

A typical application of the ACO algorithm is traveling
salesman problem (TSP), an NP-hard problem, of which the
optimization goal is to find the shortest path to traverse all
cities in a given map. In particular, given an ant k at a city
i, the probability for this ant to choose the next city as j is
calculated as follows.

_ T 715 jeN
k _ o
Pij =) Xien T * 1y 7
0 otherwise

where N is the set containing all the cities that are not visited
by ant k yet; 7;; and n;; represent the pheromone and heuristic
value of selecting city j to visit next after city i. The heuris-
tic value n;; can be calculated based on the direct distance

between cities i and j (i.e. d;j) as follows.
1 (®)

nij dij

From the above discussion, we can see that the heuristic
value n;; is determined by the direct distance between cities
i and j, which is consistent with the intuitive way of deter-
mining the shortest path. In addition, the pheromone value t;;
may initially represent randomness, as ants may take random
trails and lay pheromone, and is gradually reinforced by later
ants’ choices/experiences (i.e. if the path from city i to city j is
frequently selected as part of the best path). By adjusting the
two parameters « and g, which range from 0 to 1, ACO can
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dynamically adjust how important the pheromone and heuris-
tic values are considered, respectively. For example, when
o = 0, the pheromone information is completely ignored;
and the ACO algorithm becomes a pure greedy algorithm.
On the other hand, when 8 = 0, the heuristic information is
completely ignored; and the ACO algorithm becomes a pure
random searching algorithm.

By taking both information into account, the ACO algo-
rithm aims to identify the optimal trail by integrating
“exploitation” (selecting “‘optimal” action based on heuris-
tic information that is already known) and “‘exploration”
(attempting to discover new possibilities by selecting a sub-
optimal action with certain randomness). In addition, as dif-
ferent ants are independent from one another, the ACO algo-
rithm can be naturally implemented in a distributed way to
improve efficiency. Therefore, the ACO algorithm is often
applied on NP-hard problems to efficiently find high quality
solutions.

E. ADOPTING ANT COLONY OPTIMIZATION (ACO)

The advantages of ACO make it a promising approach to
address the secure VM allocation issue in cloud. Furthermore,
compared to deep learning based solutions (e.g. reinforce-
ment learning), ACO schemes require much less training
data. Therefore, we would like to adopt ACO in the proposed
scheme to address the optimization problem discussed in
Section III-B. However, such adoption is not trivial due to
several challenges. First, how to map the VM assignment
issue, which involves two parties as the VM and the PM, to a
city visit problem that only considers one party (i.e. cities)?
Second, different from TSP where the number of cities to
visit is fixed, the secure VM allocation problem only specifies
the number of VMs to assign, while leaving the number of
physical servers open. How to determine the optimal number
of PMs involved? Third, how to model the heuristic and
pheromone values in the VM assignment scenario?

We aim to address these challenges in the following two
sections. In particular, we need to handle two major steps as:
(1) mapping VM allocation as a shortest path problem, and
(2) designing heuristic and pheromone values in VM
allocation.

1) MAPPING VM ALLOCATION
We propose to address the first two challenges through the
following mapping scheme. Recall that the original VM allo-
cation problem is to assign a list of n, VMs (i.e. Vjiss) to ng
available physical servers, where n; € [ng'”'”, nJ"“*1 is not
a fixed value (i.e. the second challenge mentioned above).
To simplify the problem, we first divide the entire problem
into n'** — ’”’" subproblems, where each subproblem only
handles one spemﬁc PM number. We will retrieve the optimal
solution to the overall problem as the best solution out of the
optimal solutions to each subproblem.

Then for each subproblem with a fixed number of PMs,
represented by ng, we aim to assign each VM in the Vi,
to these ny PMs one by one. Specifically, we create a VM
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assignment vector A as

A" =lag, ai, ...ai,...an,—1] 9)

where a; represents the PM index that the i/ VM in the
Viist is assigned to. For example, given an assignment A3 =
[1,0,2, 1], it indicates that four VMs have been assigned to
three different PM as server 1, server 0, server 2 and server 1,
respectively. The first challenge mentioned above can then
be addressed through this VM assignment vector A. Similar
to the TSP problem, where each traversal solution contains a
specific order of cities that leads to a certain overall distance;
in our problem, each VM assignment A contains a specific
combination of VM-PM matching pairs that leads to a certain
overall cost.

