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ABSTRACT Travel Time Prediction (TTP) has become an essential service that people use in daily
commutes.With the precise TTP, individuals, logistic companies, and transport authorities can better manage
their activities and operations. This paper presents a novel Hybridized Deep Feature Space (HDFS) based
TTP ensemble model (HDFS-TTP) for accurate travel time prediction. In the first step, extensive endogenous
and exogenous data sources are augmented with traffic data obtained using sensors. Next, we used Principal
Component Analysis (PCA) and Deep Stacked Auto-Encoder (DSAE) for feature reduction. We gener-
ated feature spaces of deep learning models, namely Convolutional Neural Network (CNN), Multi-Layer
Perceptron (MLP), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), and fed them
to a model based on Support Vector Regressor (SVR) for predicting travel times. Two best-performing
models are selected, and their feature spaces are hybridized to boost feature space. On this boosted feature
space, we employed SVR for final prediction. Our proposed HDFS-TTP ensemble can learn complex non-
linearities in traffic data with the varying architectural design. The performance of our proposed HDFS-TTP
ensemble using hybridized and boosted feature spaces showed significant improvement in test data in terms
of Root Mean Square Error (62.27 ± 1.58), Mean Absolute Error (13.38 ± 1.09), Maximum Absolute
Error (104.66 ± 2.77), Mean Absolute Percentage Error (2.50 ± 0.03), and Coefficient of determination
(0.99714± 0.00044).

17

18

INDEX TERMS Travel time prediction (TTP), hybridized deep feature space (HDFS), machine learning
(ML), recurrent neural network (RNN), heterogeneous ensemble.

I. INTRODUCTION19

With the advent of Global Positioning Systems (GPS) based20

systems, there has been a significant surge of interest in21

Location-Based Services (LBS) among academics and indus-22

try. Travel Time Prediction (TTP) is one such application23

that acts as an essential service in Intelligent Transporta-24

tion Systems (ITS); more specifically, in Advanced Trav-25

eler Information Systems (ATIS) and navigation applications.26

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehul S. Raval .

With an accurate and reliable ATIS, individuals can plan their 27

trips more effectively, while transportation organizations and 28

logistic companies can manage and run their operations more 29

efficiently. In contrast to freeway Travel Time (TT), urban 30

network TT is affected bymany traffic (endogenous) and non- 31

traffic (exogenous) factors making it a challenging task. 32

The existing TTP methods can be divided into route- 33

based and data-driven approaches. The overall TT in route- 34

based approaches is computed by adding segment time and 35

transition time (waiting time due to signals, turns, etc.) 36

between segments. Based on the formulation of overall TT, 37
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route-based approaches are further divided into segment-38

