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ABSTRACT The advent of modern data acquisition and computing techniques has enabled high-speed
monitoring of high-dimensional processes. The short sampling interval makes the samples temporally
correlated, even if there is no underlying autocorrelation among covariates. In this study, we introduce a
new process monitoring scheme in a Bayesian framework. The key strategy of this study is to incorporate
sequential observations into the estimation procedure for the parameters of interest to update the prior
distribution. Based on the updated prior, we obtain the most appropriate estimation of the process parameters
at each sampling epoch by maximizing the posterior probability. In addition, conventional statistical process
control and monitoring methodologies suffer from the “curse of dimensionality.” The closed form of the
estimate developed in this study through Bayesian updates enables the proposed method to be effective for
high-dimensional process monitoring. Various simulation studies demonstrate the superiority of the proposed
scheme in the high-speed monitoring of high-dimensional processes. Moreover, a few sample paths of the
estimated mean in a procedure of the proposed method are illustrated to provide practitioners with insights
into the monitoring and control of the process. Finally, we provide a real-life application to illustrate the
proposed method.

INDEX TERMS Autocorrelated process, Bayesian update, high-dimensional process, process mean moni-
toring, statistical process control.

I. INTRODUCTION and computing techniques has enabled high-speed moni-

Statistical process control (SPC) and monitoring techniques
have been widely used to detect process changes by mon-
itoring quality characteristics or process parameters such
as mean and covariance. When there are multiple quality
characteristics, a standard approach is to consider simulta-
neous monitoring of the mean by taking correlation into
consideration in a chart statistic. Hotelling’s T2, multivari-
ate exponentially weighted moving average (MEWMA), and
multivariate CUSUM (MCUSUM) charts are good examples
of simultaneous monitoring charts used for multivariate SPC
(MSPC) [1], [2]. The advent of modern data acquisition
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toring of high-dimensional processes. Although the tradi-
tional MSPC methods can be applied to monitoring relatively
high-dimensional processes, they mostly suffer from high-
dimensional settings; this phenomenon is called the ““curse of
dimensionality” [3], [4].

Accordingly, many charts intended for high-dimensional
processes have been developed. Principal component analysis
(PCA)-based approaches are well suited for monitoring high-
dimensional processes by focusing on only a few principal
components (PCs) [5], [6], [7]. Although they enjoy com-
putational efficiency, the chart performance may deteriorate
depending on the shift direction, that is, they are directionally
variant [8]. In addition, because the principal component is
a linear combination of all variables, it is not expected to
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provide any useful information for the identification step after
detecting the change, especially when only a few variables are
changed.

Recently, several methods have been developed to mon-
itor quality characteristics directly, rather than considering
PCs, despite high dimensionality. One of the main assump-
tions of these charts is ““sparsity,” that is, it is assumed that
there are only a small set of variables causing the process
change, according to the reasonably low probability of many
quality characteristics changing simultaneously. Along with
the assumption of sparsity, [3] and [9] developed variable
selection (VS)-based procedures. They considered a two-step
procedure to monitor the process: 1) identification of the
possible faulty variables and 2) monitoring of the process
based on the chosen variables. Reference [10] proposed a
similar procedure by adopting the adaptive absolute shrink-
age and selection operator (LASSO), where LASSO identi-
fies potentially changed variables. Reference [11] combined
the least angle regression to monitor both the mean and
variability. Reference [12] applied forward variable selec-
tion as a pre-diagnosis and integrated it into the MCUSUM
chart.

One of the advantages of VS-based methods is that they
provide useful information in fault diagnosis compared to
PCA-based methods because VS identifies some potentially
changed variables in the first step. However, these methods
mostly suffer from computational issues as the number of
dimensions increases because identification is performed at
every sampling point. Particularly in a high-speed monitor-
ing environment, this computational issue makes the chart
impractical. In addition, the charts may not perform well if
the VS procedure incorrectly identifies the changed variables
owing to the small size of the shift [8]. To overcome the issues
of VS-based methods, [8] applied L, regularization—or ridge
regularization—in the likelihood function. They developed a
theoretical procedure and evaluated the average run length
(ARL) performance using the approximate probability dis-
tribution of the chart statistics based on the closed form of
the estimate of the mean at each sampling point. This method
has proven its usefulness in high-dimensional and high-speed
monitoring processes in that the closed form of the estimate
significantly improves computational concern. However, the
ridge regularization has different shrinkage rates depending
on the covariance structure, which results in the chart being
directionally variant. Although [8] determined the theoretical
performance, the directional variant property of the chart
makes it difficult to detect a change when it occurs in certain
directions.

In this article, we propose a novel monitoring procedure
developed under a Bayesian framework for high-speed mon-
itoring processes in relatively high-dimensional processes.
In a high-speed monitoring environment, it is essential to
assume that the observations may be autocorrelated, although
the nominal process parameters are assumed to be constant
over time. This assumption makes more sense in an out-
of-control situation. It is reasonable that a process changes
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slightly over time after the shift occurs, which is not neces-
sarily a sudden jump. For example, in a milling machining
process, the milling tool starts oscillating gradually as it wears
out, resulting in an oscillating pattern of the out-of-control
signal [8]. Another example can be found in chemical pro-
cesses. In the literature of the Tennessee Eastman Industrial
Challenge Problem (TE problem [13]), it is shown that most
of the measurements show insignificant autocorrelation when
the process is operating in normal mode. However, the sys-
tem shows severe dynamic behavior when disturbances are
added [14]. Figure 1 illustrates the in-control data pattern of
one of the variables in the TE process, reactor coolant temper-
ature, and Figures 2 and 3 show the out-of-control situation
after the disturbances are added. Figures 1-3 demonstrate that
the mean of the process in the out-of-control state is patterned
dynamically by time, while the process has a stable constant
mean in a normal operating state.
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FIGURE 1. In-control signal of a variable (reactor coolant temperature) in
TE process.