2) HEURISTIC AND PHEROMONE INFORMATION IN VM
ALLOCATION

Here, we address the third challenge: determining the heuris-
tic and pheromone values in the VM allocation problem.
Recall that in TSP, the heuristic value is determined as the
inverse of the distance between two cities. In our problem,
we design the heuristic value 7;; as a value related with the
cost of assigning VMs to PMs. To record all the assignment
costs, we introduce a two dimensional cost matrix C as

CI,1 €12 €13 ... Cl,n

cC=1|"" Cyj wovvnnnn (10)

Cny,1 Cny,2 Cny3 -+« Cpyong

where ¢, j represents the cost of assigning VM v to server j,
which is calculated according to equation (1), as the extra cost
increase on security risks, power consumption, and workload
inequality caused by the assignment of VM v to PM j. Then
the heuristic information #;; can be easily obtained from this
matrix as

nij = 1 (11)
Cv,j
Please note that as we assign VMs according to their orders
in the Vg, the cost ¢, is calculated based on the previous
assignment of VM v — 1 to server i (i.e. ¢,—1 ;). Therefore,
different orders of the VMs in the Vj;;; may lead to different
assignment solutions.
Second, we design a two-dimension pheromone matrix Ph
as follows.

phi phip phis ... phig,
........... phu,j--~~~--~~ (12)

phnv,l phnv,Z phn‘,,S .. phnv,nj

where ph, j represents the current pheromone value of assign-
ing VM v to server j. In the beginning of the problem, as there
is no information available for possible assignments, all the
values in the initial pheromone matrix are normalized as -
Once a local optimal assignment has been identified, the
VM-PM matching pairs that are involved in this assighment
will have their pheromone values updated.
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3) ITERATIVE ACO FOR SECURE VM ALLOCATION

With all the three challenges addressed, we are now able to
present the iterative ACO algorithm for secure VM allocation.
In particular, there are five steps as follows.

Step 1, divide the original problem of VM assignment into
nmax — pmin gubproblems. For each subproblem with a fixed
number (i.e. ng) of PMs, an iterative ACO will be launched to
find the optimal assignment.

Step 2, for each iteration /, identify the best assignment.
Specifically, n, ants are created, where each ant will start
from a Vi, with a randomly generated order of VMs, and
work on constructing its own assignment A™s/ by considering
both the heuristic and pheromone information. Once all the n,
ants have completed their assignments, the total cost of each
assignment is stored as an element in a 1 x n,, vector C*-/. The
assignment with the lowest cost min(C* 1y will be identified
as the best assignment (i.e. AZ}’: ) for iteration /.

Step 3, update information. If the minimum cost at iteration
I is smaller than the optimal cost for the current subproblem
(i.e. min(CHy < ), we will have

opt
Copr = min(C"") (13)
Ay = Agyt (14)

Consequently, the pheromone information for the next itera-
tion / + 1 will be updated as follows.

I+1
phi; " = (1= @)phl,; + pApl, (15)
1 _ 1 ..
where Aphv’j = . In addition, ¢ represents how fast

Copt

the pheromone information is updated. A higher ¢ value
represents a faster speed to forget the out-of-date pheromone
information.

Step 4, repeat the above process for L iterations in total.
In particular, each new iteration will be performed by another
n, ants with the updated pheromone information, which may
lead to some new better assignments. After L iterations, the
final AZ}): will be determined as the best solution for this
subproblem.

Step 5, once all the subproblms are addressed, the global

optimal assignment is determined as below.

AGlohal

ol = optimal(A™ ), where ng € [, /"] (16)

op s ol

We summarize the proposed scheme in Algorithm 1. For
clarity purpose, we use bold notations to represent matri-
ces, capital notations to represent vectors and lower case
notations to represent scalar variables. The time complexity
of Algorithm 1 is affected by the max and min number of
servers, the number of iterations, the number of ants, and
the number of VMs. Since the number of iterations and
ants are fixed for each execution, the time complexity is
roughly O(n?).

IV. PERFORMANCE EVALUATION
To demonstrate the effectiveness and efficiency of the pre-
sented solution, we evaluate our strategy under different
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TABLE 1. Table of notations.

