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ABSTRACT In this paper, a novel neural control architecture is proposed and investigated for resolving
redundancy in trajectory tracking applications for manipulators with joint velocity constraints. First, a nonlin-
ear invertible map is invoked to transform the constrained system state into a set of unconstrained variables,
which allows the proposed framework to realize solutions that rigorously adhere to the specified bound
constraints. Next, a quadratic program (QP) architecture is synthesized by incorporating suitably prescribed
performance constraints to ensure that the resulting system error achieves exponential convergence to the
ground truth while also ensuring that the system states evolve along trajectories with good transient and
steady-state behavior. Thus, in contrast with previous approaches that do not rigorously guarantee the
satisfaction of the bound constraints in the transient phase and/or the steady-state, the proposed scheme
ensures that these constraints are rigorously satisfied while achieving prescribed performance both during
the transient phase and in the steady-state. The novelty of the proposed scheme lies in the fusion of prescribed
performance constraints with the state and input constraints within the QP framework, which offers the
important advantage of higher computational efficiency compared to leading alternative designs. A detailed
theoretical analysis is undertaken to prove the global stability and convergence of the proposed scheme.
Simulation and experimental results with the KUKA LBR ITWA 14 R820 manipulator are used to verify
the efficacy of the proposed scheme in accomplishing trajectory tracking for the fault-free and fault-tolerant
cases with multiple joint failures. Finally, detailed performance comparison studies with leading alternative
designs are further used to illustrate the advantages of the proposed scheme.

INDEX TERMS Fault tolerance, joint constraints, prescribed performance, redundancy resolution, zeroing
neural networks.

I. INTRODUCTION

A redundant robotic manipulator refers to a manipulator
which possesses more degrees of freedom than it is required
to complete a task objective. The presence of these additional
degrees of freedom leads to multiple sets of solutions for the
same problem statement, thus allowing for the enforcement of
additional sets of constraints on the manipulator in addition
to the primary task. A fundamental problem in robotics is
the problem of redundancy resolution for trajectory tracking
applications using redundant manipulators. It refers to the
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computation of the joint poses required to achieve desired
end-effector path in the Cartesian space. Due to the nonlinear
nature of the mapping between the joint pose and end-effector
positions, redundancy resolution via inverse kinematics is
often quite difficult. Hence, redundancy resolution is usu-
ally performed at the velocity level, which can be repre-
sented in the form of a time-varying underdetermined linear
equation [1], [2].

The zeroing neural network (ZNN) represents a special
class of recurrent neural networks that is primarily aimed at
finding the zeros of a time-varying system represented by
a set of linear or nonlinear equations. ZNNs were first pro-
posed for finding the solution of the time-varying Sylvester’s
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equation [3]. Compared to the traditional gradient-based neu-
ral networks (GNNSs), these neural network architectures are
better suited for finding the solution of time-varying prob-
lems related to trajectory tracking, which is attributed to the
fact that the time-derivative information of the time-varying
coefficients is incorporated seamlessly within the ZNN archi-
tecture, thus providing a stark contrast with the traditional
GNN framework [4]. As such, numerous ZNN architec-
tures have been proposed for finding the solution of various
time-varying problems of practical interest [5], [6], [7], [8],
[9], [10]. In particular, ZNN models are proposed as solu-
tions to the dynamic matrix inversion problem in [5], [6],
and [7], time-varying linear inequalities in [8] and [9], and
time-varying nonlinear inequalities in [10].

Over the years, a few prominent studies have been
conducted for finding the solution of time-varying under-
determined linear systems with application to redundancy
resolution. Two new ZNN models are proposed in [11] for this
purpose, while a gain-adjustment neural network (GANN)
that ensures super-exponential convergence to the ground
truth is proposed in [12] for finding the solution of an under-
determined linear system. Further, a projected ZNN (PZNN)
based joint drift-free scheme is proposed in [13] for redun-
dancy resolution of a manipulator in the presence of noise.
However, the previously mentioned studies do not include
constraints on joint velocity. In contrast, a novel ZNN model
is proposed in [14] that relies on equality transformations
for finding the online solution of a time-varying system
of linear equations with bound constraints. Subsequently,
an equivalent discrete-time version of this ZNN model is
proposed in [15], and a noise-tolerant ZNN for the solution
of a time-varying underdetermined linear system of equations
with bounds on both the state and residual error is proposed
in [16]. Further, a ZNN model with finite-time convergence
is proposed in [17] and a ZNN model based on infinity norm
minimization is proposed in [18] for the solution of an under-
determined system with state and input constraints. However,
these studies do not always guarantee rigorous enforcement
of the state constraints either during the transient phase or
in steady-state, which is a critical drawback, especially for
redundancy resolution applications in robotics.

