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ABSTRACT Predictive Energy Management (PrEM) research is at the forefront of modern transportation’s
energy consumption reduction efforts. The development of PrEM optimization algorithms has been tailored
to selfish vehicle operation and implemented in the form of vehicle dynamics and/or adaptive powertrain
control functions. With the progress in vehicle automation, this paper focuses on extending PrEM into the
realm of a System of Systems (SoS). The proposed approach uses the shared information among Connected
and Automated Vehicles (CAV) and the infrastructure to synthesize a reduced energy speed trajectory at the
cohort level within urban environments. Neuroevolution is employed to incorporate a generalized optimum
controller, robust to the emergent behaviors typical of multi-agents SoS. The authors demonstrated the use
of heuristics and systems engineering processes in abstracting and integrating the resulting neural network
within the control architecture, which enables novel added-value features such as green wave pass/fail
classification and e-Horizon velocity prediction. The resulting controller is faster than real-time and was
validated with a multi-agent simulation environment and on a real-world closed-loop track at the American
Center for Mobility (ACM). The GM Bolt and Volt CAV mixed cohort testing at ACM demonstrated energy
reductions from 7% to 22% depending on scenarios.
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INDEX TERMS Minimum energy control, optimal control, intelligent systems, artificial intelligence, mobile
robots, systems engineering

I. INTRODUCTION17

Advances in vehicle and powertrain control systems and18

autonomous vehicles pave the way for cleaner and more sus-19

tainable transportation solutions. Predictive Energy Manage-20

ment (PrEM) enables conventional and electrified vehicles to21

maintain close to optimal efficiency across a broader range of22

operating conditions. Complex powertrains, such as hybrids,23

are optimized and calibrated around a set of known drive24

cycles (e.g., Federal Test Procedures). Due to the stochastic25

nature of real-world driving conditions, adaptively changing26

The associate editor coordinating the review of this manuscript and

approving it for publication was Davide Patti .

torque split calibration on the fly has yielded more consis- 27

tent efficiency improvement, achieving up to 4% additional 28

energy reduction [1]. 29

On the vehicle dynamic PrEM side, the automation of vehi- 30

cles provides the opportunity to achieve vehicles’ dynamic 31

behaviors that mitigate the strong impact of human driving 32

style and aggressiveness on energy consumption [2], [3]. 33

Vehicle dynamics-based approaches have been developed for 34

selfish vehicle operation where a vehicle attempts to achieve 35

its ‘‘own selfish’’ optimal velocity profile [4], [5]. Due to 36

the wide range of vehicle classes and powertrain types on 37

the road, heterogeneous selfish behavior does not necessar- 38

ily translate to an optimal solution globally. It can result 39
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in increased energy consumption as high as 10% [6]. The40