Notation Description
Upist A list with all users
Viist A list with all VMs
Ns Number of servers
Ny, Number of users
Ny Number of VMs
Na Number of ants
L Number of iterations
Ph Pheromone Matrix
C Cost matrix for assigning VMs to different servers
Cq A vector of costs for each ant’s assignment
A VM assignment vector with dimension as n,, * 1
AZ;t optimal VM assignment vector for ns servers
AOGplgbal The global optimal VM assignment

Algorithm 1 ACO Cloud VM Assignment Algorithm
Uyjis: < All Users
Viise < All VMs
n™n pMax « The max/min number of servers
for ny = n" to ny = N> do
Initialize pheromone matrix Ph, c,,, = Inf and A, =
NULL
for/=0to/=L—1do
form=0tom=n, — 1do
forv=0tov=n,—1do
Cy[v] = getCost(v, Vijs)
Pr,[v] = getPro(C,[v], Ph, «, B)
A" [q] = randomGen(Pr,[v])
end for
Cilml =307, CovI[A™ ]

if ¢y, > Cl[m] then
s ) s 51
Chy = Cllm] and AQ,, = Apy,
end if
end for
Ph = pheUpdate(c),)
end for
end for
return Aflfl”h‘” = optimal(Ay,), where ng € [nJ"™, n}™]

amount of users and workloads. Then we compare the perfor-
mance with two other state-of-the-art VM allocation strate-
gies. The results of simulated experiments indicate that the
proposed strategy outperforms the baseline strategies consid-
ering workload balance, security, and power cost. Table 2
presents the standard VM configuration that is used in the
experiments. Bandwidth and VM size decide the migration
time cost. MIPS (Millions of Instructions per Second), Pro-
cessing Elements, and VM utilization will be used to convert
the VM utilization to server utilization. In particular, the real
time VM utilization rate traces are generated based on data
collected from a real data center. Table 3 presents the power
and performance data of the servers used in the simulation.

A. KEY PARAMETERS TESTING

1) ACO PARAMETERS

In this section, we mainly investigate the impact of three key
parameters from the ACO algorithm: « and S. Specifically,
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TABLE 2. Virtual Machine Configuration.

[ Configuration Parameters | Default Value |

MIPS 2000
Processing Element 2
Memory 1GB
Bandwidth 100 Mbit/s
VM Size 2.5GB
VM CPU Utilization 0% - 100%

Alpha=0, 0.2, 0.4, 0.6, 0.8, 1, UserNumber = 2, 4, 6, 8, 10

0.16 1 0 [ a=0
. H 2 a=0.2
= 0.14 A - K -8 — a=0.4
w L] -
S *H H =3 a=0.6
= 0.12 H H ——; 3 .a=0.8
g 0.101 H H _ 3 a=1
c s H = 1
S 0.08 1 = H = M
5 -] - = 5
& 0.06 - d |°H -
7 "H H H 4
0.04 A H H H
@ ol] u u o
0.02 H H H
g= = = 5
0.00 =L oL =L
2 4 6 8 10

Number of Users

FIGURE 1. Impact of alpha on overall costs.

« and B are ranging from O to 1, representing the weights of
the pheromone and the heuristic values to be considered in
the optimization, respectively.

a: IMPACT OF «

To validate the impact of o on the overall costs, we fix
B = 0.9, ¢ = 0.8 and change « from O to 1. The results
are shown in Fig. 1. In particular, we can observe that the
overall costs are not sensitive to o values when the number
of users is small. When there are more users (> 6), greater
a values will result in smaller overall costs in general. This
is reasonable. Recall that the o value indicates the weight of
pheromone information to be considered, which starts from
an identical value for all possible VM-PM matching pairs and
needs to be accumulated over time. When there are not many
users/VMs to assign, there is not sufficient accumulation for
the pheromone value to represent better matching pairs. As a
result, a higher or lower weight (i.e. «) of the pheromone
values will not influence the overall costs much. However,
when more users/VMs are available, the pheromone informa-
tion can be accumulated more to represent better matching
pairs. Therefore, a higher weight (i.e. greater « value) will
effectively help to reduce the overall costs.

b: IMPACT OF ¢

Similarly, to evaluate the impact of ¢ on the optimized overall
costs, we set « = 0.9, = 0.89 and change ¢ from 0 to 1.
The similar trend is observed in Fig. 2, which indicates that
although the overall costs can yield lower values when there
are more users/VMs, they are not sensitive to the change of ¢
values for a fixed number of users, especially when the user
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FIGURE 3. Impact of beta on overall costs.

