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ABSTRACT The advent of modern data acquisition and computing techniques has enabled high-speed
monitoring of high-dimensional processes. The short sampling interval makes the samples temporally
correlated, even if there is no underlying autocorrelation among covariates. In this study, we introduce a
new process monitoring scheme in a Bayesian framework. The key strategy of this study is to incorporate
sequential observations into the estimation procedure for the parameters of interest to update the prior
distribution. Based on the updated prior, we obtain the most appropriate estimation of the process parameters
at each sampling epoch by maximizing the posterior probability. In addition, conventional statistical process
control and monitoring methodologies suffer from the ‘‘curse of dimensionality.’’ The closed form of the
estimate developed in this study through Bayesian updates enables the proposed method to be effective for
high-dimensional processmonitoring. Various simulation studies demonstrate the superiority of the proposed
scheme in the high-speed monitoring of high-dimensional processes. Moreover, a few sample paths of the
estimated mean in a procedure of the proposed method are illustrated to provide practitioners with insights
into the monitoring and control of the process. Finally, we provide a real-life application to illustrate the
proposed method.

15

16

INDEX TERMS Autocorrelated process, Bayesian update, high-dimensional process, process mean moni-
toring, statistical process control.

I. INTRODUCTION17

Statistical process control (SPC) and monitoring techniques18

have been widely used to detect process changes by mon-19

itoring quality characteristics or process parameters such20

as mean and covariance. When there are multiple quality21

characteristics, a standard approach is to consider simulta-22

neous monitoring of the mean by taking correlation into23

consideration in a chart statistic. Hotelling’s T 2, multivari-24

ate exponentially weighted moving average (MEWMA), and25

multivariate CUSUM (MCUSUM) charts are good examples26

of simultaneous monitoring charts used for multivariate SPC27

(MSPC) [1], [2]. The advent of modern data acquisition28
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and computing techniques has enabled high-speed moni- 29

toring of high-dimensional processes. Although the tradi- 30

tional MSPCmethods can be applied to monitoring relatively 31

high-dimensional processes, they mostly suffer from high- 32

dimensional settings; this phenomenon is called the ‘‘curse of 33

dimensionality’’ [3], [4]. 34

Accordingly, many charts intended for high-dimensional 35

processes have been developed. Principal component analysis 36

(PCA)-based approaches are well suited for monitoring high- 37

dimensional processes by focusing on only a few principal 38

components (PCs) [5], [6], [7]. Although they enjoy com- 39

putational efficiency, the chart performance may deteriorate 40

depending on the shift direction, that is, they are directionally 41

variant [8]. In addition, because the principal component is 42

a linear combination of all variables, it is not expected to 43
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provide any useful information for the identification step after44