authors stipulate that a solution considering traffic emer-41

gent behavior can viably provide both sustained and higher42

global energy reduction performance across heterogeneous43

vehicle types while still enabling local adaptive powertrain44

optimization. Vehicle automation and connectivity provide45

the necessary building blocks to enable the proposed SoS46

operation, where a group of Connected Automated Vehicles47

(CAV, here referred to as the ‘‘cohort’’) collaborates around48

their perception of theworld to find a common optimal energy49

footprint. In doing so, this research focuses on optimizing50

traffic light eco-approach, which is critical to avoid conges-51

tion, long idling time, and inefficient stop and go behaviors52

in the cities [4], [5], [7]. Prior work such as the Green Wave53

method relies on a fix and rigid synchronization to minimally54

disrupt traffic flow [5]. Self-organizing and Deep Learning55

with Dynamic Programming (DP) methods have been shown56

to scale these benefits using connectivity, where a sensors57

network is used to characterize the traffic flow incoming to58

the intersections [4], [7]. In this paper, the authors demon-59

strate that Neural Networks can directly learn to infer optimal60

strategies without any external optimization results such as61

that provided by conventional optimal control algorithms.62

We claim that cellular network-based information sharing63

between the cohort lead vehicle and the infrastructure and64

vehicle-to-vehicle communication enables real-time speed65

optimization across any traffic light network. We assume that66

the cohort is already formed, referring the reader to the fol-67

lowing [8], [9] for formation strategies.68

The authors demonstrate that Neuroevolution can directly69

learn from the interaction between complex systems and their70

stochastic environments and that it does not require any plant71

model simplification or translation into an optimization pro-72

gram. This work provides a novel approach to developing73

faster than real-time vehicle level control functions, enabling74

new and unique added value features supporting local adap-75

tive powertrain functions. Simulation is here used to train76

and develop the speed controller via neuroevolution. The77

embedded controller is also validated on test vehicles around78

a closed-loop track. The rest of the paper consists of the prob-79

lem description and synthesis in the following section II, fol-80

lowed by the application of Neuroevolution in section III. The81

simulation and road test results are presented in section IV.82

Finally, we conclude in section V.83

FIGURE 1. Light and heavy-duty vehicle cohort characteristics.

II. PROBLEM DEFINITION AND SYNTHESIS84

The proposed CAV SoS combines SAE Level 3 vehi-85

cles operation with infrastructure connectivity. Safe86

vehicle-to-vehicle distance is maintained via Adaptive Cruise 87

Control (ACC). In doing so, the AV stack enables safe auton- 88

omy at the vehicle level. The CAVs’ lead vehicle receives 89

information from the connected traffic lights along the route 90

via a cellular network (Fig. 1). The goal is to control the 91

cohort speed as a single entity and reduce its global energy 92

consumptionwhile enabling any local PrEMpowertrain func- 93

tion to adapt its energy management strategy locally by 94

receiving a predicted speed e-Horizon. At the cohort level, 95

speed optimization aims to reduce the number of acceleration 96

and deceleration events as the predominant road load term 97

for city driving. These events can be minimized by achieving 98

a ‘‘green wave’’ through the traffic light network. The AI 99

learning objective function (LOF) is built on the ability of 100

the entire cohort to pass within the green light window (the 101

reward) while minimizing its dynamic energy demand as 102

follows: 103

LOF = Reward −
∫ T

t=0
Vc × |Ac| dt (1) 104

when Vc and Ac are the cohort speed and acceleration, respec- 105

tively. The reward is a fixed value if successful or zero oth- 106

erwise. It forces the controller to pass the green light and 107

built up speed while the energy term forces the system to 108

minimize inefficient speed fluctuations. Note that the authors 109

prove that this equation directly correlates to fuel efficiency 110

improvement in the validation section (see Fig. 7). 111

The SoS architecture is designed around each autonomous 112

agent’s ability to safely follow each other, which conse- 113

quently enables the problem to be abstracted around a simpler 114

set of learning parameters, shown in Table 1. The number of 115

vehicles, inter-vehicle gaps, and sizes can be abstracted to a 116

single dynamic cohort length L. The lead vehicle distance 117

d1 to the traffic light is used as the Cohort distance D to 118

the light. The lead vehicle target speed Vt is now orches- 119

trating the entire cohort operation, resulting in an achieved 120

cohort speed Vc. The controller shall learn from the internal 121

dynamic behavior of L and Vc to compute a new speed tar- 122

get Vt . The learning process requires the use of a significant 123

amount of dynamic scenarios representative of real-world 124

conditions bounded by the global achievable comfortable 125

acceleration Amin which depends on the cohort’s power- 126

train and vehicle classes content. While considering both 127

light and heavy-duty CAVs, the following heuristics enable 128

simplification. 129

• To ensure cohort integrity, ‘‘the lead vehicle shall 130

not accelerate faster than the slowest vehicle in the 131

cohort (Amin).’’ 132

• For driveability and comfort, ‘‘acceleration ranges 133

shall be limited to ’comfortable’ accelerations,’’ as 134

opposed to the maximum performance acceleration of a 135

vehicle. 136

• As the ACC controls for the safe distance between vehi- 137

cles, we, therefore, consider that ‘‘a uniform maximum 138

deceleration, not exceeding the maximum comfortable 139

deceleration rate of the most stringent vehicle is retained 140

as the cohort comfortable deceleration rate b.’’ 141
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TABLE 1. Local and cohort variables.

