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ABSTRACT Resource sharing among users serves as the foundation of cloud computing, which, however,
may also cause vulnerabilities to diverse co-residence attacks launched by malicious virtual machines (VM)
residing in the same physical server with the victim VMs. In this paper, we aim to defend against such
co-residence attacks through a secure, workload-balanced, and energy-efficient VM allocation strategy.
Specifically, we model the problem as an optimization problem by quantifying and minimizing three key
factors: (1) the security risks, (2) the power consumption and (3) the unbalanced workloads among different
physical servers. Furthermore, this work considers a realistic environmental setting by assuming a random
number of VMs from different users arriving at random timings, which requires the optimization solution to
be continuously evolving. As the optimization problem is NP-hard, we propose to first cluster VMs in time
windows, and further adopt the Ant Colony Optimization (ACO) algorithm to identify the optimal allocation
strategy for each time window. Comprehensive experimental results based on real world cloud traces validate
the effectiveness of the proposed scheme.

13 INDEX TERMS Computer security, cloud computing, co-residence attack, ant colony optimization.

I. INTRODUCTION14

Cloud computing has become popular in both business and15

personal services. Infrastructure as a Service (IaaS) in cloud16

computing is a service model that grants multiple users’17

access to a shared pool of physical resources in a dynamic18

way. Such resource sharing allows the cloud to maximize19

the system efficiency by fully utilizing available computing20

resources. On the other hand, cloud users can dramatically21

save costs by paying only for the resources that they are22

using and releasing the idle resources to other users. These23

advantages attract numerous businesses that want to reduce24

costs on intensive computational operations.25

However, such infrastructure-level computing resource26

sharing, which is enabled through multi-tenancy (defined27

as ‘‘the practice of placing multiple tenants on the same28

physical hardware’’ [48]), also introduces new security risks.29

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Pilato .

Attackers taking advantage of the co-residence opportunities 30

may perform diverse attacks against their co-tenants [1], [2], 31

[3], [8], [16], [20], [33], [40], [45], [49], threaten the security 32

of cloud infrastructure and undermine users’ confidence to 33

move to the cloud [9], [39], [46], [47]. For example, a mis- 34

configured hypervisor which hosts multiple VirtualMachines 35

(VM) from different tenants may serve as a conduit for infor- 36

mation leakage [11]. Chiang proposed Swiper attack with 37

which the attacker uses a carefully designedworkload to incur 38

significant delays to the targeted co-resident application [8]. 39

Ristenpart and Swift proposed an attack which modifies the 40

workload of a victim VM in a way that frees up resources 41

for the attacker’s VM [49]. Particularly, such co-residence 42

attacks have two unique characteristics: First, it is directly 43

enabled by the resource sharing among different users, and 44

will continuously exist unless users are isolated on different 45

Physical Machines (PM). Second, it mainly leverages the 46

legitimate resource requests. Therefore, conventional secu- 47

rity techniques, such as authentication, authorization and 48
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access control, can hardly detect and block co-residence49