based (uses segment time and ignores inter-segment correla-39

tion [1]) and path-based approaches (uses segment time and40

intersection delays [2], [3]). The TT estimate ŷi of a path-41

based approach [4] is represented in equation 1.42

ŷi =
∑
i

(ŝi)+
∑
j

(t̂j) (1)43

where ŝi is the TT estimated for the i-th road segment and t̂j44

is the time estimate during the j-th transition.45

On the other hand, data-driven approaches formulate TT46

as a pure regression task and estimate TT of an entire47

path/route from historical data by implicitly modeling traf-48

fic complexities. Data-driven approaches are further divided49

into trajectory-based [5], [6] and Origin-Destination (OD)50

based approaches [7]. Trajectory-based approaches use road51

network and trajectory data, while origin-destination-based52

approaches only consider pickup and drop-off location data53

for travel time prediction.54

Data-driven approaches, a substitute to conventional learn-55

ing approaches, are often hybridized for different traffic-56

related problems to enhance overall prediction capabilities.57

There has been a rapid rise in the use of hybridized and58

ensemble approaches for TTP in recent years. As an exam-59

ple, eXtreme Gradient Boosting (XGB) approach is com-60

bined with GRU and Light Gradient Boosting Machine61

(LightGBM) for TTP in [8] and [9], respectively. Similarly,62

fusion of Multi-Layer Perceptron (MLP) and LightGBM is63

studied in [10]. The outputs of the base regressors are fed to a64

linear regression model, a Decision Tree model, and a linear65

weighted fusion model which act as meta-regressors in [8],66

[10], and [9], respectively. These ensemble approaches dis-67

cussed above use the output (decision scores) of base regres-68

sors as features for meta-regressors to predict TT. However,69

the feature spaces of base regressors with a meta-regressor,70

both separately and jointly, are not studied in the literature.71

This paper proposes a systematic solution based on state-72

of-the-art deep learning models. To overcome the shortcom-73

ings in existing literature, we modeled our TTP problem as74

a regression problem. Extensive exogenous and endogenous75

features like spatial features, temporal features, and weather76

features are augmented with traffic data for better prediction.77

Four deep learning models namely, Convolutional Neural78

Network (CNN), MLP, Long Short-Term Memory (LSTM),79

and GRU are studied as base regressors and their feature80

spaces are analyzed. We extracted and hybridized the fea-81

ture spaces of the two best models obtained empirically i.e.,82

LSTM and GRU. SVR is used as meta-regressor to predict83

TT on this boosted feature space.84

The following text presents the synopsis of the scientific85

contribution of this study.86

• We propose a novel Hybridized Deep Feature Space87

(HDFS) based ensemble for Travel Time Prediction88

(TTP), also collectively called as HDFS-TTP. Feature89

spaces of deep learning models are analyzed separately90

and in a hybridized manner and fed to SVR for TTP.91

• We have augmented exogenous features with Floating- 92

Cars Data (FCD) to enhance the overall performance of 93

our proposed ensemble. 94

• We have also extracted Principal Component Analysis 95

(PCA) features and encode GPS trajectories using Deep 96

Stacked Auto-Encoder (DSAE) to boost feature space. 97

The comparative analysis with baseline architectures 98

shows considerable improvement in metrics like RMSE, 99

MAE, Max. AE, MAPE and R2 on the FCD dataset for 100

our feature-based LSTM-GRU ensemble. 101

The remainder of this paper is organized as follows: 102

Section II provides the historical background of the study. 103

Section III presents the proposed methodology. Section IV 104

elaborates on the results of our research. Section V contains 105

the concluding remarks and the future direction. 106

II. BACKGROUND 107

Most of the earlier work on TTP employed segment-based 108

approaches focusing on predicting TT on a selected set of 109

routes or a specific freeway segment/region. Loop detector 110

data has been extensively used to predict segment/link TT. 111

Various approaches, including pattern matching [11], Least- 112

Square minimization [12], Hidden Markov Model [13], Gra- 113

dient Boosting Decision Tree [14], and XGB [15] have been 114

proposed to model segment-based TT. Data fusion has also 115

been studied to improve the prediction accuracy in [16]. 116

However, the major drawback associated with segment-based 117

approaches is that link delays at intersections or transition 118

time from one link to another are not considered in the 119

prediction process. This limitation makes the applicability of 120

these approaches only limited to freeway scenarios. 121

Path-based approaches address the limitation of segment- 122

based approaches to some extent by splitting the entire path 123

into sub-paths and computing TT for each sub-path using 124

historical trajectories to get the final prediction [2], [5], [17], 125

[18]. Rahmani et al. in [2] presented an idea to concatenate 126

sub-paths to estimate the entire path. The authors in [17] 127

decomposed the entire trajectory path into a pathlet dictionary 128

and then reconstructed the complete path with fewer path- 129

lets, and estimation of TT is carried out from these pathlets. 130

Li et al. in [18] extended the work towards personalized pre- 131

diction of TT using pathlet dictionary and learned congestion 132

patterns. However, the performance of these path-based stud- 133

ies could be impacted by the data sparsity problem. 134

In the last decade, data-driven approaches have been 135

widely used in traffic forecasting with the surge in data 136

collection technologies like hand-held devices, and vehicle 137

navigation systems. These approaches solve the problem by 138

learning the hidden spatiotemporal features of traffic data in 139

an end-to-end fashion. For instance, Abdollahi et al. in [19] 140

employed DSAE on an extensive feature set followed by an 141

MLP for TTP. Similarly, Stacked Sparse Denoising Auto- 142

Encoder (SSDAE) [20], Deep Belief Network (DBN) [21], 143

CNN [22], GRU [23], LSTM [24], and Bidirectional LSTM 144

(BiLSTM) [25] have been investigated for TTP in the recent 145
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past. Graph Neural Networks (GNNs) have recently shown146

