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ABSTRACT Travel Time Prediction (TTP) has become an essential service that people use in daily
commutes. With the precise TTP, individuals, logistic companies, and transport authorities can better manage
their activities and operations. This paper presents a novel Hybridized Deep Feature Space (HDFS) based
TTP ensemble model (HDFS-TTP) for accurate travel time prediction. In the first step, extensive endogenous
and exogenous data sources are augmented with traffic data obtained using sensors. Next, we used Principal
Component Analysis (PCA) and Deep Stacked Auto-Encoder (DSAE) for feature reduction. We gener-
ated feature spaces of deep learning models, namely Convolutional Neural Network (CNN), Multi-Layer
Perceptron (MLP), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), and fed them
to a model based on Support Vector Regressor (SVR) for predicting travel times. Two best-performing
models are selected, and their feature spaces are hybridized to boost feature space. On this boosted feature
space, we employed SVR for final prediction. Our proposed HDFS-TTP ensemble can learn complex non-
linearities in traffic data with the varying architectural design. The performance of our proposed HDFS-TTP
ensemble using hybridized and boosted feature spaces showed significant improvement in test data in terms
of Root Mean Square Error (62.27 £ 1.58), Mean Absolute Error (13.38 £ 1.09), Maximum Absolute
Error (104.66 4 2.77), Mean Absolute Percentage Error (2.50 & 0.03), and Coefficient of determination
(0.99714 £ 0.00044).

INDEX TERMS Travel time prediction (TTP), hybridized deep feature space (HDFS), machine learning
(ML), recurrent neural network (RNN), heterogeneous ensemble.

I. INTRODUCTION With an accurate and reliable ATIS, individuals can plan their

With the advent of Global Positioning Systems (GPS) based
systems, there has been a significant surge of interest in
Location-Based Services (LBS) among academics and indus-
try. Travel Time Prediction (TTP) is one such application
that acts as an essential service in Intelligent Transporta-
tion Systems (ITS); more specifically, in Advanced Trav-
eler Information Systems (ATIS) and navigation applications.
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trips more effectively, while transportation organizations and
logistic companies can manage and run their operations more
efficiently. In contrast to freeway Travel Time (TT), urban
network TT is affected by many traffic (endogenous) and non-
traffic (exogenous) factors making it a challenging task.

The existing TTP methods can be divided into route-
based and data-driven approaches. The overall TT in route-
based approaches is computed by adding segment time and
transition time (waiting time due to signals, turns, etc.)
between segments. Based on the formulation of overall TT,
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route-based approaches are further divided into segment-
based (uses segment time and ignores inter-segment correla-
tion [1]) and path-based approaches (uses segment time and
intersection delays [2], [3]). The TT estimate y; of a path-
based approach [4] is represented in equation 1.

Fi=> 0+ @) (1
i J

where §; is the TT estimated for the i-th road segment and 7;
is the time estimate during the j-th transition.

On the other hand, data-driven approaches formulate TT
as a pure regression task and estimate TT of an entire
path/route from historical data by implicitly modeling traf-
fic complexities. Data-driven approaches are further divided
into trajectory-based [5], [6] and Origin-Destination (OD)
based approaches [7]. Trajectory-based approaches use road
network and trajectory data, while origin-destination-based
approaches only consider pickup and drop-off location data
for travel time prediction.

Data-driven approaches, a substitute to conventional learn-
ing approaches, are often hybridized for different traffic-
related problems to enhance overall prediction capabilities.
There has been a rapid rise in the use of hybridized and
ensemble approaches for TTP in recent years. As an exam-
ple, eXtreme Gradient Boosting (XGB) approach is com-
bined with GRU and Light Gradient Boosting Machine
(LightGBM) for TTP in [8] and [9], respectively. Similarly,
fusion of Multi-Layer Perceptron (MLP) and LightGBM is
studied in [10]. The outputs of the base regressors are fed to a
linear regression model, a Decision Tree model, and a linear
weighted fusion model which act as meta-regressors in [8],
[10], and [9], respectively. These ensemble approaches dis-
cussed above use the output (decision scores) of base regres-
sors as features for meta-regressors to predict TT. However,
the feature spaces of base regressors with a meta-regressor,
both separately and jointly, are not studied in the literature.

This paper proposes a systematic solution based on state-
of-the-art deep learning models. To overcome the shortcom-
ings in existing literature, we modeled our TTP problem as
a regression problem. Extensive exogenous and endogenous
features like spatial features, temporal features, and weather
features are augmented with traffic data for better prediction.
Four deep learning models namely, Convolutional Neural
Network (CNN), MLP, Long Short-Term Memory (LSTM),
and GRU are studied as base regressors and their feature
spaces are analyzed. We extracted and hybridized the fea-
ture spaces of the two best models obtained empirically i.e.,
LSTM and GRU. SVR is used as meta-regressor to predict
TT on this boosted feature space.

