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ABSTRACT Communication signals that propagate through free space are subject to multi-path interference
due to scattering by various objects in the propagation channel. The effect is especially severe in complex
situations in dense urban environments. To investigate the problem, a typical multi-static detection scenario
is reconstructed under controlled laboratory conditions, from which suitable data sets are created. Data-
driven models are then employed in EDGE computing platforms to profile the scatter centers based on the
subjective manner in which they affect the signals. These have been interpreted primarily based on clustering
algorithm (CA) operations – using a select suite of pre-processing models that effectively tame the variations
in the C-band spatial-temporal data. A subset of the data of interest could then be subjected to an optional,
compute-intensive machine learning (ML) approach. The relative advantages of the proposed method vis-
a-vis an array of conventional schemes are highlighted, while also considering its carbon friendly attribute.
Given the more significant association of the data to antenna radiation patterns, estimation of the latter can
now be performed free of any anechoic chamber set up in a time and cost agnostic manner. The benefit of
this work would lie in the realm of mid-band 5G-NR (and the future 6G) cellular communication systems
deployment, where optimizing the distributed antenna location attributes on time and cost-constrained scales
becomes imperative before any large-scale deployment.
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INDEX TERMS Microwave radio communication, multi-path channels, pattern clustering methods, radio
propagation terrain factors, scattering, signal processing antennas.

I. INTRODUCTION18

The performance of any radio access network (RAN) deter-19

mines how customers experience fifth- and sixth-generation20

(5-6G) radio services and drive the economics of mobile data21

networks. The 5G RAN architecture and air interface support22

diverse, high-performance services and can be configured to23

scale in multiple dimensions (data rate, latency, reliability,24

etc.) depending on the spectrum, technology implementa-25

tion, and deployment choices. The use of modern innovative26
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technology in mission-critical operations, industrial automa- 27

tion and manufacturing revolve around efficient connectiv- 28

ity solutions among large-scale machine-to-machine (M2M) 29

communication devices, pervasive computing and the inter- 30

net of things (IoT) infrastructure for an effective realization 31

of the Industry 4.0 agenda [1], [2], [3]. 32

In various situations that range from terrestrial peer-to- 33

peer transmission to interstellar satellite communications, 34

the primary objective is to transfer information through a 35

propagating channel [4], [5], [6]. A propagation channel has 36

an unpredictable response to radio waves traveling across 37

it. It incorporates undesirable factors that would result in 38
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distortion and scattering in multi-path propagation con-39

tributed by line of sight (LoS) and non-LoS objects [7].40

The presence of scatter centers in the propagation chan-41

nel would result in distorted reflect- or refract-type radio42

signals along several directions as defined by the type of43

interaction and physical properties. Such random events lead44

to severe deterioration in the signal quality on the receiver45

side.46

Effective and reliable communication shall factor against47

the significant amount of additive noise acquired by the48

receiver antenna. Hence, it is paramount to characterize the49

channel quantitatively and qualitatively. Defining a robust50

model for the scatterers has been a considerable challenge.51

Typical schemes that have been adopted in such a context are52

the following:53

1) A model is defined using analytical formulations or54

conducting channel measurement campaigns. These55

approaches have inherent advantages as they rely56

on a deep understanding of the system based on57

well-established scientific principles [4], [5], [6], [7].58

2) Jie Zhou et al. [8] used a generalized three-dimensional59

(3-D) scattering model that considered the transmitter60

placed at the center of a 3-D spheroid-shaped region.61

The scatterers are assumed to be uniformly distributed62

within the radius of this region. The work led to the63

development of a model that performs significantly64

better when compared to previously developed 2-D65

models.66

3) A geometrical model was developed by Lu et al. [9],67

and simulations were carried out using different artifi-68

cial terrain databases.69

4) Various model-driven approaches have been proposed70

[10], [11], [12] for radio signal communication in71

indoor and outdoor environments to characterize the72

propagation channel.73

5) The scatterers are assumed to be uniformly distributed74

along the path of the communication channel. Given the75

inherently empirical nature of such schemes, finding76

a suitable model and refining it until it produces the77

desired results is often tedious [13].78

6) The scattered signal magnitude from various types of79

absorber materials in the propagation medium depends80

on the morphology and incident angle [14].81

Diffuse scattering models have been extensively invoked in82

the C-band and mmWave regions to explain signal distor-83

tions such as path loss, delay spread and cross-polarization84

ratio in indoor propagation environments [15], [16]. The85

practical interpretations are given based on ray tracing (RT)86

approaches. The signal interacts with various objects in the87

medium, each with a unique surface scattering coefficient.88

An effective combined, and hence diffuse, representation of89

the various such incidents is measured at the receive side. It is90

shown to agree with the simulation results based on the RT91

schemes. The scattered signal magnitude from various types92

of absorber materials in the propagation medium depends on93

the morphology and incident angle [14].94

Scattering-induced multipath signals are closely identified 95

with the concept of indirect far-field measurement, wherein 96

the complexities in RF testing would scale directly with 97

the properties of individual scatterers. All such interactions 98

result in a marked departure from the plane wavefront def- 99

inition integral to the measurements conducted at a length- 100

ier LoS separation classified as the Fraunhofer distance 101

[17]. Extracting accurate multipath components from channel 102

measurements is an essential and distinguishing factor in 103

simultaneous localization and mapping (SLAM) solutions to 104

multipath-assisted positioning [18], [19], [20], [21] and is 105

based on the operating frequency and bandwidth. 106

II. SIGNIFICANCE 107

The frequency band considered here for evaluation is signif- 108

icant in the context of the 5G new radio (5G-NR) wireless 109

technology in digital cellular networks. Of the two bands 110

allocated for this service, frequency range 1 (FR1) constitutes 111

the mid-band 5G (and the future 6G) in the sub-6 GHz band, 112

considered the ‘‘waterfront property’’ of the RF spectrum 113

for 5G. FR1 offers the furthest reach in terms of negotiating 114

terrestrial obstacles than FR2 (the mm-wave band) [22], 115

hence the best compromise between RF coverage and RF 116

bandwidth. This mid-band spectrum balances coverage and 117

capacity characteristics, establishing itself as a vital player in 118

the global rollout of 5-6G services. 119

A 5-6G network will have to incorporate extensive test- 120

ing that optimizes its performance in an eventual deploy- 121

ment, based on propagation analysis and coverage mapping. 122

This testing process shall also ensure peak performance in 123

the related systems while arraying against other negative 124

attributes such as RF interference, noise and distortions. The 125

3GPPs vision of pervasive 5G communication includes the 126

usage of space-based satellite and airborne high-altitude plat- 127

form station (HAPS) network nodes [23]. Site and channel 128

characterizations for the eventual location of antennas are an 129

elaborate exercise in employing an extensive array of indoor 130

and outdoor test range equipment. 131

According to the 3GPP standard, carrier aggregation can 132

be activated for each cell group [24]. The 5G deployments 133

in FR1 combine multiple LTE carriers with one NR carrier. 134

A vast majority of these networks worldwide use the TDD 135

mode. As most frequency bands worldwide are FDD and are 136

used by LTE, the first 5G NR network deployments would 137

take advantage of these underutilized TDD frequency bands. 138

Hence, the first generation of 5G modems and, subsequently, 139

the first generation of 5G mobile devices (MD) only support 140

the TDD mode for FR1. Not all service providers own spec- 141

trum licenses within a TDD band. To take advantage of 5G 142

with optimized quality of service, to lower latencies and to 143

further address the newmarket verticals (e.g., automotive and 144

industrial), a network operator must transition to standalone 145

(SA) mode [25], in which the 5G RAN is connected to the 146

5G core network across a series of intermediate steps in the 147

deployment. The optimum path an operator follows is based 148
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on a carefully evaluated 5G (and the future 6G) deployment149