state-of-the-art performance in various applications and are147

naturally suited for traffic-related problems [26]. GNNs have148

widely been adopted in different traffic problems, including149

traffic state prediction, traffic flow prediction, travel demand150

prediction, trajectory prediction, and many others [27]. The151

authors in [28] introduced attention-based GNN for TTP152

task in which Spatiotemporal correlation is learned by com-153

bining a gated convolutional neural network and GNN.154

Three components were used to learn spatiotemporal het-155

erogeneous information corresponding to recent, daily, and156

weekly periods before the final prediction. A multi-layer157

Graph Convolutional Network (GCN) is proposed in [29].158

An encoder-decoder module based on LSTM and BiLSTM159

is used to learn traffic patterns better. Instead of dealing with160

traffic prediction and contextual information separately in a161

prediction, Fang et al. in [30] proposed a Spatial-Temporal162

GNN (STGNN) that jointlymodels traffic prediction and con-163

textual information using a 3D attentionmechanism for better164

prediction accuracy. The presented solution is deployed on165

Baidu maps showing the proposed approach’s effectiveness166

and robustness. Wang et al. [31] has also incorporated inter-167

section direction and driver behavior with other features in168

an attention-based GCN for TTP and demonstrated improved169

performance.170

For the traffic forecasting domain, data-driven approaches171

can be viewed as OD-based and trajectory-based approaches.172

OD-based approaches only consider the pickup location,173

drop-off location, and departure time from the historical tra-174

jectory to estimate TT [19], [32]. However, typical OD-based175

solutions suffer from data sparsity (Not every trip in the176

database matches the query departure time, pickup loca-177

tion and drop-off location). The authors in [7] proposed178

a way to handle missing trips (data sparsity) with the179

same origin, destination, and departure time in historical180

trajectories by exploiting neighboring trips. Jindal et al. [33]181

further improved the performance with a distance-based TTP.182

The authors in [32] augmented exogenous features such as183

weather and air quality with traffic data to enhance model184

performance. The computation of OD-based TTP is faster.185

This kind of prediction works well in situations when inter-186

mediate trajectories are not crucial such as freeway TT. How-187

ever ignoring intermediate trajectory points in urbanized TTP188

leads tomissing essential information like route choicesmade189

by the driver, the waiting time due to signalized arterial,190

etc. On the other hand, trajectory-based approaches use this191

information in the prediction process [25]. Fu et al. [34]192

applied classical CNN and time CNN on taxi trajectory data193

for spatial and temporal feature learning and augmented194

exogenous features to improve prediction. The authors in [35]195

employed CNN on a hybrid trajectory dataset (car and bus),196

and learned features are fed to LSTM for sub-path and whole197

path TT estimation. The authors in [36] and [37] transformed198

vehicle trajectories into images and employed CNN for spa-199

tial and temporal feature extraction on transformed images200

for TTP.201

When compared to individual models, which often per- 202

form well, hybridization or the use of an ensemble of 203

these approaches could further improve performance [38]. 204

Corridor-level TTP has been carried out in [39] using an 205

integration of SVR and Particle Filtering (PF). Network-wide 206

TTP has been investigated in [40] using local smoothing and 207

Probabilistic Principal Component Analysis (PPCA). LSTM 208

and CNN are integrated in [41] followed by a fully-connected 209

layer to predict TT. Shen et al. [42] have employed LSTM 210

as a prediction layer on features learned using CNN-RNN 211

models. The authors in [43] have hybridized DBN with 212

quantile regression for highway TT prediction. In addition 213

to hybridized models, ensemble-based approaches have also 214

been developed for TTP. The output of GRU and XGB 215

is combined in [8]. In another study, Zou et al. [10] have 216

combined the output of Light Gradient Boosting Machine 217

(LightGBM) and MLP using a decision tree model for TTP. 218

Likewise, the authors in [9] have reported better results of an 219

ensemble involving LightGBM and XGB as base regressors 220

for the urban road network. In [4], Wide-Deep-Recurrent 221

(WDR) models have been proposed that combine three mod- 222

els, namely, linear, MLP, and LSTMmodels to predict TT. All 223

the above ensemble approaches have analyzed the impact of 224

decision scores ofmachine learning and deep learningmodels 225

for TTP. However, the impact of feature spaces of deep 226

learning models and prediction of an ML model i.e., SVR 227

for TTP have not been studied in prior literature. Moreover, 228

exogenous features are not so extensively examined for TTP 229

on a network scale. In our current work, we have augmented 230

exogenous features including weather conditions, calendar 231

data, peak hours data and fastest route data to our map- 232

matched trajectories. Moreover, PCA features are extracted 233

from pickup and drop-off location features. Finally, DSAE 234

is employed to learn and encode GPS trajectories in a lower 235

dimension. On the final feature set obtained after augmen- 236

tation of exogenous features, PCA features, and encoded tra- 237

jectories, we trained our meta-model in which SVR is used as 238

a meta regressor and the feature spaces generated by LSTM, 239

and GRU are fed as input to SVR for final prediction. The 240

results demonstrate the superior performance of our proposed 241

meta-learning based approach. 242

III. PROPOSED METHODOLOGY FOR TRAVEL TIME 243

PREDICTION 244

Travel time prediction is a challenging task as it is affected 245

by several exogenous and endogenous factors like the choice 246

of route, time of the day (peak/non-peak hour), day of the 247

week (week/weekend), weather condition (usually more time 248

is needed to reach a destination in a bad weather situation). 249

Ensembles are now widely considered the most advanced 250

solution to many machine learning problems and address the 251

limitations of a single model by adding diversity using mul- 252

tiple base learners (either homogeneous or heterogeneous), 253

ultimately improving overall predictive performance. This 254

diverse learning leads to a more robust model that sufficiently 255

captures data’s variance (distribution). Different approaches 256
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FIGURE 1. Islamabad, Pakistan (Study area).

