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ABSTRACT A Mobile Ad Hoc Network (MANET) is a communication network that links communicating
devices (nodes) and does not contain permanent infrastructure. There are no dedicated routing devices in
MANETS, in which the routing task is assigned to a routing algorithm installed on all communicating nodes.
In this work, communicating nodes utilize one of the most widely used algorithms: Ant Colony Optimization
(ACO) routing algorithms. The ACO algorithms aim to balance between exploring new routes for the
communication packets vs. utilizing the best-known routes discovered during the communication session.
Achieving the optimality in this tradeoff is traditionally set manually by assigning many values to some
parameters and measuring the network performance after the simulation session. This manual optimality
tuning approach depends on human intuition and does not cope with MANET’s dynamic topology. In this
research, we introduce a novel method to find an optimal balance for the exploration-exploitation tradeoff
during the communication session. We formulate weighing the benefits of exploring new routes vs. exploiting
known ones upon the MANET performance as a game between the two semantic players. This equilibrium
is reflected as an optimal value for the pheromone evaporation parameter of the ACO algorithm during the
communication session. Experimental results show a higher performance of this online tuning algorithm
than the traditional offline tuning algorithms.

INDEX TERMS MANET routing, ACO routing, game theory, parameter tuning.

I. INTRODUCTION

Mobile Ad Hoc Networks have emerging utilization in many
real-life applications. They are used in the military sector
such as communication on battlefields [1], and in disaster
relief theaters such as volcanic eruptions and forest fire areas
[2], [3]- MANETS are also used to connect protesters in street
demonstrations, such as in Hong Kong [4], to avoid using
monitored communication networks. Vehicular ad hoc net-
works (VANETS) are implementations of MANETSs and the
communicating nodes represent moving vehicles [5], [6], [7].
In such theaters, the communication session is temporary by
nature, in which permanent infrastructure for the communica-
tion network cannot be established or is better to be avoided.
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Communicating nodes in MANETS take the responsibility
of extending the communication range of other nodes by re-
sending the data packets on behalf of the sender node. Rout-
ing in these conditions is a challenging task because of:(1) the
dynamic topology of the network wherever nodes arbitrarily
enter and leave the network; (2) the lack of dedicated routing
devices; and (3) the limited power resources of the nodes [8].
Due to the challenges, many approaches have been suggested
to tackle the routing problem in MANETS.

Routing algorithms in MANETS are classified based on
the update mechanism of the routing table into three main
categories: Proactive (table-driven), Reactive (on-demand),
and Hybrid routing protocols [9], [10]. In proactive routing
protocols, routes are preserved in the routing table even if
they are not needed. This means that nodes continuously
learn about the network topology changes by sending hello
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messages and updating their local routing tables accord-
ingly [11]. In highly dynamic networks, this technique may
become impractical from two perspectives: (1) it requires
high routing overhead traffic to propagate network status
information to all nodes as soon as any change occurs to
the network topology; and (2) the size of the routing table
kept in the memory of each node becomes greater as more
nodes join the network. OLSR and DSDV are examples
of proactive routing protocols [11]. In reactive routing pro-
tocols, routes’ data is gathered only when required. It is
not needed to exchange regular update messages all over
the network to keep nodes updated with network topology
changes. Although this reduces the routing overhead, it may
suffer from latency in discovering the required route when
needed [12]. AODV and DSR are examples of reactive rout-
ing protocols [13]. Hybrid protocols gather both proactive and
reactive techniques in the routing algorithm to benefit from
the advantages of both of them. In some taxonomies of hybrid
routing protocols, nodes are grouped either into meshes,
trees, or zones. A proactive routing approach is used for the
nodes lying within the same subgraph (mesh, tree, or zone).
On the other hand, reactive routing techniques are used to
locate routes for nodes outside the same subgraph, tree,
or zone [14]. Fisheye State Routing (FSR) and Zone Routing
Protocol (ZRP) are examples of well-known hybrid routing
protocols [12], [14].