strategy.150

Many sub-6 GHz deployments in 5-6G are aimed in the151

C-band; all these shall be operating on a maximum band-152

width of 100 MHz in a 4 × 4 MIMO scheme and a TDD153

modulation type [24]. Each cell group would incorporate154

carrier aggregation as per the 3GPP standards. Given the155

prevalence of FDD in 4G LTE, TDD is likely to be utilized156

under par in the various 5G mobile communication devices157

in FR1. However, another issue with TDD implementations158

is the service providers’ reduced levels of spectrum owner-159

ship (SP). Since peak quality of service (QoS), everything-160

to-everything (X2X) connectivity and reduced latency are161

the hallmarks of operating in transitioning to 5G, the SPs162

would have to deploy a stand-alone arrangement of 5G163

solutions [25].164

Current 5G networks build on decades of experience in165

mobile network design and operation, resulting in competent166

networks with well-established tools, processes, and algo-167

rithms to optimize RAN performance. These traditional mod-168

els are the foundation of good network design [26], [27]. Now,169

however, artificial intelligence (AI) and machine learning170

(ML) technologies are emerging that have the potential to171

radically reshape how 5G networks are designed, built, and172

operated. At the same time, 5G can deliver benefits to AI/ML173

by helping to enable distributed and federated learning [28].174

Recent advances in AI technologies, such as reinforce-175

ment learning and deep reinforcement learning (DRL), can176

establish a feedback loop between the decision-maker and177

the physical system. The decision-maker can iteratively refine178

its action based on the system’s feedback to reach opti-179

mality eventually. DRL can be applied to address several180

emerging issues in communication and networking, including181

adaptive modulation, wireless caching, data offloading, and182

so on [29].183

Deployment of mainstream AI or ML algorithms in real-184

time applications has unique and conflicting needs. It requires185

high-performance computing (HPC) using optimized CPUs,186

advanced GPUs, flash memory NVMe drives, and high-187

bandwidth interconnects. Simultaneously, it also requires that188

this HPC capability be:189

–Compact enough, for easy installation in vehicles, air-190

craft, ships, trailers, and the like.191

–Rugged enough, to endure and survive harsh conditions192

–Vibration, shock, temperatures, water, dust, and similar193

threats.194

Nearly all AI and ML compute platforms fail to integrate195

and optimize high-performance computing with compact,196

rugged form factors.197

Classically, AI is viewed as ‘‘intelligence’’ (datasets, learn-198

ing modes, algorithms, etc.) hosted in a centralized cloud and199

has excellent ongoing potential. However, privacy, reliability,200

latency, and power consumption are driving toward on-device201

and edge AI/ML. When combined with connectivity, this is202

sometimes known as the ‘‘connected intelligent EDGE.’’ For203

real-time processing in the 5G RAN or to support low latency204

5G applications, placing ML deployments close to where ms 205

or µs decisions are implemented will be essential. 206

Multi-access EDGE computing is a significant develop- 207

ment in-network functionality where data is processed locally 208

at the edge of the network—close to users and devices— 209

to circumvent congestion. A key benefit is the significantly 210

reduced inference delay. EDGE computers are a new genera- 211

tion of high-performance, modular compute servers that are: 212

–Optimized for ML workloads, such as the highly facile 213

PALE models considered in this work. 214

–Designed throughout for rugged environments. 215

–Scalable by upgrading internal components, such as 216

advanced NVMe flash memory, PCIe 4.0, and high- 217

bandwidth networking that can potentially add additional 218

individual units. 219

The telecommunication network disaggregation that even- 220

tually aims to provide competent resources at the EDGE has 221

an unintended yet lucrative aside to it in enabling a joint 222

integrated multi-access computing solution at these EDGE 223

locations. With the number of such components requiring 224

deployment and management across geographic areas pro- 225

jected to grow exponentially, the communications services 226

providers are looking to transform their networks as capable 227

infrastructure to monetize 5-6G. 228

The current work discusses using certain pre-processing, 229

data-driven algorithms in 5-6G radio network design and 230

optimization. It explores possibilities for applying these tech- 231

niques to current 5G (and the future 6G) air interfaces, mainly 232

in the deployment or test phases, to generate immediate 233

improvements to systems. A forecast has been made on 234

the emerging 3GPP AI/ML framework to shape the devel- 235

opment of radio access technologies over the longer term. 236

In particular, the work references federated learning [30] – 237

a process that creates a collective model from data sourced 238

across distributed learning nodes. Results from the study 239

shall demonstrate the ability of lightweight-compute-device- 240

based ML models to contribute unique data and efficiencies 241

to the training process and in on-device inference generation 242

for rapid performance improvements. With these rugged- 243

designed EDGE platforms, quick deployment of ML models 244

for real-time ‘‘transportable’’ applications is realized. 245

Recent advancements in computation and the advent of 246

highly efficient clustering algorithms have made it possible 247

to model the propagation channels using an entirely data- 248

driven approach. This task has been attempted using a select 249

band of pre-processing algorithm-lean engines (PALE) that 250

find immediate acceptance in embedded EDGE computing 251

platforms such as MDs and other portable devices. Such 252

lightweight, compact and rugged computing paradigms bring 253

proximity computation to the data sources to enable trade- 254

offs independent, robust, time-sensitive, and acquire-process 255

ability in the information processing resources. The result 256

is an agile decision-making ability regarding the discrimi- 257

nation of scatterer-defined signatures present in the propaga- 258

tion channel. Based on such time-critical operations, a first- 259

order effectiveness of these on-the-fly type algorithms, when 260
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deployed in the exercise of profiling scatterers, has been261

convincingly demonstrated in work reported here from just262

a pre-processing level analysis of C-band spatial-temporal263

data sets. The PALE algorithm shall be positioned ahead of264

the rigorous ML computation tools (not a part of the current265

work) in the process chain. It shall induce the latter to further266

refine the classification process of scatterers from among the267

select subset of data samples that are either of interest or268

concern. The ML models, which thrive in an ecosystem of269

limitless computing resources [31], would be deployed in an270

ad-hoc and rational manner on data that has already been271

tamed of any significant variations by the PALE schemes.272

The thoroughness in the performance by the latter would273

alone suffice in the current context, while they would also274

have an extended role in eliminating misleading patterns in275

the data. Such a possibility could otherwise potentially occur276

due to biases being introduced in the analyzed outcomes of277

classification because of the ‘‘learning’’ process involved in278

the ML schemes [32]. The advantage of these algorithms279

over traditional model-driven approaches is that they are280

adaptive to changes in the environment and various types of281

inputs while also enabling a quick estimation of the dynamic282

channel parameters.283

Scattering-induced multipath signals are closely identified284

with the concept of indirect far-field measurement, wherein285

the complexities in RF testing would scale directly with the286

properties of individual scatterers. All such interactions result287

in a marked departure from the plane wavefront definition288

integral to the measurements conducted at a lengthier LoS289

separation classified as the Fraunhofer distance [17]. The290

work reported here aims to characterize the propagation chan-291

nel to create a comprehensive profile of as many of the scat-292

terers in a given signal space. Applying the concept of image293

theory (IT) [33], [34] to the conventional RT calculations,294

for a predefined pair of endpoints (e.g., TX and RX), the RF295

signals are aimed in all directions, usually with fixed angular296

spacing. The RF probes can be used to derive details about the297

paths between any such pair of points and, hence, determine298

the exact locations where interactions with smaller objects299

(thereby incurring changes in the calculation of path length300

and phase) will occur. The approach is repeated for each301

subsequent pair of TX-RX points in the calculation as part302

of a complex scene deconstruction exercise. The data set for303

this work is processed using the proposed methodology and304

was acquired in a controlled laboratory environment. The task305

can be attempted convincinglywith the approach suggested in306

this work, augmented by space-based signal coverage models307

driven by the need for enhanced situational awareness.308

The topical contributions identified in the proposed work309

are as follows:310

1) A comprehensive characterization has been conducted311

on the channel-defined scatter centers in the mid-band312

5G (and the future 6G) spectrum with the deployment313

of the PALE-on-EDGE computing resource. In the real314

world, there would be multiple such mobile communi-315

cation node equivalents to help realize a deconstruction316

tomography of the propagation channel. The proposed 317

technique has a potential future use case in passive 318

RaDaR detection technology. 319

2) The work projects the PALE pre-processing pipeline 320

approach as a viable alternative to the mainstream 321

and resources-demandingML/DL algorithms, given its 322

tremendous ability to tame the variations in C-band 323

spatial-temporal big data, resulting in a much dimin- 324

ished relative carbon footprint for the proposed activity. 325

3) Identification of distributed EDGE acquisition and 326

computation resources, much-touted in recent times 327

as a ubiquitous technology tool - in a first-of-a-kind 328

quantitative way, as the most suitable solution in place 329

of conventional time- and cost-extensive facilities such 330

as the anechoic chamber for location and operation of 331

mobile and base stations in dense, urban environments. 332

The article is organized in the following manner: a report 333

on the prior art study and an extensive discussion on the 334

experimental setup and hardware specifications are made, 335

leading to the details about data acquisition and specifi- 336

cations. A description of the topical pre-processing algo- 337

rithms that adopt various clustering techniques to analyze the 338

spatial-temporal data is given. The salient interpretations of 339

prominent scatter signatures are then obtained based on the 340

progressive understanding gained from deploying the special 341

algorithm on the data set, presented in extensive results and 342

discussions. The benefits of the proposed scheme are laid 343

out based on analyses involving a wider gamut of parameters 344

identified to rate its performance against the conventional 345

methods and include the relative carbon footprint during 346

computation. The paper concludes on a poignant note by 347

identifying potential impacts that this research work shall 348

have across a wide gamut of 5-6G technologies related to 349

antennas and RF system design, deployment and operations. 350

FIGURE 1. Indoor floor map of the SIERS research laboratory.

III. METHODOLOGY 351

A. EXPERIMENTAL SETUP 352

The indoor floor map of the laboratory is depicted in 353

Figure 1. It gives an overview and layout of the test 354
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equipment, vis-a-vis the diverse range of scattering centers355

such as furniture and civil infrastructure. Their role as pre-356

dominant scatter centers is based on results that analyze357

the experimental data obtained in a generic, representative358

physical design of the laboratory, akin to a practical mid-band359

5-6G signal propagation scenario.360

As three deployed units of the type VERT2450, omni-361

directional linear dipole antennas [35] have dual-band fre-362

quency responses (2.4-2.48 GHz and 4.9-5.9 GHz), and a363

gain of 3 dBi, was used in this experimental setup. One364

antenna was assigned to the transmit (TX) side, and two365

more antennas were with the receive (RX) channels. One366

receiver-side antenna (RX-1) was placed in direct LoS with367

the transmitter antenna, while RX-2 was placed at variable368

angles (θ ) to the bore-sight alignment.369

The IT technique [33] has been applied with varying levels370

of success in the conventional antenna test and analysis pro-371

cess to estimate the influence of the ground plane reflections.372

This fundamental idea has been adopted in the current work,373

with the stark difference being replacing the large number374

of such transmitters defined along the ground plane with375

the replaceable off-ground receivers. The radiation scattered376

from spatially distributed objects in the channel would be377

effectively detected due to this tomographic procedure. The378

antenna arrangements in the experimental setup shown in379

Figure 1 were used to detect and acquire spatially varying380

signals from preferential scatterers at different locations. The381

off-boresight angle (θ) was changed from 15◦ to 60◦ in382

increments of 15◦.383

FIGURE 2. Experimental setup for C-band tomography: (a) TX-USRP;
(b) TX antenna and stepper motor mount; (c) Arduino driver board;
(d) RX-2 antenna and movable platform; (e) NI PXIe chassis with
controller and USRP interface; (f) RX-USRP; (g) R-Pi SBC as the EDGE
computing platform; (h) RX-1 antenna and the boresight-aligned
platform; SMA connectors and cables are used to enable a link across the
relevant device pairs.