like voting, ensemble selection, and stacking have been used257

to combine base learners to form an ensemble model [44].258

Our work proposes a stacking-based heterogeneous ensemble259

approach that utilizes the well-known and existing machine260

learning and deep learning models. Feature spaces of four261

existing deep learningmodels (CNN,MLP, LSTM, andGRU)262

are analyzed with SVR as ameta-regressor. Fig. 1 and 2 show263

the study area of our proposed approach and a brief overview264

of the proposed HDFS-TTP, respectively. The following265

section explains the stages of our proposed HDFS-TTP in266

detail.267

A. MAP MATCHING268

We used Open Source Routing Machine (OSRM) to map269

GPS trajectories onto the OpenStreetMap (OSM) street net-270

work [45]. Online requests to OSRM were pretty slow, so we271

configured an offline OSRM server in a docker environment272

to address the response time issue. To further speed up the273

process, we employed a parallelized mechanism involving274

batch processing and multi-threading published in [46]. The275

issues related to off-road mapping of cars and trackers’ zero276

speed are resolved using the algorithm presented in our pre-277

vious work [47].278

B. FEATURE AUGMENTATION279

Exogenous features are not thoroughly analyzed for TTP on280

a network scale. For instance, Chen et al. [48] have incor-281

porated calendar features and road types in the prediction.282

Likewise, some studies consider weather information but not283

take into account other exogenous features like peak hours,284

calendar information, fastest route data etc. [49], [50]. More- 285

over, some studies have incorporated weather information, 286

calendar information for a freeway [51] or corridor [52] 287

or it is an OD-based prediction [19], [32]. Travel time is 288

affected by weather conditions, time of day, day of the week, 289

route choice, peak or non-peak hour, etc. We extracted and 290

aggregated various spatio-temporal, and weather-related fea- 291

tures in our integrated dataset. For instance, trip geospatial 292

area and vehicle route during a trip strongly impacts TT. 293

We extracted geospatial features such as total distance, seg- 294

ments, and intersections traversed by a vehicle during a trip 295

using map-matching. Similarly, another important type of 296

feature that affects TT is temporal features. For example, 297

the TT during non-peak hours is extremely different and 298

longer than during peak/rush hours. For temporal informa- 299

tion, we extracted the time of the day, day of the week, 300

day of the month, and month of the year features. Weather 301

conditions also affect TT [53], so we included 18 weather 302

conditions1 in our final features set. These features are listed 303

in Table 1. Other useful features contributing to accurate 304

TTP are is_peak_hour, is_holiday, fastest_route_distance and 305

fastest_route_time. The fastest route features as described 306

in [54] are extracted using OSRM fastest route Application 307

Programming Interface (API).2 With the help of the Direc- 308

torate of Traffic Engineering and Transportation Planning 309

1https://www.worldweatheronline.com/developer/ (accessed on 07
October 2021)

2https://project-osrm.org/docs/v5.5.1/api/#route-service
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FIGURE 2. Overview of the proposed approach.

Islamabad, the is_peak_hour is calculated. Our data is then310

used to validate the feature.311

C. FEATURE EXTRACTION AND REPRESENTATION312

The basic idea of PCA is to retain maximum variance while313

reducing dimensionality. We employed PCA on pickup and314

drop-off locations to enhance and boost the feature space to315

get the top two uncorrelated (orthogonal) principle compo-316

nents [55]. These features were added to the feature space317

and DSAE as shown in Fig. 3 is employed to get the318

encoded representation of our GPS trajectory to improve319

feature representation. The trajectory data was encoded into 320

eight features and appended these features to the final fea- 321

ture set. After data aggregation and feature representation, 322

we removed anomalous trips with duration less than a minute 323

(extremely short) and greater than two hours before final 324

experimentation. Our data comprises trips between 0.5 and 325

60 kilometers. 326

In our dataset, the longest trip contains 99 GPS locations 327

(latitude longitude pairs) which corresponds to 198 latitude 328

and longitude points. After feature augmentation as discussed 329

in Section III, B, we have increased the dimensionality of our 330
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FIGURE 3. Proposed Deep Stacked Auto-Encoder.