ACO as a swarm intelligence algorithm has been used for
the MANET routing task by many researchers [15], [16].
The ACO algorithms’ capabilities fit well with the MANET
routing requirements, which are mainly: (1) the presence
of autonomous agents trying to reach some physical target;
and (2) the absence of any central administration entity in the
network that controls the agents’ search process. ACO-based
MANET routing is based on releasing discovery-packets
inside the network called ‘“‘ant agents”. They mimic the
real ants’ behavior of searching for food starting from their
nest. Real ants communicate in an indirect method called
stigmergy by depositing pheromone substance over the routes
they traverse as an indicator for the incoming ants to follow.
In MANET terminology, the sender node and all intermediate
nodes (when performing their routing duty of delivering the
sender’s message to the destination) generate ant agents. The
task of these agents is to classify the alternate paths from
the source node to the destination node according to the paths’
quality as they experiment. Similar to real ants’ stigmergy, ant
agents in MANET remark the path with accumulative values
of the utilized QoS measures. Good paths, after a while,
obtain high values of the QoS measures (pheromone) as a
result of the passage of more ant agents. Abandoned paths
have low pheromone values due to a pheromone evaporation
rate that is adjusted in the algorithm [17]. Ant agents also
have an important task of discovering new good routes as an
alternative to the best discovered ones. This is implemented
by routing a portion of the ant agents along less quality paths
to discover some suboptimal paths. Fig.1 shows the analogy
between the real ants’ method of finding alternate routes
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FIGURE 1. Analogy between real ants and artificial ants routing.

from their nest to the food vs. the notion of artificial ants in
communication networks.

Parameter tuning in ACO routing algorithms is either per-
formed online or offline. Offline parameter tuning is per-
formed before the algorithm’s execution. It is performed in
a trial-and-error method and relies on human experience to
adjust the optimum parameters’ values. It may be useful in
stationary environments, but it is not suitable for dynamic
ones somewhere the parameters have to cope with differ-
ent instances of the problem [18]. Online parameter tuning,
on the other hand, is more adaptive somewhere the parame-
ters’ values are adjusted while solving the problem instance.
This adaptability has a computational cost. The authors
of [19] categorized online parameter tuning approaches for
meta-heuristic algorithms generally into 3 categories: Simple,
Iterative, and High-Level. All categories utilize the notion of
generating some values for the parameters and then evaluat-
ing them according to the performance metrics. The simple
approach is a single step of setting parameters’ values and
then evaluating them. The iterative approach is a repeated
process of generating parameters’ values and then evaluating
the outcome performance metrics. The high-level approach is
also iterative, but the generate-phase involves producing elite
selected values of the parameters according to search methods
instead of random values. Researchers work to get the benefit
of dynamic parameter tuning and reduce computational cost
at the same time.

AntHocNet as an ACO-based routing algorithm [20] uti-
lizes the notion of pheromone to rate the suitability of
possible routes for ant agents. Pheromone deposition is
performed with the passage of ants over the route. The
pheromone amount increases accumulatively on any route
with the passage of more ants over it. An exploratory param-
eter exists to identify which route the ant agent will fol-
low based on the pheromone level of the available routes.
This exploratory parameter has been studied in our previous
research [21] to perform online tuning for it. On the other
hand, a pheromone evaporation process exists to decrease
the amount of pheromone in each route. The aim of the
evaporation process is to avoid keeping high pheromone
values for abandoned, low quality paths. The evaporation rate
is controlled by an evaporation parameter that is tuned offline
in the AntHocNet algorithm.

This paper is an extension of our previous conference paper
[21]. In the previous paper, we introduced an online parameter
tuning method for the exploration parameter of the MANET
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routing algorithm using game theory. In this paper, we tune
another parameter, which is the pheromone evaporation rate
parameter, using another game theory approach which is
satisfaction game.

