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ABSTRACT The traditional A-star algorithm has many search nodes, and the obtained path has polylines and
cannot avoid local unknown obstacles. In response to these problems, this paper proposes a new improved
A-star algorithm suitable for indoor cleaning robots, called ASL-DWA (A Star Leading Dynamic Window
Approach). First, to solve the problem of many search nodes in the A-star algorithm, a new hybrid heuristic
function that combines Euclidean distance and point-to-line distance is proposed, thereby reducing the
number of search nodes. Then, to solve the problem that the A-star algorithm has a polyline path and cannot
avoid local unknown obstacles, this paper designs the global path yaw angle according to the relationship
between the real-time position of the robot and the global path, which is added as a score item to the traditional
score function. A decay coefficient with prediction function is also added to the score function to reduce the
risk of the algorithm falling into local optima. Finally, a mechanism to adaptively adjust the coefficient
according to the distance between the robot and the target point is designed, thereby realizing ASL-DWA.
The ASL-DWA algorithm is tested in three indoor environments and compared with traditional algorithms.
The experimental results show that ASL-DWA can meet the path planning requirements of mobile robots in
indoor environments, and has obvious advantages over traditional algorithms.

INDEX TERMS Indoor cleaning robot, A-star algorithm, hybrid heuristic function, global path yaw angle,
adaptive weighted score function.

I. INTRODUCTION robots, and it is also a key technology to improving user

In recent years, with the rapid development of mobile robot
technology and the increase in labor costs, mobile robots
are increasingly applied to various fields. Among them, the
indoor cleaning robot has become one of several mobile
robot products with the largest output and the highest market
penetration rate due to its relatively low production cost and
its advantages of being closer to people’s daily life [1]. Indoor
cleaning robots can autonomously complete functions such
as map construction, path planning, garbage collection, and
charging in the home environment [2]. With the populariza-
tion and application of cleaning robots, higher and higher
performance requirements are put forward. Among them,
path planning is a core technology in the field of cleaning
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experience [3].

Simultaneous Localization and Mapping (SLAM) technol-
ogy fuses multi-sensor information to obtain an environment
map [4], and the mobile robot performs path planning on this
basis. The core goal of path planning is to find a path from
the starting point to the goal point, which is safe and has the
least cost [5].

Global path planning is a type of static planning that plans
an optimal path on a known global map [6]. The classic
global path planning algorithms include the A-star algorithm,
D-star algorithm, Rapidly-exploring Randon Tree (RRT) [7],
Genetic Algorithm (GA) [8], and Ant Colony algorithm Opti-
mization (ACO) [9], and so on. Among them, the A-star algo-
rithm is considered to be one of the most effective algorithms
for solving the shortest path in static maps due to its high
planning efficiency [10].
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However, when the A* algorithm is used for path planning
in a complex indoor environment, more search nodes are
required, and polyline paths are generated, which reduces the
efficiency of path planning. Some improved algorithms based
on A-stars are studied.

The bidirectional A-star algorithm [11] expands from both
the starting point and the target point at the same time, which
improves the convergence speed of the algorithm. Breadth-
first search (BFS) BFS algorithm uses queues to achieve node
expansion [12], and depth-first search (DFS) uses a recur-
sive approach [13], which effectively reduces the number of
search nodes in environments with fewer obstacles. Fu et al.
proposed an improved A-star algorithm to shorten the path
by judging whether there are obstacles between the current
node and the target point [14]. Yan ef al. connected the two
adjacent nodes before and after the current node on the path of
A-star and deleted the current node if there was no obstacle in
the middle, thereby reducing the number of nodes [15]. The
above two methods are computationally intensive and cannot
smooth the turning path. Song et al. [16] used three smoothers
to reduce the number of turning points and removed some
redundant path nodes, but this method is susceptible to the
number of nodes and requires multiple iterations. Liu et al.
[17] combined the Delaunay triangulation method with the
A-star algorithm to reduce the search range of the A-star
algorithm, but this method requires an additional calcula-
tion of the Delaunay triangulation, and the path planning
efficiency is low. Tang ef al. [18] set the filter function to
avoid the turning angle of the path obtained by the A-star
from being too large and combined the cubic B-spline inter-
polation algorithm to smooth the path. This method has the
problem that the filter function threshold is not easy to select.
Kai et al. improved the success rate by adding heuristic-based
stagnation detection to each expansion node and introduced
a predefined unacceptable heuristic when detecting that the
algorithm was not moving towards the goal [19]. This method
improves the speed of the A-star search, but when to switch
multiple heuristics is a problem.

The above studies have improved the A* algorithm to a cer-
tain extent. However, mobile robots often encounter unknown
obstacles in indoor environments, that is, obstacles that are
not detected on the static map. The above algorithms cannot
guide the robot to avoid these local obstacles.

The local path planning algorithm is a kind of method in a
dynamic environment. It dynamically plans the path accord-
ing to the robot’s motion model, real-time position, real-time
obstacle distribution, and other factors, so it can guide the
robot to avoid unknown obstacles [20], [21], [22]. Common
local path planning algorithms are Dynamic-Window Method
(DWA) [23], Time Elastic Band (TEB) [24], Model Predic-
tive Control (MPC) [25], and so on. Compared with other
algorithms, the DWA algorithm has the advantages of low
computational complexity, conformity to robot kinematics,
and strong flexibility, so it is widely used. However, in the
indoor environment, the distribution of obstacles is relatively
dense, and the local path planning algorithm is easy to falls
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into the local optimum, resulting in the inability to reach the
target point.

Aiming at the cleaning robot in the indoor environ-
ment, this paper proposes an improved A-star path plan-
ning method, called ASL-DWA. In the first stage, the A-star
algorithm with a new hybrid heuristic function is used to
obtain the global path, during which the safety distance
between the robot and the obstacle is taken into account.
In the second stage, the global path yaw angle is designed,
which describes the relationship between the robot’s real-
time pose and the global path. In the third stage, the global
path yaw angle is added to the traditional scoring function
as a scoring term. In the fourth stage, attenuation coefficients
with prediction function are used. Finally, an adaptive mecha-
nism that autonomously adjusts the various score coefficients
according to the distance between the robot and the target
point is used to realize ASL-DWA.

The contributions of this paper are as follows:

1) A hybrid heuristic function based on Euclidean dis-
tance and point-to-line distance is proposed, thereby
reducing the number of search nodes in the A-star
algorithm.

2) The global path yaw angle is proposed, which com-
bines the global path information with the real-time
information of the robot so that the robot can avoid
unknown obstacles and is not easy to fall into the local
optimum. At the same time, the method also avoids
the appearance of polyline paths, thereby reducing the
movement time of the robot from the starting point to
the target point.

3) A decay coefficient with a prediction function is pro-
posed. The score is intervened by predicting the closest
distance between the robot and the obstacle in the next
few cycles, thereby further avoiding the algorithm from
falling into a local optimum.

4) Propose an adaptive weighting mechanism. By judging
the distance between the robot and the target point,
the weights of each score are adaptively adjusted. This
mechanism enables the robot to avoid obstacles effec-
tively and reach the target point accurately.