III. NEUROEVOLUTION PROCESS DEVELOPMENT142

As discussed in the introduction, the authors seek to avoid the143

over-simplification of the complex system behavior required144

to implement classical optimal control algorithms. Neuroevo-145

lution was shown to be capable of direct learning for a wide146

variety of applications [10], [11] including multi-objective147

optimization problems [12]. We also seek to achieve faster148

than real-time performance with a low computing foot-149

print. These capabilities have been demonstrated and imple-150

mented for generalized game playing [13], [14] and swarm151

robotics [15], [16]. Once the learning is complete, it is by152

design capable of real-time implementation within the same153

environment. Challenges arise from ample state/action space,154

global emergent from diverse local behaviors. This is fur-155

ther exacerbated by the unknowns and uncertainties in the156

real world. Neuroevolution provides the needed mechanism157

to develop complex adaptive behavior within noisy environ-158

ments. The evolution of neural network topology and its159

learning parameters (weights, bias, activation functions) cre-160

ates the necessary cognitive association between sensed sig-161

nals and actuators to maximize the system integrity or surviv-162

ability.163

In our application, the sensory input signals consist of164

the current cohort speed Vc and the five sensor inputs from165

Table 1. The neural network only requires one output node,166

namely the velocity target for the cohort Vt . While this target167

velocity is fed to the lead vehicle ACC function, it does not168

overwrite the ACC safety limits. This leads to cohort velocity169

Vc not always matching the target. Therefore, a strong adap-170

tation of the network to the emerging and stochastic nature of171

the environment is critical. Two stochastic agent-based sim-172

ulation environments were set up for training and validation.173

A. LEARNING AND VALIDATION ENVIRONMENTS174

The ‘‘learning’’ environment simulation was developed to175

maximize the controller robustness to uncertainty. The sim-176

ulation is for now limited to a one-lane environment. The177

traffic flow in the training environment was developed using178

the Gipps model [17]. The model uses the vehicle size l,179

minimum safety distance so, and the computed safe distance180

ds with (2) to maintain a safe gap and speed between vehicles.181

Gaps and safe velocity vsafe are computed by (3) based on the182

cohort ‘‘comfortable’’ deceleration b with 1t representing183

the simulation time step.184

ds ≥ so + v1t +
v2

2b
−
v2lead
2b

(2)185

TABLE 2. Training scenarios variables.

