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ABSTRACT Predictive Energy Management (PrEM) research is at the forefront of modern transportation’s
energy consumption reduction efforts. The development of PrEM optimization algorithms has been tailored
to selfish vehicle operation and implemented in the form of vehicle dynamics and/or adaptive powertrain
control functions. With the progress in vehicle automation, this paper focuses on extending PrEM into the
realm of a System of Systems (SoS). The proposed approach uses the shared information among Connected
and Automated Vehicles (CAV) and the infrastructure to synthesize a reduced energy speed trajectory at the
cohort level within urban environments. Neuroevolution is employed to incorporate a generalized optimum
controller, robust to the emergent behaviors typical of multi-agents SoS. The authors demonstrated the use
of heuristics and systems engineering processes in abstracting and integrating the resulting neural network
within the control architecture, which enables novel added-value features such as green wave pass/fail
classification and e-Horizon velocity prediction. The resulting controller is faster than real-time and was
validated with a multi-agent simulation environment and on a real-world closed-loop track at the American
Center for Mobility (ACM). The GM Bolt and Volt CAV mixed cohort testing at ACM demonstrated energy
reductions from 7% to 22% depending on scenarios.

INDEX TERMS Minimum energy control, optimal control, intelligent systems, artificial intelligence, mobile
robots, systems engineering

I. INTRODUCTION torque split calibration on the fly has yielded more consis-

Advances in vehicle and powertrain control systems and
autonomous vehicles pave the way for cleaner and more sus-
tainable transportation solutions. Predictive Energy Manage-
ment (PrEM) enables conventional and electrified vehicles to
maintain close to optimal efficiency across a broader range of
operating conditions. Complex powertrains, such as hybrids,
are optimized and calibrated around a set of known drive
cycles (e.g., Federal Test Procedures). Due to the stochastic
nature of real-world driving conditions, adaptively changing
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tent efficiency improvement, achieving up to 4% additional
energy reduction [1].

On the vehicle dynamic PrEM side, the automation of vehi-
cles provides the opportunity to achieve vehicles’ dynamic
behaviors that mitigate the strong impact of human driving
style and aggressiveness on energy consumption [2], [3].
Vehicle dynamics-based approaches have been developed for
selfish vehicle operation where a vehicle attempts to achieve
its “own selfish” optimal velocity profile [4], [5]. Due to
the wide range of vehicle classes and powertrain types on
the road, heterogeneous selfish behavior does not necessar-
ily translate to an optimal solution globally. It can result

VOLUME 10, 2022


https://orcid.org/0000-0001-8315-4344
https://orcid.org/0000-0002-4673-2464
https://orcid.org/0000-0002-2296-4498
https://orcid.org/0000-0003-0874-7793

F. Jacquelin et al.: Connected and Autonomous Vehicle Cohort Speed Control Optimization via Neuroevolution

IEEE Access

in increased energy consumption as high as 10% [6]. The
authors stipulate that a solution considering traffic emer-
gent behavior can viably provide both sustained and higher
global energy reduction performance across heterogeneous
vehicle types while still enabling local adaptive powertrain
optimization. Vehicle automation and connectivity provide
the necessary building blocks to enable the proposed SoS
operation, where a group of Connected Automated Vehicles
(CAV, here referred to as the ““‘cohort”) collaborates around
their perception of the world to find a common optimal energy
footprint. In doing so, this research focuses on optimizing
traffic light eco-approach, which is critical to avoid conges-
tion, long idling time, and inefficient stop and go behaviors
in the cities [4], [5], [7]. Prior work such as the Green Wave
method relies on a fix and rigid synchronization to minimally
disrupt traffic flow [5]. Self-organizing and Deep Learning
with Dynamic Programming (DP) methods have been shown
to scale these benefits using connectivity, where a sensors
network is used to characterize the traffic flow incoming to
the intersections [4], [7]. In this paper, the authors demon-
strate that Neural Networks can directly learn to infer optimal
strategies without any external optimization results such as
that provided by conventional optimal control algorithms.
We claim that cellular network-based information sharing
between the cohort lead vehicle and the infrastructure and
vehicle-to-vehicle communication enables real-time speed
optimization across any traffic light network. We assume that
the cohort is already formed, referring the reader to the fol-
lowing [8], [9] for formation strategies.