The rest of this paper is organized as follows. The second
section introduces the A-star algorithm based on the new
hybrid heuristic function, including environment modeling,
the design principle of the hybrid heuristic function, and the
selection of the expansion threshold. Section III introduces
the design principles of the global path yaw angle, attenuation
coefficient, and adaptive mechanism. Then a new scoring
function is introduced on this basis, and finally, the algorithm
flow of ASL-DWA is introduced. The fourth section is the
experiment and results in analysis. First, the proposed hybrid
heuristic function is compared with the other four traditional
heuristic functions, and then ASL-DWA is compared with
several other algorithms. Section 5 summarizes the perfor-
mance advantages of the ASL-DWA algorithm and the short-
comings of current research, and looks forward to several
directions for future research.
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Il. HYBRID HEURISTIC FUNCTION BASED A-STAR
ALGORITHM

A. ENVIRONMENT MODELING

The cleaning robot used in this paper is shown in Fig 1. The
robot has a circular shape and a diameter of 34cm.

FIGURE 1. The cleaning robot.

The cleaning robot moves under the drive of two driving
wheels and uses SLAM technology to integrate multi-sensor
information such as laser scanners, gyroscopes, and odome-
ters to build a grid map of the indoor environment, as shown
in Fig 2.

(a)

FIGURE 2. Environment modeling.

Fig 2.a is the working environment of the cleaning robot,
and Fig 2.b is the grid map obtained by the cleaning robot
in this environment. In Fig 2.b, each grid corresponds to an
area of Scm=+5cm. The black grid represents the obstacle area;
the cyan grid represents the blank area; the smoke-white grid
represents the unknown area, that is, the area that has not been
detected by the robot.
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The A-star algorithm performs path planning in a grid map.
The resulting path should allow the cleaning robot to pass
safely, so the robot’s outer dimensions should be considered.
At the same time, to ensure the safety of the robot, the outside
of the robot should maintain a sufficient safety distance from
obstacles. For these reasons, this paper identifies the area near
the obstacle on the map, which is called the warning area, that
is, the area that is not recommended for robots to pass through
although there are no obstacles.

As shown in Fig. 3(a), the area with the obstacle net P as the
center and r+d as the radius is marked as the warning area,
where r is the radius of the robot and d is the minimum safe
distance between the outside of the robot and the obstacle.
The final result is shown in Fig 3.b. In the figure, cyan
indicates the safe passage area; black indicates obstacles;
green indicates the warning area.

Unknown ] Blank [l Obstacle

W varning

FIGURE 3. Warning area.

B. THE FLOW OF THE NEW A-STAR ALGORITHM

Driven by the cost function, the A* algorithm starts to search
from the starting point until it finds the target point. The cost
function f(n) is shown in Equation 1.

f(n) = g (n) + h(n) €]

Among them, f(n) is the cost value of node Py, g(n) is the
actual path value of node Py, and h(n) is the heuristic value.

The A-star algorithm based on the hybrid heuristic function
includes the following steps.

Step 1: Put the starting point into the open-list, and put
these blank grids adjacent to the starting point into the
open-list.

Step 2: Take a node p(n) from the open-list as the cur-
rent node. Calculate the cost function f(n+k) of its adjacent
node p(n+k), where k=[1,2,...,8]. Calculate the difference
between the cost function of the current node and the adjacent
node, the calculation formula is

dif(k) = f(n+ k) — f(n) @
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TABLE 1. Pseudo code of the new A-star algorithm.

algorithm Fun Astar( start, n, goal )

if IsReachGoal(start) == goal
return FindPath(start,goal)

end

open-list < neibourPoint(start)

close-list «— 0

while open-list =0
pn «— open-list(n)
10 if pn==goal

O 01O\ N A~ WK —

11 return FindPath(start,goal)

12 else

13 p(n+k) « searchNeibors( pn )
14 end

15 for all p(ntk)

16 if p(ntk) € blank

17 continue;

18 end

19 if p(ntk) € open-list || p(ntk) € close-list
20 continue;

21 end

22 dif(k) = f(n+k) — f(n)

23 if dif(k)>th

24 continue;

25 end

26 open-list <— p(nt+k)

27 end

28 close-list «— p(n)

29 end

30 FindPath(start,goal)

Among them, f(n) is the cost value of the current node, and
f(n+k) is the cost value of the k-th adjacent grid. Select free
grids whose dif(k) is less than the threshold from the adjacent
grids and add them to the open-list. Free grid refers to grids
that are not added to the open-list and close-list. Remove the
current node from the open-list and add it to the close-list.

Step 3: Record the current node as the parent node of the
new nodes.

Step 4: Repeat 2-3 until the target point is added to the
close-list.

Step 5: According to the relationship between the parent
nodes and the child nodes, a path from the starting point to
the target point is obtained.

The pseudocode of the A-star algorithm based on the
hybrid heuristic function is shown in Table 1.

C. HYBRID HEURISTIC FUNCTION

The heuristic function of the A-star algorithm describes the
distance between the node and the target point. Commonly
used distance forms are Chebyshev distance, Manhattan dis-
tance, diagonal distance, and Euclidean distance.
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The Chebyshev distance is shown in Equation 3.
h(n) = d x max(lx, —xn[, [ya — yn 1) (€)

In the formula, (X, yn) is the coordinate of the node Py,
(XN, YN) is the coordinate of the target point Py, and d is the
weighting coefficient. Chebyshev calculates the x-direction
distance and y-direction distance between the node and the
target point and selects the larger absolute value as the output.

The Manhattan distance is shown in Equation 4.

h(n) =d x (lxp —xn| + |yn — YN “

It calculates the x-direction distance and y-direction dis-
tance between the node and the target point and uses the sum
of their absolute values as the node’s heuristic value.

The diagonal distance is shown in Equation 5.

h(n)=d x V2 xh; (n)+d x (ha () —2 x hj(n))  (5)

Among them, hy (n) = d*min (|x, — XN|, |Yn — YNI) i8S
the shorter one the distance between the node and the tar-
get point in the x-direction and the y-direction. hy (n) =
d*(Jxq — xN| + |yn — yn|) is the Manhattan distance of two
points. h(n) is the diagonal distance, which roughly approx-
imates the Euclidean distance, avoiding the squaring and
exploiting operation.

The Euclidean distance is shown in Equation 6.

h(n) = d x sqrt((x, — xn)* + (v, — yn)?) (©6)

To reduce the number of search nodes of the A* algorithm
in the indoor environment, a new hybrid heuristic function is
proposed here, as shown in Equation 7.

|xp X a+y, x b+ c|
sqrt (a2 + b?)
sart (= + 0, =) ()

Among them, h; (n) = |x,*a 4+ y,*b + ¢| /sqrt (a*a + b*Db)
is the distance from the node pp(Xp, yn) to the line a*x +
b*y + ¢ = 0. The line crosses the start point and the
taget point. hy (n) = d*sqrt((x, — xN)? + (yp — yN)z) is the
Euclidean distance from the node py(Xn, yn) to the target point
PN(XN, YN)-

Fig 4 shows the difference between the new heuristic func-
tion and the traditional heuristic function.

In the Fig4, the triangle is the starting point and the star
is the target point. The blue part is the searched area. A is
the reduced search area of the new algorithm compared to
the old algorithm. The left image is the search effect of the
traditional heuristic function. Here, the heuristic function of
Euclidean distance is used as an example, which uses the
Euclidean distance from the node to the target point as the
driving condition to search. The right image is the search
effect of the new heuristic function, where the red line is the
line formed by the starting point and the target point. The new
heuristic function is driven by the Euclidean distance from the
node to the target point and the projected distance from the
node to the line. As shown in the figure, for the same node,

h(n) =
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FIGURE 4. The new heuristic function and the traditional heuristic
function.

the new heuristic function can approach the target point faster
with fewer expansion directions, thereby reducing the number
of nodes in the search area.