vsafe = −b1t +
√
b21t + v2lead + 2b(ds − so) (3) 186

The validation simulator uses AVL’s Multi-Agent simula- 187

tor, which was developed to represent real-world driving 188

conditions accurately. This multi-agent environment com- 189

bines an Intelligent Driver Model (IDM) [17], reduced-order 190

powertrain models, and detailed vehicle dynamic simula- 191

tion. The vehicle and infrastructure-based communication 192

is deterministically synchronized via the use of the AVL 193

Model.CONNECT platform [18]. This simulation platform 194

allows to co-simulate systems deterministically using differ- 195

ent solvers and time steps and avoids synchronization errors 196

while modeling appropriate delays and latency across vehicle 197

and communication signals. 198

B. BASIC NEUROEVOLUTION PROCESS 199

We minimized training time by implementing a two-steps 200

neuroevolution process. In a first step, donor neural networks’ 201

topology were manually selected from a library of prede- 202

fined neural nets. This step speeds up the evolution process 203

as topology evolution is still a complex and time-intensive 204

task [11]. In the second step, each node’s weight, bias, and 205

activation functions were respectively tuned and selected 206

using a Particle Swarm Optimization (PSO) algorithm. This 207

method is preferred to Genetic Algorithms by the author for 208

both convergence speed and solution quality during exper- 209

imentation. This permits the learning process to take just 210

10 hours on a 16-cores desktop per neural network candidate. 211

The neural network with the lowest LOF value was selected 212

for validation. 213

A single ‘‘training’’ traffic light was added to the traf- 214

fic environment to provide the infrastructure information 215

(Tg,Tr ) to the neural network. A uniform Monte Carlo (MC) 216

simulation was used to vary the environment parameters 217

(Table 2) across 1,500 training scenarios similar to the one 218

shown on Fig. 2. 219
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FIGURE 2. Example successful scenario with a eight vehicles cohort (L is
around 200m). Tr , Tg and D shown at t = 0s.

Algorithm 1 Neuroevolution With PSO
1: Swarm particles are initialized with randomweight, bias,

and activation function encoding values.
2: 16 neural networks clone are generated
3: Each neural net is simulated across 1500 scenarios

a: Training starts after 20 sec to allow the cohort to form

b: The simulation environment feeds the 6 inputs
[Vc,D,L,Tg,Tr ,Amin] to the input layer
c: The AI outputs a speed target Vt to the lead vehicle.
d: The rest of the vehicle follow according to their safe
distance limits
e: Cohort Length and achieved speed is dynamically
recomputed

4: Fail/Pass is assessed upon the entire cohort passing the
light on green.

5: The LOF value (1) is calculated and drives the next PSO
particle iteration (step 2).

The PSO algorithm process is summarized as shown in220

Algorithm 1. Given that some of the scenarios were not phys-221

ically achievable (for example, due to the limited acceleration222

capability of the Class 8 truck), the controller achieved a 60%223

success on training.224

While the neural net provides the lead cohort vehicle with225

a speed target, its faster than real-time computation speed226

enables several additional features. Within less than one mil-227

lisecond, it outputs a 200s long predicted speed e-Horizon228

based on the current conditions a time t . This is achieved229

by concurrently running the Gipps model in the loop with230

the neural network. This information serves as an e-Horizon231

to the cohort’s hybrid vehicle(s) with adaptive powertrain232

control (PrEM), hence supporting the calibration on the fly of233

their powertrain and ensuring local energy reduction optimal-234

ity. This speed profile is also integrated into a predicted cohort235

position profile to assess the viability of the current strategy236

in successfully passing the current ‘‘green window.’’ This is237

achieved by comparing the time of arrival at the light (D = 0)238

with Tg and Tr . If the assessment simulation result leads to 239

an unfeasible solution, the next green window information 240

(incrementing Tg and Tr values by the traffic light period) 241

is requested and fed to the neural network input layer. The 242

speed of the neural net was further elicited in generating 243

several speed profiles for different cohort design scenarios. 244

For example, the cohort length L can be varied until a feasible 245

solution is reached if the current conditions were deemed 246

unfeasible. This information can be used to split the cohort. 247

These added-value features form complete Neuroevolution 248

based cohort management (Fig. 3). 249

FIGURE 3. Cohort management with its core neural net and added value
feature such as eHorizon generation and pass/fail classification.