The authors demonstrate that Neuroevolution can directly
learn from the interaction between complex systems and their
stochastic environments and that it does not require any plant
model simplification or translation into an optimization pro-
gram. This work provides a novel approach to developing
faster than real-time vehicle level control functions, enabling
new and unique added value features supporting local adap-
tive powertrain functions. Simulation is here used to train
and develop the speed controller via neuroevolution. The
embedded controller is also validated on test vehicles around
a closed-loop track. The rest of the paper consists of the prob-
lem description and synthesis in the following section II, fol-
lowed by the application of Neuroevolution in section III. The
simulation and road test results are presented in section I'V.
Finally, we conclude in section V.
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FIGURE 1. Light and heavy-duty vehicle cohort characteristics.

Il. PROBLEM DEFINITION AND SYNTHESIS
The proposed CAV SoS combines SAE Level 3 vehi-
cles operation with infrastructure connectivity. Safe
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vehicle-to-vehicle distance is maintained via Adaptive Cruise
Control (ACC). In doing so, the AV stack enables safe auton-
omy at the vehicle level. The CAVs’ lead vehicle receives
information from the connected traffic lights along the route
via a cellular network (Fig. 1). The goal is to control the
cohort speed as a single entity and reduce its global energy
consumption while enabling any local PrEM powertrain func-
tion to adapt its energy management strategy locally by
receiving a predicted speed e-Horizon. At the cohort level,
speed optimization aims to reduce the number of acceleration
and deceleration events as the predominant road load term
for city driving. These events can be minimized by achieving
a “green wave” through the traffic light network. The Al
learning objective function (LOF) is built on the ability of
the entire cohort to pass within the green light window (the
reward) while minimizing its dynamic energy demand as
follows:

T

LOF = Reward —/ Ve X |Ac| dt (D

t=0

when V. and A, are the cohort speed and acceleration, respec-
tively. The reward is a fixed value if successful or zero oth-
erwise. It forces the controller to pass the green light and
built up speed while the energy term forces the system to
minimize inefficient speed fluctuations. Note that the authors
prove that this equation directly correlates to fuel efficiency
improvement in the validation section (see Fig. 7).

The SoS architecture is designed around each autonomous
agent’s ability to safely follow each other, which conse-
quently enables the problem to be abstracted around a simpler
set of learning parameters, shown in Table 1. The number of
vehicles, inter-vehicle gaps, and sizes can be abstracted to a
single dynamic cohort length L. The lead vehicle distance
dy to the traffic light is used as the Cohort distance D to
the light. The lead vehicle target speed V; is now orches-
trating the entire cohort operation, resulting in an achieved
cohort speed V.. The controller shall learn from the internal
dynamic behavior of L and V, to compute a new speed tar-
get V;. The learning process requires the use of a significant
amount of dynamic scenarios representative of real-world
conditions bounded by the global achievable comfortable
acceleration A,,;, which depends on the cohort’s power-
train and vehicle classes content. While considering both
light and heavy-duty CAVs, the following heuristics enable
simplification.

o To ensure cohort integrity, “the lead vehicle shall
not accelerate faster than the slowest vehicle in the
cohort (Apin).”

o For driveability and comfort, “acceleration ranges
shall be limited to ’comfortable’ accelerations,” as
opposed to the maximum performance acceleration of a
vehicle.

« Asthe ACC controls for the safe distance between vehi-
cles, we, therefore, consider that “a uniform maximum
deceleration, not exceeding the maximum comfortable
deceleration rate of the most stringent vehicle is retained
as the cohort comfortable deceleration rate b.”
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TABLE 1. Local and cohort variables.