D. SELECTION OF EXPANSION THRESHOLDS

The A-star algorithm expands the path by analyzing the
heuristic value of the current node and its adjacent nodes, and
each node allows up to 8 search directions. The traditional
A-star algorithm calculates the heuristic value of adjacent
nodes and selects N nodes with the smallest heuristic value for
expansion. For the same heuristic function, when N takes the
maximum value, the A-star algorithm can ensure expansion
to the target point, but at this time the search nodes are the
most; the smaller the N is, the fewer the search nodes of
the A-star algorithm, and the faster the search speed; but If
N is too small, it is easy to cause the search process to be
closed in advance so that the target point cannot be searched.
Therefore, choosing an appropriate N value is a key to the
A-star algorithm.

Different from the traditional method, this paper calculates
the difference between the cost function of the current node
and the adjacent nodes and selects the adjacent points whose
difference is less than the expansion threshold to join the
open-list. To this end, this paper builds the difference function
as shown in Equation 2.

dif(n, k) = £ (n + k) — £ (n)

Among them, f(n) is the cost value of the current node
P(n), and f(n+k) is the cost value of the k-th adjacent node,
k e[1,8]:

To choose an appropriate expansion threshold, the distri-
bution of the solutions of the difference function is analyzed
in this paper.

See Fig 5.a. Py(ip, jo) is the starting point. The dif(n,k) of
2000*2000 nodes around Py is calculated. Where n repre-
sents the n-th node and k represents the k-th direction. The
coordinates of Py is Py(ip + 1ip, jo + jn), in€ [—1000, 1000],
jn € [—1000, 1000]. The 8 differences of each P, constitute
a set of solutions.

See Fig 5.b. For the proposed hybrid heuristic function, the
solution of dif(n,k) is related to the distance from the node to
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the line, which consists of the starting point and the target
point. For this, we set 180 straight lines across the starting
point.

K% "
—— 8 ‘
PN
P, | ,,""- ‘ !
179 | | |
1000 |p 1000 | & i ’
0

(a) i (b)

FIGURE 5. Range of nodes used to analyze dif(n, k).

For 4 traditional heuristic functions, each heuristic function
obtains 2000*2000 = 4 million solutions. For the proposed
hybrid heuristic function, 180*2000*2000 = 720 million
solutions are obtained.

The above calculation process is implemented on Matlab7.
The distribution of the solutions of the difference function is
shown in Figure 6.

3 t 4
2 16 |
g}
2 11
1 2|
b 6 |
114
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(a) Chebyshev (b) Manhattan (c) Diagonal (d)Euclidean
401 | X ;
301 | v :
201 | T Lo
) i i i i i
101 | A :
1.— TR -
-1 0 : | 2 3 4

(e) New algorithm

FIGURE 6. Distribution of solutions to dif(n, k).

In Figure 6, points of the same color constitute a set of
solutions for the different functions. The vertical axis is the
number of solutions, and the horizontal axis is the numerical
value of the solutions.

As shown in the figure, the difference function of Cheby-
shev distance has 3 sets of different solutions, which are
distributed on 6 discrete values. The difference function of
Manhattan distance has 2 different sets of solutions, dis-
tributed over 5 discrete values. The difference function of the
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diagonal distance has 4 different sets of solutions, distributed
over 6 discrete values.

For the Euclidean distance and the proposed hybrid dis-
tance, the solution of the difference function is distributed
over a continuous range of values. For the convenience of
analysis, solutions with a difference within 0.1 are regarded as
the same set of solutions. In this case, the difference function
of Euclidean distance has 19 different sets of solutions, and
the numerical values of the solutions are distributed between
[0, 3]; the difference function of mixed distance has 440 sets
of different solutions, and the numerical values of the solu-
tions are Distributed between [—1.4, 4.2].

The influence of different expansion thresholds on the
A-star algorithm is shown in Figure 7.

In the figure, the orange part is the expanded node, the
black dot is the starting point, and the black square is the
target point. For the same heuristic function, a large expansion
threshold will make each node have more expansion direc-
tions, which increases the probability of the target point being
searched, but also leads to the problem of too many search
nodes. Conversely, a small augmentation threshold means
fewer search directions, which will help reduce search nodes
but increase the risk of not reaching the target point.

In the research and experiment process of this paper, to bal-
ance the search efficiency and success rate, the expansion
threshold is set based on the standard that each node has at
least 3 search directions. For the Chebyshev distance, the
expansion threshold exp_th=1.8 is set. For Manhattan dis-
tance, set its expansion threshold exp_th=1.8. Diagonal dis-
tance, set its expansion threshold exp_th=1.8. For Euclidean
distance, set its expansion threshold exp_th=1.5; for the pro-
posed hybrid heuristic function, set its expansion threshold
exp_th=2.3.

Ill. ASL-DWA: AN IMPROVED A-STAR ALGORITHM

The A-star algorithm obtains the global path from the starting
point to the target point in the static map. There are polylines
on the global path, which are not conducive to the smoothness
of the cleaning robot’s movement, and cannot guide the robot
to avoid local unknown obstacles [8]. The DWA algorithm
can obtain a path that conforms to the robot kinematics and
can guide the robot to avoid local unknown obstacles, but it is
easy to fall into the local optimum [10]. To enable the robot
not only to be guided by global information, but also to avoid
local unknown obstacles, a global yaw angle is designed here,
and based on this, and improved A-star path planning method
based on the global yaw angle is constructed.

A. KINEMATICS MODEL OF THE CLEANING ROBOT
The kinematic model of the cleaning robot is shown in Fig 8.
The purple rectangle and the red rectangle are the driving
wheels of the robot, and the blue triangles is the guiding
wheel.

As shown in the figure, the robot is circular, and the outline
radius is R{ = 17cm. There are two drive wheels and one
guide wheel. The distance between the drive wheel and the
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FIGURE 7. Influence of expansion threshold on A-star algorithm.

center of the robot is Ry = 12cm, and the distance between
the guide wheel and the center of the robot is R3 = 11.5cm.
In the figure, v is the linear velocity of the robot center, w is
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FIGURE 8. Kinematics model of the cleaning robot.

the angular velocity of the robot, pg is the pose of the robot
at time t, and p; is the pose of the robot at time t+1. The
kinematics model of the robot is shown in Equation 8.

Xep1 =X — Zsin (6,) + Lsin (6, + wA1)
w w

14 v (8)
Yi+1 =Y — —cos (6;) — —cos (6; + wAt)

w w
Or+1 = 6 + wAt

Among them, At is the sampling interval, (x;, y; ;) is the
pose of the robot at time t, and (x;41, yr+1,6:+1) is the pose at
time t + At.

B. GLOBAL PATH YAW ANGLE

1) PRINCIPLE

The proposed global path yaw angle characterizes the relative
relationship between the robot’s real-time attitude and the
global path, as shown in Fig 9. The black line is the global
path, the blue square is the starting point, the blue star is the
target point, the red dot is the closest point, and the purple
square is the forward point.