C. ADVANCED NEUROEVOLUTION PROCESS 250

With a large number of activation functions available, the 251

PSO process is likely to converge to a local optima. A first 252

step was therefore added prior to the basic neuroevolution 253

process described above. The preselection of the activation 254

function for each neural network node is achieved via using a 255

Weight Agnostic neural network (WANN) step as described 256

in [19]. The network weight are kept uniform across the 257

neural network during each activation function allocation 258

iteration driven by a Latin Hypercube design of experiment 259

matrix. This matrix contains an optimal permutation of 4 acti- 260

vation function for simplicity (ReLu (poslin), Linear (pure- 261

lin), Radial Basis (radbas) and hyperbolic tangent sigmoid 262

(tansig)). Weight were varied between -1 and 1. For each 263

generated neural network, 1,500 learning simulations are run 264

and the LOF is recorded. The LOF statistics are plotted in 265

(Fig. 4). The lowest mean of the LOF (minimization) for 266

each node is used as the selection for its activation function. 267

Re-running the basic neuroevolution process with these pre- 268

allocated activation functions generated a more robust and 269

higher performing controller (Fig. 5). Note that this controller 270

was not used in the embedded vehicle controller so as to retain 271

the ReLu’s computing efficiency. 272

IV. VALIDATION RESULTS 273

We present several validation result sets, firstly using the 274

learning simulation environment with a P3 powertrain, sec- 275

ondly using AVL simulation with multiple powertrain models 276

and real world results on a close loop track at ACM. 277
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FIGURE 4. Activation function allocation identification (chosen by the
lowest box plot mean LOF) for each node of the last 2 hidden (HA) and
output layers (OA) via WANN. Note that the radial basis function did not
provide added benefits in this case.

FIGURE 5. LOF value distribution across 1,500 scenarios, comparing
unconnected vehicles (Gipps alone) and CAV Cohort with the
Neuroevolved controller. The LOF minimization shows higher
performance and robustness with the added WANN step compared the
ReLu only neural net evolution (ReLU) and the basic PSO Neuroevolution
processes. The two-steps approach proves more effective than having the
PSO also handling the activation function search.

A. LOF VALIDATION USING A P3 HEV MODEL WITHIN THE278

LEARNING ENVIRONMENT279

A validated quasi-static P3 powertrain was integrated to the280

Gipps based learning environment. Five thousand scenarios,281

with various cohort size, were simulated across multi-light282

networks with varying phasing, timing and speed limits283

(Fig. 6). The MPG of the unconnected vehicles and cor-284

responding CAV cohort were recorded. The neuroevolved285

controller shows an average fuel economy benefit averag-286

ing 30%, especially when enabling the cohort to split when287

unfavorable scenarios are detected. Additionally, it confirms288

FIGURE 6. Example scenario with 6 vehicles and 10 traffic lights. The CAV
cohort with the neuroevolved controller manages to stay formed, and
does not need to stop at any of the red lights. The unconnected vehicles
encounter several stops and split into distinct groupings.

FIGURE 7. MPG benefit for a P3 HEV powertrain fitted wit the connected
neuroevolved controller vs. the optimization LOF value over 2,000
validation scenarios. This demonstrates the direct correlation between
minimizing acceleration and deceleration events, and the HEV fuel
economy performance improvement when operating as a CAV cohort.

that LOF strongly correlates to fuel economy increase, hence 289

validating the assumption that minimizing speed fluctuation 290

is a main driver for energy usage reduction in city conditions 291

(Fig. 7). 292

B. EDGE CASES VALIDATION WITHIN THE AVL 293

SIMULATION ENVIRONMENT 294

In this simulation environment, the controller is now sub- 295

mitted to realistic vehicle dynamics. An edge cases sce- 296

nario is presented here, with a cohort including seven dif- 297

ferent vehicle types, including a Class 8 vehicle. Noticeably, 298

the Class 8 dynamics during gear shift caused slower than 299

anticipated acceleration rates (compared to the Amin range 300

during learning). This compromised the cohort integrity in 301

allowing all the vehicles to pass during one green window. 302

The pass/fail classifier value became evident in allowing the 303

cohort to split appropriately when the cohort integrity became 304

an issue. With this feature each vehicle consistently achieved 305

a positive energy efficiency improvement (Fig. 8). The Sedan 306

PHEV reached 40% in energy consumption reduction in the 307
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FIGURE 8. Heterogeneous cohort performance box plot statistics across
30 scenarios. On the right, the performance improve with the integration
of the pass/fail classification feature, enabling cohort to split when
necessary and hence hindering a complete cohort to stop at a red light.

FIGURE 9. Neuroevolution controller integration into the AV stack.