The proposed method considers the probability distribution
of the process mean u, in a Bayesian framework. In particu-
lar, u; can be observed on a stochastic basis and determined
through the path p;_y, p;_5, ..., iy, that is, the Bayesian
theorem updates the posterior distribution of u,; sequentially.
The rationale behind the underlying dynamics is that the
current process mean is essentially associated with previous
means in a high-speed monitoring environment. This suf-
fices considering the possible autocorrelation in a high-speed
sampling process, and therefore, the model would explain
the out-of-control dynamics more appropriately, although the
in-control process mean is assumed to be constant over time.
In addition, we focus on the detection of the process mean
change, while the process variability remains unchanged.

Another main challenge is to overcome the computa-
tional issue in multi-dimensional processes without dimen-
sion reduction, which requires extensive computational
efforts as the dimension (p) increases. The recently devel-
oped VS-based methods that adopt penalized likelihood
demand a large amount of computation as p increases.
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FIGURE 2. Dynamic pattern of the out-of-control situation in reactor
coolant temperature.

For example, [10] adopted Lj-based regularization
(LASSO penalty), and [3] and [9] utilized forward variable
selection for pre-diagnosis to solve Ly-based regularization.
In general, solving Ly penalized likelihood requires extensive
computation. For example, among decomposition proce-
dures, the MTY decomposition theoretically sounds similar
to the best subset selection [15]. However, it must examine
p! decompositions, so it is impractical in a high-dimensional
process. Some step-down procedures have been proposed
to overcome the computational issue in a high-dimensional
process, such as the adaptive step-down (ASD) method,
which requires only O(p?) calculations [16]. However, even
though ASD significantly reduces the computational com-
plexity, it is still inappropriate when the procedure is running
sequentially over the sampling period. Similarly, although
some algorithms and VS techniques such as forward and
stepwise VS are computationally efficient, they are inap-
propriate to be incorporated into process monitoring as a
pre-diagnosis procedure, especially in high-speed monitoring
processes.

The proposed method enjoys the computational benefit
in that the process mean at a sampling point, ¢, that is,
i, is obtained theoretically as a closed form via Bayesian
updates. The closed form of the estimate of the mean
makes process monitoring very effective when samples are
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taken frequently in multi-dimensional processes, compared to
VS-based methods, which demand heavy computation. One
may argue that VS-based methods provide diagnostic infor-
mation about faulty variables, although they are computa-
tionally inefficient. Indeed, the proposed method does not
explicitly identify faulty variables, unlike VS-based meth-
ods. However, the method provides meaningful probabilities
indicating which variables can potentially be out of control.
This would be attractive for practitioners to anticipate how
the process proceeds at the next sampling point.

The Bayesian framework has paid attention and been
widely used in statistical control of processes where the
use of Bayesian methods takes the advantage of the process
knowledge incorporated into the methodology through the
prior distributions. Many of them focus on the optimality of
the chart design to determine control policy [17], [18], [19],
[20], [21]. In addition, the Bayesian theory has also been
used to determine the time to signal of fault [22]. However,
quite a few Bayesian methods have been studied in process
monitoring, most of which are univariate process monitoring
with theoretical and practical progress [23], [24], [25], [26],
[27], [28]. Reference [29] mentioned that few researchers
have developed the extension to the multivariate setting.
Reference [30] developed the change point estimation proce-
dure in Bayesian context given that an out-of-control signal
was raised. Reference [31] developed a Bayesian hierarchical
model to determine the means and directions of the shifts
with a given suspected out-of-control sample. Reference [32]
applied dynamic Bayesian estimation to detect machine fail-
ures in a discrete multivariate situation. Recently, [33] applied
Bayesian sequential update when the assignable causes are
sparse. This paper proposes a Bayesian method to monitor
the process mean in multivariate online processes and shows
the advantage of using updated prior distribution in high-
dimensional process monitoring.

The proposed method provides simplicity in using
Bayesian updates in process monitoring and opens further
investigation in statistical process monitoring. The novelty of
the work can be summarized into two major aspects. First,
the updated parameters at every sampling point in a high-
speed sampling process enabled the monitoring statistic to be
more efficient than conventional control charts. Few studies
have been conducted in this circumstance. Although [33]
applied the Bayesian sequential update in high-dimensional
processes, it assumed sparsity in the out-of-control pro-
cess. The proposed model is developed without sparsity
assumption, thereby generalizing [33]. Second, the proposed
method is computationally inexpensive. The closed-form
estimate developed in later sections enables effective in
high-dimensional process monitoring in contrast to many
previous studies that are computationally expensive and hard
to apply in practice.

The remainder of this paper is organized as follows. In the
next section, we describe our proposed method based on
a Bayesian update from the perspective of process moni-
toring and control. In Section 3, we compare the proposed
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procedure with other existing process monitoring methods
through various simulations. In Section 4, we discuss the pos-
terior probability distribution of the process mean and present
a predictive analysis that would be useful in monitoring and
diagnosing faults. Section 5 illustrates the proposed method
with a real-life example, followed by concluding remarks and
a discussion of future research in Section 6.