The following text presents the synopsis of the scientific
contribution of this study.

o We propose a novel Hybridized Deep Feature Space
(HDFS) based ensemble for Travel Time Prediction
(TTP), also collectively called as HDFS-TTP. Feature
spaces of deep learning models are analyzed separately
and in a hybridized manner and fed to SVR for TTP.
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« We have augmented exogenous features with Floating-
Cars Data (FCD) to enhance the overall performance of
our proposed ensemble.

« We have also extracted Principal Component Analysis
(PCA) features and encode GPS trajectories using Deep
Stacked Auto-Encoder (DSAE) to boost feature space.
The comparative analysis with baseline architectures
shows considerable improvement in metrics like RMSE,
MAE, Max. AE, MAPE and R? on the FCD dataset for
our feature-based LSTM-GRU ensemble.

The remainder of this paper is organized as follows:
Section II provides the historical background of the study.
Section III presents the proposed methodology. Section IV
elaborates on the results of our research. Section V contains
the concluding remarks and the future direction.

Il. BACKGROUND

Most of the earlier work on TTP employed segment-based
approaches focusing on predicting TT on a selected set of
routes or a specific freeway segment/region. Loop detector
data has been extensively used to predict segment/link TT.
Various approaches, including pattern matching [11], Least-
Square minimization [12], Hidden Markov Model [13], Gra-
dient Boosting Decision Tree [14], and XGB [15] have been
proposed to model segment-based TT. Data fusion has also
been studied to improve the prediction accuracy in [16].
However, the major drawback associated with segment-based
approaches is that link delays at intersections or transition
time from one link to another are not considered in the
prediction process. This limitation makes the applicability of
these approaches only limited to freeway scenarios.

Path-based approaches address the limitation of segment-
based approaches to some extent by splitting the entire path
into sub-paths and computing TT for each sub-path using
historical trajectories to get the final prediction [2], [5], [17],
[18]. Rahmani et al. in [2] presented an idea to concatenate
sub-paths to estimate the entire path. The authors in [17]
decomposed the entire trajectory path into a pathlet dictionary
and then reconstructed the complete path with fewer path-
lets, and estimation of TT is carried out from these pathlets.
Li et al. in [18] extended the work towards personalized pre-
diction of TT using pathlet dictionary and learned congestion
patterns. However, the performance of these path-based stud-
ies could be impacted by the data sparsity problem.

In the last decade, data-driven approaches have been
widely used in traffic forecasting with the surge in data
collection technologies like hand-held devices, and vehicle
navigation systems. These approaches solve the problem by
learning the hidden spatiotemporal features of traffic data in
an end-to-end fashion. For instance, Abdollahi ef al. in [19]
employed DSAE on an extensive feature set followed by an
MLP for TTP. Similarly, Stacked Sparse Denoising Auto-
Encoder (SSDAE) [20], Deep Belief Network (DBN) [21],
CNN [22], GRU [23], LSTM [24], and Bidirectional LSTM
(BiLSTM) [25] have been investigated for TTP in the recent
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past. Graph Neural Networks (GNNs) have recently shown
state-of-the-art performance in various applications and are
naturally suited for traffic-related problems [26]. GNNs have
widely been adopted in different traffic problems, including
traffic state prediction, traffic flow prediction, travel demand
prediction, trajectory prediction, and many others [27]. The
authors in [28] introduced attention-based GNN for TTP
task in which Spatiotemporal correlation is learned by com-
bining a gated convolutional neural network and GNN.
Three components were used to learn spatiotemporal het-
erogeneous information corresponding to recent, daily, and
weekly periods before the final prediction. A multi-layer
Graph Convolutional Network (GCN) is proposed in [29].
An encoder-decoder module based on LSTM and BiLSTM
is used to learn traffic patterns better. Instead of dealing with
traffic prediction and contextual information separately in a
prediction, Fang et al. in [30] proposed a Spatial-Temporal
GNN (STGNN) that jointly models traffic prediction and con-
textual information using a 3D attention mechanism for better
prediction accuracy. The presented solution is deployed on
Baidu maps showing the proposed approach’s effectiveness
and robustness. Wang et al. [31] has also incorporated inter-
section direction and driver behavior with other features in
an attention-based GCN for TTP and demonstrated improved
performance.