detecting the change, especially when only a few variables are45

changed.46

Recently, several methods have been developed to mon-47

itor quality characteristics directly, rather than considering48

PCs, despite high dimensionality. One of the main assump-49

tions of these charts is ‘‘sparsity,’’ that is, it is assumed that50

there are only a small set of variables causing the process51

change, according to the reasonably low probability of many52

quality characteristics changing simultaneously. Along with53

the assumption of sparsity, [3] and [9] developed variable54

selection (VS)-based procedures. They considered a two-step55

procedure to monitor the process: 1) identification of the56

possible faulty variables and 2) monitoring of the process57

based on the chosen variables. Reference [10] proposed a58

similar procedure by adopting the adaptive absolute shrink-59

age and selection operator (LASSO), where LASSO identi-60

fies potentially changed variables. Reference [11] combined61

the least angle regression to monitor both the mean and62

variability. Reference [12] applied forward variable selec-63

tion as a pre-diagnosis and integrated it into the MCUSUM64

chart.65

One of the advantages of VS-based methods is that they66

provide useful information in fault diagnosis compared to67

PCA-based methods because VS identifies some potentially68

changed variables in the first step. However, these methods69

mostly suffer from computational issues as the number of70

dimensions increases because identification is performed at71

every sampling point. Particularly in a high-speed monitor-72

ing environment, this computational issue makes the chart73

impractical. In addition, the charts may not perform well if74

the VS procedure incorrectly identifies the changed variables75

owing to the small size of the shift [8]. To overcome the issues76

of VS-based methods, [8] applied L2 regularization—or ridge77

regularization—in the likelihood function. They developed a78

theoretical procedure and evaluated the average run length79

(ARL) performance using the approximate probability dis-80

tribution of the chart statistics based on the closed form of81

the estimate of the mean at each sampling point. This method82

has proven its usefulness in high-dimensional and high-speed83

monitoring processes in that the closed form of the estimate84

significantly improves computational concern. However, the85

ridge regularization has different shrinkage rates depending86

on the covariance structure, which results in the chart being87

directionally variant. Although [8] determined the theoretical88

performance, the directional variant property of the chart89

makes it difficult to detect a change when it occurs in certain90

directions.91

In this article, we propose a novel monitoring procedure92

developed under a Bayesian framework for high-speed mon-93

itoring processes in relatively high-dimensional processes.94

In a high-speed monitoring environment, it is essential to95

assume that the observations may be autocorrelated, although96

the nominal process parameters are assumed to be constant97

over time. This assumption makes more sense in an out-98

of-control situation. It is reasonable that a process changes99

slightly over time after the shift occurs, which is not neces- 100

sarily a sudden jump. For example, in a milling machining 101

process, themilling tool starts oscillating gradually as it wears 102

out, resulting in an oscillating pattern of the out-of-control 103

signal [8]. Another example can be found in chemical pro- 104

cesses. In the literature of the Tennessee Eastman Industrial 105

Challenge Problem (TE problem [13]), it is shown that most 106

of the measurements show insignificant autocorrelation when 107

the process is operating in normal mode. However, the sys- 108

tem shows severe dynamic behavior when disturbances are 109

added [14]. Figure 1 illustrates the in-control data pattern of 110

one of the variables in the TE process, reactor coolant temper- 111

ature, and Figures 2 and 3 show the out-of-control situation 112

after the disturbances are added. Figures 1–3 demonstrate that 113

the mean of the process in the out-of-control state is patterned 114

dynamically by time, while the process has a stable constant 115

mean in a normal operating state. 116

FIGURE 1. In-control signal of a variable (reactor coolant temperature) in
TE process.

The proposedmethod considers the probability distribution 117

of the process mean µt in a Bayesian framework. In particu- 118

lar, µt can be observed on a stochastic basis and determined 119

through the path µt−1,µt−2, . . . ,µ1, that is, the Bayesian 120

theorem updates the posterior distribution of µt sequentially. 121

The rationale behind the underlying dynamics is that the 122

current process mean is essentially associated with previous 123

means in a high-speed monitoring environment. This suf- 124

fices considering the possible autocorrelation in a high-speed 125

sampling process, and therefore, the model would explain 126

the out-of-control dynamics more appropriately, although the 127

in-control process mean is assumed to be constant over time. 128

In addition, we focus on the detection of the process mean 129

change, while the process variability remains unchanged. 130

Another main challenge is to overcome the computa- 131

tional issue in multi-dimensional processes without dimen- 132