FIGURE 10. Two miles route at ACM with the location of the virtual traffic
lights provided by traffic technology services (TTS).

best-case scenario, while a minimum of 5% improvement at308

the cohort level is ensured.309

FIGURE 11. Example speed and energy traces during road testing. The
human and neurocontroller driven cohorts are in bold and dashed lines
respectively. Note the absence of stop time for the optimized cohort. The
cohort order here is: GM Volt 1, GM Bolt, GM Volt 2.

TABLE 3. Individual and cohort level energy and time saving during close
loop track testing at ACM using random traffic light phasing and timing.

C. VALIDATION ON CLOSE LOOP TEST TRACK AT ACM 310

The controller was implemented on Gen II Chevrolet Volt 311

and Bolt up-fitted with a Drive-By-Wire system. The cars 312

are also equipped with a dSpace MicroAutoBox II (MAB II) 313

which functions as an onboard processing unit. The MAB II 314

is used to interface with the Drive-By-Wire system, vehicle 315

CAN channels, and various instruments and can also act as an 316

on-board computer to run specific programs and algorithms 317

defined by the user. The Neuroevolution controller was com- 318

piled into C code from Simulink and loaded onto the MAB II 319

(Fig. 9). The controller optimal target speed is sent via CAN 320

to the Drive-By-Wire system, which has its own controller 321

and calibration tables to decide on the required Throttle and 322

Brake Pedal position to achieve the demanded vehicle speed. 323

The systemwas tested at ACM.A twomiles route (Fig. 10), 324

with two randomly timed and phased connected traffic lights, 325

was driven ten times with and without the neuroevolution 326

controller. A 12% energy reduction was achieve with a cohort 327

of 3 PHEV vehicles, with a lower trip time of 8% compared 328

to normal autonomous operation on a 55 MPH speed limit 329

scenario (Fig. 11). More recent testing at ACM from July 330

2022 provided the results shown in Table 3. The vehicle 331

order was varied as well as traffic light phasing and timing. 332

Lower benefit from the following vehicles was associated by 333

the vehicle’s ACC imperfect behavior in keeping gap and 334

speed steady behind the lead vehicle. In each case, the lead 335

vehicle achieves 16% to 29% energy reduction. Test data 336

also demonstrated that when signal latency was present, the 337
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FIGURE 12. Velocity profiles difference between the Neuroevolved
controller and a driver without (top in blue) or with (bottom in purple)
knowledge of time to green. In the first case, an energy benefit of 38.5%
is recorded. This benefit decreases to 5% in the second case.

neuroevolved controller was able to recover by targeting a338

higher speed target for example once its input layer was339

finally updated with new values.340

Another interesting experiment was preformed where a341

driver, provided with the time to green, drove a vehicle in342

hypermiling mode to achieve best fuel economy on the track.343

While significantly reducing energy usage, the neuroevolved344

controlled still beat the driver by an additional 5% reduction345

in energy usage (Fig. 12).346

V. CONCLUSION347

Neuroevolution provides an effective mechanism to infer348

self-adaptive optimal control strategies and hence offers a349

mechanism to ensure sustained optimality. Its development350

and implementation are simpler and faster than classical351

optimal control methods. Neuroevolution can be applied to352

any ‘‘black box’’ system or SoS without reducing the agent353

behavior or training environment fidelity. The resulting con-354

troller far exceeds real-time implementation requirements,355

enabling it to embed additional features such as e-Horizon356

predictions and pass/fail assessment on the vehicle. The357

resulting cohort speed control proved effective and robust to358

a wide variety of simulated as well as real-world driving con-359

ditions, including when signal latency increased at time on360

the closed loop track. Significant global energy reduction was361

achieved with cohorts made of highly heterogeneous vehicles 362

as well, which demonstrated the robustness of the chosen 363

objective function. Successful integration in the autonomous 364

system was achieved and energy reduction was successfully 365

validated on a closed loop track. 366
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