The TX-RX arrangements used in the experiment, shown384

in Figure 2 (referenced to the South-East section of the lab as385

in Figure 1), employ the universal software radio peripheral386

(USRP) device as a software-defined radio (SDR) platform387

to provide an integrated hardware and software solution388

for rapidly prototyping the high-performance wireless com-389

munication system. Each of the two National Instruments’390

(NI) USRP-2954R [36] is a tunable RF transceiver in the391

frequency range 10 MHz to 6 GHz, with a frequency step 392

less than 1 kHz. The Frequency accuracy is based on a GPS 393

disciplined oven-controlled crystal oscillator (OCXO). The 394

USRP has a total of 2 Tx and 2 Rx channels, and can realize 395

a maximum instantaneous real-time bandwidth of 160 MHz. 396

The maximum I/Q sample rate is 200 MS/s, and the 16-bit 397

DAC has a spurious-free dynamic range (SFDR) of 80 dB. 398

On the Tx side the maximum output power (Pout) can range 399

from 50-100 mW, while the Rx side has a maximum input 400

power (Pin) of -15 dBm and a noise figure of 5-7 dB. The 401

USRP device has a large Xilinx Kintex-7 (410T) FPGA in 402

a half-1U rack-mountable form factor. The Kintex-7 FPGA 403

is a reconfigurable LabVIEW FPGA target that incorporates 404

DSP48 coprocessing for high-rate, low-latency applications, 405

with a flexible hardware architecture and the LabVIEW uni- 406

fied design flow [37]. 407

The NI PXIe-8374 is the PXIe-MXI Express Interface Kit 408

for connecting the two USRP hardware units to the PXIe- 409

1082 chassis. The latter has 8 reconfigurable add-on slots and 410

features a high-bandwidth backplane to meet a wide range 411

of high-performance test andmeasurement application needs. 412

The overall system is controlled using a PXIe controller that 413

operates in the LabView environment. The NI PXIe-8880 PCI 414

eXtensions for instrumentation (PXI) Express/CompactPCI 415

Express embedded computer [38] is a high bandwidth sys- 416

tem controller that integrates standard I/O features in a sin- 417

gle unit by using state-of-the-art packaging. Combining an 418

NI PXIe-8880 embedded controller with a PXI Express- 419

compatible chassis, such as the NI PXIe-1082 has resulted 420

in a fully PC-compatible computer in a compact, rugged 421

package. By taking advantage of PCI Express technology 422

in the backplane, PXI Express increases the available PXI 423

bandwidth from up to 132 MB/s to up to 48 GB/s for a more 424

than 60x improvement in bandwidth. The standard I/O on 425

each module includes one DisplayPort 1.2 video port, four 426

high-speed USB 2.0 ports, two high-speed USB 3.0 ports, a 427

PCI-based GPIB controller, two Gigabit Ethernet connectors, 428

a reset button, and PXI Express triggers. The NI PXIe-8880 is 429

a modular PC in a PXI Express 3U-size form factor, and has 430

an Octa-Core Intel R© Xeon R© E5-2618L v3 processor, triple 431

channel DDR4, 1866 MHz memory, all the standard I/O, and 432

an integrated sold-state drive. 433

NI’s hardware and software work together to facilitate 434

the PXI Express communications system. The LabVIEW 435

application development environment combines with leading 436

hardware drivers such as NI-DAQmx to provide exceptional 437

control of the NI USRP hardware. LabVIEW is a power- 438

ful and easy-to-use graphical programming environment for 439

acquiring data from several different instruments interfaced 440

via the various ports in the PXIe-8880, enabling a meaningful 441

convertion of the acquired data into vital results using pow- 442

erful data analysis routines. 443

The TX-RX system design has been integrated as an SDR, 444

with the application layer defined in the Communications 445

System Design (CSD) suite [39]. It generates and transmits 446

a single tone 100 kHz sine wave signal over a bandwidth 447
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of 400 kHz in the C-band frequency (5.25 GHz). To obtain448

comprehensive coverage for the transmit antenna radiation449

pattern, TX was made to rotate about a vertical axis as450

part of the acquisition process [40]. This automated scheme451

employs an Arduino-driven stepper motor [41], controlled452

asynchronously by a Raspberry Pi-2 (Model B) single-board453

computer (R-Pi SBC) [42].454

Spatial data at enhanced granularity was acquired by spa-455

tially sampling in angular steps of 0.698◦, resulting in 516 dis-456

crete positions (angle steps) over the 360◦ in the elevation457

(E) plane. The data acquired at each angle step had eight458

snapshots comprising 20,000 data points. Similarly, five inde-459

pendent voltage-time series data sets for the various θ were460

obtained and subjected to further analyses.461

For a root mean squared (RMS) value of the transmitter462

voltage (Vrms):463

V 2
rms = V 2/2 = 0.25 V464

and with the transmitter voltage V being 0.707 (V), the465

transmitter power is then given by [32]:466

Pg = V 2
rms/R = 5 mW (1)467

Here, the radiation resistance on the transmit side is468

R = 50 �. The power radiated by the transmitter antenna469

would then be:470

Pt = gt/gt(max) × Pg = 315.6µW (2)471

where gt = 20 dB is the gain of the transmitting side472

amplifier, and themaximumgain gt(max)withwhich theUSRP473

transmits is 32 dB, when there is a full radiated power of474

100 mW. The magnitude of measured power across a dis-475

tance of 0.5 m is typical of the C-band far-field measure-476

ments observed in this work. In practical field situations,477

with mid-band distances spanning 500-2000 m from a 5-478

6G base station (BS), the received power at the various 5-479

6G-enabled MDs is constrained by variables such as Pt,480

the radiation efficiency of the antenna, gt, gr, frequency481

and the channel-driven propagation factor and path loss482

models [43].483

B. SYSTEM-LEVEL SIMULATION484

Deconstructing a practical C-band communication system485

starts with simulations that employ codes developed using486

the LabView CSD Suite. These software codes have been487

deployed to generate raw time-series data representing an488

antenna’s radiation pattern. The codes help implement the489

transmission of a sinusoidal message tone transmission at490

100 kHz modulated using a 5.25 GHz carrier over free space491

and later retrieve the message tone through two receiver492

antennas with spatial diversity. The LabVIEW software codes493

enable an effective integration and control of the USRP494

communication system to realize a robust transmission and495

reception process.496

The data acquisition system consists of the Transmitter and497

the Receiver-cum-Data processor subsystems as the primary498

blocks. Besides this, the other functional blocks support the 499

primary ones by deploying different validation metrics such 500

as RX frequency validation, RX bit error rate (BER) vali- 501

dation (derive robust inferences from the eye diagram), and 502

radiation pattern correlation coefficient. A qualitative confir- 503

mation is obtained from the radiation pattern plot and the 504

received frequency histogram. The carrier signal frequency 505

corresponds to the resonant frequency of the transmit and 506

receiver antennas. The USRP hardware defines a minimum 507

sampling rate of 390-kilo samples per second (ksps); a more 508

reasonable sampling rate of 400 ksps has been considered 509

during the data acquisition phase. 510

The sampling rate has to be set per the theoretical definition 511

of the Nyquist criterion. For a message signal bandwidth of 512

200 kHz to be detected alias-free, a sampling rate of 400 ksps 513

shall suffice. The sampling is done at a much higher rate to 514

improve frequency resolution and signal-to-noise ratio [44]. 515

Oversampling by a factor of 2 has been applied here [45], and 516

this results in a message signal frequency that is a quarter 517

of the sampling rate, i.e., 100 kHz. The USRP hardware 518

allows the transmit and the receive gain to be varied from 519

0 dB to 31.5 dB, corresponding to a transmit power range of 520

50–100 mW. The transmit and receive gain parameters were 521

chosen as 10 dB based on careful observations during signal 522

acquisition. The experiment requires 10 GB of storage size 523

without discarding the data, further reduced to 2 GB. Storing 524

20k samples allows for a frequency resolution as low as 525

400k/20k= 20 Hz [46]. The read and store process consumes 526

2 s, referred to as the dwell time – the halt duration in 527

the transmit antenna orientation at a specific angle. After 528

the fixed dwell time lapses, the transmit antenna is rotated 529

through a further 0.697◦ about a fixed vertical axis to the 530

next angular position. Although it is desirable to decrease the 531

dwell time, optimizing the total duration of data acquisition 532

(to accommodate any potential variability in the ambient 533

parameters), lowering below 2 s impacts the quality of radia- 534

tion patterns recorded. The quality aspect was inferred from 535

the signal-to-noise ratio (SNR) estimated during raw data 536

processing. The primary data was acquired at fc = 5.45 GHz, 537

and a periodic switching of the receiver to 2.45 GHz was 538

done to obtain data as part of a frequency diversity analysis at 539

angles of 0◦, 90◦, 180◦, and 270◦. The read-and-store process 540

was repeated for the remaining angles until the transmit 541

antenna completed a full rotation. 542

C. PORTING THE DATA 543

MATLAB R2019a was used for data processing and anal- 544

ysis in this research work. The five independent data sets 545

employed in this analysis each had a size of 1 GB and 546

comprised 4096 rows and 20,000 columns. The EDGE com- 547

puting hardware for data processing was the R-Pi SBC with 548

a Quad Core 1.2 GHz ARM Cortex-A53 64-bit processor 549

with 1 GB RAM; the Broadcom VideoCore IV at 250 MHz 550

GPU; and Debian 9 version of the Linux kernel 4.19 based 551

R-Pi operating system. 552
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D. DATA PRE-PROCESSING553

The received power was determined by extracting the magni-554

tude of power at the frequency of the message signal from a555

power spectrum of the voltage-time series data.556

The reference data regarding antenna radiation patterns557

were obtained by consulting the manufacturer’s datasheet.558

To match the nulls of all the possible spatial configurations559

with the reference data set, the angular position at which560

there was a minimum detected power was identified [47].561

The successive data points were then shifted to coincide with562

the minimum power transfer angle, as depicted for the case563

of a 60◦ off-boresight radiation pattern in Figure 3, with 0◦564

assigned as the reference boresight alignment axis. In all565

further analyses, this angle-shifted data was used.566

FIGURE 3. Off-boresight detection at θ = 60◦ for boresight-aligned
antenna radiation pattern.