TABLE 1. List of weather features used in the study, taken from
https://www.worldweatheronline.com/developer/.

feature space. Our feature space comprises 253 features out331

of which 198 are GPS trajectory features. Deep auto-encoders332

are widely adopted as a data/feature compression technique333

in various domains [56]. A typical deep stacked auto-encoder334

consist of an encoder and a decoder with multiple layers each335

and a coded layer (also called bottleneck) as illustrated in336

Fig. 3. The basic idea is to learn the coded representation337

from the input first using encoder part and then reconstruct338

the input from the coded representation in the decoder part.339

This coded representation after training comprises maximum340

information needed to reproduce the input in a lower dimen-341

sional space. In our study, we learn this code representation342

of trajectory features into 8 features with DSAE. We added343

these encoded features to our final feature set.344

We evaluated the feature importance of the final feature set345

we have obtained from the feature extraction and represen-346

tation step before moving on to the implementation phase.347

One of the most widely used approach for feature importance348

is correlation coefficient which measures linear relationship349

between the features and target variable. However, mutual350

information regression has the capability to measure both351

linear and non-linear relationships between input features352

and the target variable [57]. Therefore, we have chosen353

mutual information regression for feature importance in this354

FIGURE 4. Feature importance based on mutual information regression.

study. Top 20 features with maximum gain are shown in 355

Figure 4. As can be seen, trip distance, fastest route features, 356

and encoded trajectory features (Encoded_1,. . .Encoded_8) 357

haves shown the maximum relevance in the reduced space 358

along with other features. 359

D. IMPLEMENTATION OF HDFS-TTP 360

Our implementation consists of two phases. 1) Investigating 361

feature space of state-of-the-art Deep Learning models and 362

2) hybridizing the feature space of the best two models to 363

boost feature space. 364

1) IMPLEMENTATION OF STATE-OF-THE-ART DEEP 365

LEARNING MODELS 366

We trained four deep learning models (CNN, MLP, LSTM, 367

and GRU) and used SVR [58] as a meta regressor. 368

We extracted the feature spaces of individual models and 369

fed them to SVR for the final prediction as it is based on 370

structural risk reduction theory. SVR seeks to reduce test error 371

and enhances the model’s ability to generalise, in contrast 372

to models based on empirical risk minimization theory [59]. 373

To create a hybrid learning-based boosted feature space, 374

we chose the two best-performing models i.e., LSTM and 375

GRU, as our base feature extractors. 376

2) OUR PROPOSED HYBRID DEEP FEATURE SPACE-BASED 377

TRAVEL TIME PREDICTION (HDFS-TTP) 378

LSTM and GRU performed best among the four models 379

and are selected as our base regressors in the proposed 380

HDFS-TTP. Also, these functionally similar network have 381

been used in ensemble studies in literature e.g., [61] have 382

shown promising results with LSTM and GRU when their 383

intermediate layer activation is concatenated and fed to an 384

MLP model for final prediction in [61]. Likewise, [62] 385

have employed LSTM, GRU, Bi-LSTM, and Bi-GRU as 386

base learners in their ensemble approach. Similarly, [63] 387

and [64] have used these sequence learning models in their 388
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FIGURE 5. Structure of an LSTM cell [60].

ensemble-based approaches to further improve performance389

in various tasks. The features space of LSTM and GRU is390

represented as fl and fg. Equation 2 illustrates how an SVR391

model using the learnt feature space of recurrent models gives392

the final prediction.393

Ŷ = SVR(fl, fg) (2)394

LSTM: Proposed Base Regressor: LSTM is a special-395

ized Recurrent Neural Network (RNN) developed to address396

the problem of long-term dependencies in standard RNN397

model [65]. In traffic data, LSTM can learn segment-level398

and long-term information about nearby segments [60]. The399

structure of an LSTM cell depicted in Fig. 5 is much more400

complex than an RNN cell due to its gating mechanism (for-401

get, input, and output gate). This gating mechanism allows402

LSTM to solve long-term dependencies by extending the403

memory cycle of the network. We used a two-layered LSTM404

as one of our base regressors for travel time prediction. For-405

get, input, and output gate computations of an LSTM cell are406

expressed in Equations 3-5.407

ft = σ (Wf [ht−1, xt ]+ bf ) (3)408

it = σ (Wi[ht−1, xt ]+ bi) (4)409

ot = σ (Wo[ht−1, xt ]+ bo) (5)410

where ft denotes forget gate, it denotes input gate, and ot411

denotes output gate at time t, σ is the gate activation function412

(sigmoid).Wf ,Wi, andWo are the respective weight matrices413

of the three gates, and bf , bi, and bo are their biases. ht−1414

denotes the output/hidden state from previous timestamp and415

xt is the input at current timestamp. LSTM cell state Ct and416

hidden output ht are computed using the Equations 6, and 7,417

respectively. LSTM equations are taken from [66].418

Ct = ft ⊗ Ct−1 + it ⊗ µ(Wc[ht−1, xt ]+ bc) (6)419

ht = ot ⊗ µ(Ct ) (7)420

where ⊗ represents point-wise multiplication, and µ and σ 421

are tanh and sigmoid activation functions.