To overcome this drawback, a novel quadratic program
(QP)-based neural control architecture is proposed in this
paper, which incorporates prescribed performance constraints
with state and input constraints at the joint velocity level.
First, the joint velocity constraints are implemented via an
invertible nonlinear map to transform the constrained system
state into a new set of unconstrained variables. This trans-
formation ensures that the bound constraints are rigorously
adhered to during the solution process, distinguishing it from
the approaches proposed in [14], [15], and [17] that provide
no such formal guarantees, especially in the transient state.
The proposed model further incorporates suitably prescribed
performance constraints, which guarantee desired tran-
sient and steady-state performance characteristics, and have
been shown to deliver prescribed performance for various
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dynamical systems [19], [20], [21], [22]. Prescribed perfor-
mance control ensures that the system forces the tracking
error to converge to a small residual set with a convergence
rate greater than or equal to some predefined value in such
a manner that the overshoot does not exceed a predefined
limit. The proposed model uses a convex optimization frame-
work to enforce both the bounds on the state and the input,
and the prescribed performance constraints simultaneously.
Combining these approaches and incorporating them within a
quadratic program further ensures that the solutions obtained
from the proposed model are optimal in accomplishing the
task objective. In particular, the optimization framework is
designed with the aim of enforcing bounds on the mathe-
matical range of the solution, which is in contrast with the
ZNN-based optimization model proposed in [23], which does
not impose any bounds on the system state/input. Moreover,
the proposed framework is used to impose explicit expo-
nentially convergent dynamic bounds on the residual error
as opposed to the study in [16], where only static bounds
are imposed on the tracking error and thus cannot guaran-
tee desired transient and steady-state performance. Theoret-
ical analysis is undertaken to demonstrate the stability and
convergence properties of the proposed scheme. Complex-
ity analysis is also undertaken to demonstrate the compu-
tational efficiency of the proposed model as compared to
leading alternative designs such as [14], [24]. Simulation
and experimental studies are carried out with a KUKA LBR
ITWA 14 R820 to show the efficacy of the proposed models
for path tracking applications in redundant manipulators with
bounds on the joint velocities. The suitability of the proposed
model for fault-tolerant trajectory tracking is then demon-
strated in simulation and experiments in the presence of mul-
tiple joint failures. Note that this approach differs from the
previous approaches proposed for fault tolerance such as [24],
in the sense that it incorporates limits on the state/input of
the system. Further, the presence of prescribed performance
constraints and the inclusion of formal guarantees for rigor-
ous adhesion to bound constraints distinguishes it from the
fault-tolerant approaches proposed in [25], [26], and [27].
To the best of the authors’ knowledge, no other study has
focused on the constrained resolution of redundant manipu-
lators that delivers prescribed transient and steady-state per-
formance of the tracking error within an optimal framework.

The main contributions of this paper are summarized
below.

i) A novel QP-based neural control framework is intro-
duced for redundancy resolution with bound constraints at the
joint velocity level. To the best of the authors’ knowledge, this
is the only framework that incorporates both prescribed per-
formance and joint velocity constraints within an optimiza-
tion framework for redundancy resolution in fault-tolerant
trajectory tracking applications.

ii) The proposed model relies on an invertible nonlinear
map to transform the constrained system state into a new
set of unconstrained variables. This transformation formally
guarantees that the proposed model will rigorously satisfy the
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joint constraints both during the transient phase and in the
steady-state, which is in contrast with most previous studies.

iii) Further, the proposed model also incorporates pre-
scribed performance constraints which allow the proposed
model to exert control over the transient and steady-state
behavior of the system error, thus leading to superior perfor-
mance in contrast with previous studies.

iv) For robotic trajectory tracking applications, the adop-
tion of the proposed model is shown to deliver superior
trajectory tracking performance in comparison with leading
alternative designs both in the presence and absence of mul-
tiple joint failures.

The rest of the paper is organized as follows. Section II
describes the problem formulation for redundancy resolution
with bound constraints at the joint velocity level. Section III
presents the analytical formulation of the proposed model
with the associated theoretical analysis. The application of the
proposed ZNN models to KUKA LBR ITWA 14 R820 for tra-
jectory tracking in the presence and absence of joint failures
is shown in Section IV. A detailed performance comparison
study with leading alternative designs is also included. The
conclusions of the paper are presented in Section V.

Il. PROBLEM FORMULATION

In this section, the problem of redundancy resolution for sys-
tems involving inverse kinematics with bound constraints on
the joint velocity is introduced. The problem of redundancy
resolution can be stated as follows. Given a desired path
rqg € R™ of the end-effector in the task space, the required
joint angles @ € R”" in the joint space have to be determined.
The solution to this problem can be achieved by solving the
forward kinematics of the manipulator, which is given as

fO) =rq, ey

where f(-) : R" — R™ represents the forward kinematic
mapping. Due to the nonlinear nature of the mapping, it is
very difficult to solve (1) by finding the inverse mapping
for f (). Hence, this problem is usually solved at the velocity
level. Redundancy resolution at the velocity level [28], [29],
[30] with bound constraints is achieved by the solution of the
time-dependent underdetermined system with the bounds on
the joint velocity given below

J®6)=r . @)
subject to 0~ <0(r)<0™, 3)

where J(0) € R™*" represents the Jacobian matrix, 0(r) €
R™*! represents the joint velocity, andry € R’”X] represents
the desired end-effector velocity. #~ and 6" represent the
constant limits on joint velocity.

Remark 1: This study considers only the bounds at the
velocity level. However, the problem definition can be easily
extended to include limits on the joint angular position level
by making use of dynamic constraints as £~ (¢) < 0(r) <
’§+(t) [31], where the individual components of the dynamic
bounds are defined as & (f)=max{ix, (0, — 0;(7)), éi_},
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$i+(t)=min{/<p(9i+—Gi(t)), éi+}, where 6. and 6;“ represent
the limits on the angular position of the i"" joint, and k, > O is
a scaling factor for the joint limits.

Ill. QP-BASED NEURAL CONTROL ARCHITECTURE

In this section, a quadratic program-based ZNN embedded
with performance constraints is proposed for the solution of
system (2) subject to bound constraints (3) along with the sub-
sequent theoretical analysis to demonstrate the convergence
properties of the proposed scheme. For the proposed scheme,
both the system constraints and the prescribed performance
constraints are included in the formulation via a nonlinear
mapping, and a QP framework is subsequently introduced to
impose both of them simultaneously.

A. CONSTRAINED VELOCITY AND ERROR
TRANSFORMATION

In this subsection, a nonlinear transformation is introduced
to impose the constraints on the state of the system. Subse-
quently, prescribed performance constraints (PPCs) are incor-
porated into a ZNN framework for better transient and steady-
state performance.