attacks without preventing normal access to the shared50

resources [49].51

There are a number of solutions proposed to defend52

against co-residence attacks through performance isolation53

which requires virtualized computing resource isolation54

for storage, CPU, cache, memory, and access path net-55

works [30], [53]. However, such solutions are typically either56

impractical (e.g., high overhead or nonstandard hardware),57

application-specific, or insufficient for fully mitigating the58

risk. Furthermore, it requires that the resources can never be59

overcommitted due to the possibility of concurrent requests60

from multiple tenants. This requirement will inevitably leave61

resources idle and sacrifice cloud performance and efficiency.62

Due to the immaturity of virtualization technology and the63

absence of physical isolation, smart adversaries are still able64

to launch attacks that penetrate the virtual boundaries among65

tenants [8], [23], [24], [29], [35], [55]. At the current state of66

the art, there is no practical way to guarantee the uncondi-67

tional security except avoiding multi-tenancy [40].68

Recently, a few studies have been proposed to focus on69

secure VM allocation strategies, which assign VMs to avail-70

able physical machines (PMs) in a secured way to prevent71

malicious users from achieving co-residence with normal72

users [4], [21], [22]. Compared to performance isolation73

approaches, this type of mechanisms does not require sig-74

nificant changes of the existing hardware/software, and is75

not limited to specific applications. Nevertheless, this line76

of research has just been initiated recently and has very77

limited amount of work. In addition, as the number of possible78

allocations increases in a factorial way when the number of79

available PMs/VMs becomes large, it has been verified as80

an NP-hard problem to search for the best allocation [21],81

[22]. Most of current studies resolve this issue only through82

heuristic solutions.83

Therefore, a secure and energy-efficient VM allocation84

strategy to defend against the co-residence attacks is proposed85

in this paper. The main contributions of this research are86

summarized as follows.87

• First, we propose to consider and quantify three key fac-88

tors for secure VM allocation in energy-efficient cloud:89

(1) the security risks introduced by the co-residence of90

VMs from multiple users, (2) the overall power con-91

sumption and (3) the workload inequality among differ-92

ent PMs. The VM allocation problem is then modeled as93

an optimization problem where the objective function is94

to minimize these three factors at the same time.95

• Second, this work assumes a realistic scenario where a96

random number of VMs from different users may arrive97

at the cloud end with random timings, which requires the98

optimization solution to be dynamically evolving based99

on both the existing allocation status and new allocation100

requests.101

• Third, as this optimization problem is NP-hard [22],102

we aim to address the problem by balancing the opti-103

mization goal, the computational complexity and the104

allocation delay. Specifically, we propose to first intro- 105

duce time windows to handle arriving VMs in clus- 106

ters. Then for each time window, the Ant Colony 107

Optimization (ACO) algorithm, an evolutionary algo- 108

rithm inspired by natural ant activities, is adopted to 109

identify the optimal allocation strategy for new VMs 110

based on the prior VM allocation status. Although ACO 111

has already been applied to address diverse optimiza- 112

tion problems, we are the first one to adopt it in the 113

secure cloud resource allocation scenario. Comprehen- 114

sive understanding and analysis on the physical mean- 115

ings of (1) the ACO algorithm and (2) the cloud secure 116

VM allocation scenario have been performed to facili- 117

tate such adoption. 118

• Fourth, comprehensive experiments based on real-world 119

cloud workload traces are conducted to study (1) the 120

impact of critical parameter settings; (2) the effective- 121

ness of the proposed schemewhen compared to the state- 122

of-the-art secure VM allocation studies. 123

II. BACKGROUND AND RELATED WORK 124

A. PERFORMANCE ISOLATION 125

Diverse studies have been conducted to prevent sensitive 126

information from being transferred through converted chan- 127

nels (i.e. side channels) between co-resident VMs at different 128

levels of cloud infrastructure. First, eliminating side channels 129

from hardware level [25], [30], [52] usually provides more 130

effective defense. However, due to the complex process of 131

introducing new hardware into existing cloud infrastructure, 132

the adoption of such schemes adds extra cost on hardware 133

and administration. Second, extensive researches have been 134

carried out at the hypervisor level. For example, XenPump 135

proposed as a module located in hypervisor [53], monitors 136

the hypercalls used by timing channels and adds latency to 137

potential malicious operations, which increases the error rate 138

in timing channels. In addition, Shacham et al. proposed 139

to make the timer substantially more coarse by removing 140

resolution clocks on Xen-virtualized x86 machines, so that 141

malicious VMs can hardly obtain accurate time measure- 142

ment [50]. The key drawback of these schemes is that they 143

often require significant modifications on hypervisors. Third, 144

some schemes are proposed at VM OS level [54] or appli- 145

cation level [10]. For instance, the authors in [51] proposed 146

to hide real power consumption information from user VMs 147

by deploying a police VM to generate false information. 148

Such schemes do not require substantial changes in the cloud 149

infrastructure and are thus easy to be adopted. Nevertheless, 150

they often suffer from the heavy overhead caused by obfus- 151

cating side channel information at the upper level of the cloud 152

infrastructure. 153

B. VIRTUAL MACHINE ALLOCATION 154

Attackers who aim to launch co-residence attacks against 155

a certain target have to first place their malicious VMs 156

on the same physical host where the target VM locates. 157
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Co-residence attacks cannot succeed if this first step fails.158