Il. METHODOLOGY

A. ESTIMATING PROCESS MEAN IN BAYESIAN
FRAMEWORK

Let a single measurable observation x; be the p-dimensional
vector and u, be the unknown process parameter, which is the
mean of the process. We assume that only one observation
is taken at every sampling epoch, and the interval of the
samples is relatively short, owing to the advent of modern
data processing and acquisition technology. Then, the linear
generative model is defined statistically as

Xy =Zip, + & (D

where Z; is a basis matrix to convert the unobservable mean to
a measurable observation, and &, represents the randomness
that has zero mean with a covariance X. Because the variabil-
ity of the process measurements is represented by €, statisti-
cally, we assume that the variability remains unchanged over
time, and &, ~ N(0, X).

The unknown parameter g, can be stochastically defined
in dynamics to incorporate the possible autocorrelation in a
high-speed monitoring process as follows:

we =T, +Reyy (2)

where the matrices T; and R, are the parameters used to
model the autocorrelation and moving errors [34]. p, is
the randomization term in the state of the mean and fol-
lows N (0, Q). In the context of SPC, we consider the ran-
domness to be serially independent and independent of &;.
We also assume that the errors are identically distributed
over the sampling time, which makes sense to describe the
complete randomness of the in-control process. Some litera-
ture on monitoring autocorrelated measurements attempts to
estimate the autocorrelation parameters first [33], [34], [35],
[36], [37], [38], [39] or at least assumes the autocorrelation
parameters to be known, that is, the matrices T and R are
estimated or given. Throughout the paper, we assume Marko-
vian state dynamics with the identity matrices for T and R to
generalize the model under the assumption that the process
parameter is unknown and non-measurable.

We now incorporate the Bayesian probability into the
model. The strategy for increasing the sensitivity of moni-
toring is to directly monitor the process mean through the
estimates of the parameters rather than monitoring the mea-
surements that imply the mean. To obtain the best esti-
mate of u,, that is, f,, we consider the posterior dis-
tribution of p, given all past observations and previous
means and try to maximize the posterior probability. Let
P (;L, [ 1s s ooy By Xp, Xp 1y e e s X]) be the posterior
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distribution of p,. Using the Bayesian rule for conditional
distribution, we can obtain the probability as

P(”’t'”’t—lv M[—Zv-~'3IL1»X[$X[—1»"'1X1)
P (Be By R X X LX) 3)
Pyt By as s I Xt X1, oo, X])
The joint distribution P (f;, ft; 1, ..., Iy, X¢, Xi—1, ..., X])
can be obtained recursively as
P(”’[v I’L[—li ey Il'la Xt Xt—15 -0 Xl)
=P(Ws ... 1) xl_[
i=1
XP(Xi|Xi71»~--,Xlaﬂi7ﬂi71v-~-v”“l)’ “)
where P (/,L,, el [Ll) can also be obtained similarly as

t

”’“1) :P(”“O)HP(I‘«HILi—l’ﬂi_z, ~--,IL1)

i=1
)

using a Markovian property. By plugging (5) into (4),
we obtain the joint probability as

P(u,,...

P(MZ’ M1y ey U1y Xpy Xp—1, ~~-»X1)

t
= P (po) HP(IL,' | Bigs Bizas - s 1)
i=1

X P (Xi | Xity oo X1, My oy 1) 6)

Then, the posterior distribution in (3) can be derived as

P(IL; 1 B2, ~~-’ﬂ15Xz,Xz—1,-~-,X1)
x P(Xt|Xt71,-'-7X1,ILI7M[717.-',IL])
PRl By By s ) ™

When the observations are independent and are only deter-
mined by the current mean p,, (7) can be written as

Pfy | Bymts s oo 15 X, X1, -, X1)
o P (% [ y) PRy | y—ys s ) (8)

The result from (8) provides important findings for the
Bayesian framework. The first term P (X, | t,) is the likeli-
hood probability, similar to the classical decomposition of the
Bayesian posterior distribution. However, the second term is
not a prior probability, P(u), but a prior probability given
previous means. This is a significant finding that can be
interpreted as an updated prior distribution. By letting P(u)
be a probability density function of p as a prior distribution,
it can be seen as a conditional distribution given all previous
means by incorporating Markovian state dynamics as

P(”’t'”’t—l’”’t—Z""’”’l)=P(”‘t|”’t—l)’ r=12,...

and the distribution is P () at time 7 = 0.

In fact, this can be observed in Gaussian Kalman update
as well. Let the location and scale parameters be 6 and K,
respectively. As shown in [33] and [34], these two parameters
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are determined recursively at every sampling epoch. More
importantly with the Gaussian error distribution, not only the
location parameter but also the scale parameter is updated
clearly as a closed form (see [34] for detailed derivation
of §; and K;).

Thus, we can conclude that the posterior probability is
proportional to the likelihood and updated prior probabilities
in the Bayesian context.

Now, we obtain the most probable process mean, jit, by
maximizing the posterior probability (MAP) as

ft; = argmax P (lLt |Xt) = argmax P (Xt |ﬂt) p (I’l‘t | l‘vt—l)
My 7
©))

With the Gaussian errors for 5 and &, the estimate is identical
to

fu = arg min {Ixe = Zame 35 + e = i35, o)
(10)

where ||X||%7 A Tepresents x A~Ix. We set the predictive mean
to be determined using the previous estimate. Then, the mini-
mization problem in (10) can be solved analytically by setting
the derivative with respect to x; equal to zero, that is, Bix, =0.
The solution of (10) has the following recursive form:

-1
=i,y + Pz\t—IZ{i [Q + ZIPZ\I—IZ{J] (Xt - Ilz—l)
(11)

which is the same solution obtained from a Gaussian Kalman
filter. It is interesting to note that the Kalman filter attempts
to find the most likely cause of the measurement given the
approximation made by a flawed estimation and has a solu-
tion identical to that of the Bayesian approach [33], [34], [41].