Type (units) [ Local and State Variables [ Abstraction [ Cohort State Variables Network Topology
Count Vehicle 1,2,...,n I = L4 do
Vehicle Length I1, Iz, - - -, In, N I l.+: ‘1’) "
) o Vehicle Gap ds1, ds2, - .., dsn for t 2 f ’d’
Length and Distances (m) |y 0. = Gap Sor. Semr - Som (refer to eq (2) for ds;) Sensors
Distance to Light d1, da, . .., dy = D =d; (input layer)
Time (sec) Time to Green and Red ¢4, ¢, None ;‘7 - :9
L i
Acceleration (m /sec?) Vehicle Acceleration a1, az, ..., an see heuristics Amin = min(ai, ..., ay)
Speed (m/sec) Vehicle Speed vi, v2, ..., vy = v, = f(Vz) Output

IlIl. NEUROEVOLUTION PROCESS DEVELOPMENT

As discussed in the introduction, the authors seek to avoid the
over-simplification of the complex system behavior required
to implement classical optimal control algorithms. Neuroevo-
lution was shown to be capable of direct learning for a wide
variety of applications [10], [11] including multi-objective
optimization problems [12]. We also seek to achieve faster
than real-time performance with a low computing foot-
print. These capabilities have been demonstrated and imple-
mented for generalized game playing [13], [14] and swarm
robotics [15], [16]. Once the learning is complete, it is by
design capable of real-time implementation within the same
environment. Challenges arise from ample state/action space,
global emergent from diverse local behaviors. This is fur-
ther exacerbated by the unknowns and uncertainties in the
real world. Neuroevolution provides the needed mechanism
to develop complex adaptive behavior within noisy environ-
ments. The evolution of neural network topology and its
learning parameters (weights, bias, activation functions) cre-
ates the necessary cognitive association between sensed sig-
nals and actuators to maximize the system integrity or surviv-
ability.

In our application, the sensory input signals consist of
the current cohort speed V. and the five sensor inputs from
Table 1. The neural network only requires one output node,
namely the velocity target for the cohort V,. While this target
velocity is fed to the lead vehicle ACC function, it does not
overwrite the ACC safety limits. This leads to cohort velocity
V. not always matching the target. Therefore, a strong adap-
tation of the network to the emerging and stochastic nature of
the environment is critical. Two stochastic agent-based sim-
ulation environments were set up for training and validation.

A. LEARNING AND VALIDATION ENVIRONMENTS

The “learning” environment simulation was developed to
maximize the controller robustness to uncertainty. The sim-
ulation is for now limited to a one-lane environment. The
traffic flow in the training environment was developed using
the Gipps model [17]. The model uses the vehicle size /,
minimum safety distance s,, and the computed safe distance
d, with (2) to maintain a safe gap and speed between vehicles.
Gaps and safe velocity v,qf are computed by (3) based on the
cohort “comfortable” deceleration b with Ar representing
the simulation time step.

VooV
dszs0+vAt+E—% )
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TABLE 2. Training scenarios variables.

Monte Carlo Variables | Variation Range | Units
Vehicle Start Velocity: V. 5to21 m/sec
Start Distance from Light: D 100 to 1600 m
Start Cohort Length: L 30 to 280 m
Comfortable Acceleration: A,,;n 03to 1.5 m/ sec?
Time to Green at start: ¢4 10 to 80 sec
Time to Red at start: ¢, tg + 10 to 30 sec

voge = —bAL+ [P AL +12, 26 —5) ()

The validation simulator uses AVL’s Multi-Agent simula-
tor, which was developed to represent real-world driving
conditions accurately. This multi-agent environment com-
bines an Intelligent Driver Model (IDM) [17], reduced-order
powertrain models, and detailed vehicle dynamic simula-
tion. The vehicle and infrastructure-based communication
is deterministically synchronized via the use of the AVL
Model. CONNECT platform [18]. This simulation platform
allows to co-simulate systems deterministically using differ-
ent solvers and time steps and avoids synchronization errors
while modeling appropriate delays and latency across vehicle
and communication signals.

B. BASIC NEUROEVOLUTION PROCESS

We minimized training time by implementing a two-steps
neuroevolution process. In a first step, donor neural networks’
topology were manually selected from a library of prede-
fined neural nets. This step speeds up the evolution process
as topology evolution is still a complex and time-intensive
task [11]. In the second step, each node’s weight, bias, and
activation functions were respectively tuned and selected
using a Particle Swarm Optimization (PSO) algorithm. This
method is preferred to Genetic Algorithms by the author for
both convergence speed and solution quality during exper-
imentation. This permits the learning process to take just
10 hours on a 16-cores desktop per neural network candidate.
The neural network with the lowest LOF value was selected
for validation.