Therefore, researches are launched to design security aware159

VM allocation policies which significantly increase the diffi-160

culties for attackers to achieve co-residence.161

ManyVMallocation policies are studied to assign different162

positions toVMs. For instance, a randomizationway to assign163

VMs has been proposed [4] tomakeVMs’ deployment unpre-164

dictable to attackers. Han et al. have proposed a co-resident165

attack resistant VM allocation policy [22], which distributes166

VMs by optimizing security, workload balance and power167

consumption needs of cloud servers. Li and Zhang et al. have168

designed a Vickrey-Clarke-Groves (VCG) mechanism to169

migrate VMs periodically, so that malicious VMs cannot stay170

co-located with their target VM for a long time even if they171

can achieve co-residence [27]. Chhabra et al. proposed an172

allocation policy to reduces the probability of co-residence by173

classifying legal VMs and attacker VMs based on historical174

data, similar approaches often require significant computa-175

tional analysis and previous knowledge on each incoming176

request [7], which can be further improved.177

C. ENERGY-EFFICIENT CLOUD COMPUTING178

Besides security, energy-efficient cloud computing has179

recently attracted great attention as data centers consume a180

large amount of electricity and generate giant power bills181

every year at companies like Google, Facebook, Amazon, etc.182

Data centers consumed more than 2% of the US total elec-183

tricity consumption [19]. Different energy-efficient solutions184

have been applied at ventilation, liquid-cooling systems, and185

building construction [36]. However, such construction level186

modification will generate a large amount of cost. Further-187

more, cooling systemswill also consume a significant amount188

of electricity. Without conducting hardware level modifica-189

tion, a power-aware VM scheduling algorithm could signifi-190

cantly reduce energy consumption with minimum financial191

cost and little performance impact. Recent research shows192

that VM scheduling algorithms have great impact on overall193

energy consumption of a data center [6]. Therefore, energy-194

efficiency is used as an important factor for our scheduling195

algorithm to evaluate the overall performance and efficiency.196

D. ANT COLONY ALGORITHM AND ITS APPLICATIONS197

The Ant Colony Optimization (ACO) is a meta-heuristic198

algorithm for finding optimized solutions of computational199

problems. It is inspired by one behavior of ants, in which200

they leave pheromone on favorable paths for other members201

to follow [12]. ACO has been applied to a wide range of202

optimization problems which are mostly NP-hard. With the203

initial application to the Traveling Salesman Problem (TSP)204

[13], ACO has also been applied to solve other problems205

like sequential order problem (SOP) [18], vehicle routing206

problem [5], [17], resource constraint project scheduling207

problem [31].208

In cloud computing, ant colony optimization is widely used209

in task scheduling [37], [38]. Li proposed a Load Balancing210

Ant ColonyOptimization (LBACO) algorithm to achieve task211

scheduling in dynamic cloud system while in consideration 212

of load balancing at the same time [26]. Feller has applied 213

ACO in workload placement and the results show that this 214

approach provides superior energy efficiency [15]. Similar 215

applications can also be seen in [34] and [32] where ACO 216

has been adopted to address cloud scheduling tasks. However, 217

they do not consider the security aspect. 218

To the best of our knowledge, this is the first work to apply 219

ACO to address the secure VM allocation issue in cloud. 220

Based on its high efficiency and effectiveness in addressing 221

NP-hard problems, we believe ACO is an appropriate tool to 222

allocate cloud VMs so that the cloud’s overall security, power 223

consumption and workload balance are optimized. 224

E. OUR EARLIER WORK 225

In [28], which is the conference version of the work, 226

we proposed the optimized energy-efficient and security- 227

aware VM allocation strategy against co-residence attack. 228

The preliminary results indicated that the presented research 229

is able to achieve the balance among cloud security, energy- 230

efficiency, and workload balance. The journal version is 231

significantly different from our conference version in the 232

following aspects. First, from the model aspect, rather than 233

assuming all VMs arriving at the same time, this work con- 234

siders a more realistic real-time scenario as a random num- 235

ber of VMs from different users arriving at the cloud with 236

random timings, which requires the solution to dynamically 237

evolve according to the existing VM allocation status and 238

the incoming new VM requests. Second, from the solution 239

aspect, to balance computational complexity, real time delay 240

and the optimization results, we first introduce time windows 241

to handle VMs in clusters and then apply ACO algorithm 242

for each time window to manage VM allocation. A more in- 243

depth understanding of the ACO algorithm, how and why it is 244

mapped to address the proposed problem have been discussed 245

in a more comprehensive way, which well explained the 246

fundamental working mechanisms of the proposed scheme. 247

Third, as a proof of concept, the conference version only 248

provided basic performance evaluations. More sophisticated 249

experiments and data analysis based on real world cloud 250

workload traces have been conducted in this journal draft. 251

Each of the key parameters of the proposed scheme has been 252

tested and discussed. Additional state-of-the-art comparison 253

scheme has been implemented and compared with the pro- 254

posed scheme. The results are discussed in details. Last but 255

not least, more comprehensive reviews and analysis of the 256

state-of-the-art literature have been conducted. 257

III. MODELING 258

In this section, we will present the proposed secure VM 259

allocation strategy in details. In particular, we would like to 260

first discuss the system model and assumptions; then model 261

the secure allocation issue as an optimization problem; and 262

present how to adopt ACO algorithm to solve the optimization 263

problem in an efficient way. 264
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A. ASSUMPTIONS265

As one of the first few works to systematically model the266

secure and energy-efficient VM allocation problem at IaaS267

level in cloud, we propose to make the following assumptions268

to facilitate the establishment of the optimization model later.269

First, we assume the cloud receives a random number of270

VMs from different users at random timings. Periodically,271

the cloud needs to assign ntv VMs from ntu users arriving in272

the time duration t to a number of available PMs, so that the273

VM assignment can minimize security risks, overall power274

consumption and imbalance of workload among PMs. How275

frequently the cloud should perform such assignment can be276

determined to balance time delay, computational complexity277

and the optimal solutions.278

Second, for each time window t , the number of PMs279

involved in the allocation, marked as nts, is not given.280

As we assume that there are sufficient number of idle281

PMs to host VMs, nts should be a value within the range282

[nts_min, n
t
s_max]. In particular, the minimum number of PMs,283

nts_min, is achieved when all the VMs are squeezed into the284

minimal number of PMs to make the utilization as high as285

possible. On the other hand, the maximum number of PMs,286

nts_max , is achieved when each VM is assigned to a different287

PM. In other words, nts_max = ntv. This allocation achieves288

maximum security since all VMs are isolated on different289

PMs at the cost of highest power consumption and workload290

imbalance.291

Third, we assume each VM’s workload is dynamically292

changing during run time based on the real world cloud293

workload traces. Please note that such changes will lead to294

fluctuations of the power consumption and workload balance,295

and may occasionally cause overload of PMs which triggers296

dynamic VM migrations among PMs in cloud. These above297

assumptions make our model more realistic but also more298

challenging to address.299

Fourth, regarding the security aspect, we assume that all300

VMs from a malicious user are malicious. The attack goal is301

to have the malicious VMs achieve co-residence with VMs302

from as many normal users as possible to facilitate later303

attacks. In addition, from the defender side, we also assume304

that according to historical data, the cloud is able to estimate305

the percentage of malicious users, but does not know which306

specific users are malicious. This assumption requires that307

the proposed scheme can develop the best allocation strategy308

based on different security context. In the case where the309

cloud does not have a good estimation of the malicious user310

percentage, this value can always be set as 100% to treat311

security in the most conservative way, which will result in an312

allocation solution that minimizes the co-locations of VMs313

from different users.314

B. OPTIMIZATION MODEL315

With the above assumptions, we model the overall VM allo-316

cation problem as an optimization problem, of which the317

optimization goal is to minimize (1) the security risks, which318

is modeled as the probability of malicious VMs co-locating 319

with the VMs from normal users (i.e. Rsec), (2) the overall 320

power consumption of used PMs to run these VMs (i.e. 321

fPower (u)), and (3) the workload inequality among different 322

PMs (i.e. Bw). Therefore, we design the objective function of 323

this optimization problem as follows. 324

c = wS ∗ Rsec + wP ∗ fpower (u)+ wW ∗ Bw (1) 325

where c represents the objective function value or cost value, 326

wS ,wP, and wW represent weights for the three factors 327

respectively. 328

Then the next question is how to quantify these three 329

factors in a reasonable way. In this work, we propose the 330

quantification of these factors as follows. 331

1) QUANTIFICATION OF SECURITY 332

Specifically, as we assume a uniform distribution of mali- 333

cious users, we model the probability of malicious VMs co- 334

locating with normal users (i.e. the security risks) as 335

Rsec = Pmal ∗

∑ns
i=1(n

i
co−loc − 1)

ns ∗ (nu − 1)
(2) 336

where Pmal indicates the estimated malicious user percent- 337

age; ns and nu represent the number of PMs and users, respec- 338

tively; and nico−loc indicates the number of co-located users at 339

PM i. Since we consider a PM with only one user as secure, a 340

‘‘-1’’ is introduced in both the numerator and the denominator 341

parts for normalization purpose. We can see that (1) in the 342

ideal case, where each PM hosts no more than one user’s 343

VMs, Rsec is 0; (2) in the worst case, where each PM hosts 344

VMs from all the users, Rsec is 1; and (3) Rsec will increase 345

when either the percentage of malicious users or the number 346

of co-located users at each PM increases. 347

2) QUANTIFICATION OF POWER CONSUMPTION 348

The power cost evaluation is based on the power measure- 349

ment of a PM at eleven CPU utilization levels at 0%, 10%, 350

20% . . . 100% [41] since only CPU utilization is sufficient to 351

evaluation whole computing system’s power cost [14]. Since 352

measuring power cost at all utilization levels are neither cost- 353

effective nor practical, we use linear interpolation (Eq. 3) to 354

estimate the corresponding power cost that is at an unmea- 355

sured utilization level U by using the measured power costs 356

Ph andPl at the higher utilizationUh and lower utilization Ul . 357

fPower (u) =
Ph − Pl
Uh − Ul

U −
PhUl − PlUh
Uh − Ul

(3) 358

The power cost is normalized as 359

Pnormalized =

∑ns
i=1 |Pi − Pbest |

Pbest × ns
(4) 360

where Pi represents the current power cost of the ith PM and 361

Pbest represents the most effective power cost [41] that has 362

the highest performance to power ratio. We can see that the 363

greater the difference between Pi and Pbest , the less power 364

efficient the current server is. 365
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3) QUANTIFICATION OF WORKLOAD INEQUALITY366