B. PROPOSED CHART

Consider the hypotheses Hyp : 0 = pg vs. Hy : o = p where
Lo 18 an in-control mean and g, is an out-of-control mean
that can be a function of sampling time but is not equal to
1o In classical SPC literature, the testing hypothesis exploits
the measurement X; and considers it to be the best unbiased
estimator of u, with a single observation available. Then,
the monitoring statistic from the likelihood ratio test is the
same as Hotelling’s T2 statistic, that is, @ = (x; — [LO)T
X, l(X, — Ig). Here, the measurement x; can be interpreted
as an estimate of the mean at time ¢. Therefore, the strategy of
the proposed method is to use the better estimated parameters
in the state dynamics, that s, i, and P;|;. With the assumption
of Gaussian error distributions, fi, also follows a Gaussian
distribution with covariance P;|;. Therefore, we construct the
monitoring statistic of the proposed chart as

0= (it — 1o) Py (i — o) - (12)

The propagated estimate of the covariance matrix Py,
is derived by E[ﬁ,tﬁf ] and also has a solution with
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a recursive form:
A AH
Py =FE I:ILtlLt ]

-1
= Py —Py 2 [Q+ ZiPy 2| 2Py
(13)

In (12), the exact covariance matrix is used to monitor
the process. However, with the assumption of stable vari-
ability over time in a steady-state process, it is reasonable to
assume that the covariance of the mean is also stable. Thus,
we replace P;; with an asymptotic covariance Py, given
below:

-1
Po=T <Poo —pZ! [Q + ZPOOZH] ZPOO> T™ +R
(14)

The equations (13) and (14) are called the discrete-
time algebraic Riccati equation, which can be numerically
solved—this can be done by using the idare function in
MATLAB version R2019b or later. Finally, the chart triggers
an alarm when Q = (jt, — uO)T P! (i; — mo) > c, where
c is a predetermined threshold associated with a signifi-
cance level and is obtained through Monte Carlo simulations.
We name our proposed chart the Bayesian SPC (BSPC).

lIl. PERFORMANCE ANALYSIS THROUGH NUMERICAL
STUDIES
A. AVERAGE RUN LENGTH
In this section, we report various simulations to demonstrate
the superiority of the proposed chart. The performance of
the control charts is commonly measured by the average run
length (ARL), which is the time to detect the out-of-control
process. The ARLSs in the in-control and out-of-control states,
denoted as ARLO and ARLI, respectively, are calculated as
follows:

1 1

- ARL=——
P(Q > clnp) PQ>clmy)

We set ARL to 200, which is equivalent to the significance
level of the test being set as 0.005. The basis matrix Z; is
considered to be an identity matrix in that the measurement x;
is observed directly from the mean ;. One of the utilizations
of the basis matrix is to determine it as a square root of X,
which is an orthogonal transformation of the measurement x;.
This will be useful when a practitioner considers the principal
components to monitor the process. The parameter matrices
T, and R, are also set as identity matrices, as stated in the
previous section. Lastly, the covariance matrices of errors 3
and e are assumed to be identical. In fact, the error distri-
butions are not necessarily identical. Specifically, the covari-
ance of the mean can be in any form based on engineering
knowledge or the structure of the process dynamics. However,
in this study, we let Q = X to represent that the variability
of the measurement is identical to that of the underlying
mean. Moreover, we consider the covariance matrix X as
a correlation matrix without loss of generality and assume

ARLy =
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strong correlations. In addition, we consider the spatial rela-
tionships of the variables in X. The correlation coefficients
o (xij xu) = r (k46D for j k = 1,2,...,px and
Jj,l = 1,2,...,py, where px and py represent the hori-
zontal and vertical dimensions for one frame of spatial data
information. Thus, py x py = p,and 0 < r < 1 [8],
[42], [43], [44]. We consider a strong correlation by setting
r=20.9.

In the first simulation, we compared BSPC with a tra-
ditional Hotelling T2. The shift size 8 was considered
through a noncentrality parameter, that is, §% = (p; — [LO)T
E’l(ul — o). Without loss of generality, we assume g = 0.
Table 1 presents the ARL1 results with the dimensions
p = 10,20, and 50 according to the different sizes of §.
As shown in Table 1, there was a significant improvement
in ARL1 compared to Hotelling’s 72 chart.

TABLE 1. ARL1 comparison of BSPC with Hotelling’s 72.

S\p p=10 p =20 p=50
T? BSPC T? BSPC T? BSPC
0.5 13228  89.06 151.29 113.26 169.33  138.70
1.0 50.78  20.71 73.60 31.77 10637  56.81
1.5 17.14 6.39 28.04 9.73 54.07 19.42
2.0 6.42 3.13 11.29 4.28 24.69 7.56
2.5 2.96 1.98 4.90 2.52 11.15 3.93
3.0 1.72 1.48 2.54 1.81 5.38 2.54
35 1.25 1.21 1.60 1.41 2.92 1.90
4.0 1.07 1.07 1.25 1.19 1.84 1.52
4.5 1.02 1.02 1.07 1.06 1.35 1.28
5.0 1.00 1.00 1.01 1.02 1.13 1.12

Typically, ARL; increases as the dimension increases, and
as the shift size decreases. Recently, a few methodologies
have been developed for monitoring high-dimensional pro-
cesses with the assumption of sparsity. Therefore, in the next
experiment, we compared the performance of BSPC in sparse
settings in u with VSMSPC, which was proposed by [3]. Let
po be the number of changed variables.