For the traffic forecasting domain, data-driven approaches
can be viewed as OD-based and trajectory-based approaches.
OD-based approaches only consider the pickup location,
drop-off location, and departure time from the historical tra-
jectory to estimate TT [19], [32]. However, typical OD-based
solutions suffer from data sparsity (Not every trip in the
database matches the query departure time, pickup loca-
tion and drop-off location). The authors in [7] proposed
a way to handle missing trips (data sparsity) with the
same origin, destination, and departure time in historical
trajectories by exploiting neighboring trips. Jindal ef al. [33]
further improved the performance with a distance-based TTP.
The authors in [32] augmented exogenous features such as
weather and air quality with traffic data to enhance model
performance. The computation of OD-based TTP is faster.
This kind of prediction works well in situations when inter-
mediate trajectories are not crucial such as freeway TT. How-
ever ignoring intermediate trajectory points in urbanized TTP
leads to missing essential information like route choices made
by the driver, the waiting time due to signalized arterial,
etc. On the other hand, trajectory-based approaches use this
information in the prediction process [25]. Fu et al. [34]
applied classical CNN and time CNN on taxi trajectory data
for spatial and temporal feature learning and augmented
exogenous features to improve prediction. The authors in [35]
employed CNN on a hybrid trajectory dataset (car and bus),
and learned features are fed to LSTM for sub-path and whole
path TT estimation. The authors in [36] and [37] transformed
vehicle trajectories into images and employed CNN for spa-
tial and temporal feature extraction on transformed images
for TTP.
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When compared to individual models, which often per-
form well, hybridization or the use of an ensemble of
these approaches could further improve performance [38].
Corridor-level TTP has been carried out in [39] using an
integration of SVR and Particle Filtering (PF). Network-wide
TTP has been investigated in [40] using local smoothing and
Probabilistic Principal Component Analysis (PPCA). LSTM
and CNN are integrated in [41] followed by a fully-connected
layer to predict TT. Shen et al. [42] have employed LSTM
as a prediction layer on features learned using CNN-RNN
models. The authors in [43] have hybridized DBN with
quantile regression for highway TT prediction. In addition
to hybridized models, ensemble-based approaches have also
been developed for TTP. The output of GRU and XGB
is combined in [8]. In another study, Zou er al. [10] have
combined the output of Light Gradient Boosting Machine
(LightGBM) and MLP using a decision tree model for TTP.
Likewise, the authors in [9] have reported better results of an
ensemble involving LightGBM and XGB as base regressors
for the urban road network. In [4], Wide-Deep-Recurrent
(WDR) models have been proposed that combine three mod-
els, namely, linear, MLP, and LSTM models to predict TT. All
the above ensemble approaches have analyzed the impact of
decision scores of machine learning and deep learning models
for TTP. However, the impact of feature spaces of deep
learning models and prediction of an ML model i.e., SVR
for TTP have not been studied in prior literature. Moreover,
exogenous features are not so extensively examined for TTP
on a network scale. In our current work, we have augmented
exogenous features including weather conditions, calendar
data, peak hours data and fastest route data to our map-
matched trajectories. Moreover, PCA features are extracted
from pickup and drop-off location features. Finally, DSAE
is employed to learn and encode GPS trajectories in a lower
dimension. On the final feature set obtained after augmen-
tation of exogenous features, PCA features, and encoded tra-
jectories, we trained our meta-model in which SVR is used as
a meta regressor and the feature spaces generated by LSTM,
and GRU are fed as input to SVR for final prediction. The
results demonstrate the superior performance of our proposed
meta-learning based approach.

IlIl. PROPOSED METHODOLOGY FOR TRAVEL TIME
PREDICTION

Travel time prediction is a challenging task as it is affected
by several exogenous and endogenous factors like the choice
of route, time of the day (peak/non-peak hour), day of the
week (week/weekend), weather condition (usually more time
is needed to reach a destination in a bad weather situation).
Ensembles are now widely considered the most advanced
solution to many machine learning problems and address the
limitations of a single model by adding diversity using mul-
tiple base learners (either homogeneous or heterogeneous),
ultimately improving overall predictive performance. This
diverse learning leads to a more robust model that sufficiently
captures data’s variance (distribution). Different approaches
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FIGURE 1. Islamabad, Pakistan (Study area).

like voting, ensemble selection, and stacking have been used
to combine base learners to form an ensemble model [44].
Our work proposes a stacking-based heterogeneous ensemble
approach that utilizes the well-known and existing machine
learning and deep learning models. Feature spaces of four
existing deep learning models (CNN, MLP, LSTM, and GRU)
are analyzed with SVR as a meta-regressor. Fig. 1 and 2 show
the study area of our proposed approach and a brief overview
of the proposed HDFS-TTP, respectively. The following
section explains the stages of our proposed HDFS-TTP in
detail.

A. MAP MATCHING

We used Open Source Routing Machine (OSRM) to map
GPS trajectories onto the OpenStreetMap (OSM) street net-
work [45]. Online requests to OSRM were pretty slow, so we
configured an offline OSRM server in a docker environment
to address the response time issue. To further speed up the
process, we employed a parallelized mechanism involving
batch processing and multi-threading published in [46]. The
issues related to off-road mapping of cars and trackers’ zero
speed are resolved using the algorithm presented in our pre-
vious work [47].