At the end, the cost of workload inequality is normalized as367

Bw =
1
ns

√√√√ ns∑
i=1

(wli − wl)2 (5)368

where wli represents the workload of VM i; and wl represents369

the average workload for all the ns PMs. We can see that370

either an extremely large or extremely small workload will371

dramatically increase the cost of the workload inequality.372

C. DYNAMIC VMs IN REAL TIME373

As proved in other existing studies [21], [22], we recognize374

the optimization issue modeled in the above section as an375

NP-complete problem. However, the problem is even more376

complex as in reality, cloud servers continuously receive377

dynamic VM requests and the workload of existing VMs is378

also dynamically changing.379

To make the model more realistic, we assume that users’380

requests arrive at the cloud end with random timings. Fur-381

thermore, the request from each user may be realized through382

a random number of VMs. In particular, we 1) adopt Pois-383

son distribution to simulate the incoming VMs’ arrival rate;384

2) introduce timewindow concept to group incoming requests385

to balance optimal assignment solution, computational com-386

plexity and allocation delay; 3) use real world cloud traces for387

VM workload simulations.388

1) ARRIVAL TIMING389

We adopt Poisson distribution, a discrete probability distribu-390

tion that expresses the probability of a given number of events391

occurring in a fixed interval of time, to simulate the arrival392

time of VMs. Furthermore, the number of VMs arrives in one393

time interval does not affect that in any other time intervals.394

In particular, VM arrival rate λ is used to tune the workload395

by varying the inter arrival time based on PoissonDistribution396

as presented in the following equation where R is a random397

number between 0 and 1, e is the base of natural logarithm,398

λ is greater than 0. Greater λmeans smaller inter-arrival time399

between VMs which results in more intense VMs in the same400

period of time. Therefore, parameter λ tunes the real-world401

workloads to better evaluate our strategies performance.402

IntervalTime = −loge(R/λ). (6)403

2) TIME WINDOW404

Since VMs are continuously arriving, we propose to handle405

VM requests in groups through time windows. VMs arriving406

in the same time window will be processed together. Such407

solution requires a careful design of the time window length.408

The search of an optimal allocation strategy can have more409

flexibility when more VMs are available, which may lead to410

better performance in achieving the optimization goals. How-411

ever, waiting to gather too many VMs will cause significant412

delays to handle users’ requests. Meanwhile, with more num-413

ber of VMs handled together, the computational complexity414

will also increase, leading to further delays. Therefore, there 415

is a trade-off between request delay and the optimization 416

performance of the resulted allocation strategy. 417

3) DATA TRACE 418

We simulate the workload of each VM based on PlanetLab 419

cloud workload which is a list of VM CPU utilization per- 420

centage values collected on March 3rd, 2011. Each workload 421

is 24-hour long and the interval of utilization measurement 422

is 300s. As a result, the utilization request of a VM may 423

change from time to time, which requires the VM allocation 424

algorithm to dynamically evaluate the workload at each PM 425

accordingly andmigrate some allocatedVMs in case of server 426

overloading. 427

D. ANT COLONY OPTIMIZATION 428

Next, we propose to adopt Ant Colony Optimization (ACO) 429

as a solution to the proposed optimization model. Inspired by 430

natural ant activities, ACO is an algorithm integrating both 431

heuristic information and randomness to find the optimized 432

solution to a problem [12]. The basic idea is that ants carry 433

back their food to colony through different random trails 434

initially, and meanwhile release pheromone on their trails. 435

After a while, trails that take ants less time to travel are 436

piled up with pheromone and become more attractive to ants 437

traveling later. In this way, the shorter trails are reinforced 438

again and again, so that eventually the shortest one will stand 439

out. 440

A typical application of the ACO algorithm is traveling 441

salesman problem (TSP), an NP-hard problem, of which the 442

optimization goal is to find the shortest path to traverse all 443

cities in a given map. In particular, given an ant k at a city 444

i, the probability for this ant to choose the next city as j is 445

calculated as follows. 446

pkij =


ταij ∗ η

β
ij∑

l∈N τ
α
il ∗ η

β
il

j ∈ N

0 otherwise

(7) 447

where N is the set containing all the cities that are not visited 448

by ant k yet; τij and ηij represent the pheromone and heuristic 449

value of selecting city j to visit next after city i. The heuris- 450

tic value ηij can be calculated based on the direct distance 451

between cities i and j (i.e. dij) as follows. 452

ηij =
1
dij

(8) 453

From the above discussion, we can see that the heuristic 454

value ηij is determined by the direct distance between cities 455

i and j, which is consistent with the intuitive way of deter- 456

mining the shortest path. In addition, the pheromone value τij 457

may initially represent randomness, as ants may take random 458

trails and lay pheromone, and is gradually reinforced by later 459

ants’ choices/experiences (i.e. if the path from city i to city j is 460

frequently selected as part of the best path). By adjusting the 461

two parameters α and β, which range from 0 to 1, ACO can 462
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dynamically adjust how important the pheromone and heuris-463

