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ABSTRACT AMobile Ad Hoc Network (MANET) is a communication network that links communicating
devices (nodes) and does not contain permanent infrastructure. There are no dedicated routing devices in
MANETs, in which the routing task is assigned to a routing algorithm installed on all communicating nodes.
In this work, communicating nodes utilize one of the most widely used algorithms: Ant Colony Optimization
(ACO) routing algorithms. The ACO algorithms aim to balance between exploring new routes for the
communication packets vs. utilizing the best-known routes discovered during the communication session.
Achieving the optimality in this tradeoff is traditionally set manually by assigning many values to some
parameters and measuring the network performance after the simulation session. This manual optimality
tuning approach depends on human intuition and does not cope with MANET’s dynamic topology. In this
research, we introduce a novel method to find an optimal balance for the exploration-exploitation tradeoff
during the communication session.We formulate weighing the benefits of exploring new routes vs. exploiting
known ones upon the MANET performance as a game between the two semantic players. This equilibrium
is reflected as an optimal value for the pheromone evaporation parameter of the ACO algorithm during the
communication session. Experimental results show a higher performance of this online tuning algorithm
than the traditional offline tuning algorithms.

16 INDEX TERMS MANET routing, ACO routing, game theory, parameter tuning.

I. INTRODUCTION17

Mobile Ad Hoc Networks have emerging utilization in many18

real-life applications. They are used in the military sector19

such as communication on battlefields [1], and in disaster20

relief theaters such as volcanic eruptions and forest fire areas21

[2], [3]. MANETs are also used to connect protesters in street22

demonstrations, such as in Hong Kong [4], to avoid using23

monitored communication networks. Vehicular ad hoc net-24

works (VANETs) are implementations of MANETs and the25

communicating nodes represent moving vehicles [5], [6], [7].26

In such theaters, the communication session is temporary by27

nature, in which permanent infrastructure for the communica-28

tion network cannot be established or is better to be avoided.29

The associate editor coordinating the review of this manuscript and

approving it for publication was Renato Ferrero .

Communicating nodes in MANETs take the responsibility 30

of extending the communication range of other nodes by re- 31

sending the data packets on behalf of the sender node. Rout- 32

ing in these conditions is a challenging task because of:(1) the 33

dynamic topology of the network wherever nodes arbitrarily 34

enter and leave the network; (2) the lack of dedicated routing 35

devices; and (3) the limited power resources of the nodes [8]. 36

Due to the challenges, many approaches have been suggested 37

to tackle the routing problem in MANETs. 38

Routing algorithms in MANETs are classified based on 39

the update mechanism of the routing table into three main 40

categories: Proactive (table-driven), Reactive (on-demand), 41

and Hybrid routing protocols [9], [10]. In proactive routing 42

protocols, routes are preserved in the routing table even if 43

they are not needed. This means that nodes continuously 44

learn about the network topology changes by sending hello 45
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messages and updating their local routing tables accord-46