In the figure, Path is the global path, and po(Xo, yo,60) is
the pose of the robot. pr(xt, yr) is the coordinate of the guide
wheel. Ps(Xs, ys) is the closest point to the robot on the global
path, which can be obtained from Equation 9.

l<m<M

Ps € min (pm —PO), (9)
l1<m<M

Pm € Path,

Among them, (py,) is a point set consisting of a series of
points uniformly distributed from the starting point to the
target point on the global path.

R = ||Ps, P¢|| is the distance from Py to the center of the lead
wheel pr. C is an arc with Py as the center and R as the radius.
Pk (xk, yk) is the intersection of C and Path, called the forward
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Path P

FIGURE 9. Global path yaw angle.

point, which can be obtained by Equation 10.

Pk =pm,  m € {(Pathsemempn) [ |C}  (10)

Among them, C € {(x — x5)> + (y — ys)* = R?}.

Ok is the orientation angle of the vector ITPIL called
the global path heading angle, which can be obtained by
Equation 11.

The difference between the robot’s orientation 6y and the
global path’s orientation 6 is the global path yaw angle,
denoted as pan, which can be obtained by Equation 12.

atan(—yk —Js ), x>0
(-xk__xs
0 = { atan(ZX-"2") 1180, x <0,y=0 (1)
(xk__xs
atan(u) — 180, x<0,y<0
(xk — Xs
160 — Oskc| |60 — Bsx | < 180
Oparn = ' ’ (12)
360 — |6g — Os|, other

2) DISCUSSION
Fig 10 shows the solution for the global path yaw angle for
several different cases. In the figure, the black line is the
global path, and the arrow at the end of the path indicates
the forward direction of the path. The silver-gray circle is
the robot, the blue triangle is the guide wheel of the robot,
and the outer corners of it indicate the direction of the robot.
The black dot represents the robot center pg. The red square
represents the robot center at the closest point Py of the global
path, and the orange square represents the forward point Py.
Fig 10.a shows the most ideal situation, where the robot
center is on the global path, and the robot is oriented in
the same way as the global path. In this case, the point
Ps (x5, ys) closest to the robot center on the global path coin-
cides with the robot center po(Xg, Yo, 6p), and the forward
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FIGURE 10. A few examples of global path yaw angle.

point Py (xx, yx) coincides with the robot guide wheel position
pe(Xf, yr). So, Osx = 6, global yaw angle 0o, = 0.

In Fig 10.b, the robot center coincides with the global
path, but the robot orientation is inconsistent with the global
path. The forward direction of the global path is 0°. The
orientation angle of the robot is 6) = —30°. At this time, the
point Pg (Xs, ys) closest to the robot center on the global path
coincides with the robot center po(Xo, Yo, 60). The forward
point Py(xk, ykx) is located on the global path in front of
the robot. Therefore, 6sx= 0, the global yaw angle 6y =
|6p — Osk| = 30°.

In Fig 10.c, the robot center is not on the global path, but the
robot is facing the same direction as the global path. At this
time, the point P (Xg, ys) that is closest to the robot center on
the global path is the vertical foot of the robot center on the
global path, and the forward point Py (xg, yx) is located on the
global path in front of the robot, and 6 is equal to the global
path, so the global yaw angle 6, = 0.

In Fig 10.d, the robot’s center is not on the global path,
and the robot’s orientation is also inconsistent with the global
path’s forward direction. The forward direction of the global
path is 0°, and the robot heading angle is —30°. At this time,
the point Py (X, ys) that is closest to the robot center on the
global path is the vertical foot of the robot center on the global
path, and the forward point Px(Xx, yx) is located on the global
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path in front of the robot, so 65x= 0, the global yaw angle
Bpath = 100 — Osk| = 30°.

In Fig 10.e, the robot is located near the turning point
of the global path, the global path forward direction before
turning is 0°, the global path forward direction after turning
is —45°, and the robot’s heading angle is 0°. At this time,
the point Pg (X, ys) closest to the robot center on the global
path coincides with the robot center, and the forward point
Px(Xk, yx) is located on the global path after turning, so 65k =
—32°, the global yaw The angle 0pan = |6p — Osx| = 32°.

In Fig 10.f, the robot is located near the turning point of the
global path, with a certain distance from both global paths.
The forward direction of the global path before turning is 0°,
the forward direction of the global path after turning is —45°,
and the orientation angle of the robot is 0°. At this time, the
point Py (X5, ys) that is closest to the robot center on the global
path is the vertical foot of the robot center on the global path
before turning, and the forward point Py (Xx, yx) is located on
the global path after turning, so 65k = —35°, global yaw angle

epath = |90 - esk| = 35°

In Fig 10.g, 6y = 140°, 65k = —160°, global yaw angle
Opath = 360 — |6y — Osk| = 60°.

In Fig 10.h, 6p = —140°, 65k = 160°, global yaw angle
Opath = 360 — [0y — Osk| = 60°.

C. SCORING FUNCTION
The score function of the traditional DWA algorithm is shown
in Equation 13.

G (v, w) = a x target_heading (v, w)
+ B x obs_dist (v, w)
+ y x velocity (v, w) (13)

In the formula, (v, w) are the linear and angular veloci-
ties of the robot. («, B, y) are fixed weighting coefficients.
target_heading(v, w) is the score obtained by measuring the
angle between the robot’s orientation and the target’s ori-
entation, called the target orientation score: obs_dist(v,w) is
the score obtained by measuring the distance between the
robot and the obstacle, which is called the obstacle distance
score. velocity(v,w) is the score obtained by measuring the
difference between the robot’s speed and the optimal speed,
called the speed score.

The target orientation score can be obtained from
Equation 14.

160 — Orar|

target_heading (v, w) = 100 x (I_OIT) (14)

Among them, 6y is the orientation angle of the robot, and
Biar 1s the orientation angle of the robot to the target point.
The obstacle distance score can be obtained by Equation15.

0, dobs < dmin
obs_dist (v, w) = { 100, J J dobs > dmax
100 x Zobs — Cmin , other
dmax - dmin
(15)
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Among them, dgps is the shortest distance from the center
of the robot to the obstacle. dpi, is the minimum distance
threshold, less than this threshold indicates that the robot
is very close or has hit the obstacle. dpax is the maximum
distance threshold, greater than this threshold indicates that
the robot is far enough away from the obstacle. Within the
threshold range, the larger the obstacle distance, the higher
the score.

The speed score can be obtained by Equation 16.

velocity (v, ®) = ¥, X 8y + Yo X S (16)

Among them, (yy, ) are scale factors, sy can be obtained
by Equation 17, and s,, can be obtained by Equation 18.

0, V < Vin OF V > Viax
[v —vol

100 x (1 — —) , other
Vmax — Vmin

Sy =
(7

Among them, vp,x is the maximum linear velocity that
the robot is allowed to achieve, vy, is the minimum linear
velocity that the robot is allowed to achieve, and vq is the
desired optimal linear velocity.

0, < Wpinorw > Wpax
| — wol
So =14 100x {1 — —— ), (18)
Wmax — Wmin
other

Among them, wmax is the maximum angular velocity that
the robot is allowed to achieve, Wiy 1s the minimum angular
velocity that the robot is allowed to achieve, and wy is the
desired optimal angular velocity.