According to the sparsity setting, we set pg = 2, that
is, [m1lly = 2 and w; = [8,8,0,0,...,0]”. Note that
8 is an additive shift in this case rather than a noncentrality
parameter. VSMSPC requires a parameter to determine the
number of selected variables, denoting it as s. With pg = 2,
the overall best parameter was obtained as s = 2. For the best
performance, we chose s = 2. Table 2 shows the ARL per-
formance as p changes. A few findings were observed in this
study. First, VSMSPC underperforms compared to 7> when
the shift size is small, whereas BSPC outperforms VSMSPC
and T2. This is because the VSMSPC chart may not detect
the out-of-control signal when the shift size is small because
of the possible misidentification of the faulty variables at
the diagnosis step. In the same sense, VSMSPC performs
slightly better than the other charts when the shift size is large.
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However, even in this large shift case, the performance of
BSPC is competitive.

When a small shift size is expected in a process, practition-
ers may consider EWMA for the measurement instead of x;,
that is, an EWMA vector z; = (1 — A) z,_1 + Ax, [2], [45].
A CUSUM may also be the one of candidates for detecting
the small change in the process, but herein, we only apply
EWMA for simplicity. Based on the asymptotic Gaussian dis-
tribution of fi,, we can derive the posterior distribution in the
manner described in Section 2. Then, the monitoring statistic
becomes Q, = (ft,, — Mz,O)T Pz_éo (ftz; — My0), where the
subscript z represents EWMA. The EWMA version of BSPC
is referred to as multivariate Bayesian EWMA (BEWMA)
throughout the paper. For the comparison models, we con-
sidler MEWMA and VSMEWMA, which are the EWMA
versions of T2 and VSMSPC. The shift § is determined as
an additive shift, and we only consider § = 0.2, 0.4, 0.6, 0.8,
and 1 because EWMA-based control charts focus on small
shift sizes. The EWMA parameter X is set to 0.2. In addi-
tion, we consider the steady-state process in which the shift
occurs after the process is stabilized. To implement the
steady-state process, we generated the out-of-control signals
after 100 samplings and ignored any false alarms during the
100 samplings.

Tables 3 and 4 show the results of two different out-of-
control scenarios in terms of sparsity. In that VSMEWMA
pursues high-dimensional process monitoring with sparsity,
we set the same sparsity as that in the previous experiment,
that is, po = 2 for Table 3. In the Table 4 scenario, we set
po = 8, which is less sparse than the value used for Table 3.
For both experiments, we set s = 2, which is the overall
best parameter for VSMEWMA. Table 3 presents the same
pattern of results as in Table 2. The proposed BEWMA out-
performs MEWMA for all shift sizes. In extreme cases such
as § = 0.2, BEWMA outperforms VSMEWMA because the
performance of VS-based charts is expected to decrease when
the shift size is small owing to the possible misidentification
of the potentially changed variables. However, as the shift
size increases, BEWMA performs similarly to VSMEWMA
and starts comparatively underperforming. In Table 4, with a
less sparse setup, we can see that the proposed BEWMA out-
performs MEWMA and VSMEWMA in all shift scenarios.
In addition to the case with pg = 8, we can conjecture that
the performance of VSMEWMA deteriorates as pg increases
because the chart selects only two variables (s = 2) and loses
too much information about the process, whereas BEWMA
still performs well because the chart incorporates the proba-
bilities of all variables into the monitoring process.

In the next experiments, we attempted various out-of-
control scenarios with varying shift directions. This is worth
checking because most of the high-dimensional aiming charts
that have been recently proposed are directionally vari-
ant, that is, the performance differs according to the shift
direction. Recently, [8] proposed a ridge-regularization-based
chart, showed the performance in various shift directions,
and calculated the relative mean index (RMI) to measure the
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TABLE 2. ARL1 comparison of BSPC with VSMSPC and Hotelling's T2.

5\p p=10 p=20 p=50
T? VSMSPC BSPC T? VSMSPC BSPC T? VSMSPC BSPC
0.5 13228 13273 8894 15129 15643 112.07 169.33 176.24 136.40
1.0 50.78 49.74 20.50 73.60 7270 3147 10637 107.74 56.61
1.5 17.14 1592 640 28.04 24.57 9.74 54.07 42.02 1943
2.0 6.42 5.74 312 11.29 8.48 427 24.69 14 7.57
2.5 2.96 2.64 1.98 4.90 3.57 2.51 11.15 5.23 3.92
3.0 1.72 1.56 1.47 2.54 1.90 1.80 5.38 247 2.54
3.5 1.25 1.18 1.21 1.60 1.29 1.42 2.92 1.51 1.89
4.0 1.07 1.04 1.07 1.25 1.08 1.18 1.84 1.16 1.51
4.5 1.02 1.01 1.02 1.07 1.02 1.06 1.35 1.04 1.28
5.0 1.00 1.00 1.00 1.01 1.00 1.02 1.13 1.01 1.12
TABLE 3. ARL1 comparison of BEWMA with YSMEWMA and MEWMA when py = 2.
5\p p=25 p=50
MEWMA VSMEWMA BEWMA MEWMA VSMEWMA BEWMA
0.2 152.52 160.97 146.77 164.13 170.98 162.46
0.4 78.62 78.24 71.14 100.2 100.5 93.69
0.6 37.83 33.62 33.77 53.14 43.39 48.20
0.8 20.71 16.98 18.21 29.24 20.64 25.77
1.0 13.15 10.56 11.72 18.19 12.3 15.68
TABLE 4. ARL1 comparison of BEWMA with VSMEWMA and MEWMA when p, = 8.
5\p p =25 p =50
MEWMA VSMEWMA BEWMA MEWMA VSMEWMA BEWMA
0.2 78.00 96.86 72.05 99.89 120.75 94.91
0.4 20.82 26.57 18.26 29.10 37.60 25.86
0.6 9.61 11.58 8.38 12.66 14.54 10.99
0.8 6.24 6.93 5.54 7.82 8.35 6.81
1.0 4.68 5.04 4.23 5.81 5.79 5.04