A single “training” traffic light was added to the traf-
fic environment to provide the infrastructure information
(T, T;) to the neural network. A uniform Monte Carlo (MC)
simulation was used to vary the environment parameters
(Table 2) across 1,500 training scenarios similar to the one
shown on Fig. 2.
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FIGURE 2. Example successful scenario with a eight vehicles cohort (L is
around 200m). T, Tg and D shown at t = 0s.

Algorithm 1 Neuroevolution With PSO
1: Swarm particles are initialized with random weight, bias,
and activation function encoding values.
2: 16 neural networks clone are generated
3: Each neural net is simulated across 1500 scenarios
a: Training starts after 20 sec to allow the cohort to form

b: The simulation environment feeds the 6 inputs
[Ve,D, L, T,, T\, Apin] to the input layer
c: The Al outputs a speed target V; to the lead vehicle.
d: The rest of the vehicle follow according to their safe
distance limits
e: Cohort Length and achieved speed is dynamically
recomputed

4: Fail/Pass is assessed upon the entire cohort passing the
light on green.

5: The LOF value (1) is calculated and drives the next PSO
particle iteration (step 2).

The PSO algorithm process is summarized as shown in
Algorithm 1. Given that some of the scenarios were not phys-
ically achievable (for example, due to the limited acceleration
capability of the Class 8 truck), the controller achieved a 60%
success on training.

While the neural net provides the lead cohort vehicle with
a speed target, its faster than real-time computation speed
enables several additional features. Within less than one mil-
lisecond, it outputs a 200s long predicted speed e-Horizon
based on the current conditions a time ¢. This is achieved
by concurrently running the Gipps model in the loop with
the neural network. This information serves as an e-Horizon
to the cohort’s hybrid vehicle(s) with adaptive powertrain
control (PrEM), hence supporting the calibration on the fly of
their powertrain and ensuring local energy reduction optimal-
ity. This speed profile is also integrated into a predicted cohort
position profile to assess the viability of the current strategy
in successfully passing the current “green window.” This is
achieved by comparing the time of arrival at the light (D = 0)
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with Ty and 7. If the assessment simulation result leads to
an unfeasible solution, the next green window information
(incrementing T, and T values by the traffic light period)
is requested and fed to the neural network input layer. The
speed of the neural net was further elicited in generating
several speed profiles for different cohort design scenarios.
For example, the cohort length L can be varied until a feasible
solution is reached if the current conditions were deemed
unfeasible. This information can be used to split the cohort.
These added-value features form complete Neuroevolution
based cohort management (Fig. 3).

Vehicle Speed Control

Augmented use of
/—\ Net Controller
|

T
T SSETEL e e e 1
D + 1 Gipps Model Fe
v, P e AN
—— v
,’ ‘Lm v 1
l’ T .rl
T e .
1 ;ec;ictESn T \ Predicted /\l'
! 7 [success] fail = s
1 of Cohort { J (= Speed
1 A —

Time [s] integration 200 s eHorizon

‘\ = Pass/Fail Classifier Local Powertrain PrEM

~ = Request next green event
= Qutput max. feasible Cohort Length (L)

FIGURE 3. Cohort management with its core neural net and added value
feature such as eHorizon generation and pass/fail classification.

C. ADVANCED NEUROEVOLUTION PROCESS

With a large number of activation functions available, the
PSO process is likely to converge to a local optima. A first
step was therefore added prior to the basic neuroevolution
process described above. The preselection of the activation
function for each neural network node is achieved via using a
Weight Agnostic neural network (WANN) step as described
in [19]. The network weight are kept uniform across the
neural network during each activation function allocation
iteration driven by a Latin Hypercube design of experiment
matrix. This matrix contains an optimal permutation of 4 acti-
vation function for simplicity (ReLu (poslin), Linear (pure-
lin), Radial Basis (radbas) and hyperbolic tangent sigmoid
(tansig)). Weight were varied between -1 and 1. For each
generated neural network, 1,500 learning simulations are run
and the LOF is recorded. The LOF statistics are plotted in
(Fig. 4). The lowest mean of the LOF (minimization) for
each node is used as the selection for its activation function.
Re-running the basic neuroevolution process with these pre-
allocated activation functions generated a more robust and
higher performing controller (Fig. 5). Note that this controller
was not used in the embedded vehicle controller so as to retain
the ReLu’s computing efficiency.