The traditional A-star algorithm does not consider the
kinematic characteristics of the robot, nor does it consider
the real-time pose of the robot, the real-time distribution
of obstacles, etc., so the obtained path is not conducive to
the robot’s execution, nor can it avoid unknown obstacles.
Conversely, the traditional DWA score function only con-
siders real-time information without the guidance of global
information, so it is easy to cause the robot to fall into local
optimum. A new scoring function is designed here, which
combines the traditional scoring function with the global
yaw angle, and introduces an adaptive weighting mechanism,
thereby improving the A-star algorithm.

1) GLOBAL YAW SCORE

With the help of the global path yaw angle proposed in
Section 3.2, the global yaw score is obtained, as shown in
Equation 19, where 4y is the global yaw angle, the larger
the path, the smaller the global yaw scores.

_ | epath |

th_headi ,w)= 100 x (1
path_heading (v, ) X ( 180

) 19)
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2) GLOBAL PATH DISTANCE SCORE

The global path distance score is obtained according to
the distance between the robot center and the global path,
as shown in Equation 20.

path_dis (v, )

0, dis > pd, .«
— 100, dis < pdmin (20)
Pd e — dis
100 x ———, other
pdmax - pdmin

3) SCORING FUNCTION WITH FIXED COEFFICIENTS

The global yaw score and the global path distance score are
added to the traditional score function shown in Equation 13
to obtain a score function with a fixed coefficient, as shown
in Equation 21.

G (v, w) = a x target_heading (v, )
+ B x obs_dist (v, w)
+ vy x velocity (v, )
+ t x path_heading (v, w)
+ & x path_dis (v, ) 21

4) SCORING FUNCTION WITH PREDICTION COEFFICIENTS
Equation 21 obtains the optimal speed to drive the robot to
the next location. However, when the robot reaches the new
location, it may find that it cannot proceed with the next path
planning, that is, it is stuck in a local optimum. To reduce the
probability of this phenomenon, the prediction coefficient is
introduced in this paper, as shown in Equation 22.

k, Mini=(d;) < pre

min 22
1, other 22)

pre(t, k) =

Among them, t is the number of forecast periods and k is
the decay coefficient. The robot moves at the current speed for
t cycles, and the closest distance to the obstacle in each cycle
is denoted as d;. Minijl (d;) is the closest distance between the
robot and the obstacle in t cycles. pre,; is the set minimum
distance.

As shown in formula 22, the working principle of the
prediction coefficient is: Assuming that the robot continues
to move at the current speed, predict the closest distance
between the robot and the obstacle in the next few cycles,
if the distance is less than the threshold, multiply the score of
the current speed by an attenuation factor k, thus reducing the
probability of this speed is selected.

The score function with prediction coefficients is shown in
Equation 23.

min

G (v, ®) = {o X targetyeading(v.w)
+ B x obs_dist (v, w)
+ y x velocity (v, w)
+ t x path_heading (v, w)
+ & x path_dis (v, w) x pre(t, k)  (23)

VOLUME 10, 2022



H. Liy, Y. Zhang: ASL-DWA: An Improved A-Star Algorithm for Indoor Cleaning Robots

EE Access

5) SCORING FUNCTION WITH ADAPTIVE COEFFICIENTS
When appropriate coefficients are selected, the score function
shown in Equation 23 can drive the robot to approach the tar-
get point safely. However, when the robot arrives near the tar-
get point, the same coefficient may make it difficult for the
robot to reach the target point accurately and quickly, espe-
cially when there are obstacles near the target point, or there
are turning points in the global path near the target point.
Likewise, another suitable set of coefficients can lead to good
paths near the target point, whereas the same coefficients can
lead to suboptimal paths farther from the target point.

To balance this conflict, this paper introduces an adaptive
mechanism, which adjusts the weighting coefficient accord-
ing to the change in the distance between the robot and the
target point, and obtains an adaptive weighted score function,
as shown in Equation 24.

G (v,w) = {0(d) x a x target_heading (v, w)
+ (1 — 0o (d)) x B x obs_dist (v, w)
+ (1 — o (d)) x y x velocity (v, )
+ (1 — o (d)) x T x pathheading (v, ®)
+ (1 — 0o (d)) x § x path_dis (v, w) x pre(t, k)
(24)

In the formula, (o, B, v, 7) is the set weighting coefficient,
and o (d) is the adaptive weighting coefficient, as shown in
Equation 25, where d is the distance between the robot and
the target point, and p is the magnification.

od)=1/exp(d x n) (25)
D. PARAMETER SETTING

1) SAMPLING PERIOD

The ASL-DWA algorithm makes a decision every once in a
while, and this time interval is called the sampling period.
At the start time t; of the i-th sampling period, the algorithm
calculates the scores for several groups of velocities (vi, ;)
in the sampling space by formula 24, and selects the combi-
nation (v, ) with the highest score as the output, and drives
the robot to move to the next A sampling time tj .

Fig 11 shows the effect of different sampling periods on
the path.

In the figure, the black dot is the starting point, the black
square is the target point, and the red line is the path.

When other conditions are the same, the smaller the sam-
pling period, the more sampling times, that is, the greater
the amount of computation. At the same time, the too-small
sampling period is also prone to produce a curved path,
as shown by circle A in Fig. 11(a). Conversely, the larger the
sampling period, the smaller the amount of computation. But
too large a sampling period may make the path change too
sluggish, as shown by circle B in Figure 11.c. At the same
time, too large a sampling period may also cause trouble when
the robot is about to reach the target point, as shown by circle
Cin Fig. 11(c).
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FIGURE 11. The effect of the sampling period on the path.

Considering the kinematic characteristics of the mobile
robot, this paper selects T=0.8S. The ideal motion speed
of the cleaning robot used is v=25cm/s, and the distance
traveled in one sampling period is s=Txv=20cm.

2) SAFE DISTANCE
The safety distance means that the robot maintains a suffi-
cient distance from the obstacle so that the robot can avoid
the obstacle in time. It should be noted that the mentioned
obstacles refer to the obstacles in the forward direction of the
robot.

Fig 12 shows the minimum distance dmin between the
robot and the obstacle.

dmin can be obtained by Equation 26.

{ dmin = \/R2 — (R — 2r)?

R(v/w) x (180/7)

(26)

In the formula, r is the outer radius of the robot, v is
the optimal linear velocity, and w is the maximum angular
velocity. For the cleaning robot used in this article: r=17cm,
v=25cm/s, wmax = 40°/s. Calculation result: dmin=35.8cm.

3) PREDICTION PERIOD

As shown in Equation 22, the algorithm intervenes in the
current speed score by predicting the closest distance between
the robot and the obstacle in the next few cycles.

The effects of different forecast periods on path planning
are shown in Figure 13. In the figure, the black dot is the
starting point, the black square is the target point, the red dot
is the moving obstacle, and the red line is the path.

See Figure 13.a, when the prediction period is O or too
small, the algorithm may get stuck in a local optimum.

See Figure 13.c, when the prediction period is too large,
the algorithm may get erroneous results at relatively narrow
channels.
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FIGURE 13. The effect of different Prediction periods on the path.

See Figure 13.b, a suitable prediction period can avoid the
algorithm from falling into local optima.

4) SETTING OF ¢ (D)

As shown in Equation 24, this paper adaptively adjusts the
weighting coefficients of the four scores according to the
distance between the robot and the target point.

Fig 14 shows the effect of different o (d) on path planning.

As shown in Figure 14.a, when the distance d is the
same, the smaller the u, the larger the o(d), and the
larger the coefficient of the target point heading score.
At this time, the path may head to the target point
prematurely.