A. PROBLEM STATEMENT AND MOTIVATION

MANETs have increasing utilization in today’s world.
Autonomous agents are the core component in the MANET
routing process. The goodness of possible routes for the
agents is remarked by depositing pheromone amounts with
every passage of an agent over any route. Accumulating the
pheromone amounts infinitely over all used routes leads to
misidentification of the best available routes. The notion of
pheromone evaporation arises in ACO algorithms based on
the requirement of decreasing the pheromone amount of less
utilized routes. In the AntHocNet algorithm, the pheromone
evaporation rate is controlled by a parameter that is tuned
offline. Offline tuning has the disadvantage of rigidity of the
chosen value for the parameter. On the other hand, online
parameter tuning methodologies are remarked with a high
computational cost. A successful algorithm should balance
between the benefits of online tuning and utilizing low pro-
cessing power.

B. AIM OF THE WORK

By covering the parameter tuning approaches in ACO based
MANET routing algorithms, we find that the offline tuning
algorithms suffer from not coping with the dynamic nature
of the MANET environment. On the other hand, online tun-
ing algorithms suffer from high computational cost. In this
research, we introduce a game theoretic approach to tune
(online) the pheromone evaporation rate parameter in the
AntHocNet routing algorithm. This approach combines the
adaptability of the online tuning methods with the low com-
putational cost associated with game theory.

C. CONTRIBUTION, AND METHODOLOGY

This research introduces online tuning for the pheromone
evaporation parameter in the AntHocNet algorithm using
game theory. Our approach is based on two semantic players,
which are the Exploration player and the Exploitation player.
The Exploration player aims to force the autonomous agents
to explore more new routes in the MANET. Its goal is to main-
tain more alternate routes to be utilized in case of failure of
the best used ones. On the other hand, from the Exploitation
player’s point of view, this exploration process consumes time
and resources. The Exploitation player aims to identify the
best routes in the MANET for once and then utilize them
extensively. The two players have contradicting intentions
towards the evaporation parameter. The Exploration player
aims to increase the parameter’s value, so the routes marked
with their high pheromone values lose their preferability to
the incoming agents. The Exploitation player aims to reduce
the evaporation rate for the opposite purpose. It aims to
keep the gained pheromone amounts in the routes as long
as possible to utilize them as an identifier of the best routes.
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The game notion creates a balance between the two compet-
ing players based on the QoS parameters measured from the
network environment.

The rest of this paper is structured as follows: Section II
presents a literature review of the research that tackles ACO
usage in MANET routing and methods used for parameter
tuning. Section III introduces the details of the approach con-
tributed in this paper. In section IV, we validate the introduced
algorithm with a set of experiments and evaluate its results
against those of other algorithms. Section V discusses the
obtained results and highlights the possible extensions of this
research.

Il. RELATED WORK

A well-known reactive routing protocol is the Ad hoc On-
demand Distance Vector (AODV) [22]. The source node
searched for a route for the destination node in its routing
table. If no direct route is found, a chain of broadcast pro-
cesses is performed to expand the search till a route to the
destination node is found. Although AODV ensures finding
the destination node, it has a high routing overhead. Naserian
[23] used a game theoretic approach to enhance the AODV
protocol. The aim is to reduce the flooding behavior in the
route discovery process. Each intermediate node is consid-
ered a player. When it receives a RREQ packet to propagate
it to other nodes, it takes a decision (game strategy) whether
to propagate the packet or drop it. The decision is taken based
on a network gain factor vs. the cost of forwarding the packet.