In order to ensure that the state of the system remains
within the given bounds V¢ € [0, oc0), a nonlinear transfor-
mation that converts the system state é(t) to an unconstrained
variable x (¢) is given below [21]

0i(t) — 6 eli
TG0 dwen
where n; V i = 1,2, .., n represents the required nonlinear
transformation. Then, by introducing the variables, I' =
[Ci Ty ... T,0" eR™land x =[x1 x2 ... xnl" € RN,
the components of the transformed variable vector x (¢) can
be obtained from (4) as

xi) = In (”—) =In (6?—_9> =Ti6). ()
- ni 9[ — 0;(1)

where T'(§) : R* — R” represents the mapping from the
constrained variable ()(t) to the unconstrained variable y ().
It is straightforward to observe that the transformation I'(é)
is a smooth monotonically increasing function, and hence is
invertible. Consequently, it is evident that while x (¢) remains
bounded within the limits (—oo, 00), the state é(t) remains
bounded between the bounds (6, 87), fulfilling the con-
straints imposed by (3). Thus, the objective of finding the
solution of (2) subject to (3) now translates to driving the
unconstrained variable x(¢) to its desired value.

Introducing the tracking error €(t) = f(0) — rq, and using
a non-negative constant k > 0, the system error is defined as

e(t) = €(t)+ ke(r)
= J(0)0(t) — iq + k(f(0) —rq)
= JOT ' (X)—Fa+k (f ) —1a). (©6)

where T 1(x) : R* — R" represents the inverse mapping
for the transformation I'(#). To improve tracking perfor-

i=12,...,n “4)

Ni
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mance, especially in the presence of multiple joint failures,
we consider the inclusion of the performance constraints to
impose bounds on the system error (6) through the following
transformation [21]

(1) — Xi
IO . L YR 1 SN
Pr — pPI 14 eXi

where n; V i = 1,2, .., m represents the required nonlinear
transformation. p, = poe_’” + poo and p; = —p, represent
the time-varying prescribed performance constraints (PPCs)
on the error function (6). Here, pg and p, represent the
initial and steady-state values of the performance constraints
respectively. A straightforward choice for the parameter pq is
po = |le(0)|] + ko for some user-defined constant kg, and
Poo K po- The constant § scales the convergence rate of the
performance constraints and hence, allows for control over
the system’s transient performance.

Similar to (5), we introduce the vectors ¥ = [X1 X2
v FmlT e RV and T = [ Ty ... T[] € R™<! and
consider the component-wise transformation by using (7) as

o (i N, (6D =) s

where T'(e) : R” — R™ represents the mapping from
the constrained variable (e(?)) to the unconstrained variable
(X (1)). Again, owing to the invertible map I'( X), itis apparent
that the component-wise error function e;(¢) remains bounded
between the bounds (p;, p,) provided that x; remains uni-
formly bounded such that x; € (—oo0, c0) V1 < i < m.
Hence, the rigorous satisfaction of the performance con-
straints is ensured.

B. QP FRAMEWORK WITH JOINT VELOCITY AND
PERFORMANCE CONSTRAINTS
In this subsection, a QP-based neural control architecture is
developed by combining both the joint velocity constraints
and the prescribed performance constraints. Further, a com-
parison study of the computational efficiency is undertaken
relative to the schemes proposed in [14] and [24].

To account for the bounds on the error function, a vector
g(x) is defined as

1 1
g =gxox =[x % -

where o represents the Hadamard product. To satisfy both the
velocity constraints and the performance constraints simul-
taneously, a convex optimization program is formulated by
invoking the invertible transformation (5) as

2] er™ (9

. 1. . , .
arg ming,,, Ex(O)Tx(O) subject to g(x(#)) = 0. (10)

To solve this optimization problem, the Lagrangian function
is expressed as [32]

1 -
L=§xTx+XTﬂxL (11)
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where A = [A; A2 ... Anl" € R™! represents the
Lagrange’s multipliers. The design methodology used in [23]
is adopted to formulate the desired ZNN model. The aug-
mented state vector for the system is given as

y)=[00)T, AT]" e ROXT, (12)
A vector h(y(t), t) is then defined as

h(y(t), t)= (%)T = [(3—3—) %:IT e ROmmx1. (13)

For the solution of problem (10), a ZNN model is formulated
to drive the components of h(y(?), t) to zero as

h(y(t), 1) = —y @(h(y(1), 1)). (14)

where ®(-) : R™" — R™7" represents a vector array
of monotonically increasing odd activation functions, and
y > 0 is a constant that scales the convergence rate of ZNN.
The total derivative of h(y(¢), t) can be expressed as

. oh oh
h(y(t),t) = —y + —, 15
@), 1) Byy+ 2 (15)
where
U ) T d (0L T
oh 5 5 X 8_0 (m—+n)x(m+n)
— = eR
dy 9 (aL\T\ ' ’
(3—5 (5%) ) 0
dh b oh i | (m+myx 1
==l d Y] RO
The ZNN model (14) can be reformulated using (15) as

, an\ 1 oh
y=- (5) (V‘P(h(v(l), 1)+ 5) . (16)

where | represents the pseudoinverse. The neuronal form of
the proposed model (16) can be written as

. dh;
yi=/ZH,-j <y¢>(hj)+8—t’), (17)
j=1

where r = m + n. h; represents the i neuron. I:Iij represents
ij component of the matrix — (%)Jf which acts as a weight
for the neural network. The neural network architecture of the
proposed model (16) is presented in Fig. 1. From (17) and
Fig. 1, it can be seen that the neural architecture representing
the proposed model (16) involves n®> + 2mn + m* + m +
n — 1 additions/subtractions, n% + 2mn + m®> + 2m + n
multiplications, 4m + 5n nonlinear operations and m + n
integral operations. In contrast, the ZNN model proposed
in [14] requires 181 4+ 9mn + m — n additions/subtractions,
187% + 9mn + m + 2n multiplications, m + 2n nonlin-
ear operations, and 3n integrator operations. While as the
VP-ZNN model proposed in [24] requires 3(m? + n® + mg) +
6(mn + mgn + mgm) additions/subtractions, 3(m? + n® +
mZ) + 6(mn + mgan + mgm) + m + n + m, multiplications,
m + n + m, nonlinear operations, and m + n + m, integrator
operations, where m, is the number of faulty joints. Despite
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FIGURE 1. Neural network architecture for the proposed model (16).