B. FEATURE AUGMENTATION

Exogenous features are not thoroughly analyzed for TTP on
a network scale. For instance, Chen et al. [48] have incor-
porated calendar features and road types in the prediction.
Likewise, some studies consider weather information but not
take into account other exogenous features like peak hours,
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calendar information, fastest route data etc. [49], [50]. More-
over, some studies have incorporated weather information,
calendar information for a freeway [S1] or corridor [52]
or it is an OD-based prediction [19], [32]. Travel time is
affected by weather conditions, time of day, day of the week,
route choice, peak or non-peak hour, etc. We extracted and
aggregated various spatio-temporal, and weather-related fea-
tures in our integrated dataset. For instance, trip geospatial
area and vehicle route during a trip strongly impacts TT.
We extracted geospatial features such as total distance, seg-
ments, and intersections traversed by a vehicle during a trip
using map-matching. Similarly, another important type of
feature that affects TT is temporal features. For example,
the TT during non-peak hours is extremely different and
longer than during peak/rush hours. For temporal informa-
tion, we extracted the time of the day, day of the week,
day of the month, and month of the year features. Weather
conditions also affect TT [53], so we included 18 weather
conditions' in our final features set. These features are listed
in Table 1. Other useful features contributing to accurate
TTP are is_peak_hour, is_holiday, fastest_route_distance and
fastest_route_time. The fastest route features as described
in [54] are extracted using OSRM fastest route Application
Programming Interface (API).> With the help of the Direc-
torate of Traffic Engineering and Transportation Planning

]https://Www.Worldweatheronline.com/developer/ (accessed on 07
October 2021)
2https://proj ect-osrm.org/docs/v5.5.1/api/#route-service
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FIGURE 2. Overview of the proposed approach.

Islamabad, the is_peak_hour is calculated. Our data is then
used to validate the feature.

C. FEATURE EXTRACTION AND REPRESENTATION

The basic idea of PCA is to retain maximum variance while
reducing dimensionality. We employed PCA on pickup and
drop-off locations to enhance and boost the feature space to
get the top two uncorrelated (orthogonal) principle compo-
nents [55]. These features were added to the feature space
and DSAE as shown in Fig. 3 is employed to get the
encoded representation of our GPS trajectory to improve
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Final Prediction

feature representation. The trajectory data was encoded into
eight features and appended these features to the final fea-
ture set. After data aggregation and feature representation,
we removed anomalous trips with duration less than a minute
(extremely short) and greater than two hours before final
experimentation. Our data comprises trips between 0.5 and
60 kilometers.

In our dataset, the longest trip contains 99 GPS locations
(latitude longitude pairs) which corresponds to 198 latitude
and longitude points. After feature augmentation as discussed
in Section III, B, we have increased the dimensionality of our
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Input
Bottleneck
Output

FIGURE 3. Proposed Deep Stacked Auto-Encoder.

TABLE 1. List of weather features used in the study, taken from
https://www.worldweatheronline.com/developer/.

S

Weather Conditions

Clear

Cloudy

Heavy rain

Light drizzle

Light rain

Light rain shower

Moderate or heavy rain shower
Moderate rain

Moderate rain at times

10 Overcast

11 Partly cloudy

12 Patchy light drizzle

13 Patchy light rain

14 Patchy light rain with thunder
14 Patchy rain possible

16  Sunny

17 Thundery outbreaks possible
18  Torrential rain shower

O 00NN W —

feature space. Our feature space comprises 253 features out
of which 198 are GPS trajectory features. Deep auto-encoders
are widely adopted as a data/feature compression technique
in various domains [56]. A typical deep stacked auto-encoder
consist of an encoder and a decoder with multiple layers each
and a coded layer (also called bottleneck) as illustrated in
Fig. 3. The basic idea is to learn the coded representation
from the input first using encoder part and then reconstruct
the input from the coded representation in the decoder part.
This coded representation after training comprises maximum
information needed to reproduce the input in a lower dimen-
sional space. In our study, we learn this code representation
of trajectory features into 8 features with DSAE. We added
these encoded features to our final feature set.

We evaluated the feature importance of the final feature set
we have obtained from the feature extraction and represen-
tation step before moving on to the implementation phase.
One of the most widely used approach for feature importance
is correlation coefficient which measures linear relationship
between the features and target variable. However, mutual
information regression has the capability to measure both
linear and non-linear relationships between input features
and the target variable [57]. Therefore, we have chosen
mutual information regression for feature importance in this
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FIGURE 4. Feature importance based on mutual information regression.

study. Top 20 features with maximum gain are shown in
Figure 4. As can be seen, trip distance, fastest route features,
and encoded trajectory features (Encoded_1,...Encoded_8)
haves shown the maximum relevance in the reduced space
along with other features.

D. IMPLEMENTATION OF HDFS-TTP

Our implementation consists of two phases. 1) Investigating
feature space of state-of-the-art Deep Learning models and
2) hybridizing the feature space of the best two models to
boost feature space.

1) IMPLEMENTATION OF STATE-OF-THE-ART DEEP
LEARNING MODELS

We trained four deep learning models (CNN, MLP, LSTM,
and GRU) and used SVR [58] as a meta regressor.
We extracted the feature spaces of individual models and
fed them to SVR for the final prediction as it is based on
structural risk reduction theory. SVR seeks to reduce test error
and enhances the model’s ability to generalise, in contrast
to models based on empirical risk minimization theory [59].
To create a hybrid learning-based boosted feature space,
we chose the two best-performing models i.e., LSTM and
GRU, as our base feature extractors.