The Destination Sequenced Distance Vector (DSDV) is a
typical proactive routing protocol in MANETS that is based
on the Bellman-Ford algorithm [12]. DSDV keeps at each
node a routing table that contains the up-to-date routing
information for all nodes in the network. This is achieved by
forcing each node to send two types of packets frequently to
its neighboring nodes, namely: full dump packets and incre-
mental packets. Full dump packets carry all the information
in the routing table. The incremental packets carry only the
updated information since the last sent full dump packet. The
aim of this process is to keep all nodes aware of the network
changes. Although this technique is useful in keeping an
up-to-date routing table in all nodes, it has a performance
drawback in the case of large-scale networks.

The AntHocNet routing algorithm is one of the ACO
implementations in MANET routing [24]. It is a hybrid
routing algorithm. It contains two phases: (1) the reactive
path-set up phase and (2) the proactive path maintenance
phase. In the reactive path-set up phase, ant agents of the
ACO are used to find a path to the required destination, and
the pheromone information is kept in a pheromone table in
each node. The aim of the proactive path maintenance phase
is to sample paths while no destination is required in order
to update the local pheromone table. Parameter tuning in
AntHocNet is done offline and the best parameters’ values are
obtained by performing multiple communication sessions.
In each communication session, the QoS measurements are
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FIGURE 2. The structure of the pheromone table at any intermediate
node i.

recorded against the selected value of the parameters till the
value that yields the best QoS measures is identified [20].

Online parameter tuning in ACO MANET routing
has been handled from many perspectives. A swarm
intelligence approach has been used in the work of
Deepalakshmi ef al. [18] to tune 3 routing parameters. These
parameters are namely: (1) the exploration parameter «, (2)
the 8 parameter that controls the significance of routes having
low end-to-end delay, and (3) the § parameter that determines
the priority of paths marked with high available bandwidth.
Although this approach provides a near optimal solution,
it is characterized by high computation time that may not be
adequate for some MANET devices having low processing
capabilities. In [25], Sandhya et al. utilized fuzzy logic to
tune online the routing parameters of the ACO vehicle routing
problem. Three strategies are used in their research, namely:
FACO-1, FACO-2, and FACO-3, to tune three parameters
in the ACO routing algorithm. The first two strategies tune
a set of the parameters and consider the rest as constant.
The last strategy, FACO-3, tunes all the parameters simulta-
neously. Although the fuzzy approach has low computation
cost, it suffers from depending on an expert system to assign
the membership function of the system.

Ill. PROPOSED GAME THEORETIC APPROACH FOR
TUNING THE PHEROMONE EVAPORATION RATE
PARAMETER
A. ACO COMPONENT PROBLEM FORMULATION
In the AntHocNet routing algorithm, if a sender node s needs
to establish a communication session with a destination node
d, the sender node scans its local routing table to see if a
unicast route exists. If no such route exists, it sends multiple
forward ants (FANTS) to crawl the network and waits until
backward ants (BANTS) return with some route information
to update its routing table. The routing table in any com-
municating node is a 2D table with rows representing the
neighboring nodes and columns representing the prospected
destination nodes. Fig. 2 demonstrates the structure of the
pheromone table 7' at any intermediate node i.

Each value T,’; 4 € Rrepresents the pheromone amount that
indicates the goodness of the path through neighbor 7 to reach
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the destination d beginning from the current node i. To choose
a certain neighbor n as a next hop for the succeeding ants to
reach a certain destination d, the node i takes a probabilistic
decision according to the following formula:

\B
(Tha)”

A\ B’
Sien; (Ti)

Ppq is the probability of forcing a FANT to reach the des-
tination node d through the neighbor node n. B is the
exploration parameter, and N (ll is the set of all neighbors of
the current node i that carry route information to destination
d. The pheromone amounts Té 4 are built accumulatively by
receiving more and more BANTS carrying the QoS mea-
surements they encountered. The QoS metric used in this
work to calculate rj, as in [20], is the number of hops that
the BANT passes-over through its journey back to node i.
The BANT uses the inverse of this hop count (ré) to update
the corresponding pheromone value 7, in the pheromone
table T* as follows:

Ppa = pr =1 ey

Ty < vTia+ 1=y, yelol] @)