The theoretical value of received power is determined567

using the well known Friis radio link (FRL) equation [48]:568

Pr(th) = PtGrGt

(
λ

4πr

)2

= 0.26µW (3)569

Here, Pt is determined from equation (2) to be 260 nW,570

with Gr = 10 dB as the gain of the receiver antenna,571

Gt = 1 dB as the gain of the isotropic transmitter antenna,572

λ = 0.0571 m being the wavelength of the transmitted signal,573

and the far-field distance between the transmitter and receiver574

is determined to be r = 0.50 m.575

The received power was converted into the decibel scale576

to obtain Ri(exp) [49]. In effect, this is the difference between577

the experiment-based value for signal power determined from578

the power spectrum of the C-band signal (Pi(exp)) and the579

theoretical value of the received power as defined by the FRL580

equation (Pr(th)) [43].581

E. FINDING RESIDUALS582

Themanufacturer’s data sheet was consulted for the reference583

data regarding antenna radiation patterns. The residuals were584

determined and subjected to further analyses to detect and585

characterize the scatterers. Residuals indicate the degree of586

variation in the experimental data to the reference data. Such587

residuals are computed by: 588

Ri = Ri(exp) − Dref (m) (4) 589

The first term on the right is the experimental received 590

power value in dBi, and the second corresponds to the refer- 591

ence power value obtained from the antenna manufacturer’s 592

datasheet. The variation observed in the residual values is 593

primarily attributed to the influence of scatterers present in 594

the propagation channel. 595

FIGURE 4. Residual plot for off-boresight detection at θ = 60◦.

Polar plots, like the one shown in Figure 4 for the case 596

of a 60◦ off-boresight orientation in RX-2, depict the angu- 597

lar distributions of all such residuals. Five more residual 598

plots were generated in a polar reference frame, eventually 599

revealing the angular distributions and characteristics of the 600

scattering centers in terms of variability in the magnitudes of 601

such residuals. 602

IV. METHODOLOGY 603

A. DATA SETS 604

Two different ways were identified for analysis of the exper- 605

imental data: 606

1) By taking the complete 4128 residual data per data set 607

while considering all eight snapshots for each spatial 608

position at once (516 spatial positions × eight snap- 609

shots per spatial position = 4128 residual data points 610

per data set). 611

2) Residual data with 516 points by taking one snapshot 612

for all the spatial positions (516 spatial positions× one 613

snapshot = 516 residual data points). There are eight 614

such snapshots per data set. For simplicity, the analysis 615

considers every 4th snapshot in each dataset. 616

In all subsequent analyses, approach (1) was chosen to pre- 617

clude any loss of information in the experimental data. 618

B. CLUSTERING ANALYTICS 619

An exercise classifying scatter centers is defined fundamen- 620

tally based on their interaction with the C-band signals. The 621

scattering centers’ primary classification is either an absorb- 622

ing or a reflecting type. While the former would diminish 623
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the signal amplitude, the latter would leave a constructive624

attribute in the signal amplitude. In order to analyze the resid-625

uals, the K-means clustering technique has been employed as626

the first in a series of pre-processing tasks that would classify627

the residual data into ‘n’ clusters based on diversity in the628

dataset.629

K-means belongs to a class called partitional clustering630

and has been chosen as the reference unsupervised learning631

method for data classification considering the diversity and632

size of the data being studied. The eventual outcomes of anal-633

yses would have a particular bearing on the study’s specific634

context [50]. Besides, this data-driven algorithm is also one635

of the straightforward yet most robust when implemented for636

the dataset considered in the current work. The method aims637

at discovering inherent patterns in the data sets based on a638

measure of similarity [51].639

The algorithm developer must define the number of clus-640

ters ‘n’ and their respective centroids. The initialization of the641

centroids is crucial since the algorithm is susceptible to the642

choice of starting points [52], i.e., positioning the initial cen-643

troids causes different clustering results. The scheme adopted644

to address the initialization problem had been to determine645

the initial centroid counts, using the arithmetic mean formula,646

and locate them such that the distances between them is the647

maximum [53]:648

qi =
1
M

M∑
j=1

pj (5)649

where j is the number of objects in cluster, the object values in650

a cluster are denoted by points p that have the coordinates (p1,651

p2,. . . ., pj), and the cluster centroids q have the coordinates652

(q1, q2,. . . ., qj). The task would be to minimize the sum653

of squared Euclidean distances between the points in the654

cluster referenced to the centroid of that cluster. The squared655

Euclidean distances for an n-dimensional Euclidean space are656

defined as [54]:657

d2 (p, q) =
n∑
i=1

(pi − qi)2 (6)658

In order to extract all possible qualitative signatures of the659

potential scatterers from the dataset through clustering, it was660

necessary to determine the optimum number of clusters in the661

dataset. Applying convergence criteria such as a minimum662

in the data points’ reassignments, centroid definitions, and663

decrease in sum-of-squared errors (SSE), the evident exis-664

tence of more than three types of scatterers in the propagation665

channel had led to the choice in value of n as 3. Power and666

spatial domain data were considered subsequently to make667

the analysis even more effective. Since the centroids were668

initialized randomly for each value of k , to determine the669

optimumnumber of clusters, iterative analysis usingK-means670

clustering was done with different values of k , followed by a671

silhouette analysis performed on the output of the K-means672

clustering algorithm.673

1) SILHOUETTE ANALYSIS 674

Silhouette analysis is used to understand the degree of simi- 675

larity among the various object in a cluster, i.e. cohesiveness, 676

comparedwith those in other clusters indicative of divergence 677

[55]. While most performance evaluation methods need a 678

training set, the Silhouette analysis does not require a training 679

set to evaluate the clustering results making it more appro- 680

priate as a clustering task in the present study. The values 681

of such metrics in the silhouette analysis range from −1 to 682

+1, with −1 indicating the worst possible clusters and +1 683

indicating the best possible clusters. The silhouette width 684

for every data point in the cluster is calculated using the 685

expression: 686

S =
1
n

n∑
i=1

(bi − ai)
max (ai, bi)

(7) 687

Given a cluster, ai is the average of distances within the 688

clusters, and bi is the minimum nearest cluster distance, i.e., 689

the distance to the point in the adjacent cluster. The greater an 690

element’s S-value (more positive), the higher its likelihood of 691

being clustered in the correct group. Elements with negative 692

S are more likely to be clustered in wrong groups, and the 693

ensemble average within a dissimilarity is more significant 694

than between dissimilarities. Only those clusters with average 695

silhouette scores greater than a certain threshold are consid- 696

ered to have exhibited strong structures that are discernible in 697

the input data [55]. 698

2) ITERATIVE K-MEANS CLUSTERING 699

Silhouette analysis can also be used to determine the opti- 700

mum number of clusters by iterating the K-means clustering 701

analytics process for different numbers of clusters, k , say 702

from 1 to 30. The variation of k with the average silhouette 703

value can then be studied, and the value of k that results in the 704

highest average silhouette value can be considered the most 705

optimum clustering outcome. 706

One observation about this approach is that the centroids 707

are initialized randomly for each value of k . The most opti- 708

mum cluster is not considered for the computation of the 709

silhouette value, and the resulting average silhouette value 710

is not the best possible value for that number of clusters: 711

even if clustering is repeated for the exact value of k , 712

such as for n = 5, the resulting clusters are different each 713

time. The method employed has been to iterate clustering 714

multiple times for each value of k , say 20, and find the 715

most optimum cluster by selecting the cluster with the low- 716

est Euclidean distance [56]. Each time the clustering pro- 717

cess iterates, the centroids are randomized within the range 718

of the dataset, ensuring that all possible combinations get 719

explored. While this iterative approach is not guaranteed to 720

deliver the clustering that globally minimizes within-cluster 721

variation, the algorithm nonetheless ensures that the most 722

optimum cluster for that particular value of k is always 723

selected, from which the average silhouette values can be 724

computed. 725
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3) K-MEDOIDS CLUSTERING726