performance, which is given as

N

1
RMI:NZ

=

ARLy, (X) —ARL%,
ARL},

where N 1s the number of out-of-control scenarios,
ARLy, (X) is the ARL1 value of the given chart X, and
ARL* is the smallest ARL1 among the charts under shift p;.
Thus 'RMI measures the relative performance among the
considered scenarios and is useful for comparing direction-
ally variant charts under various scenarios. We now compare
the performance of BSPC, VSMSPC, RMSPC [8], and T2
It is also noteworthy that the pattern of the performance
would be similar if we consider EWMA for all charts,
that is, BEWMA, VSMEWMA, RMEWMA, and MEWMA.
Table 5 shows the ARL1 with the relative index in parenthe-
ses, and at the bottom of the table, the RMI is shown. Based
on the nature of the index, a lower RMI value represents
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better performance. The experiment was conducted under
the condition of p 10, and a moderate size of selec-
tion for VSMSPC was chosen, resulting in the overall best
performance under the scenarios we consider. In Table 5,
8; represents the change in the ith variable; for example,
81 83 0.25 means the shift occurs in the first and
the third variables with a shift amount of 0.25. In addi-
tion, the bold values represent the best of the considered
charts. Table 5 shows that BSPC outperforms VSMSPC,
RMSPC, and T? in most of the scenarios. Accordingly,
BSPC shows the minimum RMI, which demonstrates the
superiority of BSPC among the charts under various shift
directions.

One of the advantages of the proposed chart is that BSPC is
directionally invariant. With the Gaussian error distributions
for the measurement and the state (i.e., mean), ji follows a
Gaussian distribution asymptotically with the covariance P,
Thus, the chart statistic measures the Mahalanobis distance
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TABLE 5. ARL1 and RMI with BSPC, VSMSPC, RMSPC, and T2.

Shifts T? VSMSPC RMSPC BSPC
5, =0.25 133.54(0.47) 127.49(0.4) 127.75(0.41) 90.79(0)
5,=0.5 36.47(1.68) 26.22(0.92) 26.07(0.91) 13.62(0)
8, = 0.75 10.67(1.43) 7.17(0.63) 7.5(0.71) 4.4(0)
5 =05 52.16(3.42) 11.81(0) 47.57(3.03) 21.11(0.79)
8, =0.25 117.03(0.65) 108.85(0.53) 97.97(0.38) 71.03(0)
8 = 0.75 10.72(1.43) 6.96(0.58) 7.59(0.72) 4.42(0)
8, =6, =025 84.05(1.06) 78.13(0.91) 63.38(0.55) 40.88(0)
5, =68,=05 21.88(1.72) 19.01(1.37) 19.93(1.48) 8.03(0)
8, =68, =075 3.97(0.7) 3.19(0.36) 2.69(0.15) 2.34(0)
5, =6,=05 16.04(1.64) 13.36(1.2) 12.8(1.11) 6.07(0)
8, =68, =025 75.09(1.17) 67.44(0.95) 52.05(0.5) 34.65(0)
8, =085=05 20.68(1.73) 20.52(1.71) 17.04(1.25) 7.56(0)
83 = 8 = 0.75 3.27(0.56) 2.75(0.31) 2.32(0.1) 2.1(0)
5, =68, =6, =025 56.6(1.39) 47.09(0.99) 33.2(0.4) 23.71(0)
8, =8,=085=05 6.76(1.11) 6.33(0.98) 3.94(0.23) 3.2(0)
8, =85 =8y = 0.75 11.28(1.51) 14.79(2.29) 11.73(1.61) 4.5(0)
8, =6,=6, =08 =025 79.82(1.08) 90.13(1.35) 81.12(1.12) 38.33(0)
8;=08,=08,=06,=05 10.02(1.39) 14.65(2.5) 9.09(1.17) 4.18(0)
8y =85 =8, =8y =0.75 1.37(0.2) 1.49(0.31) 1.14(0) 1.29(0.12)
5, =6, =06; =08, =6, =025 65.05(1.27) 62.94(1.19) 52.42(0.83) 28.68(0)
8, =08, =08, =085=06,=05 7.76(1.22) 8.19(1.35) 5.29(0.52) 3.49(0)
83 =8 =8 = 8o =819 = 0.75 1.88(0.22) 2.05(0.33) 1.54(0) 1.57(0.02)
8, =085 =085 =08, =08,=025 31.62(1.71) 26.21(1.24) 16.05(0.37) 11.68(0)
8, =08, =08,=085=06,=05 3.23(0.62) 3.41(0.71) 2(0) 2.09(0.05)
8, =085 =085=208,=06=05
8, =8, =8, = 64 = ;9 = 0.25 29.5(1.77) 26.28(1.47) 16.03(0.51) 10.64(0)
RMI 1.246 0.984 0.722 0.039

of jt with a fixed covariance matrix, and therefore, we can
conjecture that the chart is directionally invariant, just as
MEWMA does. In addition, note that the monitoring statistic
Q does not follow a x?2 distribution because f, is not i.i.d
with respect to ¢. In the next experiment, we consider sev-
eral different shift directions with the same noncentrality for
out-of-control signals to numerically observe the directional
invariance in the simulation. Specifically, we conducted three
scenarios, namely [pll = 2, 5, and 10 for Cases 1, 2,
and 3, respectively. The dimension is set to p = 10, and
8 represents noncentrality in Table 6. The results show that
the ARL1 values were statistically identical among the cases.
We conducted more simulations in different settings of p and
shift directions—not shown in this paper—but we can deduce
the same conclusion.