sion reduction, which requires extensive computational 133

efforts as the dimension (p) increases. The recently devel- 134

oped VS-based methods that adopt penalized likelihood 135

demand a large amount of computation as p increases. 136
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FIGURE 2. Dynamic pattern of the out-of-control situation in reactor
coolant temperature.

For example, [10] adopted L1-based regularization137

(LASSO penalty), and [3] and [9] utilized forward variable138

selection for pre-diagnosis to solve L0-based regularization.139

In general, solving L0 penalized likelihood requires extensive140

computation. For example, among decomposition proce-141

dures, the MTY decomposition theoretically sounds similar142

to the best subset selection [15]. However, it must examine143

p! decompositions, so it is impractical in a high-dimensional144

process. Some step-down procedures have been proposed145

to overcome the computational issue in a high-dimensional146

process, such as the adaptive step-down (ASD) method,147

which requires only O(p2) calculations [16]. However, even148

though ASD significantly reduces the computational com-149

plexity, it is still inappropriate when the procedure is running150

sequentially over the sampling period. Similarly, although151

some algorithms and VS techniques such as forward and152

stepwise VS are computationally efficient, they are inap-153

propriate to be incorporated into process monitoring as a154

pre-diagnosis procedure, especially in high-speed monitoring155

processes.156

The proposed method enjoys the computational benefit157

in that the process mean at a sampling point, t , that is,158

µ̂t is obtained theoretically as a closed form via Bayesian159

updates. The closed form of the estimate of the mean160

makes process monitoring very effective when samples are161

taken frequently inmulti-dimensional processes, compared to 162

VS-based methods, which demand heavy computation. One 163

may argue that VS-based methods provide diagnostic infor- 164

mation about faulty variables, although they are computa- 165

tionally inefficient. Indeed, the proposed method does not 166

explicitly identify faulty variables, unlike VS-based meth- 167

ods. However, the method provides meaningful probabilities 168

indicating which variables can potentially be out of control. 169

This would be attractive for practitioners to anticipate how 170

the process proceeds at the next sampling point. 171

The Bayesian framework has paid attention and been 172

widely used in statistical control of processes where the 173

use of Bayesian methods takes the advantage of the process 174

knowledge incorporated into the methodology through the 175

prior distributions. Many of them focus on the optimality of 176

the chart design to determine control policy [17], [18], [19], 177

[20], [21]. In addition, the Bayesian theory has also been 178

used to determine the time to signal of fault [22]. However, 179

quite a few Bayesian methods have been studied in process 180

monitoring, most of which are univariate process monitoring 181

with theoretical and practical progress [23], [24], [25], [26], 182

[27], [28]. Reference [29] mentioned that few researchers 183

have developed the extension to the multivariate setting. 184

Reference [30] developed the change point estimation proce- 185

dure in Bayesian context given that an out-of-control signal 186

was raised. Reference [31] developed a Bayesian hierarchical 187

model to determine the means and directions of the shifts 188

with a given suspected out-of-control sample. Reference [32] 189

applied dynamic Bayesian estimation to detect machine fail- 190

ures in a discretemultivariate situation. Recently, [33] applied 191

Bayesian sequential update when the assignable causes are 192

sparse. This paper proposes a Bayesian method to monitor 193

the process mean in multivariate online processes and shows 194

the advantage of using updated prior distribution in high- 195

dimensional process monitoring. 196

The proposed method provides simplicity in using 197

Bayesian updates in process monitoring and opens further 198

investigation in statistical process monitoring. The novelty of 199

the work can be summarized into two major aspects. First, 200

the updated parameters at every sampling point in a high- 201

speed sampling process enabled the monitoring statistic to be 202

more efficient than conventional control charts. Few studies 203

have been conducted in this circumstance. Although [33] 204

applied the Bayesian sequential update in high-dimensional 205

processes, it assumed sparsity in the out-of-control pro- 206

cess. The proposed model is developed without sparsity 207

assumption, thereby generalizing [33]. Second, the proposed 208

method is computationally inexpensive. The closed-form 209

estimate developed in later sections enables effective in 210

high-dimensional process monitoring in contrast to many 211

previous studies that are computationally expensive and hard 212

to apply in practice. 213

The remainder of this paper is organized as follows. In the 214

next section, we describe our proposed method based on 215

a Bayesian update from the perspective of process moni- 216

toring and control. In Section 3, we compare the proposed 217
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procedure with other existing process monitoring methods218