FIGURE 6. Structure of a GRU cell [67].

422

GRU: Proposed Base Regressor: Another enhanced RNN 423

variation, the GRU uses two gates i.e., the update and reset 424

gates, as compared to the three of the LSTM, making it 425

more intuitive architecturally. [67]. GRU’s overall efficiency 426

is increased by the model’s simplified architecture, which 427

results in fewer parameters to train. The update gate in 428

GRU replaces the input and forget gates of the LSTM. 429

We employed a two-layer GRU model in this experiment. 430

The structure of the GRU cell is depicted in Fig. 6, and the 431

mathematics for the two gates of GRU to control the flow of 432

informationwithin the cell can be seen in Equations 8-11. The 433

equations of GRU are taken from [68]. 434

ut = σ (W uxt + Uuht−1) (8) 435

rt = σ (W rxt + U rht−1) (9) 436

h′t = µ(Wxt + rt � Uht−1) (10) 437

ht = zt � ht−1 + (1− zt � h′t ) (11) 438

where ut denotes update gate, rt denotes reset gate, h′t denotes 439

memory content (current) and ht denotes memory content 440

(final) at time t, σ and µ are sigmoid and tanh activation 441

functions. The symbol � denotes element-wise multiplica- 442

tion whereas W u, and Uu are the respective weight matrices 443

of the two gates. 444

IV. RESULTS AND DISCUSSION 445

This section begins with a description of the data, followed 446

by an explanation of the models that were used to analyse it 447

and their results. 448

A. DATASET AND DATA DISTRIBUTION 449

We have collected and prepared a real-world anonymized 450

FCD dataset obtained from a tracking company in Islam- 451

abad, Pakistan in the year 2019. In this experiment, we used 452
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TABLE 2. Dataset statistics.

FIGURE 7. Data division between base and meta regressors.