As shown in Figure 14.c, the larger the w, the smaller
the o(d), and the smaller the coefficient of the target point
orientation score. At this time, it may be difficult for the path
to reach the target point accurately.

As shown in Figure 14.b, a suitable value of u can give
ideal results. This paper takes o (d)=1/exp(d0.12).
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FIGURE 14. The effect of different o(d) on the path.

E. DISCUSSION

1) IMPROVEMENT IN THE CASE WITHOUT UNKNOWN
OBSTACLES

Figure 15 shows the improvement of the new algorithm on the
A-star algorithm in the absence of unknown obstacles. In the
figure, the gray area is the known obstacle; the black line
is the path obtained by the A-star algorithm, and the arrow
indicates the forward direction of the path; the purple line is
the path obtained by the new algorithm.

Fig 15.a shows the most ideal situation where the robot
is on the global path and the robot is oriented in the same
direction as the global path is heading. In this case, the path
obtained by the new algorithm is the same as the global path
obtained by the A-star algorithm.

In Fig 15.b, the robot center coincides with the global path,
but the robot orientation is not consistent with the global path.
At this time, if the global path obtained by A star is followed,
the robot needs to stop and rotate in the same direction as the
global path. The path obtained by the adaptive weighted score
function enables the robot to avoid pauses through arc motion
and improve the action efficiency.

In Fig 15.c, the robot is located near the turning point of the
global path. The forward direction of the global path before
the turning is 0°, the forward direction of the global path after
the turning is —45°, and the robot heading angle is 0°. If the
global path obtained by A star is followed, the robot needs to
stop and turn in the same direction as the global path. Driven
by the global yaw angle, the new score function obtains a
smooth path, which enables the robot to move more smoothly
to the global path after turning.

2) IMPROVEMENT IN THE CASE WITH UNKNOWN
OBSTACLE

The robot may encounter unknown obstacles during the
movement, which do not appear on the static map. Such as
obstructed and undetected obstacles, or changed positions of
doors, furniture, people, etc. These unknown obstacles will
cause some disturbance to path planning.
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FIGURE 15. Improvement in the case without unknown obstacles.

e

FIGURE 16. Improvement in the case with unknown obstacles.

Fig 16 shows the improvement of the new algorithm to
the A-star algorithm in the presence of unknown obstacles.
In the figure, the gray squares are known obstacles, and the
blue squares are unknown obstacles; the black line is the path
obtained by the A-star algorithm, and the arrow indicates the
forward direction of the path; the red x shows that the path
obtained by the traditional A% algorithm will be Unknown
obstacles interrupt; the purple line is the path obtained by the
new algorithm.

In the four cases shown in Fig. 16(a)-(d), if the robot
follows the global path obtained by A star, the robot will
collide with the obstacle. In contrast, ASL-DWA gets a path
to avoid obstacles driven by the new score function, avoiding
the failure of path planning due to the appearance of unknown
obstacles.

3) COMPARISON OF ADAPTIVE COEFFICIENTS AND FIXED
COEFFICIENTS

Fig 17 shows a comparison of adaptive weighting coefficients
with fixed weighting coefficients.
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FIGURE 17. Comparison of adaptive coefficients and fixed coefficients.

In Fig 17.a the three curves marked with 7 represent the
relationship between the weighting coefficient (1-o(d))*t
and the distance corresponding to the global path yaw score
when t = 0.5, 0.4, and 0.3, respectively. The three curves
marked with « represent the relationship between the weight-
ing coefficient o (d)*« corresponding to the target orientation
score and the distance when o = 0.8, 0.6, and 0.4, respec-
tively. As shown in the figure, when the distance between the
robot and the target point is far, the weighting coefficient cor-
responding to the target orientation score is very small, while
the weighting coefficient corresponding to the global path
yaw score is close to 7. As the robot gradually approaches
the target point, the weighting coefficient corresponding to
the target orientation score gradually increases, while the
weighting coefficient corresponding to the global path yaw
score gradually decreases.

Figure 17.c shows the difference between the adaptively
weighted scoring function (Equation 24) and the fixed coef-
ficient scoring function (Equation 21) in planning paths under
the same environment. At the node shown in Figure 16.b,
the robot pose po (X0,Y¥0,00) = (0,0,90), the linear
velocity vo = 30cm/s, and the angular velocity wy =
0°/s. Let (o, B,y,7) = (0.4,0.1,0.1,0.4), p = 0.12.
In the speed sampling space, take 3-speed combinations
as an example: (v, w1) = (30,40), (v2,w2) = (30,0),
(v3, w3) = (30, —40).

In the case of using a fixed coefficient score function,
the scores corresponding to the 3-speed combinations are
obtained by formula 21: s; = 82.1, s, = 87.7, s3 = 78.0.
It can be seen that (v2, wp) corresponds to the highest score,
and the robot will execute at this speed. The final planned
path is shown in the purple circle in Figure 17.c and the path
fall into a local optimum.

In the case of using the adaptive weighted score function,
the scores corresponding to the 3-speed combinations are
obtained by formula 24: s; = 57.1, s = 50.0, s3 = 42.8.
It can be seen that (vq, w1) corresponds to the highest score,
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and the robot will execute at this speed. The final planned
path is shown in the blue circle in Figure 17.c and the path
reach the target smoothly.

It can be seen from the above analysis that although the
global path information is added to the scoring function
with fixed coefficients, it may still fall into the local opti-
mum, while the scoring function using the adaptive weighting
mechanism enables the robot to not only follow the guidance
of the global path but also accurately and quickly. reach the
target point.

4) COMPARISON OF NEW SCORING FUNCTION AND
TRADITIONAL SCORING FUNCTION

Fig 18 shows a comparison of the adaptive weighted scoring
function with the traditional scoring function.
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FIGURE 18. Comparison of new scoring function and Traditional scoring
function.

As shown in Fig 18, at the starting point, the robot poses
Po (X0, Yo, 6o) = (0, 0, 45), the linear velocity vo = 30cm/s,
and the angular velocity wy = 0°/s. In the conventional
score function shown in Equation 13, let (o, «, B, y) =
(1.0,0.4, 0.4, 0.2). In the speed sampling space, take 3 speed
combinations as example: (vi, w1) = (30,40), (v2, w2) =
(30, 0), (v3, w3) = (30, —40). Their corresponding scores are
obtained by formula 13: s; = 98.2,sp = 91.1,s3 = 83.5.
It can be seen that (vq, w1) corresponds to the highest score,
so the robot executes this speed, as shown by the red arrow in
Figure 18.a, and the final planned path is shown in the purple
circle in Figure 18.c.

Similarly, in the new score function shown in Equation 24,
let («, B, y,7) = (0.4,0.1,0.1,0.4), and let © = 0.012 in
Equation 23. The scores corresponding to the 3-speed com-
binations are obtained by formula 24: s; = 42.8, s, =
50.1, s3 = 57.1. It can be seen that (v3, w3) corresponds to
the highest score, so the robot executes this speed, as shown
by the red arrow in Figure 18.b, and the final planned path is
shown in the blue circle in Figure 18.c.

It can be seen from the above analysis that in the indoor
environment where the distribution of obstacles is relatively
dense, the traditional scoring function can easily lead to the
machine falling into the local optimum and cannot reach the
target, while the new scoring function can avoid falling into
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the local optimum under the guidance of the global path
information.