ingly [11]. In highly dynamic networks, this technique may47

become impractical from two perspectives: (1) it requires48

high routing overhead traffic to propagate network status49

information to all nodes as soon as any change occurs to50

the network topology; and (2) the size of the routing table51

kept in the memory of each node becomes greater as more52

nodes join the network. OLSR and DSDV are examples53

of proactive routing protocols [11]. In reactive routing pro-54

tocols, routes’ data is gathered only when required. It is55

not needed to exchange regular update messages all over56

the network to keep nodes updated with network topology57

changes. Although this reduces the routing overhead, it may58

suffer from latency in discovering the required route when59

needed [12]. AODV and DSR are examples of reactive rout-60

ing protocols [13]. Hybrid protocols gather both proactive and61

reactive techniques in the routing algorithm to benefit from62

the advantages of both of them. In some taxonomies of hybrid63

routing protocols, nodes are grouped either into meshes,64

trees, or zones. A proactive routing approach is used for the65

nodes lying within the same subgraph (mesh, tree, or zone).66

On the other hand, reactive routing techniques are used to67

locate routes for nodes outside the same subgraph, tree,68

or zone [14]. Fisheye State Routing (FSR) and Zone Routing69

Protocol (ZRP) are examples of well-known hybrid routing70

protocols [12], [14].71

ACO as a swarm intelligence algorithm has been used for72

the MANET routing task by many researchers [15], [16].73

The ACO algorithms’ capabilities fit well with the MANET74

routing requirements, which are mainly: (1) the presence75

of autonomous agents trying to reach some physical target;76

and (2) the absence of any central administration entity in the77

network that controls the agents’ search process. ACO-based78

MANET routing is based on releasing discovery-packets79

inside the network called ‘‘ant agents’’. They mimic the80

real ants’ behavior of searching for food starting from their81

nest. Real ants communicate in an indirect method called82

stigmergy by depositing pheromone substance over the routes83

they traverse as an indicator for the incoming ants to follow.84

InMANET terminology, the sender node and all intermediate85

nodes (when performing their routing duty of delivering the86

sender’s message to the destination) generate ant agents. The87

task of these agents is to classify the alternate paths from88

the source node to the destination node according to the paths’89

quality as they experiment. Similar to real ants’ stigmergy, ant90

agents in MANET remark the path with accumulative values91

of the utilized QoS measures. Good paths, after a while,92

obtain high values of the QoS measures (pheromone) as a93

result of the passage of more ant agents. Abandoned paths94

have low pheromone values due to a pheromone evaporation95

rate that is adjusted in the algorithm [17]. Ant agents also96

have an important task of discovering new good routes as an97

alternative to the best discovered ones. This is implemented98

by routing a portion of the ant agents along less quality paths99

to discover some suboptimal paths. Fig.1 shows the analogy100

between the real ants’ method of finding alternate routes101

FIGURE 1. Analogy between real ants and artificial ants routing.

from their nest to the food vs. the notion of artificial ants in 102

communication networks. 103

Parameter tuning in ACO routing algorithms is either per- 104

formed online or offline. Offline parameter tuning is per- 105

formed before the algorithm’s execution. It is performed in 106

a trial-and-error method and relies on human experience to 107

adjust the optimum parameters’ values. It may be useful in 108

stationary environments, but it is not suitable for dynamic 109

ones somewhere the parameters have to cope with differ- 110

ent instances of the problem [18]. Online parameter tuning, 111

on the other hand, is more adaptive somewhere the parame- 112

ters’ values are adjusted while solving the problem instance. 113

This adaptability has a computational cost. The authors 114

of [19] categorized online parameter tuning approaches for 115

meta-heuristic algorithms generally into 3 categories: Simple, 116

Iterative, and High-Level. All categories utilize the notion of 117

generating some values for the parameters and then evaluat- 118

ing them according to the performance metrics. The simple 119

approach is a single step of setting parameters’ values and 120

then evaluating them. The iterative approach is a repeated 121

process of generating parameters’ values and then evaluating 122

the outcome performance metrics. The high-level approach is 123

also iterative, but the generate-phase involves producing elite 124

selected values of the parameters according to searchmethods 125

instead of random values. Researchers work to get the benefit 126

of dynamic parameter tuning and reduce computational cost 127

at the same time. 128

AntHocNet as an ACO-based routing algorithm [20] uti- 129

lizes the notion of pheromone to rate the suitability of 130

possible routes for ant agents. Pheromone deposition is 131

performed with the passage of ants over the route. The 132

pheromone amount increases accumulatively on any route 133

with the passage of more ants over it. An exploratory param- 134

eter exists to identify which route the ant agent will fol- 135

low based on the pheromone level of the available routes. 136

This exploratory parameter has been studied in our previous 137

research [21] to perform online tuning for it. On the other 138

hand, a pheromone evaporation process exists to decrease 139

the amount of pheromone in each route. The aim of the 140

evaporation process is to avoid keeping high pheromone 141

values for abandoned, low quality paths. The evaporation rate 142

is controlled by an evaporation parameter that is tuned offline 143

in the AntHocNet algorithm. 144

This paper is an extension of our previous conference paper 145

[21]. In the previous paper, we introduced an online parameter 146

tuning method for the exploration parameter of the MANET 147
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routing algorithm using game theory. In this paper, we tune148