data spanning eight months, from March 2019 to October453

2019. For the specified time period, the dataset contains454

events recorded by 2895 unique tracker ids. Tracker units455

are mounted using the GSMModem(Quectel M95) and GPS456

Chipset(U-Blox EVA-M8M). Our study uses data spanning457

the peak and off-peak hours, from 6:00 am to 11:00 pm.458

Details of the dataset are given in Table 2.459

The data distribution scheme of our proposed HDFS-TTP460

approach is demonstrated in Fig. 7.461

We have used 4 months of data (DS1) for base learners462

such that 3 months of data is used for training and valida-463

tion is performed on the remaining 1-month data. Likewise,464

4 months of data (DS2) is used for meta learner. From (DS2),465

3 months of data (DS3) is used for training and validation of466

meta learner. The remaining 1-month data is used as a test set467

to report the error measures and evaluate the generalization468

of the proposed approach.469

B. PERFORMANCE METRICS470

We have evaluated our proposed model and baselines using471

five evaluation measures, including Root Mean Square Error472

(RMSE), Mean Absolute Error (MAE), Maximum Absolute473

Error (Max. AE), Mean Absolute Percentage Error (MAPE),474

and Coefficient of determination (R2). Let TT_i denote the475

actual travel time and ˆTTi denotes the predicted travel time,476

then RMSE can be expressed in Equation 12. These equations477

are taken from [73] and [74].478

RMSE =

√√√√1
n

n∑
i=1

( ˆTTi − TTi)2 (12)479

MAE refers to an average absolute error among the actual and480

estimated value and is given in Equation 13.481

MAE =
1
n

n∑
i=1

| ˆTTi − TTi| (13)482

Max. AE is themaximum absolute error among the actual and 483

estimated value and is expressed in Equation 14. 484

Max.AE = max| ˆTTi − TTi| (14) 485

MAPE is the average absolute percentage error among the 486

actual and estimated value and is expressed in Equation 16. 487

MAPE =
1
n

n∑
i=1

|
ˆTTi − TTi
TTi

| (15) 488

The R2 indicates how much of the variation is learned by the 489

model and is shown in Equation 16. 490

R2 = 1−

∑n
i=1 |( ˆTTi − TTi)|∑n
i=1 |( ˆTTi − TTm)|

(16) 491

Here TT_m refers to the mean travel time value. The ideal 492

value for RMSE and MAE will be zero (or close to zero) and 493

close to one for R2 for the best prediction. 494

C. EXPERIMENTAL SETTINGS 495

All the simulations are performed using Python 3.7.16 and 496

Keras (2.3.1), which is based on Tensor Flow (2.1.0). 497

A machine equipped with an NVIDIA GeForce GTX 1070 498

Ti graphics card is used to train all the models. 499

D. BASELINES 500

As there is no prior research on our data, we have imple- 501

mented four state-of-the-art deep learning architectures 502

namely, MLP [70], CNN [69], LSTM [71], and GRU [72]. 503

In addition to that, three related ensemble approaches [8], 504

[10], and [9] were also implemented to compare with our 505

proposed HDFS-TTP approach. 506

E. HYPER-PARAMETER SETTING 507

Table 3 lists the parameters we specified for our baseline 508

NNs. Trial-and-error method is used to get these values. 509

These best values for each parameter of the models presented 510

in Table 3 were obtained after multiple experimental runs. 511

For our base regressors, we’ve tweaked the learning rate, 512

the number of hidden layers, the number of neurons in each 513

hidden layer, and the batch size. The optimizer and activation 514

function have been set to ’relu’ and ’adam’, respectively. 515

Our suggested approach’s results are validated using hold- 516

out cross-validation (See Figure 7). Our proposed approach, 517

in contrast to baselines, includes a machine learning-based 518

meta model (SVR) with a pseudo-random behaviour (like 519

other machine learning models). In order to demonstrate the 520

robustness of our approach, we ran the experiment 10 times 521

using the best parameters and the reported the results with 522

confidence interval in Table 6, 7, 8, and 9. 523

F. PERFORMANCE EVALUATION OF STATE-OF-THE-ART 524

DEEP LEARNING BASELINES AS FEATURE EXTRACTORS 525

The results of various deep learning models used as feature 526

extractors for SVR on the entire dataset are presented in this 527

section. Table 5 shows the outcome on overall data. As can be 528

98134 VOLUME 10, 2022



J.-U.-R. Chughtai et al.: TTP Using HDFS and ML Based Heterogeneous Ensemble

TABLE 3. Parameters setting of baselines (Optimal).

observed, CNN is clearly not suitable for our data. The main529

reason is that CNN didn’t take into account temporal aspects530

in making a prediction and failed to perform well on our531

data. Compared to a CNN model, MLP reduces the RMSE to532

131.09 seconds and MAE to 25.77 seconds. However, these533

errors are still higher for practical purposes. In comparison to534

these models, LSTM and GRU, which are specialized time-535

series models performed significantly better on the same data.536

The RMSEwith LSTM and GRU is reduced to 73.46 seconds537

and 69.81 seconds, respectively. It can be seen that SVR538

performed well on the feature spaces learned by LSTM and539

GRU models.540

TABLE 4. Inference time of all the approaches.

TABLE 5. Performance evaluation of baselines feature extractors.

TABLE 6. Performance evaluation of our Proposed HDFS-TTP on overall
data.

FIGURE 8. Normalized trip time using feature-based LSTM-GRU ensemble.

G. EVALUATING OUR PROPOSED HDFS-TTP ON OVERALL 541

DATA 542

LSTM and GRU perform better as feature extractors than 543

CNN and MLP, as was discussed in Section IV-F. The per- 544

formance of these recurrent learning models will be further 545

enhanced by concatenating their feature spaces [61]. There- 546

fore, we have combined the feature spaces of LSTMandGRU 547

to form a hybridized deep boosted feature space. Our pro- 548

posed HDFS-TTP approach has shown further improvements 549

in terms of RMSE (62.27 ± 1.58 ), MAE (13.38 ± 1.09), 550
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Max. AE (104.66 ± 2.77), MAPE (2.50 ± 0.03), and R2551

(0.99714±0.00044), as reported in Table 6. These approaches552

complemented each other when used as a merger for TTP and553

further improved the generalization of HDFS-TTP. Actual vs.554

expected normalized trip times for various times of the day,555

from 6:00 am to 11:00 pm, are shown in Fig. 8.556

In order to demonstrate the generalizability of our pro-557

posed HDFS-TTP, we performed two experiments. In the558

first experiment, we analyzed the impact of weather features.559

In the second experiment, we tested our model on weekdays560

data only. In both scenarios, only a slight degradation in561

model performance is reported. In the next sections, we have562

discussed the details.

TABLE 7. Investigating the impact of weather conditions with baselines
and proposed HDFS-TTP.