K-means clustering algorithm is sensitive to outliers, i.e. the727

mean centroid is pulled towards the side with the higher728

value of elements. Although the silhouette value obtained729

from the K-means clustering [56] indicates good clustering,730

the centroids in the clusters are not within the dataset. The731

K-medoids clustering approach has been used in place of the732

K-means clustering to correct this situation. In K-medoids733

clustering, objects in the datasets define the centroids instead734

of their mean values in a cluster [50]. The algorithm is thus735

immune to outliers since the centroid would always remain736

at the center of the dataset [57]. Instead of assuming that the737

scatterers in the propagation channel would belong to any738

one among the three categories of scatterers, i.e., absorbing,739

neutral or reflecting, it is appropriate to conclude this property740

from the available dataset. The K-medoids approach, while741

still unable to achieve a global minimum, generally returns742

a higher value of the SSE at the expense of increased com-743

putation. It shall enable a robust decision on the optimum744

number of clusters and, hence, identify the numbers and types745

of scatterers in the propagation channel.746

4) ELBOW METHOD747

The Elbow method is one of the heuristic methods used748

to determine the optimum number of clusters. The within-749

cluster-sum-of-squares (WCSS), ‘J’, is a measure of the sum750

of the square of distances of each data point to their respective751

centroids. WCSS is defined by [58]:752

J =
k∑
i=1

∑
x∈Ci

|x − mi|2 (8)753

where ‘x’ is the element of the cluster Ci; mi is the centroid754

of cluster Ci (the mean vector of all the data points in Ci); and755

k is the number of clusters |Ci|. When k is less than the opti-756

mum number of clusters, the decrease in WCSS is more con-757

siderable. As k increases from i = 1 onwards, J progressively758

decreases, essentially indicative of an increase in the degree759

of clustering in the dataset. When k exceeds a particular value760

that is more than the one for the optimum number of clusters,761

any further decrease in WCSS is diminutive, and there is no762

further improvement to the degree of clustering, indicative763

of a convergence. The WCSS characteristics graph shows a764

distinctive feature that resembles an ‘‘elbow’’. The value of765

k for this reasonable decrease in the reduction of WCSS is766

considered the optimal number for a given cluster. The value767

of k at the ‘elbow’ is taken as the optimum number of clusters768

[59], and the iterative analysis is considered complete.769

5) CORRELATION COEFFICIENT770

In order to understand the variability of clustering across the771

angular off-boresight datasets (xi for θ = 15◦, 30◦, 45◦ and772

60◦) and to correlate them with the clusters in the bore-sight773

dataset (yi for θ = 0◦), the correlation coefficient has to be774

determined. The correlation coefficient,0, is a measure of the775

linear relationship between these pair of variables (xi and yi)776

and is defined by: 777

0xy =

∑
(xi − x) (yi − y)√∑
(xi − x)2

∑
(yi − y)2

(9) 778

The mean of the variable pair is denoted by and, and 0 779

values range from −1 to +1. Equation 9 can also be defined 780

as the covariance ratio in a pair of parameters to the product 781

of their respective standard deviations in a given sample size. 782

A value of 0 indicates no linear relationship; a value of +1 783

indicates a strong positive linear relationship, while a value 784

of −1 indicates a strong negative linear relationship [60]. 785

The correlation coefficient among the k clusters in each of 786

the angular datasets (taken separately) vs the k’ clusters of the 787

boresight dataset would result in a (k×k’) matrix. Each cell in 788

the matrix corresponds to a correlation coefficient value that 789

is indicative of the degree of linearity that exists between a 790

pair of clusters: e.g., the value in the fifth row, second column 791

cell, corresponds to the correlation coefficient between the 792

fifth cluster in the angular dataset and the second cluster in 793

the boresight dataset. 794

A histogram plot would have to be generated to visualize 795

the distribution in the correlation coefficients with a careful 796

choice of the bin size to enhance the resolution of the his- 797

togram. The correlation coefficient values that fall within the 798

bins were compiled, and the histogram was plotted for each 799

dataset. 800

FIGURE 5. Box plot and its five-number summary.

6) BOX PLOTS 801

Box plots are suitable for visualizing the range and level of 802

data and highlighting outliers, often used in explanatory data 803

analysis. The ‘‘box’’ shows the inter-quartile range (IQR), 804

with the ‘‘whiskers’’ representing the outliers. A generic 805

box plot is a standard way of representing data based on 806

a 5-number summary [61]. This 5-number summary derived 807

out of the box plot, such as the one shown in Figure 5, consists 808

of a minimum (Min); the first quartile (Q1: a quarter of the 809

data is less than this value); the median (m: half of the data is 810

greater than this value); the third quartile (Q3: a quarter of the 811

data is greater than this value); and themaximum value (Max) 812

of the given data set. With outlier data points up to a distance 813

of 1.5 referenced to the respective quartile, box plots give a 814

fair indication when comparing the distributions of several 815

data groups since they summarize the center and spread of the 816

data effectively. The size and degree of symmetry (skewness) 817

of a box plot are directly reflective of the diversity in the data 818

values: the closer the values, the smaller the box size, and vice 819

versa. 820

The data would be quantitatively analyzed, in terms of its 821

variability in received power and angular distribution, based 822
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on two approaches employed in generating the box plots.823

A further consolidation of the results, based on derived trends824

in the 5-number summary, was performed as a culmination of825

the pre-processing efforts. The process also helped convinc-826

ingly demonstrate the presence of regions in angular space827

that would be the most suitable (or otherwise) for locating828

the BS (and MD) units while defining a validated topology829

for operational mid-band 5-6G deployments.830

TABLE 1. Clustering pipeline and context.

Table 1 summarizes the select group of well-established831

PALE contenders employed in a pipeline processing scheme.832

The table lists the seven topical clustering schemes that had833

been identified as the most suitable pre-processing models834

to operate on the data. In the lead up to generate a compre-835

hensive profile of scattering centers, an overview of each of836

the respective constraining parameters and their application837

paradigms in the data set is identified; the last column has838

their citations to their prior art. Analyses of the extensive839

C-band spatial-temporal datum, with the view of efficiently840

classifying their residuals, had used this algorithm group.841

V. RESULTS AND DISCUSSION842

A. RESIDUAL PLOT843

A qualitative differentiation among the scatterers in the prop-844

agating channel was performed on the residual data set using845

K-means clustering analysis. The number of clusters, ‘k’, was846

set to 3 to classify the scatterers as belonging to one of the847

three types, viz. absorbing, neutral or reflecting varieties.848

The clustering analysis was initially confined to the power849

domain for the time-series data while setting aside infor-850

mation belonging to the spatial domain ‘θ’, understanding851

that scattering signatures have a topical representation in852

terms of the detected power variability.Most small magnitude853

variations (below 5σ ) referenced to the ideal data set are854

explained due to the sensitive nature of the detection process.855

The presence of random noise in the neighborhood of the856

experimental space thereby gets detected, e.g. interference857

from MDs. All such data points were discarded from the858

further pre-processing stages. Beyond this point, by choosing 859

the number of clusters to be 3, the average silhouette value 860

for the clusters was determined to be 0.81544, which is a 861

clear indication of robust clustering in the data set. Since only 862

the power domain was given as the input to the clustering 863

algorithm, the algorithm splits the data set into three partitions 864

in the respective domain. Such distinct groupings as outcomes 865

of residuals analysis are interpreted as qualitatively repre- 866

senting the characteristics of scatterers in the propagation 867

channel. 868

FIGURE 6. Residuals grouped in data from: (a) the LoS antenna (RX-1);
and (b) the RX-2 antenna at θ =15◦.

The following observations have been made, referenced in 869

Figure 6: 870

1) The clusters represented by the color code blue are 871

distributed across the data set. Data points in this cluster 872

are distributed evenly and do not show extreme vari- 873

ations. This trend indicates that these residual types 874

do not constitute a definitive signature left by the 875

scatterers of concern in the propagation channel. Their 876

low-profile and ubiquitous presence is discounted from 877

any further active study. 878

2) The clusters represented by the color code red are data 879

points in which the received signal power values are 880
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significantly low compared to that of the reference881

data set. This set of points in the cluster arises due to882

absorbing scatterers which decrease the incident sig-883

nal magnitude upon their interaction. Thus the power884

intercepted by the receiver antenna is also of a reduced885

scale.886

3) The clusters represented by the color code green indi-887

cate the scattering at spatial positions from where the888

received power is relatively high compared to that in the889

reference data set. This set of points in the cluster arises890

due to specular-type scatterers that act as a mirror and891

bounce the incident signal off, resulting in the higher892

power levels intercepted by the receiver antenna from893

those directions.894

As a further stage in this iterative analysis, both the power895

domain and the ‘θ ’ domain values were offered as simulta-896

neous inputs to the K-Means classification algorithm. The897

clusters were initially randomized, and clustering results dif-898

fered each time the algorithm was invoked. The algorithm899

had partitioned the data only in the power domain during900

every subsequent iteration. Contrasting such outcomes with901

the clusters observed in Figure 6, where the variations noticed902

in the latter case of output clusters were primarily attributed903

to the random initialization of centroids, as discussed in904

Section IV-B. Thus, this method is found to be inconclusive905

in precisely defining clusters. However, partitioning the data906

in the power domain is a notable outcome of the qualitative907

analyses related to the property of scatterers in the propaga-908

tion channel.909

B. K-MEDOIDS CLUSTERING910

K-medoids clustering is an iterative analysis approach used to911

determine the most optimum clustering configuration from912

among the residuals. The silhouette score for each value of913

‘k’ was recorded based on an iterative analysis. Silhouette914

plots were then generated for each data set, corresponding to915

the various other off-boresight angles, θ , varying from 0◦ to916

60◦, obtained at 15◦ intervals. As shown in Figure 7(a), with917

k = 3 and for θ = 15◦, 60◦ and 0◦, the first peak silhouette918

scorewas found. However, taking k = 3 is in broad agreement919

with the earlier interpretation of only three types of scatterers920

in the propagation channel, which is likely inaccurate.921

The first peaks in the other data sets, viz. of θ = 30◦ and922

45◦, are observed for k = 6, as seen from Figure 7(b). This923

value is appropriate for the optimum number of clusters, as it924

also agrees with the presence of 6 possibly distinctive types925

of scatterers in the propagation channel. However, this value926

of k cannot remain invariant for all the data sets, given the927

significant dip in the respective silhouette value, which indi-928

cates a limitation in the clustering approach. Therefore, with929

a threshold having been defined as 0.71 for the average sil-930

houette values, which, when exceeded, would count towards931

success in determining the attributes of solid structures in932

the input data [54], the optimum number of clusters was933

hard to determine. The number characteristics showed wild934

fluctuations while their optimum choice needed to maintain935

FIGURE 7. Variation in silhouette values with cluster count for:
(a) θ = 15◦; and (b) θ = 45◦.