number is small (< 8). However, when more users/VMs need
to be allocated, ¢ = O will not lead to good results. The
reason is as follows. Recall that a larger ¢ value indicates
a faster update of the pheromone value, ¢ = 0 leads to no
pheromone updates at all. It indicates that the pheromone
values in all the later iterations will be exactly the same as
the initial pheromone values, which are set as an identical
value for all possible VM-PM matching pairs. It actually
mitigates the impact of pheromone as it cannot be used to help
differentiate different matching pairs. In other words, when
only considering heuristic information, the overall cost will
not yield its optimal value. But except the case ¢ = 0, other
¢ values will yield the same optimal overall costs, indicating
that regardless of the pheromone updating speed, as long as it
is not zero, the optimal overall costs can always be achieved.

c: IMPACT OF B

To validate the impact of B on the overall costs, we set
o = 0.9, ¢ = 0.8 and change B from O to 1. The results
are shown in Fig. 3. Similar trend can be observed as that
although the overall costs can yield lower values when there
are more users/VMs (i.e. easier to tune and balance), they are
not sensitive to the change of 8 values when the number of
servers is fixed. It indicates that a wide range of 8 values
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TABLE 3. Power Consumption of Hosts [41], [42], [43], [44].

[ Host Model [ Average Active Power (Watt) |
Utilization: 0% 10% | 20% 30% 40% 50% 60% 70% 80% 90% 100%
Fujitsu Primergy RX1330 M1 13.8 | 20.8 | 23.9 26.3 29.1 32.6 36.2 42.0 48.6 559 63.7
Inspur NF5280M4 444 | 833 101 118 135 146 161 190 218 255 301
Dell PowerEdge R820 71.8 135 156 176 198 219 243 269 297 318 374
IBM NeXtScale nx360 M4 497 814 947 1079 1211 1344 | 1493 1648 1863 | 2108 2414
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FIGURE 4. Impact of Malicious User Percentage.

can be chosen for the ACO algorithm and will not lead to
a dramatic performance change.

2) PERCENTAGE OF MALICIOUS USERS

Besides the ACO parameters, we also want to evaluate how
the percentage of malicious users will influence the overall
costs. In particular, we have changed the malicious user
percentage from O to 1, and the security weight from 0.1 to
0.9. The resulted overall costs are shown in Fig. 4. In Fig. 4,
the x-axis and y-axis represent the malicious user percentage
and overall costs, respectively. The five curves represent dif-
ferent weights of the security factor in our objective function
(i.e. Equation 1). There are several observations. First, when
the malicious user percentage increases, smaller security
weights often lead to slower increase of the overall costs. This
is because when security is less cared (i.e. lower weights),
the overall costs are less sensitive to the malicious user per-
centage changes. Second, when security weights are set high
(e.g. 0.7 or 0.9), we can observe that the cost curves achieve
their peek values at a certain point and will not continuously
increase when the malicious user percentage increases. This
is because higher security weights make the optimization pro-
cess tilted towards the security aspect, which can effectively
guarantee no raises of the security risks while malicious user
percentage continuously growing. It also shows the effective-
ness of the proposed optimization scheme.

3) THE WEIGHT OF SECURITY

As the weight of security is also a key parameter to be
determined by the cloud service provider, we aim to study
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its impact on the overall costs, which consists of the costs
for power, workload inequality, and security. Specifically, the
experiments are conducted by simulating 30 users, where
each user has two VMs with random utilization requests.
Recall that our proposed algorithm actually divides the entire
optimization problem into smaller subproblems, with each
one of which handles only a fixed number of servers. So we
first present the impact of security weights for each specific
number of servers (i.e. each subproblem) in Fig. 5. Please note
that each of the data points here represents the optimal costs
for a specific subproblem, not the global optimal costs.

In particular, there are four subplots, showing the overall
costs, workload inequality costs, power costs, and security
costs. In each subplot, there are four curves representing
different security weights as 0.3, 0.5, 0.7 and 0.9, respectively.
The corresponding weights of power consumption and work-
load inequality are set as wy = wp = (1 —wg)/2. In addition,
the x-axis of each subplot represents the number of occupied
physical servers, and the y-axis represents the corresponding
costs.

From this figure, we can make several observations. First,
as shown in the upper left subplot, the power costs are not
sensitive to security weights, but mainly dominated by the
number of PMs. Even if different security weights lead to dif-
ferent optimal assignment solutions, as long as the solutions
are occupying the same amount of PMs, the power costs for
these assignments will be roughly the same.