FIGURE 9. RMSE comparison with and without weather data.
563

1) IMPACT OF WEATHER ON MODEL PERFORMANCE564

To show the significance of augmenting weather condi-565

tions with traffic data and the robustness of our model,566

we have evaluated the performance of our proposed ensem-567

ble and baselines on overall data without weather features.568

To examine the impact of weather data on overall perfor-569

mance, we excluded weather features from the data. The570

Table 7 summarises our findings. As demonstrated, remov-571

ing weather data degrades the performance of deep mod-572

els i.e., CNN, MLP, LSTM, GRU and ensemble models.573

RMSE of our proposed HDFS-TTP ensemble is increased574

from 62.27 ± 1.58 seconds to 64.60 ± 1.68 seconds. This575

TABLE 8. Performance evaluation of baselines & Proposed ensembles on
weekdays data.

indicates that weather features have a considerable effect on 576

the overall prediction of TT. Fig. 9 shows the RMSE of our 577

proposed feature-based LSTM-GRU ensemble and baselines. 578

The impact of weather features on our proposed models and 579

baselines is readily apparent. 580

2) PERFORMANCE ON WEEKDAYS DATA 581

This experiment is performed on weekdays data. The results 582

are reported in Table 8. There is a slight degradation in overall 583

performance, which could be caused by the reduction in data 584

size. An RMSE of 64.02± 1.14 is reported for our proposed 585

HDFS-TTP ensemble. The RMSE of our proposed feature- 586

based ensemble and baselines is demonstrated in Fig. 10. 587

Even with weekend data removed, our model performs better 588

than its counterparts. 589

The performance of [8], [10] and [9] deteriorates slightly 590

on weekdays data. An ensemble proposed [8] in has RMSE 591

and MAE of 74.11 and 31.94, respectively. The ensemble 592

proposed in [10] has an RMSE and MAE of 78.87 and 30.26, 593

respectively. Similarly, the RMSE and MAE of the ensemble 594

proposed in [9] are 65.24 and 23.78, respectively.

FIGURE 10. RMSE comparison of proposed ensembles & baselines on
Weekdays data.

595

H. PERFORMANCE EVALUATION OF OUR PROPOSED 596

HDFS-TTP WITH REPORTED ENSEMBLE APPROACHES ON 597

OVERALL DATA 598

It is evident from the results shown in Table 9 that our pro- 599

posed boosted feature space-based ensemble (HDFS-TTP) 600
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TABLE 9. Performance comparison of proposed HDFS-TTP with reported
ensemble approaches on overall data.

performed considerably well compared to existing ensemble601

baseline approaches reported in the literature. Ting et al.602

in [8] combined the scores of XGBoost and GRU, yielding603

RMSE = 77.75 and MAE = 33.90. The authors in [10] com-604

bined the scores of LightGBM (another lightweight Gradient605

boosting tree model) and a deep learning model (MLP) and606

reported RMSE = 67.71 and MAE = 22.78. Li et al. [9]607

combined the scores of two decision tree-based ensemble608

models to improve the performance. The ensemble of Light-609

GBM and XGBoost has an RMSE = 65.05 andMAE = 23.34.610

However, none of these approaches analyzed feature spaces611

of deep learning models with the capabilities of ML models612

separately or in a hybridized manner.613

V. CONCLUSION614

Travel time prediction (TTP) is an integral component of615

ITS as trip time is influenced by various factors such as616

weather and peak hours, demanding a multi-model to capture617

non-linearities in traffic data for accurate travel time predic-618

tion. We developed a novel Hybridized Deep Feature Space619

(HDFS) based TTP ensemble model (HDFS-TTP) based on620

a hybrid feature learning strategy. Various endogenous and621

exogenous data sources affecting travel time like peak hours,622

weather conditions, and calendar features are augmented with623

FCD data.We also included PCA features alongwith this data624

to enhance the feature space and used DSAE for dimension-625

ality reduction. This data is fed to four models, CNN, MLP,626

LSTM, and GRU, and their feature spaces are analyzed with627

an SVR as a meta-regressor for TTP. Next, we concatenated628

the feature spaces of the best performing models like LSTM629

and GRU to form hybridized deep boosted feature space and630

used SVR on this boosted feature space for final prediction.631

We achieved a Root Mean Square Error of 62.27 ± 1.58,632

aMean Absolute Error of 13.38±1.09, aMaximumAbsolute633

Error of 104.66 ± 2.77, a Mean Absolute Percentage Error634

(2.50±0.03), and a Coefficient of determination of 0.99714±635

0.00044 with our proposed hybrid learning-based ensemble.636

To further investigate the robustness of our proposed model,637

we removed weather features and weekend data from the638

dataset. The results demonstrated better performance of our639

proposed feature-based LSTM-GRU ensemble compared to640

baselines and a slight deterioration in overall performance.641

Our proposed approach is different as compared to ensemble642

approaches presented in the literature that rely on the decision643

score of the base regressors. Investigating otherMLmodels as 644

meta-regressors can further enhance the results. In addition to 645

that, variants of DSAE such as variational AE, and denoising 646

AE can be used to enhance the feature spaces prior to model 647

training. In the future, we plan to incorporate decision scores 648

with feature spaces of recurrent learningmodels.We also plan 649

to evaluate the performance of Graph-based NNs on the same 650

dataset. 651
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