B. TRACKING MEAN

Statistical process monitoring sequentially tests the hypothe-
ses Hy : 4 = pgand Hy : o = pq, where u is usually a
sudden jump at a certain point and remains unchanged over
the sampling period once it occurs. In many manufacturing
processes and service processes, processes may go beyond
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TABLE 6. Directional invariance of BSPC (p = 10,
Cases 1, 2, and 3).

n1lo = 2.5, 10 for

) Casel Case2 Case3
0.5 12891 12844 128.66
1.0 47.88 48.11 48.48
1.5 17.37 17.44 17.29
2.0 7.58 7.37 7.53
2.5 4.15 4.09 412
3.0 2.69 2.74 2.71
3.5 2.02 2.04 2.00
4.0 1.63 1.62 1.63
4.5 1.36 1.37 1.36
5.0 1.19 1.20 1.20

normal conditions in different ways, as discussed in Section 1.
In this section, we consider several patterns of out-of-control
signals, including a sudden jump, sigmoid, oscillating, and
multiple jumps. Moreover, we attempt to interpret the chart
from a different angle rather than focusing only on the out-of-
control ARL. The idea of the proposed method is to maximize
the posterior probability at every sampling point based on
the rationale that the estimation with the past means and
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FIGURE 3. A sample path of BSPC with a constant (sudden jump) pattern.

2.5

True mean ’
- -% - Observation

FIGURE 4. A sample path of BSPC with a sigmoid pattern.

observations would support the decision for the current sam-
ple. Thus, it is worthwhile to see how accurately the mean
is estimated in addition to the ARL performance. One of the
measures is the mean squared error (MSE) between the actual
and estimated means. The MSE can be calculated as

S

n t=|

where T is the sampling period and u(lnz and ,25") are the
actual and estimated means, respectively, at time ¢ in nth

replication. We conducted N = 1000 runs to obtain the
average squared errors in replications. Regarding the sam-
pling period 7, we set T = 70 for illustration, and we
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assume that the process is in-control for the first 20 samples.
The experiment was conducted with p = 25, and the shift
occurred for five variables, including the first variable. Let
ni(t) for i = 1,...,5 be the out-of-control signal of the
first variable at sampling time 7. The following out-of-control
signals are considered.

1) Constant (sudden jump): u;(t) = 0.5

, where e is

e
an elementary vector for which the flrst five elements
are one and the remaining elements are zero (i.e., non-
centrality is 0.5)
2) Sigmoid pattern:
1.5

wi (D) = 150505
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FIGURE 5. A sample path of BSPC with an oscillating pattern.
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FIGURE 6. A sample path of BSPC with a multiple-jump pattern.

3) Oscillating pattern:
Wi (t) = 0.04 (+ — 20)sin 0.4 (+ — 20)
4) Multiple jumps:
0 r <20
05 20<r<30

—0.7 30<t<50
1.0 t > 50

wi (@) =

In addition to the MSE, we also mark the first detection in
each replication and calculate the average run length. In this
case, we ignore the alarm that the chart triggers in the first
20 in-control samples. Moreover, we set the run length to 50,
which is the number of out-of-control samples, if the chart
does not detect the out-of-control signal within a replication.
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Table 7 presents the MSE and ARL1 for the four cases consid-
ered, and Figures 3, 4, 5, and 6 illustrate sample paths for each
pattern, where we plot only the first variable. In the figures,
the solid and bold lines represent the true mean (i1,1(¢)) and
the estimated mean through Bayesian update (BSPC, /i1 ),
respectively. A dotted line with an asterisk represents the
observation, that is, 72 as the measurement X; is the best
estimate at each sampling time.

From Figures 3-6, it is clear that the estimated mean
through Bayesian update tracks the true mean well even
after the process is changed, while the observations fluctuate
significantly. Accordingly, the results of MSE and ARL;
in Table 7 demonstrate the superior performance of the
proposed chart to that of the conventional T2 chart, both
in tracking the mean and in detecting the change in the
process.
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FIGURE 7. Continuous stirred tank heater [41].
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FIGURE 8. In-control and out-of-control data.

IV. CASE STUDY: CONTINUOUS STIRRED TANK HEATER

In this section, we apply the proposed chart to an industrial
application that was introduced by [46]. In a tank heater,
hot and cold water were mixed inside the tank, and the
mixed water was heated using a heating coil, as shown in
Figure 7. Finally, the mixed heated water was drained from
the tank through a long pipe. The instruments used to mon-
itor the plant are the steam temperature (TC), thermocouple
temperature (TT), cold water flow (FC), heating flow (FT),
level controller (LC), and heating level (LT). Cold water
and hot water enter the plant at a pressure of 60-80 psi
and the steam supply heats the mixed water. The lig-
uid level was controlled by a valve on the inlet water

97460

100 120 140 160 180 200

Sample

pipe, and the outlet flow rate could be adjusted using the
valve on the outlet pipe. In addition, the steam coil in the
tank had a control valve on the steam line to adjust the
heat.