2) OUR PROPOSED HYBRID DEEP FEATURE SPACE-BASED
TRAVEL TIME PREDICTION (HDFS-TTP)

LSTM and GRU performed best among the four models
and are selected as our base regressors in the proposed
HDFS-TTP. Also, these functionally similar network have
been used in ensemble studies in literature e.g., [61] have
shown promising results with LSTM and GRU when their
intermediate layer activation is concatenated and fed to an
MLP model for final prediction in [61]. Likewise, [62]
have employed LSTM, GRU, Bi-LSTM, and Bi-GRU as
base learners in their ensemble approach. Similarly, [63]
and [64] have used these sequence learning models in their
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FIGURE 5. Structure of an LSTM cell [60].

ensemble-based approaches to further improve performance
in various tasks. The features space of LSTM and GRU is
represented as f; and f,. Equation 2 illustrates how an SVR
model using the learnt feature space of recurrent models gives
the final prediction.

Y = SVR(fi, f) )

LSTM: Proposed Base Regressor: LSTM is a special-
ized Recurrent Neural Network (RNN) developed to address
the problem of long-term dependencies in standard RNN
model [65]. In traffic data, LSTM can learn segment-level
and long-term information about nearby segments [60]. The
structure of an LSTM cell depicted in Fig. 5 is much more
complex than an RNN cell due to its gating mechanism (for-
get, input, and output gate). This gating mechanism allows
LSTM to solve long-term dependencies by extending the
memory cycle of the network. We used a two-layered LSTM
as one of our base regressors for travel time prediction. For-
get, input, and output gate computations of an LSTM cell are
expressed in Equations 3-5.

Jo = o(Wrlhe—1, x:]1 + by) 3
ir = o(Wilhi—1, x:]1 + by) 4
0y = o(Wolhi—1, x:] + by) )

where f; denotes forget gate, i; denotes input gate, and o;
denotes output gate at time t, o is the gate activation function
(sigmoid). Wy, W;, and W, are the respective weight matrices
of the three gates, and by, b;, and b, are their biases. h, |
denotes the output/hidden state from previous timestamp and
x; is the input at current timestamp. LSTM cell state C; and
hidden output /i, are computed using the Equations 6, and 7,
respectively. LSTM equations are taken from [66].

Co=fQ®Ci—1+ir @ uWelhi—1, x;] + be) (6)
hy = o ® u(Cy) )
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where ® represents point-wise multiplication, and u and o
are tanh and sigmoid activation functions.

Output

1

® oy

Sigmoid pointwise
e Input Vector function + addition
New Hidden
State

Hidden m hyperbolic X pointwise
State tan function multiplication

FIGURE 6. Structure of a GRU cell [67].

GRU: Proposed Base Regressor: Another enhanced RNN
variation, the GRU uses two gates i.e., the update and reset
gates, as compared to the three of the LSTM, making it
more intuitive architecturally. [67]. GRU’s overall efficiency
is increased by the model’s simplified architecture, which
results in fewer parameters to train. The update gate in
GRU replaces the input and forget gates of the LSTM.
We employed a two-layer GRU model in this experiment.
The structure of the GRU cell is depicted in Fig. 6, and the
mathematics for the two gates of GRU to control the flow of
information within the cell can be seen in Equations 8-11. The
equations of GRU are taken from [68].

u = o(W'x +U"h—1) ®)
rr =0Wx + U hi—1) 9)
h; = u(Wx; +r: © Uhy—1) (10)
ht=Zt®ht—l+(1_Z[®h;) 11

where u; denotes update gate, r; denotes reset gate, h; denotes
memory content (current) and 4, denotes memory content
(final) at time t, o and p are sigmoid and tanh activation
functions. The symbol © denotes element-wise multiplica-
tion whereas W", and U" are the respective weight matrices
of the two gates.

IV. RESULTS AND DISCUSSION

This section begins with a description of the data, followed
by an explanation of the models that were used to analyse it
and their results.

A. DATASET AND DATA DISTRIBUTION

We have collected and prepared a real-world anonymized
FCD dataset obtained from a tracking company in Islam-
abad, Pakistan in the year 2019. In this experiment, we used
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TABLE 2. Dataset statistics.

Attribute Value

Trajectory count 724,402
Area 220 km?

Sampling rate 15s-45s
Travel time mean 1109.50s
Travel time std 1173.51s
Travel distance mean 5986.96m
Travel distance std 6732.36m

i 3 months for 1 month as
training validation set

i 2months for 1 monthas
! training validation set

FIGURE 7. Data division between base and meta regressors.

data spanning eight months, from March 2019 to October
2019. For the specified time period, the dataset contains
events recorded by 2895 unique tracker ids. Tracker units
are mounted using the GSM Modem(Quectel M95) and GPS
Chipset(U-Blox EVA-M8M). Our study uses data spanning
the peak and off-peak hours, from 6:00 am to 11:00 pm.
Details of the dataset are given in Table 2.

The data distribution scheme of our proposed HDFS-TTP
approach is demonstrated in Fig. 7.