The parameter y controls how the pheromone table value
T ,2 o 1s affected by the arrival of the new information ‘Eé. For
large values of y, the old (accumulated) value of T, has the
greatest effect upon determining the new 7, , value, while
the new 7 carried by the BANT has a little effect. In this
case, we consider that the pheromone evaporation is small,
and the accumulated pheromone values are relatively resistant
to change. On the other hand, if y is a small value, then the
greatest effect upon calculating the new pheromone value Tr’; y
is based on the information carried with the BANT (t;) while
alittle consideration is paid to the old accumulated value 7, ;.
In this latter case, the pheromone evaporation is considered
high.

B. GAME THEORETIC COMPONENT PROBLEM
FORMULATION

Assuming we have a normal form game that consists of: a set
of players (/) containing m players, a strategy profile S and a
set of utility functions U. Any player selects a single strategy
s from a set of available strategies S such that s; € Si. The
strategy profile of the game is a vector s = {s1, 52, ..., Sm},
which represents the set of strategies chosen by all the m
players such that s; is chosen by player k. We denote the set
of strategies chosen by all players except a specific player
k by the symbol s_;. So, the strategy profile chosen by all
players of the game can be expressed as s = {s_x, sx}. The
utility function ux(s) is the gain of any player k£ when the set
of users I choose the strategy profile s.

A Nash equilibrium is said to be achieved if a strategy
profile s is agreed upon among the players of the game,
such that no single player can gain a benefit by changing
its strategy s; unilaterally [26]. A specific strategy profile
s = {sT, 55,85, , 9;‘1} is said to be the Nash equilibrium
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of the game if:

Yk € I, and Vs € Sk, we have
T A = 7 S| 3)

Let f; denote the set of all satisfied strategies (actions)
under a constraint of the player k given the strategies of all
other players [27]. The satisfaction equilibrium is defined as
a strategy profile s* = (s* ,, s7) such that for any player i

5 e fils™y) 4)

A satisfaction form game (SFG) is a game, and players are
individually interested in satisfying performance constraints
rather than performance optimization. Equilibrium in this
context, means all players can simultaneously satisfy their
individual constraints [28]. There is a distinction in the lit-
erature between the Pareto optimality and game theory equi-
librium. In our implementation, we followed the approach of
satisfaction equilibrium described in [27], [28], in which the
concept and the proof can be obtained.

Von Neumann’s Minimax Theorem states that: “Every
zero-sum matrix game A has a unique number v, called the
value of A, which is the maximum guarantee of a mixed
strategy for Rose and the minimum guarantee of a mixed
strategy for Colin.”[29]. In our implementation, we associ-
ated the gain of each player with a different network QoS
metric (SNR and EED as stated in Section III - C3), which
are not comparable in their numeric scales. So, the Minimax
concept is not applicable in our implementation.

C. GAME THEORETIC COMPONENT IMPLEMENTATION

1) NOVELITY IN OUR IMPLEMENTATION

Most game-theoretic implementations of MANET rout-
ing consider each communicating node as a game player
[30], [31]. Since there is no central entity in MANETS that has
information regarding all nodes, such as a network server, for
example, this approach hence assumes that all players share
their game information. Nodes should share two pieces of
information: (1) the strategy chosen by each player and (2)
the gain obtained by each player (utility function). This
information regarding each node must be available to all other
participating nodes in order to make the game information
clear for all the participants. This leads to routing overhead,
especially if the game players are a large number of commu-
nicating nodes.

The novelty in our approach is in choosing only two local
semantic players, that are the Exploration and the Exploita-
tion players, which have opposite intentions towards the
parameter to be tuned. So, the game is played locally at each
node without the need for the global perspective assumed in
other game-theoretic implementations. Fig. 3 demonstrates
the flowchart of the proposed algorithm.