a constant value. The experiment was conducted under a 936

near invariant laboratory setup, i.e., amid a steady number of 937

scatterers in the propagation channel. Having to cluster each 938

data set with different silhouette values every time is non- 939

ideal because the scatterers had remained spatially agnostic to 940

the location of the transmitter antenna during the entire oper- 941

ational phase. From all such observations, a near-total lack 942

of any discernible trend was noticeable with the increasing 943

number of clusters. Hence, the silhouette analysis could not 944

determine a definite optimum number of clusters. With vital 945

insight derived from this method, an advanced methodology, 946

viz., the elbow analysis, was then employed for determining 947
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the optimum number of clusters and precise classification of948

the scattering centers.949

C. ELBOW METHOD950

The elbow method involved the computation of the WCSS951

parameter for each value of k . A plot of the number of952

clusters vs WCSS is generated for each off-boresight data953

set. A precise selection of the point of the elbow is crucial954

here since it would be an indication of the location beyond955

which there shall be no further significant improvement to956

WCSS. The gradient of the plot starts to flatten out beyond957

such a point, and performing the clustering analysis on the958

data set beyond such a point that, per se, is indicative of959

the optimal number of clusters shall lead to an increase in960

the computational complexity with no significant rewards.961

It has thus, eventually, become possible to derive the optimum962

number of clusters from the elbow method derived plots. The963

elbow analysis scheme has possibly determined the optimum964

number of clusters, with the elbow set between 6 and 9 for all965

data sets, i.e. the set of points of the elbows is {6, 7, 7, 8, 9},966

as seen in Figure 8 for two different cases of angular pointing.967

The elbow method uses quantitative formulations to968

explain the variation in WCSS with the number of clusters,969

and inference about the point of the ‘elbow’ is subjective. The970

optimum number of clusters was found to be 7, determined971

from similar elbow plots for the various other off-boresight972

angles varying from 0◦ to 60◦, obtained at 15◦ intervals.973

Hence, a median value of 7 in all further analyses would974

not affect the clustering as there is no significant change in975

the WCSS. Moreover, since the interpretation of the elbow is976

qualitative, a value of 7 for the optimal number of clusters is977

acceptable. The number of clusters is enhanced by a factor978

of 2, i.e. to 15, which can accommodate a potential scale-979

up in the number of power levels. The attended classification980

accuracy can ably handle complex propagation scenarios.981

A concomitant increase in the detection accuracy for several982

diverse scatterers in the propagation channel is also enabled.983

Each leaves a unique signature defined as part of its interac-984

tion with the RF signal that allows an enhanced estimation985

ability of its scattering characteristics.986

An increase in the optimal number of clusters to 15 results987

in an observed decrease in the value of WCSS by 50%,988

as inferred from the various elbow plots. The individual989

clusters would thereby have a smaller footprint in the clus-990

tering plot compared to clusters partitioned using k = 7.991

It is necessary to increase detection resolution due to the992

high degree of variability in the scatterers located within993

the laboratory. Increasing the resolution of the clustering994

scheme is beneficial to the analysis due to the enhanced995

ability offered during the detection of a broader spectrum of996

spatial scatterers that impact the signal propagation, even in997

the case of a single off-boresight data set.998

D. CORRELATION COEFFICIENTS999

The clustering was done using k = 15, and the corre-1000

lation coefficients between such clusters were determined1001

FIGURE 8. WCSS vs. cluster count for θ : (a) 15◦; and (b) 45◦.

as discussed in Section IV-5. The distribution in correla- 1002

tion coefficient values was studied from the related his- 1003

tograms. Correlation coefficient values within such windows 1004

are aggregated in the histogram plots, with the bin size set as 1005

0.05. The statistical parameters derived from the histogram 1006

distributions, in all such cases of off-boresight angles varying 1007

from 0◦ to 60◦ at 15◦ intervals, are listed in Table 2. 1008

TABLE 2. Histogram statistical parameters.
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The observation is that the number of instances where1009

the clusters show no correlation is significantly higher. The1010

inference from such an outcome is based on the fact that1011

the correlation coefficient values between the clusters shall1012

be increased when clusters with similar points are compared,1013

which, in this case, is very unlikely given the randomnature of1014

K-medoids clustering. In all of the other spatially distributed1015

data sets, the correlation coefficients shall be very nearly 0.1016

The value corroborates the well-known understanding that1017

any noise component is primarily uncorrelated at the RX. The1018

correlation coefficient distribution study is limited mainly1019

to detecting linear relationships between a pair of data sets.1020

The absence of correlation coefficient values beyond a ± 0.41021

indicates that no clusters from the angular data set precisely1022

match those of the boresight data set, and no outliers exist in1023

the data sets.1024

E. BAR CHART1025

With the primary elements of PALE having indicated a1026

definitive profile in the spatial-temporal data, the inconclu-1027

sive outcome of the correlation study needed an alterna-1028

tive approach to constrain the data and result in a standard1029

classification. Data points belonging to similar clusters were1030

grouped across all 5 data sets. The spatial distribution of1031

the cluster and their rates of occurrence were visualized1032

through the bar charts. The peaks in the bar charts of Fig-1033

ure 9 indicate the role of known scatterers at specific spatial1034

locations.1035

The inferences derived from such results indicate the1036

dimensions and locations of prominent scatterers in the lab-1037

oratory environment, as defined by the layout in Figure 1.1038

It is also observed from these plots that there are spatial1039

distributions associated with signals of uncatalogued types,1040

inferred from the presence of the smaller peaks. These1041

could be reliable indications of unclassified ‘‘targets’’. Such1042

types occur due to human interference in the operating envi-1043

ronment, the effect of various other electronic devices or1044

the movement made to a few other small objects such as1045

chairs and tables during the experiment within the laboratory1046

confines.1047

The spatial distributions of the test environment’s1048

absorbing- and reflecting type scatterers that have resulted in1049

effects such as signal fading and enhancement, respectively,1050

could be identified from the bar charts in Figures 9 (a and1051

b). The spatial positions were then transformed into the1052

corresponding angular coordinates, considering the relevance1053

of the spherical reference frame to the signal propagation,1054

acquisition and analysis.1055

The exercise in coordinate space transformation has helped1056

with discerning the location coordinates in terms of a corre-1057

lation with the equivalent physical dimensions and material1058

characteristics of prominent scatterers; they include metallic1059

cupboards, workbenches, window grates and doors that had1060

already been defined in the floor plan of the laboratory (as1061

depicted in Figure 1).1062

FIGURE 9. Spatial occurrences of scatterers with properties of:
(a) absorption; and (b) reflection.

F. BOX PLOT 1063

Inferences from kernel analytics and its associated methods 1064

are severely influenced by the cluster size and centroid def- 1065

inition, while histogram analysis is affected by bin sizes. 1066

Hence, for a conclusive inference, a refinement that uses box 1067

plots in quantitative analytics has been incorporated into this 1068

work. The data was analyzed quantitatively by generating 1069

two different box plots. Every row in the experimental data 1070

series was divided into 19 separate blocks, each consisting 1071

of 1024 data points; the power spectrum analysis helped 1072

determine the power values. 1073

Two different data processing approaches were followed: 1074

1) To understand the variance of power values over 1075

each step, a box plot was generated with the data 1076

corresponding to the exact angles. With each angle 1077

comprising eight snapshots, the combined yield is 1078

19 × 8 = 152 power values for each angle. The 1079
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resulting box plots contained eight boxes, and each box1080

indicated variation in these 19 values.1081

2) To understand the variance across all possible angle1082

steps, a box plot was generated containing 516 boxes,1083

where each box represents 19 values for that particular1084

snapshot. A similar process was repeated for every1085

snapshot, which yielded eight box plots.1086

Salient indicators regarding the morphology (geometry and1087

material composition), location (range), and temporal vari-1088

ability (attenuation and interference) of the scatter centers1089

(as shown in Figure 1) can be inferred with remarkable1090

accuracy from the 5-number summary obtained using box1091

plots. In all 5 cases in θ , similar plots were generated. The RX1092

data identified the minimum and maximum values with the1093

respective extremities that lie beyond the boxes. The median1094

spatial positions were determined for each data interval and1095

used to generate the box plots.1096

FIGURE 10. RX power levels defined across 8 snapshots: (a) the 251th;
and (b) the 210th spatial positions.