We have used 4 months of data (DS1) for base learners
such that 3 months of data is used for training and valida-
tion is performed on the remaining 1-month data. Likewise,
4 months of data (DS2) is used for meta learner. From (DS2),
3 months of data (DS3) is used for training and validation of
meta learner. The remaining 1-month data is used as a test set
to report the error measures and evaluate the generalization
of the proposed approach.

B. PERFORMANCE METRICS

We have evaluated our proposed model and baselines using
five evaluation measures, including Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), Maximum Absolute
Error (Max. AE), Mean Absolute Percentage Error (MAPE),
and Coefficient of determination (Rz). Let TT_i denote the
actual travel time and TATi denotes the predicted travel time,
then RMSE can be expressed in Equation 12. These equations
are taken from [73] and [74].

l e -
RMSE = |- Z(TTi — TT;)? (12)
n i=1

MAE refers to an average absolute error among the actual and
estimated value and is given in Equation 13.

e &
MAE = - ZlTT,- — TTj| (13)

i=1
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Max. AE is the maximum absolute error among the actual and
estimated value and is expressed in Equation 14.

Max AE = max|TT; — TT;| (14)

MAPE is the average absolute percentage error among the

actual and estimated value and is expressed in Equation 16.
1 X TT; — TT;

MAPE = — _— 15

- ; I~ (15)

The R? indicates how much of the variation is learned by the
model and is shown in Equation 16.
. .
R = = Lt 0T TT) 16)
> icy (T — TT)|

Here TT_m refers to the mean travel time value. The ideal
value for RMSE and MAE will be zero (or close to zero) and
close to one for R? for the best prediction.

C. EXPERIMENTAL SETTINGS

All the simulations are performed using Python 3.7.16 and
Keras (2.3.1), which is based on Tensor Flow (2.1.0).
A machine equipped with an NVIDIA GeForce GTX 1070
Ti graphics card is used to train all the models.

D. BASELINES

As there is no prior research on our data, we have imple-
mented four state-of-the-art deep learning architectures
namely, MLP [70], CNN [69], LSTM [71], and GRU [72].
In addition to that, three related ensemble approaches [8],
[10], and [9] were also implemented to compare with our
proposed HDFS-TTP approach.

E. HYPER-PARAMETER SETTING

Table 3 lists the parameters we specified for our baseline
NNs. Trial-and-error method is used to get these values.
These best values for each parameter of the models presented
in Table 3 were obtained after multiple experimental runs.
For our base regressors, we’ve tweaked the learning rate,
the number of hidden layers, the number of neurons in each
hidden layer, and the batch size. The optimizer and activation
function have been set to ‘relu’ and ’adam’, respectively.
Our suggested approach’s results are validated using hold-
out cross-validation (See Figure 7). Our proposed approach,
in contrast to baselines, includes a machine learning-based
meta model (SVR) with a pseudo-random behaviour (like
other machine learning models). In order to demonstrate the
robustness of our approach, we ran the experiment 10 times
using the best parameters and the reported the results with
confidence interval in Table 6, 7, 8, and 9.

F. PERFORMANCE EVALUATION OF STATE-OF-THE-ART
DEEP LEARNING BASELINES AS FEATURE EXTRACTORS
The results of various deep learning models used as feature
extractors for SVR on the entire dataset are presented in this
section. Table 5 shows the outcome on overall data. As can be
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TABLE 3. Parameters setting of baselines (Optimal).

TABLE 4. Inference time of all the approaches.

Model Base Parameter Value
CNN [69] - convolution layers 2
max-pooling layers 1
filter size [64,32]
kernel size 3
pool size 3
activation relu
optimizer adam
learning rate 0.0001
MLP [70] - layers 2
no. of neurons [64,64]
activation relu
learning_rate 0.001
optimizer adam
batch_size 256
LSTM [71] - layers 2
no. of neurons [64,64]
activation relu
learning_rate 0.001
optimizer adam
batch_size 128
GRU [72] - layers 2
no. of neurons [64,64]
activation relu
learning_rate 0.001
optimizer adam
batch_size 128
[8] GRU layers 2
activation relu
learning_rate 0.001
optimizer adam
XGB learning_rate 0.05
max_depth 7
n_estimators 300
objective reg:squarederror
[10] LightGBM  num_leaves 31
learning_rate 0.05
objective rmse
MLP layers 2
no. of neurons [64,64]
activation relu
learning_rate 0.001
optimizer adam
batch_size 256
[9] LightGBM  learning_rate 0.05
objective rmse
num_leaves 31
XGB learning_rate 0.05
max_depth 7
n_estimators 300
objective reg:squarederror

observed, CNN is clearly not suitable for our data. The main
reason is that CNN didn’t take into account temporal aspects
in making a prediction and failed to perform well on our
data. Compared to a CNN model, MLP reduces the RMSE to
131.09 seconds and MAE to 25.77 seconds. However, these
errors are still higher for practical purposes. In comparison to
these models, LSTM and GRU, which are specialized time-
series models performed significantly better on the same data.
The RMSE with LSTM and GRU is reduced to 73.46 seconds
and 69.81 seconds, respectively. It can be seen that SVR
performed well on the feature spaces learned by LSTM and
GRU models.
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Model Overall(1k) Without_ Weekdays(1k)
weather(1k)

CNN 0.476 0.324 0.341
MLP 0.160 0.145 0.142
LST™M 0.166 0.151 0.149
GRU 0.154 0.151 0.148
GRU+XGB [8] 0.181 0.172 0.173
MLP+LightGBM 0.178 0.170 0.169
[10]

LightGBM+XGB [9] 0.177 0.169 0.174
Our Proposed HDFS-  0.182 0.174 0.171

TTP

TABLE 5. Performance evaluation of baselines feature extractors.