through various simulations. In Section 4, we discuss the pos-219

terior probability distribution of the process mean and present220

a predictive analysis that would be useful in monitoring and221

diagnosing faults. Section 5 illustrates the proposed method222

with a real-life example, followed by concluding remarks and223

a discussion of future research in Section 6.224

II. METHODOLOGY225

A. ESTIMATING PROCESS MEAN IN BAYESIAN226

FRAMEWORK227

Let a single measurable observation xt be the p-dimensional228

vector andµt be the unknown process parameter, which is the229

mean of the process. We assume that only one observation230

is taken at every sampling epoch, and the interval of the231

samples is relatively short, owing to the advent of modern232

data processing and acquisition technology. Then, the linear233

generative model is defined statistically as234

xt = Ztµt + εt (1)235

whereZt is a basismatrix to convert the unobservablemean to236

a measurable observation, and εt represents the randomness237

that has zero mean with a covariance6. Because the variabil-238

ity of the process measurements is represented by εt statisti-239

cally, we assume that the variability remains unchanged over240

time, and εt ∼ N (0,6).241

The unknown parameter µt can be stochastically defined242

in dynamics to incorporate the possible autocorrelation in a243

high-speed monitoring process as follows:244

µt = Ttµt−1 + Rtηt (2)245

where the matrices Tt and Rt are the parameters used to246

model the autocorrelation and moving errors [34]. ηt is247

the randomization term in the state of the mean and fol-248

lows N (0,Q). In the context of SPC, we consider the ran-249

domness to be serially independent and independent of εt .250

We also assume that the errors are identically distributed251

over the sampling time, which makes sense to describe the252

complete randomness of the in-control process. Some litera-253

ture on monitoring autocorrelated measurements attempts to254

estimate the autocorrelation parameters first [33], [34], [35],255

[36], [37], [38], [39] or at least assumes the autocorrelation256

parameters to be known, that is, the matrices T and R are257

estimated or given. Throughout the paper, we assumeMarko-258

vian state dynamics with the identity matrices for T and R to259

generalize the model under the assumption that the process260

parameter is unknown and non-measurable.261

We now incorporate the Bayesian probability into the262

model. The strategy for increasing the sensitivity of moni-263

toring is to directly monitor the process mean through the264

estimates of the parameters rather than monitoring the mea-265

surements that imply the mean. To obtain the best esti-266

mate of µt , that is, µ̂t , we consider the posterior dis-267

tribution of µt given all past observations and previous268

means and try to maximize the posterior probability. Let269

P
(
µt |µt−1,µt−2, . . . ,µ1, xt , xt−1, . . . , x1

)
be the posterior270

distribution of µt . Using the Bayesian rule for conditional 271

distribution, we can obtain the probability as 272

P
(
µt |µt−1,µt−2, . . . ,µ1, xt , xt−1, . . . , x1

)
273

=
P
(
µt ,µt−1, . . . ,µ1, xt , xt−1, . . . , x1

)
P
(
µt−1,µt−2, . . . ,µ1, xt , xt−1, . . . , x1

) . (3) 274

The joint distribution P
(
µt ,µt−1, . . . ,µ1, xt , xt−1, . . . , x1

)
275

can be obtained recursively as 276

P
(
µt ,µt−1, . . . ,µ1, xt , xt−1, . . . , x1

)
277

= P
(
µt , . . . ,µ1

)
×

t∏
i=1

278

×P
(
xi | xi−1, . . . , x1,µi,µi−1, . . . ,µ1

)
, (4) 279

where P
(
µt , . . . ,µ1

)
can also be obtained similarly as 280

P
(
µt , . . . ,µ1

)
= P

(
µ0
) t∏
i=1

P
(
µi |µi−1,µi−2, . . . ,µ1

)
281

(5) 282

using a Markovian property. By plugging (5) into (4), 283

we obtain the joint probability as 284

P
(
µt ,µt−1, . . . ,µ1, xt , xt−1, . . . , x1

)
285

= P
(
µ0
) t∏
i=1

P
(
µi |µi−1,µi−2, . . . ,µ1

)
286

×P
(
xi | xi−1, . . . , x1,µi, . . . ,µ1

)
(6) 287

Then, the posterior distribution in (3) can be derived as 288

P
(
µt |µt−1,µt−2, . . . ,µ1, xt , xt−1, . . . , x1

)
289

∝ P
(
xt | xt−1, . . . , x1,µt , µt−1, . . . ,µ1

)
290

·P
(
µt |µt−1,µt−2, . . . ,µ1

)
(7) 291

When the observations are independent and are only deter- 292

mined by the current mean µt , (7) can be written as 293

P
(
µt |µt−1,µt−2, . . . ,µ1, xt , xt−1, . . . , x1

)
294

∝ P
(
xt |µt

)
P
(
µt |µt−1,µt−2, . . . ,µ1

)
(8) 295

The result from (8) provides important findings for the 296

Bayesian framework. The first term P
(
xt |µt

)
is the likeli- 297

hood probability, similar to the classical decomposition of the 298

Bayesian posterior distribution. However, the second term is 299

not a prior probability, P(µ), but a prior probability given 300

previous means. This is a significant finding that can be 301

interpreted as an updated prior distribution. By letting P(µ) 302

be a probability density function of µ as a prior distribution, 303

it can be seen as a conditional distribution given all previous 304

means by incorporating Markovian state dynamics as 305

P
(
µt |µt−1,µt−2, . . . ,µ1

)
= P

(
µt |µt−1

)
, t = 1, 2, . . . 306

and the distribution is P
(
µ0
)
at time t = 0. 307

In fact, this can be observed in Gaussian Kalman update 308

as well. Let the location and scale parameters be θ and K, 309

respectively. As shown in [33] and [34], these two parameters 310
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are determined recursively at every sampling epoch. More311