tic values are considered, respectively. For example, when464

α = 0, the pheromone information is completely ignored;465

and the ACO algorithm becomes a pure greedy algorithm.466

On the other hand, when β = 0, the heuristic information is467

completely ignored; and the ACO algorithm becomes a pure468

random searching algorithm.469

By taking both information into account, the ACO algo-470

rithm aims to identify the optimal trail by integrating471

‘‘exploitation’’ (selecting ‘‘optimal’’ action based on heuris-472

tic information that is already known) and ‘‘exploration’’473

(attempting to discover new possibilities by selecting a sub-474

optimal action with certain randomness). In addition, as dif-475

ferent ants are independent from one another, the ACO algo-476

rithm can be naturally implemented in a distributed way to477

improve efficiency. Therefore, the ACO algorithm is often478

applied on NP-hard problems to efficiently find high quality479

solutions.480

E. ADOPTING ANT COLONY OPTIMIZATION (ACO)481

The advantages of ACO make it a promising approach to482

address the secure VMallocation issue in cloud. Furthermore,483

compared to deep learning based solutions (e.g. reinforce-484

ment learning), ACO schemes require much less training485

data. Therefore, we would like to adopt ACO in the proposed486

scheme to address the optimization problem discussed in487

Section III-B. However, such adoption is not trivial due to488

several challenges. First, how to map the VM assignment489

issue, which involves two parties as the VM and the PM, to a490

city visit problem that only considers one party (i.e. cities)?491

Second, different from TSP where the number of cities to492

visit is fixed, the secure VMallocation problem only specifies493

the number of VMs to assign, while leaving the number of494

physical servers open. How to determine the optimal number495

of PMs involved? Third, how to model the heuristic and496

pheromone values in the VM assignment scenario?497

We aim to address these challenges in the following two498

sections. In particular, we need to handle two major steps as:499

(1) mapping VM allocation as a shortest path problem, and500

(2) designing heuristic and pheromone values in VM501

allocation.502

1) MAPPING VM ALLOCATION503

We propose to address the first two challenges through the504

following mapping scheme. Recall that the original VM allo-505

cation problem is to assign a list of nv VMs (i.e. Vlist ) to ns506

available physical servers, where ns ∈ [nmins , nmaxs ] is not507

a fixed value (i.e. the second challenge mentioned above).508

To simplify the problem, we first divide the entire problem509

into nmaxs − nmins subproblems, where each subproblem only510

handles one specific PM number. We will retrieve the optimal511

solution to the overall problem as the best solution out of the512

optimal solutions to each subproblem.513

Then for each subproblem with a fixed number of PMs,514

represented by ns, we aim to assign each VM in the Vlist515

to these ns PMs one by one. Specifically, we create a VM516

assignment vector A as 517

Ans = [a0, a1, . . . ai, . . . anv−1] (9) 518

where ai represents the PM index that the ith VM in the 519

Vlist is assigned to. For example, given an assignment A3 = 520

[1, 0, 2, 1], it indicates that four VMs have been assigned to 521

three different PM as server 1, server 0, server 2 and server 1, 522

respectively. The first challenge mentioned above can then 523

be addressed through this VM assignment vector A. Similar 524

to the TSP problem, where each traversal solution contains a 525

specific order of cities that leads to a certain overall distance; 526

in our problem, each VM assignment A contains a specific 527

combination of VM-PMmatching pairs that leads to a certain 528

overall cost. 529

2) HEURISTIC AND PHEROMONE INFORMATION IN VM 530

ALLOCATION 531

Here, we address the third challenge: determining the heuris- 532

tic and pheromone values in the VM allocation problem. 533

Recall that in TSP, the heuristic value is determined as the 534

inverse of the distance between two cities. In our problem, 535

we design the heuristic value ηij as a value related with the 536

cost of assigning VMs to PMs. To record all the assignment 537

costs, we introduce a two dimensional cost matrix C as 538

C =


c1,1 c1,2 c1,3 . . . c1,ns
. . . . . . . . . cν,j . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .

cnv,1 cnv,2 cnv,3 . . . cnv,ns

 (10) 539

where cν,j represents the cost of assigning VM ν to server j, 540

which is calculated according to equation (1), as the extra cost 541

increase on security risks, power consumption, and workload 542

inequality caused by the assignment of VM ν to PM j. Then 543

the heuristic information ηij can be easily obtained from this 544

matrix as 545

ηij =
1
cν,j

(11) 546

Please note that as we assign VMs according to their orders 547

in the Vlist , the cost cν,j is calculated based on the previous 548

assignment of VM ν − 1 to server i (i.e. cν−1,i). Therefore, 549

different orders of the VMs in the Vlist may lead to different 550

assignment solutions. 551

Second, we design a two-dimension pheromone matrix Ph 552

as follows. 553

Ph =


ph1,1 ph1,2 ph1,3 . . . ph1,ns
. . . . . . . . . . . phν,j . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

phnv,1 phnv,2 phnv,3 . . . phnv,ns

 (12) 554

where phν,j represents the current pheromone value of assign- 555

ing VM ν to server j. In the beginning of the problem, as there 556

is no information available for possible assignments, all the 557

values in the initial pheromone matrix are normalized as 1
ns
. 558

Once a local optimal assignment has been identified, the 559

VM-PM matching pairs that are involved in this assignment 560

will have their pheromone values updated. 561
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3) ITERATIVE ACO FOR SECURE VM ALLOCATION562