another parameter, which is the pheromone evaporation rate149

parameter, using another game theory approach which is150

satisfaction game.151

A. PROBLEM STATEMENT AND MOTIVATION152

MANETs have increasing utilization in today’s world.153

Autonomous agents are the core component in the MANET154

routing process. The goodness of possible routes for the155

agents is remarked by depositing pheromone amounts with156

every passage of an agent over any route. Accumulating the157

pheromone amounts infinitely over all used routes leads to158

misidentification of the best available routes. The notion of159

pheromone evaporation arises in ACO algorithms based on160

the requirement of decreasing the pheromone amount of less161

utilized routes. In the AntHocNet algorithm, the pheromone162

evaporation rate is controlled by a parameter that is tuned163

offline. Offline tuning has the disadvantage of rigidity of the164

chosen value for the parameter. On the other hand, online165

parameter tuning methodologies are remarked with a high166

computational cost. A successful algorithm should balance167

between the benefits of online tuning and utilizing low pro-168

cessing power.169

B. AIM OF THE WORK170

By covering the parameter tuning approaches in ACO based171

MANET routing algorithms, we find that the offline tuning172

algorithms suffer from not coping with the dynamic nature173

of the MANET environment. On the other hand, online tun-174

ing algorithms suffer from high computational cost. In this175

research, we introduce a game theoretic approach to tune176

(online) the pheromone evaporation rate parameter in the177

AntHocNet routing algorithm. This approach combines the178

adaptability of the online tuning methods with the low com-179

putational cost associated with game theory.180

C. CONTRIBUTION, AND METHODOLOGY181

This research introduces online tuning for the pheromone182

evaporation parameter in the AntHocNet algorithm using183

game theory. Our approach is based on two semantic players,184

which are the Exploration player and the Exploitation player.185

The Exploration player aims to force the autonomous agents186

to exploremore new routes in theMANET. Its goal is tomain-187

tain more alternate routes to be utilized in case of failure of188

the best used ones. On the other hand, from the Exploitation189

player’s point of view, this exploration process consumes time190

and resources. The Exploitation player aims to identify the191

best routes in the MANET for once and then utilize them192

extensively. The two players have contradicting intentions193

towards the evaporation parameter. The Exploration player194

aims to increase the parameter’s value, so the routes marked195

with their high pheromone values lose their preferability to196

the incoming agents. The Exploitation player aims to reduce197

the evaporation rate for the opposite purpose. It aims to198

keep the gained pheromone amounts in the routes as long199

as possible to utilize them as an identifier of the best routes.200

The game notion creates a balance between the two compet- 201

ing players based on the QoS parameters measured from the 202

network environment. 203

The rest of this paper is structured as follows: Section II 204

presents a literature review of the research that tackles ACO 205

usage in MANET routing and methods used for parameter 206

tuning. Section III introduces the details of the approach con- 207

tributed in this paper. In section IV, we validate the introduced 208

algorithm with a set of experiments and evaluate its results 209

against those of other algorithms. Section V discusses the 210

obtained results and highlights the possible extensions of this 211

research. 212

II. RELATED WORK 213

A well-known reactive routing protocol is the Ad hoc On- 214

demand Distance Vector (AODV) [22]. The source node 215

searched for a route for the destination node in its routing 216

table. If no direct route is found, a chain of broadcast pro- 217

cesses is performed to expand the search till a route to the 218

destination node is found. Although AODV ensures finding 219

the destination node, it has a high routing overhead. Naserian 220

[23] used a game theoretic approach to enhance the AODV 221

protocol. The aim is to reduce the flooding behavior in the 222

route discovery process. Each intermediate node is consid- 223

ered a player. When it receives a RREQ packet to propagate 224

it to other nodes, it takes a decision (game strategy) whether 225

to propagate the packet or drop it. The decision is taken based 226

on a network gain factor vs. the cost of forwarding the packet. 227

The Destination Sequenced Distance Vector (DSDV) is a 228

typical proactive routing protocol in MANETs that is based 229

on the Bellman-Ford algorithm [12]. DSDV keeps at each 230

node a routing table that contains the up-to-date routing 231

information for all nodes in the network. This is achieved by 232

forcing each node to send two types of packets frequently to 233

its neighboring nodes, namely: full dump packets and incre- 234

mental packets. Full dump packets carry all the information 235

in the routing table. The incremental packets carry only the 236

updated information since the last sent full dump packet. The 237

aim of this process is to keep all nodes aware of the network 238

changes. Although this technique is useful in keeping an 239

up-to-date routing table in all nodes, it has a performance 240

drawback in the case of large-scale networks. 241

The AntHocNet routing algorithm is one of the ACO 242

implementations in MANET routing [24]. It is a hybrid 243

routing algorithm. It contains two phases: (1) the reactive 244

path-set up phase and (2) the proactive path maintenance 245

phase. In the reactive path-set up phase, ant agents of the 246

ACO are used to find a path to the required destination, and 247

the pheromone information is kept in a pheromone table in 248

each node. The aim of the proactive path maintenance phase 249

is to sample paths while no destination is required in order 250

to update the local pheromone table. Parameter tuning in 251

AntHocNet is done offline and the best parameters’ values are 252

obtained by performing multiple communication sessions. 253

In each communication session, the QoS measurements are 254
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FIGURE 2. The structure of the pheromone table at any intermediate
node i .