importantly with the Gaussian error distribution, not only the312

location parameter but also the scale parameter is updated313

clearly as a closed form (see [34] for detailed derivation314

of θ t and Kt ).315

Thus, we can conclude that the posterior probability is316

proportional to the likelihood and updated prior probabilities317

in the Bayesian context.318

Now, we obtain the most probable process mean, µ̂t by319

maximizing the posterior probability (MAP) as320

µ̂t = argmax
µt

P
(
µt | xt

)
= argmax

µt

P
(
xt |µt

)
P
(
µt |µt−1

)
321

(9)322

With the Gaussian errors for η and ε, the estimate is identical323

to324

µ̂t = argmin
µt

{∥∥xt − Ztµt
∥∥2
2,6 +

∥∥µt − Tt µ̂t
∥∥2
2,Pt|t−1+Q

}
325

(10)326

where ‖x‖22,A represents xTA−1x. We set the predictive mean327

to be determined using the previous estimate. Then, the mini-328

mization problem in (10) can be solved analytically by setting329

the derivative with respect to xt equal to zero, that is, ∂
∂xt
= 0.330

The solution of (10) has the following recursive form:331

µ̂t = µ̂t−1 + Pt|t−1ZHt
[
Q+ ZtPt|t−1ZHt

]−1 (
xt − µ̂t−1

)
332

(11)333

which is the same solution obtained from a Gaussian Kalman334

filter. It is interesting to note that the Kalman filter attempts335

to find the most likely cause of the measurement given the336

approximation made by a flawed estimation and has a solu-337

tion identical to that of the Bayesian approach [33], [34], [41].338

B. PROPOSED CHART339

Consider the hypothesesH0 : µ = µ0 vs.H1 : µ = µ1 where340

µ0 is an in-control mean and µ1 is an out-of-control mean341

that can be a function of sampling time but is not equal to342

µ0. In classical SPC literature, the testing hypothesis exploits343

the measurement xt and considers it to be the best unbiased344

estimator of µt with a single observation available. Then,345

the monitoring statistic from the likelihood ratio test is the346

same as Hotelling’s T 2 statistic, that is, Q =
(
xt − µ0

)T
347

6−10 (xt − µ0). Here, the measurement xt can be interpreted348

as an estimate of the mean at time t . Therefore, the strategy of349

the proposed method is to use the better estimated parameters350

in the state dynamics, that is, µ̂t andPt|t . With the assumption351

of Gaussian error distributions, µ̂t also follows a Gaussian352

distribution with covariance Pt|t . Therefore, we construct the353

monitoring statistic of the proposed chart as354

Q =
(
µ̂t − µ0

)T P−1t|t
(
µ̂t − µ0

)
. (12)355

The propagated estimate of the covariance matrix Pt|t356

is derived by E[µ̂t µ̂
H
t ] and also has a solution with357

a recursive form: 358

Pt|t = E
[
µ̂t µ̂

H
t

]
359

= Pt|t−1−Pt|t−1ZHt
[
Q+ ZtPt|t−1ZHt

]−1
ZtPt|t−1 360

(13) 361

In (12), the exact covariance matrix is used to monitor 362

the process. However, with the assumption of stable vari- 363

ability over time in a steady-state process, it is reasonable to 364

assume that the covariance of the mean is also stable. Thus, 365

we replace Pt|t with an asymptotic covariance P∞, given 366

below: 367

P∞ = T
(
P∞ − P∞ZH

[
Q+ ZP∞ZH

]−1
ZP∞

)
TH + R 368

(14) 369

The equations (13) and (14) are called the discrete- 370

time algebraic Riccati equation, which can be numerically 371

solved—this can be done by using the idare function in 372

MATLAB version R2019b or later. Finally, the chart triggers 373

an alarm when Q =
(
µ̂t − µ0

)T P−1∞
(
µ̂t − µ0

)
> c, where 374

c is a predetermined threshold associated with a signifi- 375

cance level and is obtained through Monte Carlo simulations. 376

We name our proposed chart the Bayesian SPC (BSPC). 377

III. PERFORMANCE ANALYSIS THROUGH NUMERICAL 378

STUDIES 379

A. AVERAGE RUN LENGTH 380

In this section, we report various simulations to demonstrate 381

the superiority of the proposed chart. The performance of 382

the control charts is commonly measured by the average run 383

length (ARL), which is the time to detect the out-of-control 384

process. The ARLs in the in-control and out-of-control states, 385

denoted as ARL0 and ARL1, respectively, are calculated as 386

follows: 387

ARL0 =
1

P
(
Q > c |µ0

) , ARL1 =
1

P (Q > c |µ1)
. 388

We set ARL0 to 200, which is equivalent to the significance 389

level of the test being set as 0.005. The basis matrix Zt is 390

considered to be an identity matrix in that the measurement xt 391

is observed directly from the mean µt . One of the utilizations 392

of the basis matrix is to determine it as a square root of 6, 393

which is an orthogonal transformation of the measurement xt . 394

This will be useful when a practitioner considers the principal 395

components to monitor the process. The parameter matrices 396

Tt and Rt are also set as identity matrices, as stated in the 397

previous section. Lastly, the covariance matrices of errors η 398

and ε are assumed to be identical. In fact, the error distri- 399

butions are not necessarily identical. Specifically, the covari- 400

ance of the mean can be in any form based on engineering 401

knowledge or the structure of the process dynamics. However, 402

in this study, we let Q ≡ 6 to represent that the variability 403

of the measurement is identical to that of the underlying 404

mean. Moreover, we consider the covariance matrix 6 as 405

a correlation matrix without loss of generality and assume 406
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strong correlations. In addition, we consider the spatial rela-407

tionships of the variables in 6. The correlation coefficients408

ρ
(
xij, xkl

)
= r
√
(i−k)2+(j−l)2 for i, k = 1, 2, . . . , pX and409

j, l = 1, 2, . . . , pY , where pX and pY represent the hori-410

zontal and vertical dimensions for one frame of spatial data411

information. Thus, pX × pY = p, and 0 < r < 1 [8],412

[42], [43], [44]. We consider a strong correlation by setting413

r = 0.9.414

In the first simulation, we compared BSPC with a tra-415

ditional Hotelling T 2. The shift size δ was considered416

through a noncentrality parameter, that is, δ2 =
(
µ1 − µ0

)T
417

6−1(µ1−µ0).Without loss of generality, we assumeµ0 = 0.418

Table 1 presents the ARL1 results with the dimensions419

p = 10, 20, and 50 according to the different sizes of δ.420

As shown in Table 1, there was a significant improvement421

in ARL1 compared to Hotelling’s T 2 chart.422

TABLE 1. ARL1 comparison of BSPC with Hotelling’s T 2.