With all the three challenges addressed, we are now able to563

present the iterative ACO algorithm for secure VMallocation.564

In particular, there are five steps as follows.565

Step 1, divide the original problem of VM assignment into566

nmaxs − nmins subproblems. For each subproblem with a fixed567

number (i.e. ns) of PMs, an iterative ACO will be launched to568

find the optimal assignment.569

Step 2, for each iteration l, identify the best assignment.570

Specifically, na ants are created, where each ant will start571

from a Vlist with a randomly generated order of VMs, and572

work on constructing its own assignment Ans,l by considering573

both the heuristic and pheromone information. Once all the na574

ants have completed their assignments, the total cost of each575

assignment is stored as an element in a 1×na vectorC t,l . The576

assignment with the lowest cost min(C t,l) will be identified577

as the best assignment (i.e. Ans,lopt ) for iteration l.578

Step 3, update information. If theminimum cost at iteration579

l is smaller than the optimal cost for the current subproblem580

(i.e. min(C t,l) < cnsopt ), we will have581

copt = min(C t,l) (13)582

Ansopt = Ans,lopt (14)583

Consequently, the pheromone information for the next itera-584

tion l + 1 will be updated as follows.585

ph(l+1)ν,j = (1− ϕ)phlν,j + ϕ1ph
l
ν,j, (15)586

where 1phlν,j =
1
cnsopt

. In addition, ϕ represents how fast587

the pheromone information is updated. A higher ϕ value588

represents a faster speed to forget the out-of-date pheromone589

information.590

Step 4, repeat the above process for L iterations in total.591

In particular, each new iteration will be performed by another592

na ants with the updated pheromone information, which may593

lead to some new better assignments. After L iterations, the594

final Ansopt will be determined as the best solution for this595

subproblem.596

Step 5, once all the subproblms are addressed, the global597

optimal assignment is determined as below.598

AGlobalopt = optimal(Ansopt ), where ns ∈ [nmins , nmaxs ] (16)599

We summarize the proposed scheme in Algorithm 1. For600

clarity purpose, we use bold notations to represent matri-601

ces, capital notations to represent vectors and lower case602

notations to represent scalar variables. The time complexity603

of Algorithm 1 is affected by the max and min number of604

servers, the number of iterations, the number of ants, and605

the number of VMs. Since the number of iterations and606

ants are fixed for each execution, the time complexity is607

roughly O(n2).608

IV. PERFORMANCE EVALUATION609

To demonstrate the effectiveness and efficiency of the pre-610

sented solution, we evaluate our strategy under different611

TABLE 1. Table of notations.

Algorithm 1 ACO Cloud VM Assignment Algorithm
Ulist ← All Users
Vlist ← All VMs
nmins , nmaxs ← The max/min number of servers
for ns = nmins to ns = nmaxs do
Initialize pheromone matrix Ph, cnsopt = Inf and Ansopt =
NULL
for l = 0 to l = L − 1 do
for m = 0 to m = na − 1 do
for ν = 0 to ν = nv − 1 do
Cv[ν] = getCost(ν,Vlist )
Prv[ν] = getPro(Cv[ν],Ph, α, β)
Ans,l[q] = randomGen(Prv[ν])

end for
C l
a[m] =

∑nv
ν=1 Cv[ν][A

ns,l[ν]]
if cnsopt > C l

a[m] then
cnsopt = C l

a[m] and A
ns
opt = Ans,lopt

end if
end for
Ph = pheUpdate(cnsopt )

end for
end for
return AGlobalopt = optimal(Ansopt ), where ns ∈ [nmins , nmaxs ]

amount of users and workloads. Then we compare the perfor- 612

mance with two other state-of-the-art VM allocation strate- 613

gies. The results of simulated experiments indicate that the 614

proposed strategy outperforms the baseline strategies consid- 615

ering workload balance, security, and power cost. Table 2 616

presents the standard VM configuration that is used in the 617

experiments. Bandwidth and VM size decide the migration 618

time cost. MIPS (Millions of Instructions per Second), Pro- 619

cessing Elements, and VM utilization will be used to convert 620

the VM utilization to server utilization. In particular, the real 621

time VM utilization rate traces are generated based on data 622

collected from a real data center. Table 3 presents the power 623

and performance data of the servers used in the simulation. 624

A. KEY PARAMETERS TESTING 625

1) ACO PARAMETERS 626

In this section, we mainly investigate the impact of three key 627

parameters from the ACO algorithm: α and β. Specifically, 628
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TABLE 2. Virtual Machine Configuration.

FIGURE 1. Impact of alpha on overall costs.

α and β are ranging from 0 to 1, representing the weights of629

the pheromone and the heuristic values to be considered in630

the optimization, respectively.631

a: IMPACT OF α632

To validate the impact of α on the overall costs, we fix633

β = 0.9, ϕ = 0.8 and change α from 0 to 1. The results634

are shown in Fig. 1. In particular, we can observe that the635

overall costs are not sensitive to α values when the number636

of users is small. When there are more users (> 6), greater637

α values will result in smaller overall costs in general. This638

is reasonable. Recall that the α value indicates the weight of639

pheromone information to be considered, which starts from640

an identical value for all possible VM-PMmatching pairs and641

needs to be accumulated over time. When there are not many642

users/VMs to assign, there is not sufficient accumulation for643

the pheromone value to represent better matching pairs. As a644

result, a higher or lower weight (i.e. α) of the pheromone645

values will not influence the overall costs much. However,646

when more users/VMs are available, the pheromone informa-647

tion can be accumulated more to represent better matching648

pairs. Therefore, a higher weight (i.e. greater α value) will649

effectively help to reduce the overall costs.650

b: IMPACT OF ϕ651

Similarly, to evaluate the impact of ϕ on the optimized overall652

costs, we set α = 0.9, β = 0.89 and change ϕ from 0 to 1.653

The similar trend is observed in Fig. 2, which indicates that654

although the overall costs can yield lower values when there655

are more users/VMs, they are not sensitive to the change of ϕ656

values for a fixed number of users, especially when the user657

FIGURE 2. Impact of phi on overall costs.

FIGURE 3. Impact of beta on overall costs.

number is small (< 8). However, when more users/VMs need 658

to be allocated, ϕ = 0 will not lead to good results. The 659

reason is as follows. Recall that a larger ϕ value indicates 660

a faster update of the pheromone value, ϕ = 0 leads to no 661

pheromone updates at all. It indicates that the pheromone 662

values in all the later iterations will be exactly the same as 663

the initial pheromone values, which are set as an identical 664

value for all possible VM-PM matching pairs. It actually 665

mitigates the impact of pheromone as it cannot be used to help 666

differentiate different matching pairs. In other words, when 667

only considering heuristic information, the overall cost will 668

not yield its optimal value. But except the case ϕ = 0, other 669

ϕ values will yield the same optimal overall costs, indicating 670

that regardless of the pheromone updating speed, as long as it 671

is not zero, the optimal overall costs can always be achieved. 672

c: IMPACT OF β 673

To validate the impact of β on the overall costs, we set 674

α = 0.9, ϕ = 0.8 and change β from 0 to 1. The results 675

are shown in Fig. 3. Similar trend can be observed as that 676

although the overall costs can yield lower values when there 677

are more users/VMs (i.e. easier to tune and balance), they are 678

not sensitive to the change of β values when the number of 679

servers is fixed. It indicates that a wide range of β values 680
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TABLE 3. Power Consumption of Hosts [41], [42], [43], [44].