2) STRATEGIES OF THE PLAYERS
The aim of the Exploration player to minimize the value of the
y parameter in (2), while the aim of the Exploitation player to
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FIGURE 3. The flowchart of the proposed algorithm.

maximize the same parameter. The Exploration player aims
to let more ants explore the network rather than utilizing the
best-known routes marked by high pheromone values in the
pheromone table T i To achieve this target, it tries to reduce
the parameter’s value to make a great reliance on the new
incoming information (ré) carried by the BANTS in updating
the pheromone table’s value. In this case, we consider that
the pheromone evaporation is high. On the other hand, the
Exploitation player aims to maximize the parameter to get
the most benefit from the existing value in the routing table
and relies less on the new incoming value with the BANTS.

In Eq. (2), the value of y is between 0 and 1. In our imple-
mentation, we give the freedom to the Exploration player to
set a value y; for y between 0 and yp;,i; and the freedom to
the Exploitation player to set a value y>for y between ypinir
and 1. That is:

0<v1 <¥Limit <y2 =1 (5)
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TABLE 1. Setting the strategies for the players.

STRATEGIES OF STRATEGIES OF
EXPLORATION PLAYER EXPLOITATION PLAYER

PLAYER'S . — . —

Low Sit Y1 =0 S1t Yar = Yiimit
Assoc.
METRIC Yiimit 1+ Viimie
range | VIODERATE S2t Yim = St Yam = ——

HIGH S30 Y1m = Viimit S3t Yon =1

YLimir 18 an arbitrary value between O and 1, that is the
maximum value the Exploration player can assign to y and,
at the same time, is the minimum value that the Exploita-
tion player can assign to y. The decision taken by every
player is based upon one QoS metric, the BANTs carry
the metric measurement through their journey from the des-
tination node back to the sender node. We associated the
Signal to Noise Ratio (SNR) metric with the Exploration
player and the End-to-End Delay (EED) metric with the
Exploitation player. Other player-metric associations can be
utilized in different environments. The definitions of SNR
and EED can be found in [32] and [33]. The raw mea-
surements of both QoS metrics are transformed into Low,
Moderate, and High categories, and then a strategy is chosen
by the associated player as shown in Table 1. The boundaries
between the Low, Moderate, and High categories are arbitrary
and are metric-environment specific. For a video streaming
environment, for example, the numerical boundaries for the
categories of the EED metric in Table 1 may be set differ-
ently from a MANET environment used for a text exchange
application.

The strategy chosen by the player k is either
S1 = YL, $2 = ¥ OT 83 = Yy for the Low, Moderate, and
High metric measurements respectively, k € {1, 2}. The strat-
egy is determined as the corresponding third of the allowed
range for the player to set the y parameter r. Since we have
only one value for the y parameter to be set in (2) at the node
level, the final y value is determined according to Table 2
as follows:

TABLE 2. Value of y parameter based on players’ contribution.

PLAYER2: EXPLOITATION
(BASED ON: EED)
s;:Low S2: S3:HIGH
STRATEGY MODERATE
QUALITY QUALITY
QUALITY
. sp:Low YiL + Va2 YiL + Yo YiL t+ Vou
PLAYER1: QUALITY 2 2 2
EXPLORATION
(BASED ON Sy + + n
SNR) MODERATE Yim T V2L Yim T Vam Yim T Vou
QUALITY 2 2 2
S3: HIGH Yint Vo | VintVYem | Yin +Vou
QUALITY 2 2 2
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3) THE UTILITY FUNCTIONS

The utility function of player 1 (Exploration player) is the
average SNR measurement of the next three generations of
the BANTSs after setting the new value of the y parameter
in Table 2. Similarly, the EED measurement is the utility
function for player 2 (Exploitation player). So, SNR(y) and
EED(y) are the utility functions of the two players corre-
spondingly. Each of which is a QoS function measured from
the MANET environment and is based on a single variable
(y) from the point of view of each player. In other words,
after setting the y parameter from Table 2, we send FANTSs
according to the modified pheromone table, then wait for the
BANTSs carrying the SNR and EED information from the
environment for 3 successive generations, and average
the results.