Typically, ARL1 increases as the dimension increases, and423

as the shift size decreases. Recently, a few methodologies424

have been developed for monitoring high-dimensional pro-425

cesses with the assumption of sparsity. Therefore, in the next426

experiment, we compared the performance of BSPC in sparse427

settings inµ1 with VSMSPC, which was proposed by [3]. Let428

p0 be the number of changed variables.429

According to the sparsity setting, we set p0 = 2, that430

is, ‖µ1‖0 = 2 and µ1 = [δ, δ, 0, 0, . . . , 0]T . Note that431

δ is an additive shift in this case rather than a noncentrality432

parameter. VSMSPC requires a parameter to determine the433

number of selected variables, denoting it as s. With p0 = 2,434

the overall best parameter was obtained as s = 2. For the best435

performance, we chose s = 2. Table 2 shows the ARL1 per-436

formance as p changes. A few findings were observed in this437

study. First, VSMSPC underperforms compared to T 2 when438

the shift size is small, whereas BSPC outperforms VSMSPC439

and T 2. This is because the VSMSPC chart may not detect440

the out-of-control signal when the shift size is small because441

of the possible misidentification of the faulty variables at442

the diagnosis step. In the same sense, VSMSPC performs443

slightly better than the other charts when the shift size is large.444

However, even in this large shift case, the performance of 445

BSPC is competitive. 446

When a small shift size is expected in a process, practition- 447

ers may consider EWMA for the measurement instead of xt , 448

that is, an EWMA vector zt = (1− λ) zt−1 + λxt [2], [45]. 449

A CUSUM may also be the one of candidates for detecting 450

the small change in the process, but herein, we only apply 451

EWMA for simplicity. Based on the asymptotic Gaussian dis- 452

tribution of µ̂t , we can derive the posterior distribution in the 453

manner described in Section 2. Then, the monitoring statistic 454

becomes Qz =
(
µ̂z,t − µz,0

)T P−1z,∞
(
µ̂z,t − µz,0

)
, where the 455

subscript z represents EWMA. The EWMA version of BSPC 456

is referred to as multivariate Bayesian EWMA (BEWMA) 457

throughout the paper. For the comparison models, we con- 458

sider MEWMA and VSMEWMA, which are the EWMA 459

versions of T 2 and VSMSPC. The shift δ is determined as 460

an additive shift, and we only consider δ = 0.2, 0.4, 0.6, 0.8, 461

and 1 because EWMA-based control charts focus on small 462

shift sizes. The EWMA parameter λ is set to 0.2. In addi- 463

tion, we consider the steady-state process in which the shift 464

occurs after the process is stabilized. To implement the 465

steady-state process, we generated the out-of-control signals 466

after 100 samplings and ignored any false alarms during the 467

100 samplings. 468

Tables 3 and 4 show the results of two different out-of- 469

control scenarios in terms of sparsity. In that VSMEWMA 470

pursues high-dimensional process monitoring with sparsity, 471

we set the same sparsity as that in the previous experiment, 472

that is, p0 = 2 for Table 3. In the Table 4 scenario, we set 473

p0 = 8, which is less sparse than the value used for Table 3. 474

For both experiments, we set s = 2, which is the overall 475

best parameter for VSMEWMA. Table 3 presents the same 476

pattern of results as in Table 2. The proposed BEWMA out- 477

performs MEWMA for all shift sizes. In extreme cases such 478

as δ = 0.2, BEWMA outperforms VSMEWMA because the 479

performance of VS-based charts is expected to decrease when 480

the shift size is small owing to the possible misidentification 481

of the potentially changed variables. However, as the shift 482

size increases, BEWMA performs similarly to VSMEWMA 483

and starts comparatively underperforming. In Table 4, with a 484

less sparse setup, we can see that the proposed BEWMA out- 485

performs MEWMA and VSMEWMA in all shift scenarios. 486

In addition to the case with p0 = 8, we can conjecture that 487

the performance of VSMEWMA deteriorates as p0 increases 488

because the chart selects only two variables (s = 2) and loses 489

too much information about the process, whereas BEWMA 490

still performs well because the chart incorporates the proba- 491

bilities of all variables into the monitoring process. 492

In the next experiments, we attempted various out-of- 493

control scenarios with varying shift directions. This is worth 494

checking becausemost of the high-dimensional aiming charts 495

that have been recently proposed are directionally vari- 496

ant, that is, the performance differs according to the shift 497

direction. Recently, [8] proposed a ridge-regularization-based 498

chart, showed the performance in various shift directions, 499

and calculated the relative mean index (RMI) to measure the 500
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TABLE 2. ARL1 comparison of BSPC with VSMSPC and Hotelling’s T 2.

TABLE 3. ARL1 comparison of BEWMA with VSMEWMA and MEWMA when p0 = 2.

TABLE 4. ARL1 comparison of BEWMA with VSMEWMA and MEWMA when p0 = 8.

performance, which is given as501

RMI =
1
N

N∑
i=1

ARLµi (X)−ARL
∗
µi

ARL∗µi

502

where N is the number of out-of-control scenarios,503

ARLµi (X) is the ARL1 value of the given chart X , and504

ARL∗µi
is the smallest ARL1 among the charts under shift µi.505

Thus, RMI measures the relative performance among the506

considered scenarios and is useful for comparing direction-507

ally variant charts under various scenarios. We now compare508

the performance of BSPC, VSMSPC, RMSPC [8], and T 2.509

It is also noteworthy that the pattern of the performance510

would be similar if we consider EWMA for all charts,511

that is, BEWMA, VSMEWMA, RMEWMA, and MEWMA.512

Table 5 shows the ARL1 with the relative index in parenthe-513

ses, and at the bottom of the table, the RMI is shown. Based514

on the nature of the index, a lower RMI value represents515

better performance. The experiment was conducted under 516

the condition of p = 10, and a moderate size of selec- 517

tion for VSMSPC was chosen, resulting in the overall best 518

performance under the scenarios we consider. In Table 5, 519

δi represents the change in the ith variable; for example, 520

δ1 = δ3 = 0.25 means the shift occurs in the first and 521

the third variables with a shift amount of 0.25. In addi- 522

tion, the bold values represent the best of the considered 523

charts. Table 5 shows that BSPC outperforms VSMSPC, 524

RMSPC, and T 2 in most of the scenarios. Accordingly, 525

BSPC shows the minimum RMI, which demonstrates the 526

superiority of BSPC among the charts under various shift 527

directions. 528

One of the advantages of the proposed chart is that BSPC is 529

directionally invariant. With the Gaussian error distributions 530

for the measurement and the state (i.e., mean), µ̂ follows a 531

Gaussian distribution asymptotically with the covarianceP∞. 532

Thus, the chart statistic measures the Mahalanobis distance 533
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TABLE 5. ARL1 and RMI with BSPC, VSMSPC, RMSPC, and T 2.

of µ̂ with a fixed covariance matrix, and therefore, we can534

conjecture that the chart is directionally invariant, just as535

MEWMA does. In addition, note that the monitoring statistic536

Q does not follow a χ2 distribution because µ̂t is not i.i.d537

with respect to t . In the next experiment, we consider sev-538

eral different shift directions with the same noncentrality for539

out-of-control signals to numerically observe the directional540

invariance in the simulation. Specifically, we conducted three541

scenarios, namely ‖µ1‖0 = 2, 5, and 10 for Cases 1, 2,542

and 3, respectively. The dimension is set to p = 10, and543

δ represents noncentrality in Table 6. The results show that544

the ARL1 values were statistically identical among the cases.545

We conducted more simulations in different settings of p and546

shift directions—not shown in this paper—but we can deduce547

the same conclusion.548

B. TRACKING MEAN549

Statistical process monitoring sequentially tests the hypothe-550

ses H0 : µ = µ0 and H1 : µ = µ1, where µ1 is usually a551

sudden jump at a certain point and remains unchanged over552

the sampling period once it occurs. In many manufacturing553

processes and service processes, processes may go beyond554

TABLE 6. Directional invariance of BSPC (p = 10,
∥∥µ1

∥∥
0 = 2, 5, 10 for

Cases 1, 2, and 3).

normal conditions in different ways, as discussed in Section 1. 555

In this section, we consider several patterns of out-of-control 556

signals, including a sudden jump, sigmoid, oscillating, and 557

multiple jumps. Moreover, we attempt to interpret the chart 558

from a different angle rather than focusing only on the out-of- 559

control ARL. The idea of the proposedmethod is tomaximize 560

the posterior probability at every sampling point based on 561

the rationale that the estimation with the past means and 562

VOLUME 10, 2022 97457



S. Kim et al.: High-Speed Monitoring of Multidimensional Processes Using Bayesian Updates

FIGURE 3. A sample path of BSPC with a constant (sudden jump) pattern.