the higher number of nonlinear transformations, the number
of addition/subtraction, multiplication and integration opera-
tions is notably fewer than the ZNN architecture developed
in [14] and the fault-tolerant scheme proposed in [24]. Thus,
the proposed model (16) is more computationally efficient
compared to the studies in [14] and [24].

C. THEORETICAL ANALYSIS
In this subsection, the theoretical analysis of the proposed
model (16) is undertaken to prove the global convergence
property of the system (10). To this end, we now have the
following Lemmas.

Lemma 1: The optimization function f (x) = % x | x of the
problem (10) is convex with respect to the state variables ()(t).

Proof: The function f(x) can be expanded as

1 1 &
F=5x"x=52 xi (18)
k=1

2
so that for ij’h element of the Hessian 3231; -, we have,

n = T ry— B 28U9
00;00; (Gi — 9,' )>(m:(1 —ny))

19)

where §;; represents the Kronecker delta function. Note that
ni € (0,1)VY x; € (—o0, 00), so that

1 .
nelo-) = en-H<om(—L—)<o0
2 1 —n;

1 .
mel=1) = en-1>0m(—L_)>0
2 1—}7,'

VOLUME 10, 2022

Q2ni — Din (£ > 0,

T otherwise.
=i

(20)

From (19) and (20), it can be concluded that % >0 Vi=
2
f

1, .., n. Hence, the Hessian B;BéT is a diagonal matrix with

i

positive diagonal elements and hence is positive definite.
Thus, the function f is convex with respect to é(t) [33].
Lemma 2: The constraint function g(x) = % X o x of the
optimization problem (10) is convex with respect to the state
variable (;'(t).
Proof: The component-wise constraint equation is given
as

1
gk=§ﬁ,v1gk5m. (21)

8k

2
The ij element of the Hessian BZBﬁT € R™*™ is then given

as

azgk 1—1k

1+ itk = Din (1)
= 1)
anom  (pr — P>k (1 — k)2

ijk> (22)

where J;j represents the Kronecker delta function. Since X
is uniformly bounded and thus finite with y; € (—o00, 00),
hence 5, € (0, 1). Proceedin% in the same manner as

Lemma 1, it can be shown that aa% >0 VI<k<m
k

2,. . .
Thus, the Hessian z i’T € R™ " is given as
309

82
—JT B (23)
anan

3% gk
9096
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which represents a positive semi-definite matrix. Hence, the
constraint functions g(¥) is convex with respect to é(t) [33].

Theorem 1: Given that the solution 0*(t) exists within
the given bounded limits, the state 0(1) of the system will
converge to the solution *(¢) for the proposed model (16).

Proof: Lemmas 1 and 2 prove that both the objective

function as well as the equality constraints for the prob-
lem (10) are convex with respect to 9(1‘). Hence, (10) repre-
sents a convex optimization problem in 0(r).

Consider the component-wise Lyapunov function, which
is defined as

1
V(h) = Ehl?(t). (24)
The time-derivative of the Lyapunov function is given as

<0, ifh#0

25
=0, ifh=0. (25)

V = hi(Ohi(t) = —y hi(t)p(h;) {

This proves the negative definiteness of V. Hence, as per
the Lyapunov theory [34], all the elements of h(y(¢), t) are
globally convergent to zero. Therefore, the proposed model
solves the problem (10). Hence, the constraint equations have
to be satisfied as

lim gi= lim %= lim e;(t)=0V1<i<m, (26)
t— 00 —00 t—00

where the last equality is satisfied by invoking the fact that
pi(t) = —p (). From (6), as k > 0, it follows that
lim;_s o €(2) = lim;_, o, €(¢) = 0.

Let x* be the value of the unconstrained variable which
satisfies the given system (2) such that

JOT L (x*)t) —rs = 0. (27)

Hence, it follows that
lim J(6) (r—l(x)—r—l(x*)) —0. (28)
11— o0

Thus, we have limooT~1(x) = T~ 1(x*), or
lim;— 0 x(t) = x*(¢) where the last equality is derived by
invoking the one-to-one correspondence of the map r@).
Note that the mapping I'(9) is invertible so that the inverse
mapping T~!(x) is well defined for all time. Moreover,
it is apparent that the unconstrained variable x(¢) resulting
from the proposed model (16) remains uniformly bounded
as 0~ < é(t) < @7Vt > 0. Hence, corresponding to_the
unconstrained variable x *(¢), there exists a unique state ™ (z)
satisfying lim, o0 8(7) = 0% (1), so that lim,_, o J(0)0(t) =
r,and 0~ < @) <0t ve>0.

Furthermore, as the variable x; is uniformly bounded,
we have p;(t) < ei(t) < p,(®)VY1 <i <m, t € [0, 00). This
proves that the proposed model (16) is able to find the solution
of the underdetermined system (2) subject to bounds (3),
which satisfies the prescribed performance constraints.
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IV. VALIDATION

In this section, numerical and experimental validation stud-
ies are undertaken with the proposed model (16) to accom-
plish trajectory tracking on the KUKA LBR IITWA 14 R820
manipulator with physical constraints on the joint velocity.
A detailed performance comparison study with leading alter-
native designs is also undertaken.