F. ASL-DWA ALGORITHM FLOW
The proposed ASL-DWA algorithm flow is shown in

Figure 19.
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FIGURE 19. ASL-DWA algorithm flow.

The algorithm mainly includes the following steps:

(1) Run the Ax algorithm based on the hybrid heuristic
function. Within the global static map, search from the start-
ing point until the target point is found. The input information
at this stage mainly includes the current pose of the robot, the
target point, and the global static map.

(2) Global path planning. According to the search result of
A star, a global path from the out point to the target point is
obtained, denoted as Path{po, ..., pm}-

(3) Calculate the score corresponding to the sampling
speed (vi, w;). Firstly, the global path yaw score, target head-
ing angle score, obstacle distance score, and speed score are
calculated respectively, and then the final score is obtained
according to the adaptive weighted score function.

(4) Run ASL-DWA. That is, traverse the entire sampling
space to obtain the optimal speed combination (v, w) as the
output result.

(5) The robot runs one sampling period with velocity (v,w).

In the above steps, 1 and 2 only need to be executed once,
and 3-5 are executed in a loop until the target point is reached.

IV. EXPERIMENT AND RESULT ANALYSIS

A. COMPARISON OF HYBRID HEURISTIC FUNCTION AND
TRADITIONAL HEURISTIC FUNCTION

To compare the pathfinding performance of hybrid heuristic
functions and four traditional heuristic functions in indoor
environments, we test five heuristic functions in three differ-
ent environments.

VOLUME 10, 2022



H. Liu, Y. Zhang: ASL-DWA: An Improved A-Star Algorithm for Indoor Cleaning Robots

IEEE Access

The test environment is shown in Figure 20.

Fig 20.al shows test environment 1, which is a Smx*14m
office with 2 rooms, and forms a connected environment
through doors. Obstacles such as desks, chairs, cartons, etc.
exist in the environment. Fig 20.a2 shows test environment 2,
which is a 12m=10m apartment and consists of a living room,
a bedroom, a kitchen, a bathroom, and a balcony, and there is
a corridor between the room and the living room. Fig 20.a3
shows test environment 3, which is a home environment with
a living room, two rooms, a kitchen, a bathroom, and two
balconies.

Figure 20.b1-b3 are the grid maps obtained by the cleaning
robot in the three environments. Each grid in the figure corre-
sponds to an area of Scmx5cm. The black part is the obstacle,
the cyan part is the passable area, and the silver part is the
unknown area. The green part is the early warning area, that
is, although there are no obstacles in this area, the center of
the machine cannot reach these areas due to the limitation of
the robot’s overall size and safety distance.

(a3) ENVI 3

0 50 100 0 50 100 150 200 0 50 100 150

(b1) Map 1 (b2) Map 2 (b3) Map 3

FIGURE 20. Test environments and maps.

There are some incomplete detection parts in the map, this
is due to a) There is a height difference between the ground
of the kitchen, balcony, bathroom, and other environments
and the ground of other rooms, the cleaning robot will not
enter these areas to avoid being trapped; b) There are areas
that won’t completely block the laser detection signal, but
the robot can’t pass through, such as areas cut off by chairs,
or narrow passages between beds and cabinets.

We test the heuristic function in two different situations:
the case where the starting point and the target point are in
the same room and the case where the starting point and the
target point are in different rooms.
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1) THE STARTING POINT AND THE TARGET POINT ARE IN
THE SAME ROOM

Fig 21 shows the search results of five heuristic functions in
three maps when the starting point and the target point are
in the same room. In the figure, the black dot is the starting
point, the black square is the target point, and the orange area
is the node to which the algorithm is extended.

As shown in Figure 21, when the starting point and the
target point are in the same room, there are relatively few
obstacles between the two points, and the five heuristic func-
tions can reach the target point with a relatively small search
area.

Chebysh Manhatian Di 1

Euclidean

New algorithm

ENVI1

ENVI 2

ENVI3

\ 4 770 } ™
0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150

(c1) (c2) (c3) (c5) (c6)

FIGURE 21. Search results for five heuristics (points in the same room).

The number of search nodes for the five heuristic functions
is shown in Table 2.

TABLE 2. The number of search nodes (points in the same room).

chebyshev manhattan diagonal euclidean  new

ENV1 3226 3431 2891 2787 2414
ENV 2 3691 3342 3144 3048 2713

ENV3 3178 2693 2570 2586 2649

As shown in Table 2, compared with the heuristic function
based on Chebyshev distance, the proposed hybrid heuristic
function reduces the number of nodes in the three maps by
25.17%, 26.5%, and 16.6% respectively, with an average
reduction of 22.7%. Compared with the heuristic function
based on Manhattan distance, the number of nodes is reduced
by 29.6%, 18.8%, and 1.6%, and the average is 16.7; com-
pared with the heuristic function based on diagonal distance,
the number of nodes is reduced by 16.5%, 13.7 %, -3%,
an average reduction of 9%; compared with the heuristic
function based on Euclidean distance, the number of nodes
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is reduced by 13.4%, 11%, -2.4%, and an average reduction
of 7.3%.

2) THE STARTING POINT AND THE TARGET POINT ARE IN
DIFFERENT ROOMS

Fig 22 shows the search results of five heuristic functions in
three maps when the starting point and the target point are in
different rooms.

Euclidean

New algorithm

ENVI3

0 50 100 150

0 50 100 150
(c1) (c2) (c3) (cs) (c6)

0 50 100 150 0 50 100 150 0 50 100 150

FIGURE 22. Search results for five heuristics (points in different rooms).

As shown in Figure 22, when the starting point and the
target point are in different rooms, there are relatively many
obstacles between the two points, and the heuristic function
needs a large search area to reach the target point.

Table 3 shows the number of search nodes for the five
heuristic functions in the three grid maps.

TABLE 3. The number of search nodes (points in different rooms).

chebyshev manhattan diagonal euclidean  new

ENV1 8464 7520 8368 8285 6308
ENV2 2710 2267 2343 2088 1712
ENV3 4056 5736 4000 4083 2744

As shown in Table 3, compared with the heuristic func-
tion based on the Kichebyshev distance, the proposed hybrid
heuristic function reduces the number of search nodes in the
three maps by 25.5%, 36.8%, and 32.4% respectively, with
an average reduction of 31.5%; Compared with the heuristic
function based on the distance, the search nodes are reduced
by 16.1%, 24.5%, and 52.2%, respectively, with an average
reduction of 30.9%; compared with the heuristic function
based on the diagonal distance, the search nodes are reduced
by 24.6%, 26.9%, and 31.4% %, an average reduction of
27.6%; compared with the Euclidean distance-based heuristic

99512

function, the search nodes are reduced by 23.9%, 18%, and
32.8%, respectively, with an average reduction of 24.9%.

B. COMPARISON OF ASL-DWA AND TRADITIONAL A-STAR
ALGORITHM
We use several indicators to quantify the pathfinding effect of
the algorithm: the number of static times, the rotation angle
in situ, the path length, the movement time, and whether the
target is reached.

Static times refer to the number of times the robot stops
moving, which is recorded as Ngagic.

The in-situ rotation angle refers to the rotation angle of the
robot around the center of the machine, denoted as A¢m.

The path length refers to the movement distance of the
robot from the starting point to the target point, denoted as
Lpam. To simplify the calculation, we store the path as N
discrete points at certain distance intervals. The path length
can be obtained by Equation 27.