FIGURE 4. A sample path of BSPC with a sigmoid pattern.

observations would support the decision for the current sam-563

ple. Thus, it is worthwhile to see how accurately the mean564

is estimated in addition to the ARL performance. One of the565

measures is the mean squared error (MSE) between the actual566

and estimated means. The MSE can be calculated as567

1
NT

N∑
n

T∑
t=1

∥∥∥µ(n)
1,t − µ̂

(n)
t

∥∥∥2
2

568

where T is the sampling period and µ(n)
1,t and µ̂

(n)
t are the569

actual and estimated means, respectively, at time t in nth570

replication. We conducted N = 1000 runs to obtain the571

average squared errors in replications. Regarding the sam-572

pling period T , we set T = 70 for illustration, and we573

assume that the process is in-control for the first 20 samples. 574

The experiment was conducted with p = 25, and the shift 575

occurred for five variables, including the first variable. Let 576

µi(t) for i = 1, . . . , 5 be the out-of-control signal of the 577

first variable at sampling time t . The following out-of-control 578

signals are considered. 579

1) Constant (sudden jump): µi(t) = 0.5√
eT6−1e

, where e is 580

an elementary vector for which the first five elements 581

are one and the remaining elements are zero (i.e., non- 582

centrality is 0.5) 583

2) Sigmoid pattern: 584

µi (t) =
1.5

1+ 5e−0.2(t−35)
585
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FIGURE 5. A sample path of BSPC with an oscillating pattern.

FIGURE 6. A sample path of BSPC with a multiple-jump pattern.

3) Oscillating pattern:586

µi (t) = 0.04 (t − 20) sin 0.4 (t − 20)587

4) Multiple jumps:588

µi (t) =


0 t ≤ 20
0.5 20 < t ≤ 30
−0.7 30 < t ≤ 50
1.0 t > 50

589

In addition to the MSE, we also mark the first detection in590

each replication and calculate the average run length. In this591

case, we ignore the alarm that the chart triggers in the first592

20 in-control samples. Moreover, we set the run length to 50,593

which is the number of out-of-control samples, if the chart594

does not detect the out-of-control signal within a replication.595

Table 7 presents theMSE andARL1 for the four cases consid- 596

ered, and Figures 3, 4, 5, and 6 illustrate sample paths for each 597

pattern, where we plot only the first variable. In the figures, 598

the solid and bold lines represent the true mean (µ1,1(t)) and 599

the estimated mean through Bayesian update (BSPC, µ̂1,t ), 600

respectively. A dotted line with an asterisk represents the 601

observation, that is, T 2 as the measurement xt is the best 602

estimate at each sampling time. 603

From Figures 3–6, it is clear that the estimated mean 604

through Bayesian update tracks the true mean well even 605

after the process is changed, while the observations fluctuate 606

significantly. Accordingly, the results of MSE and ARL1 607

in Table 7 demonstrate the superior performance of the 608

proposed chart to that of the conventional T 2 chart, both 609

in tracking the mean and in detecting the change in the 610

process. 611
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FIGURE 7. Continuous stirred tank heater [41].

FIGURE 8. In-control and out-of-control data.

IV. CASE STUDY: CONTINUOUS STIRRED TANK HEATER612

In this section, we apply the proposed chart to an industrial613

application that was introduced by [46]. In a tank heater,614

hot and cold water were mixed inside the tank, and the615

mixed water was heated using a heating coil, as shown in616

Figure 7. Finally, the mixed heated water was drained from617

the tank through a long pipe. The instruments used to mon-618

itor the plant are the steam temperature (TC), thermocouple619

temperature (TT), cold water flow (FC), heating flow (FT),620

level controller (LC), and heating level (LT). Cold water621

and hot water enter the plant at a pressure of 60–80 psi622

and the steam supply heats the mixed water. The liq-623

uid level was controlled by a valve on the inlet water624

pipe, and the outlet flow rate could be adjusted using the 625

valve on the outlet pipe. In addition, the steam coil in the 626

tank had a control valve on the steam line to adjust the 627

heat. 628

The main aim of the continuous stirred tank heater is to 629

maintain the same temperature in the tank and the outflow 630

while maintaining the volume of the water in the tank at the 631

desired value. Thus, it is reasonable to monitor the tempera- 632

ture in the tank, outflow, and volume as quality characteris- 633

tics. The tank is equipped with level and outlet flow sensors 634

that measure the water level in the tank (i.e., volume, m3/s), 635

temperature (◦C), and water flow rates (mA). The measure- 636

ments were obtained using a differential pressure instrument 637
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FIGURE 9. Three-dimensional plot of normal operating data.