A representative plot for the median value in the case of1097

spatial position 251 that is associated with the TX: RX-11098

geometry (Figure 2), shown in Figure 10(a), depicts a higher1099

variation in the radiated power (Type-1). In marked contrast1100

are the ones in Figure 10(b), which relate to the 210th spatial1101

position (angle step) in the TX: RX-1 data (Type-2) and 1102

exhibit lower-order variability. Presence of outliers has been 1103

indicated with a ‘+’ symbols in each case. The box plots cor- 1104

responding to the various other RX-2 positions also closely 1105

resemble the Type-2 case across all five experimental data 1106

sets, indicating that there has been a negligible effect due to 1107

the known scatterers on the propagating signal in a majority 1108

of cases. The range of the boxes is also relatively low, as can 1109

be inferred from the ordinate values in this plot. 1110

In the select instances that conform to Type-1, the scat- 1111

terers’ preferential location and location-specific attributes 1112

are evidenced by the reliable signature of a tell-tale scatter- 1113

ing phenomenon noticed at specific angular ranges in the 1114

spatial distributions. Potential candidates include electrically 1115

conducting and dielectric types: such as the window grills 1116

and cupboards for the former and doors for the latter. In the 1117

practical field studies, these shall translate into a diverse 1118

assembly of composite and metallic civil structures, vehicles, 1119

and organic constituents within the cell served by FR1. The 1120

snapshots were taken at the exact spatial locations and within 1121

a minimal time interval as a further proof. Yet, the data sets 1122

exhibit significant variations in the received power. 1123

FIGURE 11. Variation of box size as a function of the spatial positions.

A further step in the analysis was to consolidate and accen- 1124

tuate the widespread trends in several such box plots. The 1125

specific attributes of the boxes, derived from the several plots 1126

similar to the one shown in Figure 10, could then be related 1127

to the non-LoS arrival paths of RF signals that correspond 1128

to the physical characteristics of the prominent scatterers in 1129

the propagation channel. The results of this consolidation 1130

effort become immediately apparent, as has been inferred 1131

from Figure 11, in that any relative variation is insignificant 1132

at positions with no scatterers (Type-2). At the same time, 1133

significant variabilities are also equally evident at the exact 1134

locations of the scatter centers (Type-1), whose locations have 1135

been identified in terms of their spatial positions. In this 1136

final segment of the study, specifics in the box plots were 1137

directly ascribed to the diversity of the RX data values; i.e., 1138

the more tightly clustered these values are, the smaller the 1139
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box size, and vice versa. Similar plots were also generated1140

for all the five experimental data sets corresponding to the1141

various off-boresight angles θ . Inferences drawn about the1142

scatterer profiles from all such similar plots were starkly1143

consistent among the different data sets considered in this1144

study. All of them indeed exhibit a trend identifiable from1145

the representative plot of Figure 11.1146

In keeping with the principle goal of the study reported1147

here, every prominent feature in the several plots generated1148

(similar to Figure 11) directly impacts the type of interaction1149

that the C-band signal had suffered since leaving the TX.1150

The scatter centers announce their presence either individ-1151

ually (direct LoS return) or in combination (indirect LoS,1152

as well as multiple scatters along a given LoS in situations1153

involvingmore than one collinear center). The signatures take1154

the form of reduced clustering scales in the corresponding1155

data; hence, a larger box dimension is associated with every1156

such data point indicated in the representative plot. The weak1157

clustering concerns a destructive interference phenomenon to1158

the received RF signals. In effect, a tomography of the exper-1159

iment space, along specific azimuth and elevation planes,1160

has been conducted from within such a space – against the1161

conventional practice that involves a peripheral investigation1162

procedure. In the practical case, equivalent mid-band 5-6G1163

signals could now identify the ideal locations for their BSs,1164

along paths corresponding to the Type-2 class. A total of1165

22 such Type-2 cases, each having a magnitude that is below1166

the -12 dB significance threshold for the normalized box size,1167

were found in this study. The relevance of the corresponding1168

TX-RX locations lies in a unique combination of material1169

types, spatial distributions of scattering centers, signal param-1170

eters and incident angles. Our approach is a lightweight1171

unsupervised model that utilizes multipath undergoing mul-1172

tiple reflections. The approach can be potentially extended to1173

other effects like diffraction. Our approach did not require1174

prior data association labels between virtual anchors and1175

extracted time of flight (ToF)s, since it is more challenging1176

to extract virtual anchor locations when only one of the1177

modalities among ToF, range measurements, or angle of1178

arrival (AoA) of multipath components is available. SLAM-1179

based positioning in wireless communications differs from1180

RF-fingerprinting in explicitly modeling the multipath envi-1181

ronment, while RF-fingerprinting creates a correlation model1182

between channel measurements and user locations. In all such1183

cases, multiple modes naturally arise in the distributions of1184

locations after multiple measurements [62], [63], [64]. The1185

underlying network can extract spatial information given any1186

input, such as channel state information (CSI), time differ-1187

ence of arrival (TDoA), or ToF, if available. In contrast to1188

such fingerprinting methods, our approach is unsupervised.1189

Although the proposed method has considered a select set1190

of anchor scenarios, it can certainly be extended to a multi-1191

anchor case by concatenating several such instances, one1192

per anchor. The location co-ordinates defined in this exper-1193

iment are GPS-disciplined. In practical applications of the1194

proposed technology, a wide variety of on-board location1195

sensing solutions in the BS-MS shall enable the effective co- 1196

ordinates referencing and transformation among such hard- 1197

ware in arriving at the most optimum geometry and link. 1198

Complex modeling or RT calculations, using such param- 1199

eters, have been the conventional methods to arrive at 1200

distortion-free and efficient communication pathways in 1201

the MIMO channel that require further implementations of 1202

corrective, control and reconfiguration steps, contributing 1203

to sizable latency and inefficiency. The PALE-on-EDGE 1204

scheme proposed here has sidestepped such tasks with highly 1205

encouraging outcomes. The link attributes among BSs, and 1206

dynamic MD-based EDGE units deployed on-field could 1207

now be defined primarily as a data-driven, on-the-fly sig- 1208

nal acquisition and processing (and, by extension, a con- 1209

trol/reconfiguration) activity. The significant advantage here 1210

would be the inference-delay-free classification of the chan- 1211

nel attributes even while the communication services are 1212

fully operational, performed in effect as an algorithmic 1213

pre-processing task. 1214

Inferences derived from the distributions in the bar charts 1215

and the box plots have been instrumental in defining the prop- 1216

erties of scatterers in more precise terms and with enhanced 1217

definiteness about their positions and characteristics. Such 1218

a quantitative analysis has primarily derived salient bene- 1219

fits from the outcomes of the many intensely data-driven 1220

approaches pursued during this study. The K-means clus- 1221

tering scheme was invoked to characterize the scatterers as 1222

part of an elaborate exercise to identify and deploy a suitable 1223

clustering strategy for the spatial-temporal data set. The latter 1224

have been progressively facilitating (and refining) an eventual 1225

lead onto the conclusive stages in scatterer profiling. 1226

To effectively project the advantages in the current work, 1227

vis-a-vis the previous related attempts at discerning the char- 1228

acteristics of the scattering centers in the propagation chan- 1229

nel, a detailed comparison has been made. The few highly 1230

topical evaluation parameters that had been considered in this 1231

exercise are: 1232

1) Channel type: specifies the propagation medium, con- 1233

text, and application domain 1234

2) RF band: operating frequency range 1235

3) Distortion type: phenomenon affecting signal propaga- 1236

tion 1237

4) Factors of influence: primary contributors to distortion 1238

5) Methodology: procedure employed 1239

6) Variability factors: significant variables that yield 1240

salient results 1241

7) Evaluation metrics: performance verification tools 1242

8) Detection accuracy: exactitude of analyzed outcomes 1243

and validation 1244

9) Details of target: contributors to distortion in the prop- 1245

agation channel 1246

10) Complexity in estimation: dimensional, procedural, and 1247

computational rigor involved. 1248

Several poignant attributes from such a comparison study 1249

have been made evident, and these are detailed in Tables 3-5. 1250

In a significant number of instances, a marked advantage has 1251
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been noticeable with the employ of the distributed PALE-on-1252

EDGE implementations.1253

TABLE 3. Performance comparison.

The machine learning emissions calculator [65] has been1254

used to estimate the equivalent black carbon footprint [66] of1255

prominent cloud-based computing resources and on reduced1256

scales by the many other bespoke ML initiatives – including1257

the one considered in this work. The online calculator is1258

a handy tool to compare and highlight the derived impact1259

that massive data processing can have on the environment.1260

TABLE 4. Performance comparison.