A. NUMERICAL RESULTS

In this subsection, path tracking simulations are performed
for the cardioid and tricuspid paths using the proposed
model (16). The simulations are undertaken for both the
fault-free and fault-tolerant scenarios. Then, the effect of
the inclusion of prescribed performance constrains (PPCs) is
demonstrated, followed by a performance comparison of the
proposed model (16) with the ZNN model proposed in [14]
and the VP-ZNN model proposed in [24]. The simulation
results are obtained using MATLAB® 2022a.

1) FAULT-FREE CASE

In this subsection, path tracking simulations are performed
for the cardioid and tricuspid paths using the proposed
model (16) for the fault-free scenario. The simulations are
carried out for a duration of 10 s. The limits on the joint
velocity are specified as

0"=—6"=[0.20.20202020202] rads

The initial joint positions are specified as 0(0) =
[—0.26, 0.29, 0.59, —0.99, 0.49, 0.31, 0.86] rad. The sim-
ulations are performed with a linear activation function,
y = 100, § = 100, pp = 2, k = 10 and pso =
0.005. Figs. 2 and 3 show the simulation results for the
cardioid and the tricuspid path, respectively. In particular,
Figs. 2a and 3b demonstrate the efficacy of the proposed
model (16) in the trajectory tracking of the desired shapes
while ensuring that the states of the system remain within
the specified bounds (Figs. 2¢ and 3c). The tracking errors
are of the order 10~° m for both cases, as demonstrated by
Figs. 2b and 3b.

To further demonstrate the capabilities of the proposed
scheme (16), nonzero initial tracking errors are considered.
In this scenario, it is assumed that the desired initial posi-
tion is different from the actual initial position of the end-
effector. The initial tracking errors are considered to be
[—4,3.5,2.5]1x107% m and [3.3, —3.5, —2.6]x 1072 m for
the tricuspid and cardioid path respectively which accounts
for a significant initial deviation of [19.8%, 17.3%, 21.4%]
and [16.3%, 17.3%, 22.2%] compared to the size of the afore-
mentioned shapes in the Cartesian space. The gain for posi-
tion level error is specified as k = 1 and k = 2 for the cardioid
and tricuspid shapes respectively. The joint velocity limits for
this scenario are taken as

6T=—6"=[030.30303 0303 03] radss

The rest of the parameters are kept the same. The simu-
lation results are shown in Figs. 4 and 5. Figs. 4a and S5a
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8 =100, and y = 100 for the fault-free case with zero initial tracking errors. (a) Simulated motion path. (b) Variation of tracking error ¢(t). (c) Variation of
joint velocities 0(t).
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FIGURE 4. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a cardioid path for the proposed model (16) with k =1,
8 =100, and y = 100 for the fault-free case and nonzero initial tracking errors. (a) Simulated motion path. (b) Variation of tracking error ¢(t). (c) Variation
of joint velocities 6(t).
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FIGURE 5. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a tricuspid path for the proposed model (16) with k = 2,
8 =100, and y = 100 for the fault-free case and nonzero initial tracking errors. (a) Simulated motion path. (b) Variation of tracking error ¢(t). (c) Variation
of joint velocities 0(t).

demonstrate the efficacy of the proposed model (16) in track- The evolution of tracking errors is shown by Figs. 4b and 5b.
ing the desired shapes while ensuring that the states of the These tracking errors eventually converge to an order of
system remain within the specified bounds (Figs. 4c and 5c). 107> m. As is evident from the simulations, an additional

VOLUME 10, 2022 97725




lEEEACCGSS R. Singh, J. Keshavan: Provably Constrained Neural Control Architecture With Prescribed Performance

— — Traced Path 14x10°¢
—— Desired Path
0.94 10}
_ —~
Eoo £}
N T
0.86 2t
0.18 -2 [\
N 0.1
y(m) 0.06048 02 -6 : :
z(m) 0 4 t(s) 6
(@) (b)

FIGURE 6. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a cardioid path for the proposed model (16) with k = 10,
8 =100, and y = 100 with joint failures of 15t,5th, and 6th joint and zero initial tracking errors. (a) Simulated motion path. (b) Variation of tracking error
€(t). (c) Variation of joint velocities 6(t).
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FIGURE 7. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a tricuspid path for the proposed model (16) with k = 10,
§ =100, and y = 100 with joint failures of 15¢,5%, and 6" joint and zero initial tracking errors. (a) Simulated motion path. (b) Variation of tracking
error ¢(t). (c) Variation of joint velocities 6(t).
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FIGURE 8. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a cardioid path for the proposed model (16) with k =1,
8 =100, and y = 100 with joint failures of 15t 5th, and 6th joint and nonzero initial tracking errors.(a) Simulated motion path. (b) Variation of tracking
error €(t). (c) Variation of joint velocities 6(t).
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FIGURE 9. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a tricuspid path for the proposed model (16) with k = 2,
8 =100, and y = 100 with joint failures of 15t 5th, and 6th joint and nonzero initial tracking errors.(a) Simulated motion path. (b) Variation of tracking
error ¢(t). (c) Variation of joint velocities 6(t).

advantage of the proposed model (16) is that it ensures the to incorporating nonlinear mapping for imposing state con-
return of the joint variables to zero values at end of the sim- straints within the optimization framework, which gives pref-
ulation run, thus rendering the proposed approach drift-free. erence to solutions that lie in the middle of the admissible
This property of the proposed model (16) can be attributed region.
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2) FAULT-TOLERANT CASE

In this subsection, path tracking simulations are performed
using the KUKA LBR IIWA 14 R820 manipulator for the
cardioid and tricuspid paths using the proposed model (16)
in the presence of multiple joint failures.