Model ~ RMSE(s) MAE(s) MaAE(s) MAPE%) R2(%)

CNN 178.02 6842 601.16 11.29 0.977268
MLP 131.09  25.77 35132 4.80 0.987572
LSTM 7346 24.50 14293 472 0.996098
GRU 69.81 16.54 13514 335 0.996475

TABLE 6. Performance evaluation of our Proposed HDFS-TTP on overall
data.

Model RMSE(s) MAE(s) MaAE(s) MAPE(%) R?(%)
Our 62.27+ 13.38+ 104.66+ 2.50 £ 0.99714+
Proposed 1.58 1.09 2.77 0.03 0.00044
HDFS-TTP
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FIGURE 8. Normalized trip time using feature-based LSTM-GRU ensemble.

G. EVALUATING OUR PROPOSED HDFS-TTP ON OVERALL
DATA

LSTM and GRU perform better as feature extractors than
CNN and MLP, as was discussed in Section IV-F. The per-
formance of these recurrent learning models will be further
enhanced by concatenating their feature spaces [61]. There-
fore, we have combined the feature spaces of LSTM and GRU
to form a hybridized deep boosted feature space. Our pro-
posed HDFS-TTP approach has shown further improvements
in terms of RMSE (62.27 £ 1.58 ), MAE (13.38 £+ 1.09),
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Max. AE (104.66 & 2.77), MAPE (2.50 £ 0.03), and R®
(0.9971440.00044), as reported in Table 6. These approaches
complemented each other when used as a merger for TTP and
further improved the generalization of HDFS-TTP. Actual vs.
expected normalized trip times for various times of the day,
from 6:00 am to 11:00 pm, are shown in Fig. 8.

In order to demonstrate the generalizability of our pro-
posed HDFS-TTP, we performed two experiments. In the
first experiment, we analyzed the impact of weather features.
In the second experiment, we tested our model on weekdays
data only. In both scenarios, only a slight degradation in
model performance is reported. In the next sections, we have
discussed the details.

TABLE 7. Investigating the impact of weather conditions with baselines
and proposed HDFS-TTP.

Model RMSE(s) MAE(s) MaAE(s) MAPE(%) R2(%)
CNN 195.52 85.90 669.83 14.14 0.972355
MLP 134.48 26.95 358.55 4.03 0.987029
LSTM 81.89 19.50 189.47 3.86 0.995190
GRU 77.33 17.86 178.91 2.90 0.995675
GRU+XGB 84.96 33.96 198.27 5.36 0.994780
[8]
MLP+LightGBM 67.95 2491 132.54 3.33 0.996661
[10]
LightGBM+XGB 67.91 24.99 131.75 3.64 0.996665
[9]
Our Proposed 64.60+ 15.474+ 112.35+ 2.88 + 0.99696+
HDFS-TTP 1.68 1.12 4.38 0.05 0.00062
ourpropossd (R
Lietal (20200 (N
w 20U, Yang, andZhu (2020] [
3 Ting ecal (2020 (™
= sy ™
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FIGURE 9. RMSE comparison with and without weather data.

1) IMPACT OF WEATHER ON MODEL PERFORMANCE

To show the significance of augmenting weather condi-
tions with traffic data and the robustness of our model,
we have evaluated the performance of our proposed ensem-
ble and baselines on overall data without weather features.
To examine the impact of weather data on overall perfor-
mance, we excluded weather features from the data. The
Table 7 summarises our findings. As demonstrated, remov-
ing weather data degrades the performance of deep mod-
els i.e., CNN, MLP, LSTM, GRU and ensemble models.
RMSE of our proposed HDFS-TTP ensemble is increased
from 62.27 + 1.58 seconds to 64.60 + 1.68 seconds. This
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TABLE 8. Performance evaluation of baselines & Proposed ensembles on
weekdays data.

Model RMSE(s) MAE(Gs) MaAE(s) MAPE(%) R2(%)
CNN 223.14  85.02 708.04  11.30 0.964145
MLP 139.78 4141 37301 6.93 0.985930
LSTM 81.47 25.88 188.51  4.73 0.995269
GRU 74.90 19.31 169.23  3.14 0.996001
GRU+XGB 7411 31.94 19195 5.1 0.996045
[8]

MLP+LightGBM 78.87 30.26 189.92  2.80 0.995521
[10]

LightGBM+XGB 65.24 23.78 12689  3.26 0.996935
9]

Our Proposed  64.02% 1512+ 111.56L 2.58 £ 0.997142+
HDFS-TTP 1.14 0.89 4.49 0.02 0.00026

indicates that weather features have a considerable effect on
the overall prediction of TT. Fig. 9 shows the RMSE of our
proposed feature-based LSTM-GRU ensemble and baselines.
The impact of weather features on our proposed models and
baselines is readily apparent.