recorded against the selected value of the parameters till the255

value that yields the best QoS measures is identified [20].256

Online parameter tuning in ACO MANET routing257

has been handled from many perspectives. A swarm258

intelligence approach has been used in the work of259

Deepalakshmi et al. [18] to tune 3 routing parameters. These260

parameters are namely: (1) the exploration parameter α, (2)261

the β parameter that controls the significance of routes having262

low end-to-end delay, and (3) the δ parameter that determines263

the priority of paths marked with high available bandwidth.264

Although this approach provides a near optimal solution,265

it is characterized by high computation time that may not be266

adequate for some MANET devices having low processing267

capabilities. In [25], Sandhya et al. utilized fuzzy logic to268

tune online the routing parameters of the ACO vehicle routing269

problem. Three strategies are used in their research, namely:270

FACO-1, FACO-2, and FACO-3, to tune three parameters271

in the ACO routing algorithm. The first two strategies tune272

a set of the parameters and consider the rest as constant.273

The last strategy, FACO-3, tunes all the parameters simulta-274

neously. Although the fuzzy approach has low computation275

cost, it suffers from depending on an expert system to assign276

the membership function of the system.277

III. PROPOSED GAME THEORETIC APPROACH FOR278

TUNING THE PHEROMONE EVAPORATION RATE279

PARAMETER280

A. ACO COMPONENT PROBLEM FORMULATION281

In the AntHocNet routing algorithm, if a sender node s needs282

to establish a communication session with a destination node283

d , the sender node scans its local routing table to see if a284

unicast route exists. If no such route exists, it sends multiple285

forward ants (FANTs) to crawl the network and waits until286

backward ants (BANTs) return with some route information287

to update its routing table. The routing table in any com-288

municating node is a 2D table with rows representing the289

neighboring nodes and columns representing the prospected290

destination nodes. Fig. 2 demonstrates the structure of the291

pheromone table T i at any intermediate node i.292

Each value T ind ∈ R represents the pheromone amount that293

indicates the goodness of the path through neighbor n to reach294

the destination d beginning from the current node i. To choose 295

a certain neighbor n as a next hop for the succeeding ants to 296

reach a certain destination d , the node i takes a probabilistic 297

decision according to the following formula: 298

Pnd =

(
T ind

)β1∑
j∈N i

d

(
T ijd
)β1 , β1 ≥ 1 (1) 299

Pnd is the probability of forcing a FANT to reach the des- 300

tination node d through the neighbor node n. β1 is the 301

exploration parameter, and N i
d is the set of all neighbors of 302

the current node i that carry route information to destination 303

d . The pheromone amounts T ind are built accumulatively by 304

receiving more and more BANTs carrying the QoS mea- 305

surements they encountered. The QoS metric used in this 306

work to calculate τ id , as in [20], is the number of hops that 307

the BANT passes-over through its journey back to node i. 308

The BANT uses the inverse of this hop count (τ id ) to update 309

the corresponding pheromone value T ind in the pheromone 310

table T i as follows: 311

T ind ← γT ind + (1− γ ) τ
i
d , γ ∈ [0, 1] (2) 312

The parameter γ controls how the pheromone table value 313

T ind is affected by the arrival of the new information τ id . For 314

large values of γ , the old (accumulated) value of T ind has the 315

greatest effect upon determining the new T ind value, while 316

the new τ id carried by the BANT has a little effect. In this 317

case, we consider that the pheromone evaporation is small, 318

and the accumulated pheromone values are relatively resistant 319

to change. On the other hand, if γ is a small value, then the 320