To illustrate the fault tolerance capabilities of the proposed
model (16), the 1%, 5 and 6" joints are considered to be
faulty. To allow for fault tolerance, the joint velocity limits
for the scenario with zero initial tracking errors are set as

9= — 9~ =[10"40.260.260.26 10~* 107+ 0.26] Trad/s

For the faulty joints (joints 1, 5, and 6), note that the
joint velocity limits are set to very small values as
[—10™4, 10~%] rad/s such that the motion for these joints
is practically nonexistent. Figs. 6 and 7 show the tracking
simulation results for fault tolerance with the faulty joints.
In particular, Figs. 6a and 7a demonstrate the efficacy of the
proposed model (16) in the trajectory tracking of the desired
shapes in spite of the three joints being locked. Further, it is
ensured that the joint velocities remain within the specified
bounds (Figs. 6¢ and 7c). The tracking errors are of the order
107> m and 10~°m, respectively (Figs. 6b and 7b) which is
comparable to those obtained for the fault-free scenario.

For the scenario with nonzero initial errors, the joint veloc-
ity limits are set as

9+t=—0-=[10"40.360.360.36 10~* 10~ 0.36] " rad/s

The simulation results are shown in Figs. 8 and 9. Figs. 8a
and 9a demonstrate the efficacy of the proposed model (16)
in accomplishing trajectory tracking of the desired shapes in
presence of multiple joint failures. Figs. 8c and 9¢ show that
the joint velocities remain well within the specified limits.
The tracking errors evolution for both cases is shown by
Figs. 8b and 9b. These tracking errors eventually converge to
an order of 107> m, which is again comparable to the fault-
free case.

3) EFFECT OF PERFORMANCE CONSTRAINTS

This subsection focuses on the effect of the inclusion of
prescribed performance constraints (PPCs) in the proposed
scheme (16). A comparison of the average tracking error
for the proposed model (16) with and without the PPCs is
made using the normalized metric defined over the duration
of simulation as

1 10 )
€m = 3—0/0 (@)1 dt. (29)

where ||.||2 represents the Euclidean norm. The comparison
of the mean tracking error (¢,,) for the proposed scheme (16)
in presence and absence of PPCs is shown in Table 1. It is
observed that the mean tracking errors in the absence of PPCs
exceed the corresponding values in the presence of PPCs by
an order of 10> m for the fault-free case and 10* m for the
fault-tolerant scenario for the case of zero initial tracking
errors. For the case with nonzero initial tracking errors, mean
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TABLE 1. Comparison of mean tracking error ¢y (x 10~4) (m) with and
without the performance constraints.

Path | Proposed (16)(PPCs) [ Proposed (16) (No PPCs)
Zero initial tracking errors

Fault Fault Fault Fault

Free Tolerant Free Tolerant
Cardioid | 0.0037 0.0041 2.655 28.92
Tricuspid | 0.0038 0.0038 3.460 21.61

Nonzero initial tracking errors

Fault Fault Fault Fault

Free Tolerant Free Tolerant
Cardioid 71.10 71.10 73.20 104.83
Tricuspid 54.37 54.34 56.70 69.23

tracking errors in the absence of PPCs still significantly
exceed the corresponding values in the presence of PPCs for
the case with multiple joint failures. However, the apparent
difference is not as pronounced as before due to the presence
of nonzero initial tracking errors which contribute signifi-
cantly to the mean tracking error values. To glean a deeper
insight into the effect of the PPCs for the case with nonzero
initial tracking errors, the corresponding simulation results
for trajectory tracking in the absence of PPCs are shown in
Figs. 10 - 13. It can be seen (Figs. 10b - 13b) that the absence
of prescribed performance constraints consistently results in
a significant overshoot and a non-exponential decay, espe-
cially for the fault-tolerant case, thus leading to significant
degradation of the transient performance. Further, as can be
seen from Figs. 10c - 13c, absence of PPCs leads to a slower
decay rate and larger steady-state errors which results in a
poorer steady-state performance. The performance difference
is drastic in some cases, as seen in Fig. 12a, where the
traced path shape is severely distorted. The superior tracking
error obtained in the presence of performance constraints
is due to the fact that PPCs force the residual error of the
system to exponentially converge to a small residual set at
a decay rate equal to or faster than a predefined rate, forcing
the tracking error to decay faster and achieve lower steady-
state values. Thus, the inclusion of prescribed performance
constraints significantly improves both the transient as well
as the steady-state performance of the proposed scheme (16).

4) COMPARISON WITH RELATED STUDIES

This subsection includes the performance comparison studies
for the proposed model (16) with the ZNN model [14] and
the VP-ZNN model [24]. This is followed by a qualitative
comparison study with previous related studies to show the
novelty of present work.

The performance comparison studies are only undertaken
for scenarios with zero initial tracking error as the ZNN
model in [14] implements trajectory tracking at the velocity
level which cannot compensate for nonzero initial track-
ing errors. Figs. 14 and 15 present the trajectory track-
ing results obtained with the ZNN model [14] and the
VP-ZNN model [24] for the fault-free case respectively.
To illustrate the benefits of the proposed schemes for robotic
trajectory tracking applications, a comparison of the average
tracking error (29) and the average control effort required
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FIGURE 10. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a cardioid path for the proposed model (16) with k =1,
§ =100, and y = 100 for the fault-free case with nonzero initial tracking errors without PPCs. (a) Simulated motion path. (b) Variation of tracking
error ¢(t). (c) Effect of PPCs on norm of tracking errors |||¢||5.