Second, from the upper right subplot, we can observe
that regardless of the security weight, when the number of
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occupied PMs increases, the security costs (i.e. security risks)
are decreasing. This is because when the number of occupied
PMs increases, the VMs are more spread out, indicating a
higher possibility for VMs from different users to be allocated
on different PMs, leading to lower security risks/costs.

Third, from the lower left subplot, we can observe that for
all different security weights, the workload inequality costs
will always increase first and drop later, when the number
of PMs is increasing. The reason is as follows. When the
number of PMs is small, most of the VMs are squeezed in
the PMs, leading to very limited extra capacity for each PM.
Therefore, the workload is roughly balanced among different
PMs. When the number of occupied PMs starts to increase,
VMs are allocated more flexibly to different PMs, which
easily makes more PMs have different capacity left, leading
to more imbalanced workload. However, as the number of
occupied PMs continues to grow, VMs are spread out, leading
to very few VMs sharing the same PM. As a result, it becomes
easier again to balance the workload among different PMs.

At the end, as shown in the lower right plot, the overall
cost is a trade-off of the three factors: power consumption,
workload inequality and security risks, and therefore can be
significantly influenced by the security weight. Specifically,
when the number of occupied PMs is small, the costs of power
and workload inequality can be small. However, as VMs are
squeezed to reach the maximum capacity of each server, the
security risk is greatly increased. As a result, the local optimal
solution will yield higher overall costs if the security factor
is the dominated factor (i.e. high security weight), and lower
overall costs if power and workload inequality are dominated
factors (i.e. low security weight). On the other hand, when
the number of occupied PMs is large, the power cost goes
up. However, as VMs are spread out on different PMs, the
security risks and workload inequality can be low. As a result,
the local optimal solution will yield lower overall costs if
the security factor is the dominated factor (i.e. high security
weight), and higher overall costs if power is the dominated
factor (i.e. low security weight).

Next, we aim to study the impact of security weights on the
global optimal solution in Fig. 6. Different from Fig. 5, where
the local optimal costs for each subproblem are analyzed,
here we only examine the global optimal solution with the
best number of PMs for each specific security weight. Specif-
ically, the five subplots represent the influence of security
weights on the optimal costs for the overall solution, work-
load inequality, power, and security, as well as the optimal
number of servers, respectively.

From Fig. 6, we can observe that when security weight
gradually increases, the corresponding optimal solutions tend
to make more efforts on lowering the security costs, which
will lead to more number of occupied PMs and higher power
costs, but lower workload inequality and overall costs.

B. PERFORMANCE COMPARISON
In this section, we compare the proposed scheme with
two other existing allocation strategies. The first one is

98558

Workload
°o
2
T
|
|
I
I
l
I

Security
o
N
T
’
/
I

o
N
o
@
°
2
o
o
°
>
°
2
o
5
o
©

number of server
@
8
T
1
|
|
*
I

o
N
o
@
°
2
o
o
°
>
°
2
o
5
°
©

security weight

FIGURE 6. Impact of Security Weights on Optimal Costs.

Round-Robin, a classic algorithm that allocates resources,
e.g. physical machine (PM), in equal portions and in circular
order, handling all VMs without priority. In particular, as the
original Round-Robin algorithm cannot specify the number
of physical PMs to be involved for allocation, we implement
the algorithm in a way that the algorithm spawns a group
of PMs each time. We set the number of PMs in a group
as 2, 4, 6 and 8 each time a new spawning process is needed.
The modified Round-Robin algorithms are named RR2, RR4,
RR6, RR8 respectively and we examine their performance at
different choices of the number of spawning PMs.

The second one is the Previously-Selected-Servers-First
(PSSF) scheme proposed in [22], a representative study of
the state-of-the-art VM allocation schemes that optimizes
security, workload balance and power consumption through
a heuristic strategy. In particular, PSSF tends to select from
two strategies: stacking or spreading. Each new VM will
be first stacked to the same PM to which other VMs from
the same user has been allocated. If the PM has reached its
capacity, the new VM will be spread to a new PM. Similar to
Round-Robin, PSSF cannot explicitly determine the number
of physical PMs to involve. Instead, it involves a group of
physical PMs each time, and the new group of PMs will
not be involved until the existing PMs reach their capacity.
Therefore, a key parameter for PSSF is the number of PMs
in each group. In our experiments, we set the number as 2,
4, 6 and 8, respectively to examine its performance and
name the algorithms as PSSF2, PSSF4, PSSF6, and PSSFS,
respectively.