IV. VALIDATION RESULTS

We present several validation result sets, firstly using the
learning simulation environment with a P3 powertrain, sec-
ondly using AVL simulation with multiple powertrain models
and real world results on a close loop track at ACM.

97797



IEEE Access

F. Jacquelin et al.: Connected and Autonomous Vehicle Cohort Speed Control Optimization via Neuroevolution

1
=

=g =—al

LOF

- -1000
-1200
-1400

LOF
- -
-1 -

—an —iF —m —an
-
-l

1 1
—an E:'
I
- -
- -

YO OVZH SYZH PYZH EVZH 2vZH LYZH YLH SYIH PYLH EVLH 2VIH LYLH
apo

©

|
-tk

poslin purelin radbas tansig
Activation Functions

FIGURE 4. Activation function allocation identification (chosen by the
lowest box plot mean LOF) for each node of the last 2 hidden (HA) and
output layers (OA) via WANN. Note that the radial basis function did not
provide added benefits in this case.

RelLU Only Basic Basic + WANN
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i Controller
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FIGURE 5. LOF value distribution across 1,500 scenarios, comparing
unconnected vehicles (Gipps alone) and CAV Cohort with the
Neuroevolved controller. The LOF minimization shows higher
performance and robustness with the added WANN step compared the
ReLu only neural net evolution (ReLU) and the basic PSO Neuroevolution
processes. The two-steps approach proves more effective than having the
PSO also handling the activation function search.

A. LOF VALIDATION USING A P3 HEV MODEL WITHIN THE
LEARNING ENVIRONMENT

A validated quasi-static P3 powertrain was integrated to the
Gipps based learning environment. Five thousand scenarios,
with various cohort size, were simulated across multi-light
networks with varying phasing, timing and speed limits
(Fig. 6). The MPG of the unconnected vehicles and cor-
responding CAV cohort were recorded. The neuroevolved
controller shows an average fuel economy benefit averag-
ing 30%, especially when enabling the cohort to split when
unfavorable scenarios are detected. Additionally, it confirms
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FIGURE 6. Example scenario with 6 vehicles and 10 traffic lights. The CAV
cohort with the neuroevolved controller manages to stay formed, and
does not need to stop at any of the red lights. The unconnected vehicles
encounter several stops and split into distinct groupings.

------------ Scenario simulation
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S
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FIGURE 7. MPG benefit for a P3 HEV powertrain fitted wit the connected

neuroevolved controller vs. the optimization LOF value over 2,000

validation scenarios. This demonstrates the direct correlation between

minimizing acceleration and deceleration events, and the HEV fuel
economy performance improvement when operating as a CAV cohort.

that LOF strongly correlates to fuel economy increase, hence
validating the assumption that minimizing speed fluctuation
is a main driver for energy usage reduction in city conditions
(Fig. 7).

B. EDGE CASES VALIDATION WITHIN THE AVL
SIMULATION ENVIRONMENT

In this simulation environment, the controller is now sub-
mitted to realistic vehicle dynamics. An edge cases sce-
nario is presented here, with a cohort including seven dif-
ferent vehicle types, including a Class 8 vehicle. Noticeably,
the Class 8 dynamics during gear shift caused slower than
anticipated acceleration rates (compared to the A,,; range
during learning). This compromised the cohort integrity in
allowing all the vehicles to pass during one green window.
The pass/fail classifier value became evident in allowing the
cohort to split appropriately when the cohort integrity became
an issue. With this feature each vehicle consistently achieved
a positive energy efficiency improvement (Fig. 8). The Sedan
PHEV reached 40% in energy consumption reduction in the

VOLUME 10, 2022
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FIGURE 10. Two miles route at ACM with the location of the virtual traffic
lights provided by traffic technology services (TTS).

best-case scenario, while a minimum of 5% improvement at
the cohort level is ensured.
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FIGURE 11. Example speed and energy traces during road testing. The
human and neurocontroller driven cohorts are in bold and dashed lines
respectively. Note the absence of stop time for the optimized cohort. The
cohort order here is: GM Volt 1, GM Bolt, GM Volt 2.