4) EQUILIBRIUM POINT

We consider the equilibrium is reached if the SNR(y) and
EED(y) functions satisfy the following conditions: (1) the
metric category is elevated from Low to Moderate or from
Moderate to High, and (2) the metric category remains con-
stant for the next 3 consecutive generations. In this case, the
equilibrium equation (3) is satisfied by reaching the point
that there is no reason to change the strategy to obtain more
benefits in the utility functions SNR (y) and EED(y). If no
stability is reached, then the current measurements of SNR
and EED are utilized to initiate another game and change the
y parameter again, then testing for the equilibrium till it is
reached.

5) GAME THEATER
Any communicating node can initiate the game after detect-
ing a degradation in the performance of the incoming QoS
measurements carried by the BANTs with a minimum pre-
determined threshold. In our experiments, we considered
detecting a 30% degradation in the used QoS metrics as a
trigger to initiate the game.

The game is played locally at every node, and the local
pheromone table is updated according to the new value given
to the y parameter that indicates pheromone evaporation rate.

IV. RESULTS AND DISCUSSION

A. SIMULATION ENVIRONMENT

Experiments are implemented using the NS2.34 simulator
[34]. Simulation environment is a PC Intel core i3 CPU
with 8 GB RAM. The experiments are performed by varying
the number of communicating nodes from 20 to 100. Other
environmental settings are listed in Table 3. The proposed
algorithm is compared with the AntHocNet and the AODV
algorithms regarding the effect of the network size on the
average EED, the Packet Loss Ratio, and the Throughput
metrics. The AODV is a reactive routing algorithm that is
discussed in section II. In the first three experiments, we com-
pare the proposed algorithm against AntHocNet and AODV
in terms of EED, Packet Loss Ratio, and Throughput in
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TABLE 3. Chosen parameters for the simulation environment.

SIMULATION DURATION 100 SECONDS

MoBILITY MODEL RANDOM WAY POINT

SPEED OF THE NODES 100 m/s

RADIO-PROPAGATION MODEL Two RAY GROUND

MAC TYPE 802.11

INTERFACE QUEUE TYPE CMU PRIQUEUE

LINK LAYER TYPE LL
MAX PACKET IN IFQ 50
ANTENNA TYPE ANTENNA/OMNIANTENNA
SIMULATION AREA 1000 Mx1000 m
PAUSE TIME 20s

multiple simulation sessions using different numbers of nodes
in each session. In these sessions, we fixed the parameters
y = 0.7 and B = 20 for the AntHocNet as stated in the
original work. The proposed algorithm starts initially with
y = 0.7 and then modifies it according to the network
conditions as described in the algorithm. In the proposed
algorithm and the other two compared algorithms, 20% of
the nodes are moving. The fourth experiment demonstrates
the effect of varying the yp;n;: parameter on the proposed
algorithm’s performance in terms of EED.

B. COMPARING THE PROPOSED ALGORITHM AGAINST
ANTHOCNET AND AODV IN END-TO-END DELAY METRIC
The End-to-End delay metric is defined as the average time
taken for packets to travel from a source node to a destination
node in a network. It gathers all types of delay for a certain
packet from its source till it reaches its destination. If we are
tracing the packet delay from a sender node i to a destination
node j, we denote the delay from i to j as D; j as follows [32]:

B
Di,jZPi+Qi+P+Z+Qj+Pj (6)

P;, P; are the processing delays at nodes i and j, and Q;, O;
represent the queue delays at nodes i and j, respectively. P is
the propagation delay, B is the bandwidth of the channel, and
b is the size of the packet (measured in bits). B/b represents
the transmission delay.