2 !
— — Traced Path x10 T : : . 10"
0.98 — Desired Path 4 — <, i 104
—— € .
€0.94 *é\ 2t €v 1 =0
0.9 - =
x k- 0 e o T 10+
0.86 //
0.3 -2 v/ 1 107
Gas05 05500,
0.1 0.4 . . } L L L s
yamy 03 (m) TR
(@) (b)

FIGURE 11. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a tricuspid path for the proposed model (16) with k =2,
§ =100, and y = 100 for the fault-free case with nonzero initial tracking errors without PPCs. (a) Simulated motion path. (b) Variation of tracking
error «(t). (c) Effect of PPCs on norm of tracking errors |||¢||,.
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FIGURE 12. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a cardioid path for the proposed model (16) with k = 1,
§ =100, and y = 100 with joint failures of 15t 5th and eth joint and nonzero initial tracking errors without PPCs. (a) Simulated motion path. (b) Variation
of tracking error ¢(t). (c) Effect of PPCs on norm of tracking errors |||¢]],.
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FIGURE 13. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a tricuspid path for the proposed model (16) with k = 2,
& =100, and y = 100 with joint failures of 15t,5th, and 6t/ joint and nonzero initial tracking errors without PPCs. (a) Simulated motion path. (b) Variation
of tracking error ¢(t). (c) Effect of PPCs on norm of tracking errors |||¢||5.

to accomplish trajectory tracking is considered for the simulation using normalized metrics as
ZNN [14], VP-ZNN [24] and the proposed model (16). 10 2 3
The average control effort is defined over the duration of U=+ Jo 10117 dr.
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FIGURE 14. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a tricuspid path for ZNN [14] for the fault-free case with
zero initial tracking errors. (a) Simulated motion path. (b) Variation of tracking error ¢(t). (c) Variation of joint velocities 6(t).

0.2

— — Traced Path x 107
—— Desired Path 41

e

0.14 0.6

0.55 </

— €

=

S

—— €
Y

~~
B2 €. ‘
T /'
0 — e E——
AN

O(rad/s)
(=)

.
i
=

o
)

y(m) 0.06 0.45 05 25 5

z(m)

()

4 t(S) 6 g 10

(©

FIGURE 15. Simulation results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a tricuspid path for VP-ZNN [24] for the fault-free case
with zero initial tracking error. (a) Simulated motion path. (b) Variation of tracking error ¢(t). (c) Variation of joint velocities 6(t).

TABLE 2. Comparison of mean control effort u (rad/s) and mean tracking
error ¢m (m) for various control schemes.

Path ZNN [14] Proposed (16) VP-ZNN [24]
Fault-free (u, €m (X 10*4))
Cardioid 0.077, 0.117 0.071, 0.037 0.067, 10.7
Tricuspid 0.100, 16.1 0.071, 0.038 0.066, 7.35
Fault-tolerant (u, €,, (X 10*4))
Cardioid 0.078, 0.325 0.078, 0.041 0.078, 0.345
Tricuspid 0.071, 0.424 0.071, 0.038 0.071, 0.322

Table 2 lists the comparison of the mean control effort and
the mean tracking error obtained using the various models for
the fault-free case and the fault-tolerant case with multiple
joint failures and zero initial tracking errors. It is apparent
that the proposed model (16) has a lower mean tracking error
as compared to ZNN [14] and VP-ZNN [24], which leads to
superior tracking performance. Further, it is evident that the
control effort required for implementing trajectory tracking
using the proposed model (16) is lower than the scheme
proposed in [14] and comparable to the VP-ZNN scheme
in [24]. The marginally lower computational effort required
by the VP-ZNN scheme in [24] is realized at the cost of
greater tracking error compared to the proposed scheme for
the fault-free case, as is observed from Fig. 15. The superior
performance and computational efficiency of the proposed
model (16) can be attributed to the prescribed performance
constraints, which drive the admissible solutions towards the
middle of the admissible region, leading to a lower control
effort and lower error in accomplishing trajectory tracking.
This also helps avoid situations that may lead to possible input
saturation scenarios when the solution ventures close to the
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bounded limits, as can be seen from Fig. 14. In particular,
as observed from Fig. 14a, this leads to the traced path
differing significantly from the desired path for the scheme
proposed in [14]. This deviation from the desired path occurs
due to saturation of states él (1) and ég(t) (Fig. 14c) corre-
sponding to the computed solution by the ZNN model [14].
As is apparent from Fig. 14b, this situation leads to a sudden
surge in errors which leads to deviation from the desired path.
A similar scenario can be seen for the VP-ZNN proposed
in [24], where states 6(7) and 64(¢) show violation of bounds
as the scheme lacks any structure for enforcing velocity
constraints (Fig. 15¢). Again, due to saturation limits, these
desired velocities (which violate the bounds constraints for
this controller) cannot be achieved, leading to input satura-
tion, as seen in Fig. 15c. Again, as before, there is a surge
in tracking error, as seen in Fig. 15b, which leads to a sig-
nificant deviation from the desired path. In contrast, as seen
in the previous section, the proposed model (16) keeps these
joint velocities away from the bounds and avoids any bound
violation leading to superior steady-state performance both
for the fault-free case and the case of multiple joint failures.
Thus, the proposed model (16) clearly offers the advantage
of rigorously combining enforcement of joint velocity con-
straints of ZNN [14] with the fault tolerance of VP-ZNN [24]
in a computationally efficient framework.

A qualitative comparison of the proposed scheme (16) with
related redundancy resolution studies is shown in Table 3.
The QP formulation of the proposed scheme (16) allows it to
synthesize optimal control inputs which distinguishes it from
the schemes proposed in [14], [15], and [17]. The presence of
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TABLE 3. Qualitative comparison of proposed scheme (16) with related
studies.