In the case of PALE-on-EDGE implementation, the cumu- 1261

lative outcome had been a meager 0.07 kg black carbon 1262

emission at an efficiency of 45%of carbon released per unit of 1263

electric power utilized. On an identical scale of computation 1264

duration, a factor of 10–30 degrade to the environment has 1265

been imposed by cloud-basedML platforms. The trend in this 1266
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TABLE 5. Performance comparison.

gap is projected to widen, as the duration of activity increases,1267

with diminishing returns on the quality of the classification1268

outcome associated with the latter in the specific context1269

involving the C-band dataset. The degree of environmental1270

friendliness in the research practices adopted is underlined1271

in this work, distinctly enabling its functionality without 1272

resorting to any of the attended carbon offset remedies. 1273

In the case of the PALE-on-EDGE implementation, the 1274

actual ‘‘edge’’ is the completeness in the features it offers, 1275

in the form of a latency-free signal acquisition and inference- 1276

delay tolerant data analysis, that the cloud-based systems 1277

distinctly lack. With such a test arrangement, robust esti- 1278

mates on antenna placement and features in the topol- 1279

ogy can now be derived with enhanced thoroughness 1280

and relatively less effort, with no requirements for any 1281

further meaningful classification expected from the ML 1282

algorithms. 1283

The proposed method would drastically enhance the effi- 1284

ciency of system-wide deployments of 5-6G technologies 1285

across an otherwise complex urban landscape. Complexity 1286

notwithstanding, the results obtained here are agnostic to 1287

the multitudes of scattering centers of varying scattering 1288

coefficients as against the precise knowledge of the types 1289

and locations in their limited numbers considered in the 1290

diffuse scattering models and RT approaches [15], [16]. 1291

The latter are conspicuous in their deployment of sophis- 1292

ticated test and measurement devices and simulation soft- 1293

ware that would prove disadvantageous and unbound on 1294

time and cost scales in the context of dynamic 5-6G field 1295

conditions. 1296

There would be multiple such conducive arrangements 1297

in the actual field scenarios, and data from several among 1298

such receivers could be harnessed. All such data can then be 1299

subjected to an in situ analysis and interpretation, using the 1300

PALE model identified with this study and deployed on mul- 1301

tiple MD-based EDGE platforms. The real-world, distributed 1302

large-scale profiling exercise would significantly weigh in 1303

favor of a collective effort made by the otherwise compu- 1304

tationally light-weight EDGE platforms. A stark contrast 1305

now emerges to the HPC-defined ML platforms that have 1306

immense computing requirements (upwards of a 100-fold 1307

increase in the hardware cost [67]) and relative, unavoidable 1308

delays in retrieving the processed results; these had not been 1309

considered in this work. 1310

The design and development of 5-6G systems is a massive 1311

undertaking. C-band 5G (and the future 6G) networks would 1312

require a different level of attention in terms of planning, 1313

deployment, and maintenance. To build and iterate till the 1314

system becomes operational is time-consuming and expen- 1315

sive. Time-to-market and network quality will depend on the 1316

of tests and measurements during the complete life cycle 1317

of the network. Complete virtual prototyping and simulation 1318

can substantially reduce costs and accelerate this design and 1319

deployment process. 1320

The 5G technologies can create a revolution in operational 1321

flexibility, and the sixth-generation (6G) will be known for 1322

using AI to capitalize on this flexibility [69], [70], [71]. 1323

In 6G, intelligent services will span from cloud data cen- 1324

ters to end devices and IoT devices, e.g., self-driving cars, 1325

drones, and auto-robots. It is of prime importance to design 1326

ultra-low latency, ultra-low power and low-cost inference 1327
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processes. To overcome stringent computation, bandwidth,1328

storage, power and privacy constraints on individual devices,1329

increasing research interests are moving towards leveraging1330

the dispersed computing resources across the cloud, network1331

edge and end devices of 6G networks through the lens of1332

MD-based EDGE computing [72]. For example, for a deep1333

neural network (DNN), the initial features can be extracted1334

on the end devices, which are then sent to the EDGE and1335

cloud computing devices for further processing. However,1336

with the heterogeneity in the computing capabilities and1337

communication bandwidths among the computing devices,1338

it becomes incredibly challenging to allocate the operations1339

of the neural networks to the computing devices so that the1340

latency and energy are optimized.1341

Earlier attempts, such as those by Nicoletti and Busiello1342

[68], aimed to differentiate the various coupled systems1343

in a propagation channel based on their degree of mutual1344

information in complex and dynamic situations. A reason-1345

ably accurate prediction of channel characteristics based1346

on diffuse scattering effects in restricted urban built spatial1347

environments had been advanced by Degli-Esposti [68]. All1348

these methods would suffer from a fundamental handicap1349

when they are being scaled up to real-world scenarios, where1350

complex 5G use cases that support service ubiquity, scala-1351

bility, and continuity are the primary operational attributes.1352

Such limitations, which either take the form of defining1353

a restrictive theoretical framework or that of an algorith-1354

mic response devised for channel modeling, are entirely1355

rooted out even at the pre-processing stage by the pro-1356

posed data-driven approach. Highly dynamic, diverse and1357

evolving channel characteristics will have to be negotiated1358

with agile computing resources. The PALE algorithms suite,1359

selected and assembled as a pipeline processing scheme,1360

conforms to the requirements set to extract and interpret1361

evident trends and patterns that, in turn, constitute keenly1362

discernible features embedded in the scattered signals in1363

real-time. Besides this, a multi-angle monitor methodology1364

called microwave tomography identifies distributed topolog-1365

ical elements in the practical world. In such an evolved1366

scenario, there would be multiple instances of an on-device1367

deployment of the PALE algorithms suite in the form of1368

embedded software residing in MD-based EDGE computing1369

platforms, such as the wide variety of portable digital com-1370

munication devices. Such a distributed sensing and analy-1371

sis scheme would effectively address the on-the-fly require-1372

ments of various operators in the sub-6 GHz spectrum. The1373

vastly reduced inference-delay during modeling and classi-1374

fication of the channel parameters shall yield enhanced QoS1375

outcomes.1376

VI. CONCLUSION AND FUTURE SCOPE1377

The objective of this research work has been to profile scat-1378

terers in the propagation channel, whose signature features1379

were latent in the experimental data collected in a routine1380

laboratory environment. The systematic application of var-1381

ious PALE-type data-driven approaches that conform to a1382

broader gamut of pre-processing schemes has convincingly 1383

demonstrated its capability to profile the scatter centers. The 1384

task had been accomplished without resorting to an intensive 1385

ML algorithm-based classification regime that is computa- 1386

tionally demanding. The proposed method, with its two parts, 1387

viz., acquisition and analysis, is also in stark contrast to 1388

the conventional analytical model-driven schemes that have 1389

been extensively used to characterize various scatterers in the 1390

C-band signal propagating channel. The distinctive advantage 1391

here is the demonstrated ability of the PALE algorithms 1392

suite to closely track the evident patterns that the scatterers 1393

create during their interaction with the RF signals. A concur- 1394

rent means has been identified to qualitatively characterize 1395

and quantitatively determine the influence of the scattering 1396

centers on the propagating signal. The derived interpreta- 1397

tions have been the location, material attributes, morphology, 1398

and kinematics of the genuine scatterers. Such parameters 1399

have been identified even at the first-order processing of the 1400

tracked time series data. 1401

The results obtained in this work shall find significant 1402

relevance in situations that involve the intentional incor- 1403

poration of technologies that shall help evade the detec- 1404

tion of targets of interest in aerospace situational aware- 1405

ness operations by being employed as potent electronic 1406

counter-countermeasures. The proposed method has the sig- 1407

nificant advantage of sensing and tracking such targets from 1408

the signatures of change in the reference signal in the 1409

wake of their interaction with the hostile constituents in 1410

the propagation channel. The results obtained are primarily 1411

based on the outcome of pre-processing a spatial-temporal 1412

data set. 1413

AI/ML is evolving rapidly. The MD industry must take 1414

advantage of this technology and apply it to the mobile net- 1415

work architecture from the core to the RAN, the radio inter- 1416

face, and the end-user device itself. The federated learning 1417

models proposed in this work leverage 5-6G connectivity, on- 1418

device learning and inference techniques to take ML closer 1419

to the real-time processing needed for air interface optimiza- 1420

tion and superior end-user experience. Device-based learning 1421

enhances 5-6G QoS. The prospect of an adaptive, ML-native 1422

air interface, for example, could generate a radically simpler 1423

radio that generates unprecedented gains in efficiency and 1424

performance. 1425

As a possible extension of the work reported here, a test 1426

system can be devised to perform in a manner that would 1427

constrain its acquisition parameters dynamically. Such a sys- 1428

tem would function with the precise understanding of scat- 1429

ter signatures obtained from the trends and patterns in the 1430

acquired data (primarily antenna radiation patterns) fed back 1431

in real-time. With such a closed-loop scheme, the malicious 1432

components in a sensitive RF signal detection procedure can 1433

now be subjected to adaptive excision, a task currently being 1434

pursued at an exorbitant cost and time in use of facilities 1435

such as the anechoic chamber. The profiling of antennas 1436

with unknown radiation characteristics will become a wholly 1437

computationally defined task that will prove cost-effective. 1438
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The process gets refined during the testing phases, in terms1439

of noise detection, with its progressive exposure to additional1440

data sets as part of a mainstream supervisedML classification1441

exercise.1442

Highly dynamic, ad-hoc BS densification operations in1443

cellular telephony are being initiated extensively to support1444

complex radio techniques in 5-6G that need to offer enhanced1445

data rates, capacity and coverage in the macro and micro1446

spatial scales. Future data communication networks of 6G1447

shall offer broadband cellular services over areas divided into1448

tiny geographical areas called cells, a combination of features1449

of existing 4G and evolving 5G network standards. The 6G1450

networks are envisaged to offer superior data throughput1451

services (50 times more than 5G). These shall incorporate1452

pervasive ML & AI algorithms across their functional and1453

operational domains as an integral element in designing1454

optimum topologies and communication protocols. In such1455

restricted scale operations, the PALE algorithms suite dis-1456

cussed in this article shall immediately accept deployable1457

assets onboard the various types of embedded, connected1458

EDGE computing platforms, such as MDs. Rigorous incor-1459

poration of ML techniques, beyond the first and promising1460

stages in the analysis could be pursued. These schemes shall1461

follow the pre-processing strategies discussed in this work.1462

In concert with high-quality situational awareness models,1463

the PALE suite shall yield rapid and time-bound estimates1464

on theater-specific channel scatter attributes at the locations1465

of antenna terminals in practical mid-band 5G-NR roll-out1466

operations. These shall, in effect, serve as robust replacement1467

solutions to the various conventional methods that require1468

extensive modeling and outdoor test range studies at elevated1469

costs and over lengthier time scales.1470
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