As discussed in Section III-C1, we use Poisson distri-
bution to simulate different scenarios where the number of
users and VMs increases as the parameter A increases in a
given amount of time. In particular, A varies from 0.001 to
0.01, which indicates the number of incoming VMs rang-
ing from 10 to 100 during the total experiment duration.
We generate 100 sets of data from Poisson distribution at
each A values and take the average performance to make a
fair comparison. The representative results are presented in
Fig. 7.
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FIGURE 7. Performance Comparison for Scenario with different A.

Fig. 7 contains 4 subplots with A set to 0.001, 0.004,
0.007 and 0.01, representing the scenarios with the VM
numbers as 10, 40, 70 and 100 respectively to demonstrate
the performance of the proposed scheme, Round-Robin and
PSSF. In addition, the malicious user percentage is set as
20%, a reasonable estimation on the malicious context, and
the weights for security, power, and workload inequality
are all set as 1/3. The bars from left to right represent the
proposed scheme with its key parameter (i.e. time window
length) equals 500, 1000, 2000 and 5000; Round-Robin with
span set to 2, 4, 6, and 8; and lastly PSSF with span set
to 2,4, 6, and 8.

As shown in Fig. 7, the total cost of the proposed scheme
on the top right subplot, where A equals 0.004, drops at
time window length 200 and then increases along with the
increase of time window length. This is because when the
incoming number of VMs are relatively small, the number of
VMs falling in one time window may vary, leading to some
inconsistencies in the performance. As the number of VMs
increases where XA equals 0.007 and 0.01 on the bottom two
subplots, the proposed schemes tends to be more stable with
a downward slope as time window length increases. This is
because when time window length increases, a larger portion
of incoming VMs are considered by the algorithm at each
calculation, thus results in a lower overall cost. On the other
hand, larger time window length means longer average wait
time for each incoming VM before assigning to a actual PM.
The trade off here has to be considered in a real world scenario
to accomplish an optimized configuration.

Among these algorithms, the proposed scheme always
achieves the best performance in terms of the optimal
total costs, which validates its effectiveness. Moreover, the
detailed subcosts for security, power, and workload balance
are also shown for each allocation scheme. There are several
observations. First, at A=0.001, the proposed scheme with
time window length set to 100 achieves the best overall score.
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PSSF4, PSSF6 and PSSF8 achieves the exact same score
with zero cost on security. This is because when the number
of incoming VMs is relatively small (10 VMs in this case),
according to the behaviour of PSSF, VMs will simply span
to a new server when there are enough PMs allocated. This
results in zero security cost. However, because of the usage of
new PMs, the power costs will significantly increase, leading
to much higher overall costs. Secondly, when A=0.004, the
proposed scheme with time window length 2000 achieves the
minimum overall costs. Even though PSSF6 has the lowest
security cost, the proposed scheme has far less power cost
compared to PSSF6, which results in an overall lowest cost.
RR2, RR4, RR6 and RRS8 behave similarly to PSSF, but
with higher security cost since they tend to stack VMs from
different users into the same PM. When A=0.007, there are
total 70 incoming VMs, which makes it a more realistic
scenario. The proposed scheme outperforms both RR and
PSSF, and the worst score of the proposed scheme is nearly
the same as the best score of both RR and PSSF. Both RR
and PSSF have significantly larger power cost and workload
balance cost than the proposed scheme because the way the
stack up VMs and spawning PMs, and the choices of span 2,
4, 6, 8 of the two schemes among different A does not always
generate the same results, which make it hard to detect the
optimized choice of span in a complex, realistic scenario.
Similar observation can be concluded on the last subplot
when A is set to 0.01 with a total of 100 incoming VMs, this
confirms that the proposed scheme is robust and scalable with
better performance among all these schemes.

V. CONCLUSION

Co-residence attack has raised significant concerns as the
increassing popularity of cloud computing. Attackers are able
to take advantage of the resource sharing in multi-tenant
cloud to perform diverse attacks against their co-residents on
the same physical server. We proposed to defend against such
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co-residence attacks through a secure, workload-balanced,
and energy-efficient VM allocation strategy. and modeled the
VM allocation problem as an optimization problem. As this
optimization problem is NP-hard, we further applied the Ant
Colony Optimization (ACO) algorithm, an evolutionary algo-
rithm inspired by natural ant activities, to identify the optimal
allocation strategy. Experiment results demonstrated that the
proposed scheme can make the multi-tenant cloud secure and
power efficient.
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