FIGURE 10. An illustration of BSPC in the continuous stirred tank heater.

and a thermocouple inserted into the outflow pipe. Under the638

normal operating mode of the process, the cold-water flow639

and level measurements were 12 mA and 12 m3/s, respec-640

tively, and the desired temperature of the water in the tank641

was 10.5◦C [47].642

There is a controller that adjusts the setting of the level 643

measurement subsystem and cold-water valve position, called 644

the proportional integral controller (PI). The process con- 645

tinues operating as normal while the PI functions prop- 646

erly and goes out to control if there is any damage or 647

VOLUME 10, 2022 97461



S. Kim et al.: High-Speed Monitoring of Multidimensional Processes Using Bayesian Updates

TABLE 7. MSE and ARL1 of BSPC and T 2 for different patterns of
out-of-control signals.

disturbance in the controller. The sample data paths shown648

in Figure 8 present in-control data for the first 100 samples649

and out-of-control data when the disturbance in the PI is650

added to the 101st sample. The 3-dimensional plot of the651

in-control data showing the correlation structure is shown652

in Figure 9.653

As shown in Figure 8, the process appears with white654

noise in the in-control process, while it shows signifi-655

cantly temporally correlated measurements once the process656

goes out of control. For illustrative purposes, we plot the657

successive BSPC monitoring statistics for 20 in-control658

samples (81st–100th points in the dataset) and another659

20 out-of-control samples (101st–120th points) sequentially660

in Figure 10. The bold line with a triangle mark represents661

the BSPC monitoring statistics, and the dashed line repre-662

sents the control limit of 5.27, which was obtained from663

the 100 in-control samples. The chart triggers alarms at the664

23rd observation and keeps it above the control limit after the665

first alarm.666

V. CONCLUDING REMARKS AND FUTURE RESEARCH667

In this study, we apply a Bayesian approach to the monitoring668

of high-dimensional and high-speed monitoring processes.669

The main contributions of the proposed method can be sum-670

marized as follows. First, the proposed chart computes the671

estimated mean at every sampling point based on the stochas-672

tic model, which enables the monitoring statistic to be effi-673

cient in many applications where the measurements could be674

temporally correlated when the process changes. Even when675

the underlying process is not autocorrelated, consideration of676

stochastic behavior in charting is beneficial because of the677

possible autocorrelation in high-speed monitoring processes.678

In addition, the out-of-control pattern in many manufactur-679

ing and service processes is unknown, and the process may680

change over time. Thus, the proposed method appropriately681

captures the behavior of the process in both in-control and682

out-of-control situations.683

Second, the proposed method is computationally inex-684

pensive. Whereas many high-dimensional processes aim-685

ing charts are computationally heavy, which makes them686

impractical in real process monitoring, BSPC has a closed687

form of process parameter estimation, which makes the688

practical implementation of monitoring highly convenient.689

In addition to SPC perspectives, the chart provides insight690

by estimating the process mean sequentially. Moreover, the 691

directionally invariant property of the proposed chart guar- 692

antees simplicity under various situations with correlated 693

covariates. 694

Through various simulation studies and a real-life applica- 695

tion, we demonstrate the superiority of the proposed BSPC 696

in high-dimensional and high-speed monitoring processes. 697

Moreover, a simple extension by replacing the measurement 698

with an EWMA-transformed measurement would also be 699

attractive when the process change is expected to be small 700

based on engineering knowledge and experience. Although 701

the proposed method generally performs well under various 702

process scenarios, it can be tuned more appropriately using 703

engineering knowledge. For example, the state transition 704

matrix, autocorrelation parameters, and moving errors in a 705

specific process can be properly determined, which paves the 706

way for future research. 707

One of the key points in the BSPC procedure is updating 708

the covariance of the mean. Thus, future research should 709

be conducted to monitor process variability as well as the 710

mean. A large body of literature deals with variability mon- 711

itoring [48], [49], [50], [51], where the estimation of the 712

covariance matrix is the key to the methods. In addition, the 713

estimation procedures are mostly computationally expensive, 714

whereas the propagation of the covariance in the proposed 715

charting procedure is obtained relatively simply as a recursive 716

form, as shown in (13). Thus, it will be interesting to develop a 717

chart to monitor process variability using the updated covari- 718

ance matrix. 719

Another interesting research topic is to consider any spe- 720

cial settings in high-dimensional processes. Although BSPC 721

generally performs well in most settings, including sparsity 722

cases, the method can narrow a case down to a specific 723

high-dimensional process with expected sparse changes. For 724

example, the error distribution of the process mean can be a 725

sparsity-advocated distribution rather than a Gaussian distri- 726

bution as shown in [33], so that the distribution would repre- 727

sent the sparse change in the mean more appropriately than 728

the generalized BSPC. In this case, however, updating the 729

mean and covariance may not be computationally easy, mak- 730

ing it challenging to monitor high-dimensional processes. 731

Thus, [33] developed an algorithmic procedure to estimate the 732

sparse mean and propagated covariance matrix in such a case. 733

As such, in other special settings, the error distribution can be 734

specifically determined to make the methodology suitable to 735

the process setting. 736

Although the proposed method applies the Bayesian 737

update to estimate the quality characteristics, other popular 738

algorithms such as meta-heuristics, e.g., data envelopment 739

analysis, non-dominated sorting genetic algorithm, grey wolf 740

optimizer, and so on can also be used to obtain the optimal 741

parameters with given in-control and out-of-control circum- 742

stances. Such optimizers are expected to be beneficial in 743

quality control and monitoring aspects, e.g., cost of sampling, 744

run length, and lessening false alarms. 745
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Not to mention, when a small shift in process change is746

expected, CUSUM can also be applied instead of EWMA.747

It will be interesting to see if CUSUM is comparable to748

EWMA in this Bayesian context.749
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