The main aim of the continuous stirred tank heater is to
maintain the same temperature in the tank and the outflow
while maintaining the volume of the water in the tank at the
desired value. Thus, it is reasonable to monitor the tempera-
ture in the tank, outflow, and volume as quality characteris-
tics. The tank is equipped with level and outlet flow sensors
that measure the water level in the tank (i.e., volume, m> /5),
temperature (°C), and water flow rates (mA). The measure-
ments were obtained using a differential pressure instrument
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FIGURE 9. Three-dimensional plot of normal operating data.
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FIGURE 10. An illustration of BSPC in the continuous stirred tank heater.

and a thermocouple inserted into the outflow pipe. Under the
normal operating mode of the process, the cold-water flow
and level measurements were 12 mA and 12 m3 /$, respec-
tively, and the desired temperature of the water in the tank
was 10.5°C [47].
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There is a controller that adjusts the setting of the level
measurement subsystem and cold-water valve position, called
the proportional integral controller (PI). The process con-
tinues operating as normal while the PI functions prop-
erly and goes out to control if there is any damage or
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TABLE 7. MSE and ARL1 of BSPC and T2 for different patterns of
out-of-control signals.

MSE ARL1
BSPC T? BSPC T?
Constant 4.12 25.02 4.96 36.54
Sigmoid 4.67  24.96 14.59 43.17
Oscillation 470  25.02 1591 43.54
Multi-jumps  4.41  25.01 12.71 4290

disturbance in the controller. The sample data paths shown
in Figure 8 present in-control data for the first 100 samples
and out-of-control data when the disturbance in the PI is
added to the 101st sample. The 3-dimensional plot of the
in-control data showing the correlation structure is shown
in Figure 9.

As shown in Figure 8, the process appears with white
noise in the in-control process, while it shows signifi-
cantly temporally correlated measurements once the process
goes out of control. For illustrative purposes, we plot the
successive BSPC monitoring statistics for 20 in-control
samples (81st—100th points in the dataset) and another
20 out-of-control samples (101st—120th points) sequentially
in Figure 10. The bold line with a triangle mark represents
the BSPC monitoring statistics, and the dashed line repre-
sents the control limit of 5.27, which was obtained from
the 100 in-control samples. The chart triggers alarms at the
23rd observation and keeps it above the control limit after the
first alarm.

V. CONCLUDING REMARKS AND FUTURE RESEARCH

In this study, we apply a Bayesian approach to the monitoring
of high-dimensional and high-speed monitoring processes.
The main contributions of the proposed method can be sum-
marized as follows. First, the proposed chart computes the
estimated mean at every sampling point based on the stochas-
tic model, which enables the monitoring statistic to be effi-
cient in many applications where the measurements could be
temporally correlated when the process changes. Even when
the underlying process is not autocorrelated, consideration of
stochastic behavior in charting is beneficial because of the
possible autocorrelation in high-speed monitoring processes.
In addition, the out-of-control pattern in many manufactur-
ing and service processes is unknown, and the process may
change over time. Thus, the proposed method appropriately
captures the behavior of the process in both in-control and
out-of-control situations.

Second, the proposed method is computationally inex-
pensive. Whereas many high-dimensional processes aim-
ing charts are computationally heavy, which makes them
impractical in real process monitoring, BSPC has a closed
form of process parameter estimation, which makes the
practical implementation of monitoring highly convenient.
In addition to SPC perspectives, the chart provides insight
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by estimating the process mean sequentially. Moreover, the
directionally invariant property of the proposed chart guar-
antees simplicity under various situations with correlated
covariates.

Through various simulation studies and a real-life applica-
tion, we demonstrate the superiority of the proposed BSPC
in high-dimensional and high-speed monitoring processes.
Moreover, a simple extension by replacing the measurement
with an EWMA-transformed measurement would also be
attractive when the process change is expected to be small
based on engineering knowledge and experience. Although
the proposed method generally performs well under various
process scenarios, it can be tuned more appropriately using
engineering knowledge. For example, the state transition
matrix, autocorrelation parameters, and moving errors in a
specific process can be properly determined, which paves the
way for future research.

One of the key points in the BSPC procedure is updating
the covariance of the mean. Thus, future research should
be conducted to monitor process variability as well as the
mean. A large body of literature deals with variability mon-
itoring [48], [49], [50], [S51], where the estimation of the
covariance matrix is the key to the methods. In addition, the
estimation procedures are mostly computationally expensive,
whereas the propagation of the covariance in the proposed
charting procedure is obtained relatively simply as a recursive
form, as shown in (13). Thus, it will be interesting to develop a
chart to monitor process variability using the updated covari-
ance matrix.

Another interesting research topic is to consider any spe-
cial settings in high-dimensional processes. Although BSPC
generally performs well in most settings, including sparsity
cases, the method can narrow a case down to a specific
high-dimensional process with expected sparse changes. For
example, the error distribution of the process mean can be a
sparsity-advocated distribution rather than a Gaussian distri-
bution as shown in [33], so that the distribution would repre-
sent the sparse change in the mean more appropriately than
the generalized BSPC. In this case, however, updating the
mean and covariance may not be computationally easy, mak-
ing it challenging to monitor high-dimensional processes.
Thus, [33] developed an algorithmic procedure to estimate the
sparse mean and propagated covariance matrix in such a case.
As such, in other special settings, the error distribution can be
specifically determined to make the methodology suitable to
the process setting.

Although the proposed method applies the Bayesian
update to estimate the quality characteristics, other popular
algorithms such as meta-heuristics, e.g., data envelopment
analysis, non-dominated sorting genetic algorithm, grey wolf
optimizer, and so on can also be used to obtain the optimal
parameters with given in-control and out-of-control circum-
stances. Such optimizers are expected to be beneficial in
quality control and monitoring aspects, e.g., cost of sampling,
run length, and lessening false alarms.
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Not to mention, when a small shift in process change is
expected, CUSUM can also be applied instead of EWMA.
It will be interesting to see if CUSUM is comparable to
EWMA in this Bayesian context.
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