FIGURE 4. Impact of Malicious User Percentage.

can be chosen for the ACO algorithm and will not lead to681

a dramatic performance change.682

2) PERCENTAGE OF MALICIOUS USERS683

Besides the ACO parameters, we also want to evaluate how684

the percentage of malicious users will influence the overall685

costs. In particular, we have changed the malicious user686

percentage from 0 to 1, and the security weight from 0.1 to687

0.9. The resulted overall costs are shown in Fig. 4. In Fig. 4,688

the x-axis and y-axis represent the malicious user percentage689

and overall costs, respectively. The five curves represent dif-690

ferent weights of the security factor in our objective function691

(i.e. Equation 1). There are several observations. First, when692

the malicious user percentage increases, smaller security693

weights often lead to slower increase of the overall costs. This694

is because when security is less cared (i.e. lower weights),695

the overall costs are less sensitive to the malicious user per-696

centage changes. Second, when security weights are set high697

(e.g. 0.7 or 0.9), we can observe that the cost curves achieve698

their peek values at a certain point and will not continuously699

increase when the malicious user percentage increases. This700

is because higher security weights make the optimization pro-701

cess tilted towards the security aspect, which can effectively702

guarantee no raises of the security risks while malicious user703

percentage continuously growing. It also shows the effective-704

ness of the proposed optimization scheme.705

3) THE WEIGHT OF SECURITY706

As the weight of security is also a key parameter to be707

determined by the cloud service provider, we aim to study708

FIGURE 5. Impact of Security Weights Per Server Num.

its impact on the overall costs, which consists of the costs 709

for power, workload inequality, and security. Specifically, the 710

experiments are conducted by simulating 30 users, where 711

each user has two VMs with random utilization requests. 712

Recall that our proposed algorithm actually divides the entire 713

optimization problem into smaller subproblems, with each 714

one of which handles only a fixed number of servers. So we 715

first present the impact of security weights for each specific 716

number of servers (i.e. each subproblem) in Fig. 5. Please note 717

that each of the data points here represents the optimal costs 718

for a specific subproblem, not the global optimal costs. 719

In particular, there are four subplots, showing the overall 720

costs, workload inequality costs, power costs, and security 721

costs. In each subplot, there are four curves representing 722

different securityweights as 0.3, 0.5, 0.7 and 0.9, respectively. 723

The corresponding weights of power consumption and work- 724

load inequality are set aswW = wP = (1−wS )/2. In addition, 725

the x-axis of each subplot represents the number of occupied 726

physical servers, and the y-axis represents the corresponding 727

costs. 728

From this figure, we can make several observations. First, 729

as shown in the upper left subplot, the power costs are not 730

sensitive to security weights, but mainly dominated by the 731

number of PMs. Even if different security weights lead to dif- 732

ferent optimal assignment solutions, as long as the solutions 733

are occupying the same amount of PMs, the power costs for 734

these assignments will be roughly the same. 735

Second, from the upper right subplot, we can observe 736

that regardless of the security weight, when the number of 737
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occupied PMs increases, the security costs (i.e. security risks)738

are decreasing. This is because when the number of occupied739

PMs increases, the VMs are more spread out, indicating a740

higher possibility for VMs from different users to be allocated741

on different PMs, leading to lower security risks/costs.742

Third, from the lower left subplot, we can observe that for743

all different security weights, the workload inequality costs744

will always increase first and drop later, when the number745

of PMs is increasing. The reason is as follows. When the746

number of PMs is small, most of the VMs are squeezed in747

the PMs, leading to very limited extra capacity for each PM.748

Therefore, the workload is roughly balanced among different749

PMs. When the number of occupied PMs starts to increase,750

VMs are allocated more flexibly to different PMs, which751

easily makes more PMs have different capacity left, leading752

to more imbalanced workload. However, as the number of753

occupied PMs continues to grow, VMs are spread out, leading754

to very fewVMs sharing the same PM. As a result, it becomes755

easier again to balance the workload among different PMs.756

At the end, as shown in the lower right plot, the overall757

cost is a trade-off of the three factors: power consumption,758

workload inequality and security risks, and therefore can be759

significantly influenced by the security weight. Specifically,760

when the number of occupied PMs is small, the costs of power761

and workload inequality can be small. However, as VMs are762

squeezed to reach the maximum capacity of each server, the763

security risk is greatly increased. As a result, the local optimal764

solution will yield higher overall costs if the security factor765

is the dominated factor (i.e. high security weight), and lower766

overall costs if power and workload inequality are dominated767

factors (i.e. low security weight). On the other hand, when768

the number of occupied PMs is large, the power cost goes769

up. However, as VMs are spread out on different PMs, the770

security risks and workload inequality can be low. As a result,771

the local optimal solution will yield lower overall costs if772

the security factor is the dominated factor (i.e. high security773

weight), and higher overall costs if power is the dominated774

factor (i.e. low security weight).775

Next, we aim to study the impact of security weights on the776

global optimal solution in Fig. 6. Different from Fig. 5, where777

the local optimal costs for each subproblem are analyzed,778

here we only examine the global optimal solution with the779

best number of PMs for each specific security weight. Specif-780

ically, the five subplots represent the influence of security781

weights on the optimal costs for the overall solution, work-782

load inequality, power, and security, as well as the optimal783

number of servers, respectively.784

From Fig. 6, we can observe that when security weight785

gradually increases, the corresponding optimal solutions tend786

to make more efforts on lowering the security costs, which787

will lead to more number of occupied PMs and higher power788

costs, but lower workload inequality and overall costs.789

B. PERFORMANCE COMPARISON790

In this section, we compare the proposed scheme with791

two other existing allocation strategies. The first one is792

FIGURE 6. Impact of Security Weights on Optimal Costs.