Fig. 4 shows that the proposed algorithm starts with a
higher EED value than the AntHocNet till approximately the
number of nodes =50. For a number of nodes greater than 50,
the proposed algorithm outperforms the AntHocNet in terms
of EED. The difference between the proposed algorithm
and the AntHocNet in terms of End-to-End delay reaches
0.2 ms at a number of nodes=100 nodes. The reason for the
advantage of the proposed algorithm over the AntHocNet for
larger networks is that AntHocNet sets y = 0.7, which gives
an advantage to the Exploitation process over the Exploration
process. In our algorithm, we give the two concepts the
freedom to reach an equilibrium that leads to dynamicity in
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AntHocNet and AODV.

route selection that is reflected upon delay time. The AODV
algorithm has a greater delay compared with the proposed
algorithm and the AntHocNet.

C. COMPARING THE PROPOSED ALGORITHM AGAINST
ANTHOCNET AND AODV IN PACKET LOSS RATIO

The packet loss ratio metric measures the ratio of the number
of lost packets to the total number of sent packets. As shown
in Fig. 5, the proposed algorithm is relatively equivalent to
AntHocNet for a number of nodes of less than 60, and then
it outperforms AntHocNet in terms of the Packet Loss Ratio
for larger networks up to 100 nodes. The reason is that our
algorithm gives the nodes the flexibility to search more routes
or retain the best-known routes according to the network
conditions. This route selection flexibility reduces the packet
loss. The two algorithms are nearly equivalent for small num-
ber of nodes as there is no many alternative routes to explore
in case of bad performance. In larger networks (>50 nodes),
the proposed algorithm’s notion of giving the Exploration
player more freedom is reflected in the performance metrics.
Both of the proposed algorithm and AntHocNet outperform
the AODV algorithm in terms of packet loss ratio.

D. COMPARING THE PROPOSED ALGORITHM AGAINST
ANTHOCNET AND AODV IN THROUGHPUT

The throughput metric is the rate at which information is
sent successfully through the network [35]. Fig.6 shows the
throughput of the proposed algorithm against AntHocNet
and AODV. Both of the proposed algorithm and AntHocNet
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outperform the AODV algorithm in terms of throughput for
a number of nodes greater than 20. The proposed algorithm
outperforms the AntHocNet for a number of nodes greater
than 40 and up to a number of nodes of 100 nodes.

E. THE EFFECT OF THE iz PARAMETER UPON THE
PROPOSED ALGORITHM'’S EED METRIC

The yLimi; parameter is the boundary between the maximum
value that the Exploration player can assign to y and the lower
value that the Exploitation player can assign to it. In Fig.7,
we test the impact of changing ypini: upon the EED metric.
It is obvious that giving equal chances to the Exploration
and Exploitation players by setting yrimi; = 0.5 pours in
the benefit of the EED metric. On the other hand, forcing
the algorithm to give one player an advantage over the other
player -either by increasing or decreasing yzimi;- is harmful
to the overall performance.

V. CONCLUSION AND FUTURE WORK

This paper introduced a game theoretic approach to optimize
online the y parameter in the AntHocNet routing algorithm.
This parameter controls the contribution share of the explo-
ration notion and the exploitation notion in calculating the
amounts of pheromone in the pheromone table. Parameters in
the AntHocNet are tuned offline, which gives some rigidity
to the algorithm. The proposed algorithm uses the notion of
game theory and considers two semantic players, who are the
Exploration and Exploitation players. The two players have
contradictory plans towards the y parameter. The Exploration
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player aims to lower it in order to increase pheromone evap-
oration, while the Exploitation player aims to increase the
parameter and decrease the evaporation rate. The proposed
algorithm introduces an equilibrium between the two players
to tune the parameter. Experimental results show that the
proposed algorithm is competitive with the AntHocNet in rel-
atively small networks and outperforms it in large networks.
Future work is intended to conduct more experimental results
and perform more QoS metrics associations with the game
players.
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