Method PPCs State Optimal | Position level
Constraints Input Error
Proposed (16) Yes Yes Yes Yes
[14] No Yes No No
[15] No Yes No No
[16] No Yes No Yes
[17] No Yes No Yes
[23] No No Yes Yes
[35] No Yes Yes No
[36] No Yes Yes No

"~ Computer

“Joint 3
™ Joint 2

~Joint 1

FIGURE 16. Experimental setup.

performance constraints allows the proposed scheme (16) to
impose constraints over the residual error and assert control
over the transient performance separating it from other opti-
mal schemes proposed in [23], [35], and [36]. Moreover, the
constraints imposed by prescribed performance constraints
are dynamic in nature which distinguishes the proposed
scheme (16) from [16] where the bounds imposed on the

(a)

()

residual error are static. Further, the proposed scheme (16)
employs nonlinear mapping to rigorously enforce state and
input constraints, as well as prescribe performance which
separates it from the previously mentioned studies. As seen
from this comparison, the proposed scheme (16) is the only
scheme that combines both the state and input constraints as
well as prescribed performance constraints in a QP frame-
work to synthesize an optimal input for trajectory tracking
applications both in a fault-free and a fault-tolerant setting.

B. EXPERIMENTAL VERIFICATION
In this subsection, physical path tracking experiments are
performed for the tricuspid and star paths using the pro-
posed model (16) for both the fault-free and fault-tolerant
scenarios with the KUKA LBR IIWA 14 R820 manip-
ulator, as shown in Fig. 16, with zero initial tracking
errors. The hardware capabilities of the setup used include
the Intel® Core " i7-7700 processor with 32GB RAM
and 1GB Intel® HD Graphics 630 graphics card. The
experiments are performed for a time duration of 10 s.
The initial joint positions are specified as (0) = [—0.299,
0.959, 0.562, —1.242, —0.249, —0.479,0.477]" rad. The
simulations are performed with a linear activation function,
and for parameters chosen as y = 90,6 = 90, pg = 2,
Poo 0.01. The values of the gain parameter k for the
tricuspid and star-shaped paths are set to 1 and O respectively.
The joint velocity limits for the fault-free case are specified
as

0F=—0-=[0.8 0.8 0.8 0.8 0.8 0.8 0.8] rad/s
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FIGURE 17. Experimental results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a tricuspid path for the proposed model (16) with
k =1, =90, and y = 90 for the fault-free case with zero initial tracking errors. (a), (b) Traced end-effector path. (c) Variation of tracking error «(t).
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FIGURE 18. Experimental results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a tricuspid path for the proposed model (16) with
k =1,5 =90, and y = 90 with joint failures of 15¢, 5th and eth joint with zero initial tracking errors.(a), (b) Traced end-effector path. (c) Variation of

tracking error ¢(t).
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FIGURE 19. Experimental results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a star path for the proposed model (16) with k = 0,
§ =90, and y = 90 for the fault-free case with zero initial tracking errors. (a), (b) Traced end-effector path. (c) Variation of tracking error «(t).
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FIGURE 20. Experimental results for KUKA LBR IIWA 14 R820 manipulator for trajectory tracking of a star path for the proposed model (16) with k = 0,
& =90 and y = 90 with joint failures of 15¢,5th and 6t/ joint with zero initial tracking errors.(a), (b) Traced end-effector path. (c) Variation of tracking

error (t).

It can be seen from Figs. 17 and 19 that the manipulator
is able to trace both the tricuspid and star-shaped paths
in a smooth manner for the fault-free case. As seen from
Figs. 17c and 19c, the trajectory tracking errors for both paths
are of the order of 10~* m. For the fault-tolerant scenario, the
1%, 5" and 6" are again assumed to be faulty and the joint
velocity limits are set to

9r=—0"=[10"* 0.8 0.8 0.8 10+ 107* 0.8] rad/s

Again, the manipulator is able to trace smooth tricuspid
and star paths even in presence of joint failures as seen in
Figs. 18 and 20. The errors are again of the order of 10~* m,
as seen in Figs. 18c and 20c.

Clearly, the experimental results above demonstrate the
efficacy of the proposed model (16) for accomplishing tra-
jectory tracking for the fault-free case and the fault-tolerant
case with several joint failures.

V. CONCLUSION

This study proposes and investigates a novel neural con-
trol architecture for accomplishing trajectory tracking of
redundant manipulators with joint velocity constraints. The
novelty of the proposed scheme lies in the synthesis of a
quadratic program framework that combines a nonlinear state
transformation with state and prescribed performance con-
straints to realize drift-free control policies that rigorously
satisfy prescribed velocity and performance constraints. This
framework allows the proposed scheme to provide for-
mal guarantees for the delivery of stringent transient and
steady-state performance. A detailed theoretical analysis is
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undertaken to demonstrate the stability and convergence
properties of the proposed scheme (16). Complexity analysis
reveals the higher computational efficiency of the proposed
model compared to leading alternative designs. Computer
simulations are used to verify the efficacy of the proposed
model in solving the trajectory tracking problem for the
KUKA LBR IIWA 14 R820 manipulator with bounds on
joint velocities both in the absence and presence of joint
failures. These validation studies clearly demonstrate the
superior performance delivered using lower control effort for
the proposed model (16) compared to the alternate designs.
Moreover, the proposed model is shown to realize zero
terminal joint velocities obtained by embedding the non-
linear mapping for imposing state constraints within the
optimization framework. Finally, physical experiments are
carried out to further substantiate the efficacy of the proposed
scheme.

A possible direction for future work is the inclusion of
obstacle avoidance capabilities in the proposed models to
accomplish obstacle-aware trajectory tracking with bounds
on the system state and control input. Moreover, incorpo-
rating a state observer for estimating the system’s Jacobian
online, which could potentially lead to a platform-agnostic
observer-controller framework, would find wide suitabil-
ity in constrained trajectory tracking applications. Finally,
the efficacy of the proposed scheme for trajectory tracking
applications in redundant robotic manipulators alludes to
the suitability of these schemes to other constrained robotic
applications such as visual target tracking and visual servo
control.
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