Round-Robin, a classic algorithm that allocates resources, 793

e.g. physical machine (PM), in equal portions and in circular 794

order, handling all VMs without priority. In particular, as the 795

original Round-Robin algorithm cannot specify the number 796

of physical PMs to be involved for allocation, we implement 797

the algorithm in a way that the algorithm spawns a group 798

of PMs each time. We set the number of PMs in a group 799

as 2, 4, 6 and 8 each time a new spawning process is needed. 800

Themodified Round-Robin algorithms are named RR2, RR4, 801

RR6, RR8 respectively and we examine their performance at 802

different choices of the number of spawning PMs. 803

The second one is the Previously-Selected-Servers-First 804

(PSSF) scheme proposed in [22], a representative study of 805

the state-of-the-art VM allocation schemes that optimizes 806

security, workload balance and power consumption through 807

a heuristic strategy. In particular, PSSF tends to select from 808

two strategies: stacking or spreading. Each new VM will 809

be first stacked to the same PM to which other VMs from 810

the same user has been allocated. If the PM has reached its 811

capacity, the new VM will be spread to a new PM. Similar to 812

Round-Robin, PSSF cannot explicitly determine the number 813

of physical PMs to involve. Instead, it involves a group of 814

physical PMs each time, and the new group of PMs will 815

not be involved until the existing PMs reach their capacity. 816

Therefore, a key parameter for PSSF is the number of PMs 817

in each group. In our experiments, we set the number as 2, 818

4, 6 and 8, respectively to examine its performance and 819

name the algorithms as PSSF2, PSSF4, PSSF6, and PSSF8, 820

respectively. 821

As discussed in Section III-C1, we use Poisson distri- 822

bution to simulate different scenarios where the number of 823

users and VMs increases as the parameter λ increases in a 824

given amount of time. In particular, λ varies from 0.001 to 825

0.01, which indicates the number of incoming VMs rang- 826

ing from 10 to 100 during the total experiment duration. 827

We generate 100 sets of data from Poisson distribution at 828

each λ values and take the average performance to make a 829

fair comparison. The representative results are presented in 830

Fig. 7. 831
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FIGURE 7. Performance Comparison for Scenario with different λ.

Fig. 7 contains 4 subplots with λ set to 0.001, 0.004,832

0.007 and 0.01, representing the scenarios with the VM833

numbers as 10, 40, 70 and 100 respectively to demonstrate834

the performance of the proposed scheme, Round-Robin and835

PSSF. In addition, the malicious user percentage is set as836

20%, a reasonable estimation on the malicious context, and837

the weights for security, power, and workload inequality838

are all set as 1/3. The bars from left to right represent the839

proposed scheme with its key parameter (i.e. time window840

length) equals 500, 1000, 2000 and 5000; Round-Robin with841

span set to 2, 4, 6, and 8; and lastly PSSF with span set842

to 2, 4, 6, and 8.843

As shown in Fig. 7, the total cost of the proposed scheme844

on the top right subplot, where λ equals 0.004, drops at845

time window length 200 and then increases along with the846

increase of time window length. This is because when the847

incoming number of VMs are relatively small, the number of848

VMs falling in one time window may vary, leading to some849

inconsistencies in the performance. As the number of VMs850

increases where λ equals 0.007 and 0.01 on the bottom two851

subplots, the proposed schemes tends to be more stable with852

a downward slope as time window length increases. This is853

because when time window length increases, a larger portion854

of incoming VMs are considered by the algorithm at each855

calculation, thus results in a lower overall cost. On the other856

hand, larger time window length means longer average wait857

time for each incoming VM before assigning to a actual PM.858

The trade off here has to be considered in a real world scenario859

to accomplish an optimized configuration.860

Among these algorithms, the proposed scheme always861

achieves the best performance in terms of the optimal862

total costs, which validates its effectiveness. Moreover, the863

detailed subcosts for security, power, and workload balance864

are also shown for each allocation scheme. There are several865

observations. First, at λ=0.001, the proposed scheme with866

time window length set to 100 achieves the best overall score.867

PSSF4, PSSF6 and PSSF8 achieves the exact same score 868

with zero cost on security. This is because when the number 869

of incoming VMs is relatively small (10 VMs in this case), 870

according to the behaviour of PSSF, VMs will simply span 871

to a new server when there are enough PMs allocated. This 872

results in zero security cost. However, because of the usage of 873

new PMs, the power costs will significantly increase, leading 874

to much higher overall costs. Secondly, when λ=0.004, the 875

proposed scheme with time window length 2000 achieves the 876

minimum overall costs. Even though PSSF6 has the lowest 877

security cost, the proposed scheme has far less power cost 878

compared to PSSF6, which results in an overall lowest cost. 879

RR2, RR4, RR6 and RR8 behave similarly to PSSF, but 880

with higher security cost since they tend to stack VMs from 881

different users into the same PM. When λ=0.007, there are 882

total 70 incoming VMs, which makes it a more realistic 883

scenario. The proposed scheme outperforms both RR and 884

PSSF, and the worst score of the proposed scheme is nearly 885

the same as the best score of both RR and PSSF. Both RR 886

and PSSF have significantly larger power cost and workload 887

balance cost than the proposed scheme because the way the 888

stack up VMs and spawning PMs, and the choices of span 2, 889

4, 6, 8 of the two schemes among different λ does not always 890

generate the same results, which make it hard to detect the 891

optimized choice of span in a complex, realistic scenario. 892

Similar observation can be concluded on the last subplot 893

when λ is set to 0.01 with a total of 100 incoming VMs, this 894

confirms that the proposed scheme is robust and scalable with 895

better performance among all these schemes. 896

V. CONCLUSION 897

Co-residence attack has raised significant concerns as the 898

increassing popularity of cloud computing. Attackers are able 899

to take advantage of the resource sharing in multi-tenant 900

cloud to perform diverse attacks against their co-residents on 901

the same physical server. We proposed to defend against such 902
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co-residence attacks through a secure, workload-balanced,903

and energy-efficient VM allocation strategy. and modeled the904

VM allocation problem as an optimization problem. As this905

optimization problem is NP-hard, we further applied the Ant906

Colony Optimization (ACO) algorithm, an evolutionary algo-907

rithm inspired by natural ant activities, to identify the optimal908

allocation strategy. Experiment results demonstrated that the909

proposed scheme can make the multi-tenant cloud secure and910

power efficient.911
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