TABLE 3. Individual and cohort level energy and time saving during close
loop track testing at ACM using random traffic light phasing and timing.

Speed Limit Total Distance 3 Vehicles Cohort Enel Travel Time
’ (mph) (km) Cohort Energy Saved % Saved %rgv Saved %

6.70 Volt PHEV 29%

Test1 45 6.70 Bolt 20% 22.0% 0.4%
6.72 Volt PHEV 16%
6.65 Bolt 16%

Test 2 45 6.67 Volt PHEV 12% 7.4 1.2%
6.70 Volt PHEV 0%
6.65 Bolt 16%

Test3 45 6.67 Volt PHEV 7% 7.3 0.5%
6.69 Volt PHEV 4%

C. VALIDATION ON CLOSE LOOP TEST TRACK AT ACM
The controller was implemented on Gen II Chevrolet Volt
and Bolt up-fitted with a Drive-By-Wire system. The cars
are also equipped with a dSpace MicroAutoBox II (MAB II)
which functions as an onboard processing unit. The MAB II
is used to interface with the Drive-By-Wire system, vehicle
CAN channels, and various instruments and can also act as an
on-board computer to run specific programs and algorithms
defined by the user. The Neuroevolution controller was com-
piled into C code from Simulink and loaded onto the MAB II
(Fig. 9). The controller optimal target speed is sent via CAN
to the Drive-By-Wire system, which has its own controller
and calibration tables to decide on the required Throttle and
Brake Pedal position to achieve the demanded vehicle speed.
The system was tested at ACM. A two miles route (Fig. 10),
with two randomly timed and phased connected traffic lights,
was driven ten times with and without the neuroevolution
controller. A 12% energy reduction was achieve with a cohort
of 3 PHEV vehicles, with a lower trip time of 8% compared
to normal autonomous operation on a 55 MPH speed limit
scenario (Fig. 11). More recent testing at ACM from July
2022 provided the results shown in Table 3. The vehicle
order was varied as well as traffic light phasing and timing.
Lower benefit from the following vehicles was associated by
the vehicle’s ACC imperfect behavior in keeping gap and
speed steady behind the lead vehicle. In each case, the lead
vehicle achieves 16% to 29% energy reduction. Test data
also demonstrated that when signal latency was present, the
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FIGURE 12. Velocity profiles difference between the Neuroevolved

controller and a driver without (top in blue) or with (bottom in purple)

knowledge of time to green. In the first case, an energy benefit of 38.5%
is recorded. This benefit decreases to 5% in the second case.

neuroevolved controller was able to recover by targeting a
higher speed target for example once its input layer was
finally updated with new values.

Another interesting experiment was preformed where a
driver, provided with the time to green, drove a vehicle in
hypermiling mode to achieve best fuel economy on the track.
While significantly reducing energy usage, the neuroevolved
controlled still beat the driver by an additional 5% reduction
in energy usage (Fig. 12).

V. CONCLUSION

Neuroevolution provides an effective mechanism to infer
self-adaptive optimal control strategies and hence offers a
mechanism to ensure sustained optimality. Its development
and implementation are simpler and faster than classical
optimal control methods. Neuroevolution can be applied to
any “black box” system or SoS without reducing the agent
behavior or training environment fidelity. The resulting con-
troller far exceeds real-time implementation requirements,
enabling it to embed additional features such as e-Horizon
predictions and pass/fail assessment on the vehicle. The
resulting cohort speed control proved effective and robust to
a wide variety of simulated as well as real-world driving con-
ditions, including when signal latency increased at time on
the closed loop track. Significant global energy reduction was
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achieved with cohorts made of highly heterogeneous vehicles
as well, which demonstrated the robustness of the chosen
objective function. Successful integration in the autonomous
system was achieved and energy reduction was successfully
validated on a closed loop track.
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