2) PERFORMANCE ON WEEKDAYS DATA

This experiment is performed on weekdays data. The results
are reported in Table 8. There is a slight degradation in overall
performance, which could be caused by the reduction in data
size. An RMSE of 64.02 £ 1.14 is reported for our proposed
HDFS-TTP ensemble. The RMSE of our proposed feature-
based ensemble and baselines is demonstrated in Fig. 10.
Even with weekend data removed, our model performs better
than its counterparts.

The performance of [8], [10] and [9] deteriorates slightly
on weekdays data. An ensemble proposed [8] in has RMSE
and MAE of 74.11 and 31.94, respectively. The ensemble
proposed in [10] has an RMSE and MAE of 78.87 and 30.26,
respectively. Similarly, the RMSE and MAE of the ensemble
proposed in [9] are 65.24 and 23.78, respectively.

RMSE on Weekdays data

Our Proposzd
Lieral (2020a)
Zou, Yang, and Zhu (2020) I
Ting et al (2020)
LSTHV
GRU
MLP

Models

CIIN - |

o 50 100 150 200 250
RMSE

FIGURE 10. RMSE comparison of proposed ensembles & baselines on
Weekdays data.

H. PERFORMANCE EVALUATION OF OUR PROPOSED
HDFS-TTP WITH REPORTED ENSEMBLE APPROACHES ON
OVERALL DATA

It is evident from the results shown in Table 9 that our pro-
posed boosted feature space-based ensemble (HDFS-TTP)
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TABLE 9. Performance comparison of proposed HDFS-TTP with reported
ensemble approaches on overall data.

Model RMSE(s) MAE(s) MaAE(s) MAPE(%) R?(%)
GRU+XGB 71.75 33.90 190.13 4.53 0.995629
l[\z/g[]LP+LightGBM 67.71 2278 129.95 2.96 0.996685
EigthBM+XGB 65.05 23.34 124.62 3.12 0.996940
[(21111' Proposed 62.27+ 13.38+ 104.66+ 2.50 = 0.99714+
HDFS-TTP 1.58 1.09 4.77 0.03 0.00044

performed considerably well compared to existing ensemble
baseline approaches reported in the literature. Ting et al.
in [8] combined the scores of XGBoost and GRU, yielding
RMSE = 77.75 and MAE = 33.90. The authors in [10] com-
bined the scores of LightGBM (another lightweight Gradient
boosting tree model) and a deep learning model (MLP) and
reported RMSE = 67.71 and MAE = 22.78. Li et al. [9]
combined the scores of two decision tree-based ensemble
models to improve the performance. The ensemble of Light-
GBM and XGBoost has an RMSE = 65.05 and MAE =23.34.
However, none of these approaches analyzed feature spaces
of deep learning models with the capabilities of ML models
separately or in a hybridized manner.

V. CONCLUSION

Travel time prediction (TTP) is an integral component of
ITS as trip time is influenced by various factors such as
weather and peak hours, demanding a multi-model to capture
non-linearities in traffic data for accurate travel time predic-
tion. We developed a novel Hybridized Deep Feature Space
(HDFS) based TTP ensemble model (HDFS-TTP) based on
a hybrid feature learning strategy. Various endogenous and
exogenous data sources affecting travel time like peak hours,
weather conditions, and calendar features are augmented with
FCD data. We also included PCA features along with this data
to enhance the feature space and used DSAE for dimension-
ality reduction. This data is fed to four models, CNN, MLP,
LSTM, and GRU, and their feature spaces are analyzed with
an SVR as a meta-regressor for TTP. Next, we concatenated
the feature spaces of the best performing models like LSTM
and GRU to form hybridized deep boosted feature space and
used SVR on this boosted feature space for final prediction.
We achieved a Root Mean Square Error of 62.27 £ 1.58,
a Mean Absolute Error of 13.38+£1.09, a Maximum Absolute
Error of 104.66 £ 2.77, a Mean Absolute Percentage Error
(2.50%0.03), and a Coefficient of determination of 0.99714+
0.00044 with our proposed hybrid learning-based ensemble.
To further investigate the robustness of our proposed model,
we removed weather features and weekend data from the
dataset. The results demonstrated better performance of our
proposed feature-based LSTM-GRU ensemble compared to
baselines and a slight deterioration in overall performance.
Our proposed approach is different as compared to ensemble
approaches presented in the literature that rely on the decision
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score of the base regressors. Investigating other ML models as
meta-regressors can further enhance the results. In addition to
that, variants of DSAE such as variational AE, and denoising
AE can be used to enhance the feature spaces prior to model
training. In the future, we plan to incorporate decision scores
with feature spaces of recurrent learning models. We also plan
to evaluate the performance of Graph-based NNs on the same
dataset.
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