N—-1
Lpan =3 Ve =2 + G~y @)

Among them, N is the number of points, and (xj, y;) is the
coordinates of the i-th point on the path.

Movement time refers to the time taken by the robot
to move from the starting point to the target point, which
is recorded as Tpove. Its calculation method is shown in
Equation 28.

M
Tnove = Zi:l 8i/Vi + Nswatic X tsatic + A/ O (28)

Among them, s; is the arc length of the robot in the i-th
sampling period, v; is the linear velocity of the robot in
the i-th sampling period, and M is the number of sampling
periods. For the traditional Ax algorithm, the linear speed
of the robot is v=25cm/s. For the ASL-DWA algorithm, the
optimal linear speed of the robot is also 25cm/s, but the actual
movement speed is determined by the real-time calculation
results. Ngic is the number of times the robot stops, and tggic
is the time for each stop. Taking into account the braking time,
the elimination of inertia time, and other factors, the stopping
time of the robot is tgaic = S00ms. Ay is the angle which
the robot turns around its center. wym is the angular velocity
when rotating in place, and the angular velocity of the robot
rotating in place is w = 40°/S.

To compare the pathfinding effect of the ASL-DWA algo-
rithm and the traditional A-star algorithm, we tested both
algorithms in the three environments shown in Figure 20.

1) THE CASE WITHOUT UNKNOWN OBSTACLES
In the absence of unknown obstacles, the real-time map
during robot movement is the same as the static map used
in A-star path planning. The path planning results of the
traditional A-star algorithm and the proposed ASL-DWA
algorithm in three environments are shown in Figure 23.

In the figure, the black dot is the starting point, the black
square is the target point, the blue line is the path obtained by
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FIGURE 23. Comparison of ASL-DWA and traditional A star (without
unknown obstacles).

the traditional A-star algorithm, and the red line is the path
obtained by the ASL-DWA algorithm.

As shown in the figure, both algorithms can reach the target
point, but the path of the traditional A-star algorithm has
many polylines, while the path of ASL-DWA is smoother and
avoids the polyline path.

The parameters of the paths obtained by the two algorithms
are shown in Table 4.

TABLE 4. Comparison of ASL-DWA and traditional A star (without
unknown obstacles).

Astar ASL-DWA

Target
Nasie Aum Lot Toove joriy | Nuic Aum  Lpatn

ENV1| 11 495° 1221cm 66.7s vyes 0 0°
ENV2| 7  315° 803.3cm 43.5s vyes 0 0°
ENV3| 5 225° 705.6cm 36.3s yes 0 0°

T Target
move  Arrived

1220cm 40.8s yes
802.7cm 27.2s yes
705.2cm 23.2s yes

As shown in Table 4, there are many polylines in the path
obtained by the A-star algorithm, and the robot needs to stop
at these places, and then rotate around the robot center at a
certain angle, and then continue to move along the next path.
In contrast, ASL-DWA avoids the stationary and in-situ rota-
tion of the robot, thereby reducing the action time. ASL-DWA
reduces the movement time of the robot in the three maps by
38.8%, 37.4%, and 36.1%, respectively.

2) THE CASE WITH UNKNOWN OBSTACLES
In the case of unknown obstacles, the path planning results of
the proposed ASL-DWA algorithm and other algorithms are
shown in Figure 24.

In the figure, the black dots represent the starting point,
the black squares represent the target points, and the red dots
represent unknown obstacles. The red line is the walking path
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FIGURE 24. Comparison of new algorithm and other algorithms (with
unknown obstacles).

of the mobile robot when using ASL-DWA and the blue line
is the walking path using other algorithms.

As shown in Fig 24.a-c, when there are unknown obstacles
near the global path, traditional algorithms cannot guide the
robot to avoid these obstacles, resulting in an early stop of the
path planning.

As shown in Fig 24.d, when the ASL-DWA algorithm is
adopted, the robot can avoid moving obstacles and reach the
target smoothly.

The parameters of the paths obtained by the two algorithms
are shown in Table 5.
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FIGURE 25. Comparison of ASL-DWA and other algorithms.

C. COMPARISON OF ASL-DWA WITH OTHER METHODS
To illustrate the effectiveness of ASL-DWA, we compare
ASL-DWA with several other algorithms, including A-star,
Bidirectional A-star [11], and Geometric A-star [18].

The path planning results of several algorithms in three
environments are shown in Figure 25. In the figure, the green
and blue areas are the nodes searched by the algorithm, and
the red line is the path obtained by the algorithm.

Table 6 shows the parameters of the paths obtained by
several algorithms.

As shown in Table 6, the proposed ASL-DWA algorithm
reduces the number of nodes searched in all three environ-
ments and reduces the movement time of the machine from
the starting point to the target point. Further, ASL-DWA can
guide the machine to avoid unknown obstacles, while the
other three algorithms cannot avoid unknown obstacles.
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TABLE 5. Comparison of ASL-DWA and other algorithms (with unknown
obstacles).

Algorithm | Ngaic  Arurn Losth Tmove Arrived
Astar 8  360° 8145cm [/ No
BidAstar [ 6  270° 814.5cm / No
ENV1 °
Geometric| 0 0 802.7cm /A No
ASL.DWA | 0 ©0° 1219.8cm  42.4s  yes
Astar 6 270° 201.6cm  / No
Bid A star 6 270°  201.6cm / No
ENV 2 . °
Geometric| 0 0 198.6cm / No
ASL-DWA 0 0° 802.7cm 28s yes
Astar o o° 350cm / No
Bid Astar 0 0° 350cm 4 No
ENV3 . o
Geometric| 0 0 350cm / No
ASL-DWA 0 0° 792.8cm 28.8s yes

TABLE 6. Comparison of ASL-DWA and other algorithms.

o Unknown Obstacle
Node  Ngaic A/ Lpalh/cm Tmovels Avoidarica

A star 8337 11 495 1221 66.7 No
Bid Astar | 8179 630 1221 71.6 No
Geometric| 8337 0 1189 47.6 No
ASL-DWA | 5687 0 1220 40 Yes

Astar 2824 315 803.3 435 No

[
'S

ENV1

0

0

7
Bid Astar | 2445 12 540 803.3 51.6 No
Env2 Geometric| 2824 0 0 778.7 311 No
ASL-DWA | 2459 O 0 802.7 27.2 Yes
A star 4040 3 135 793.1 36.6 No
ENV 3 Bid Astar | 2782 8 360 793.1 44.7 No
Geometric| 4040 O 0 782.9 313 No
ASL-DWA | 2404 O 0 792.8 26.4 Yes

V. CONCLUSION

This paper introduces a new path planning algorithm called
the ASL-DWA algorithm. It is suitable for indoor cleaning
robots, which can reduce the number of search nodes of
the traditional Ax algorithm, eliminate polyline paths, guide
robots to avoid unknown obstacles, and avoid falling into
local optimum. Experiments show that the proposed ASL-
DWA algorithm has obvious advantages compared with other
algorithms.

There are several directions for future work. (1) In the
indoor environment, not all of the ground is on one plane,
and the path planning based on 3D sensor information is a
direction worthy of research. (2) The working goal of the
cleaning robot is to achieve full coverage of the working
environment. How to combine the coverage algorithm with
the path planning algorithm will be an interesting topic;
(3) Multi-machine collaboration can make the cleaning robot
work more efficiently, Research in this area is a hot topic.
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