greatest effect upon calculating the new pheromone value T ind 321

is based on the information carried with the BANT (τ id ) while 322

a little consideration is paid to the old accumulated value T ind . 323

In this latter case, the pheromone evaporation is considered 324

high. 325

B. GAME THEORETIC COMPONENT PROBLEM 326

FORMULATION 327

Assuming we have a normal form game that consists of: a set 328

of players (I ) containing m players, a strategy profile S and a 329

set of utility functions U . Any player selects a single strategy 330

sk from a set of available strategies Sk such that sk ∈ Sk . The 331

strategy profile of the game is a vector s = {s1, s2, . . . , sm}, 332

which represents the set of strategies chosen by all the m 333

players such that sk is chosen by player k . We denote the set 334

of strategies chosen by all players except a specific player 335

k by the symbol s−k . So, the strategy profile chosen by all 336

players of the game can be expressed as s = {s−k , sk}. The 337

utility function uk (s) is the gain of any player k when the set 338

of users I choose the strategy profile s. 339

A Nash equilibrium is said to be achieved if a strategy 340

profile s is agreed upon among the players of the game, 341

such that no single player can gain a benefit by changing 342

its strategy sk unilaterally [26]. A specific strategy profile 343

s =
{
s∗1, s

∗

2, s
∗

3, . . . . . . , s
∗
m
}
is said to be the Nash equilibrium 344
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of the game if:345

∀k ∈ I , and ∀sk ∈ Sk , we have346

uk
(
s∗−k , s

∗
k
)
≥ uk

(
s∗−k , sk

)
(3)347

Let fk denote the set of all satisfied strategies (actions)348

under a constraint of the player k given the strategies of all349

other players [27]. The satisfaction equilibrium is defined as350

a strategy profile s∗ = (s∗
−k , s

∗
k ) such that for any player i351

s∗k ∈ fk (s
∗
−k ) (4)352

A satisfaction form game (SFG) is a game, and players are353

individually interested in satisfying performance constraints354

rather than performance optimization. Equilibrium in this355

context, means all players can simultaneously satisfy their356

individual constraints [28]. There is a distinction in the lit-357

erature between the Pareto optimality and game theory equi-358

librium. In our implementation, we followed the approach of359

satisfaction equilibrium described in [27], [28], in which the360

concept and the proof can be obtained.361

Von Neumann’s Minimax Theorem states that: ‘‘Every362

zero-sum matrix game A has a unique number v, called the363

value of A, which is the maximum guarantee of a mixed364

strategy for Rose and the minimum guarantee of a mixed365

strategy for Colin.’’[29]. In our implementation, we associ-366

ated the gain of each player with a different network QoS367

metric (SNR and EED as stated in Section III - C3), which368

are not comparable in their numeric scales. So, the Minimax369

concept is not applicable in our implementation.370

C. GAME THEORETIC COMPONENT IMPLEMENTATION371

1) NOVELITY IN OUR IMPLEMENTATION372

Most game-theoretic implementations of MANET rout-373

ing consider each communicating node as a game player374

[30], [31]. Since there is no central entity inMANETs that has375

information regarding all nodes, such as a network server, for376

example, this approach hence assumes that all players share377

their game information. Nodes should share two pieces of378

information: (1) the strategy chosen by each player and (2)379

the gain obtained by each player (utility function). This380

information regarding each nodemust be available to all other381

participating nodes in order to make the game information382

clear for all the participants. This leads to routing overhead,383

especially if the game players are a large number of commu-384

nicating nodes.385

The novelty in our approach is in choosing only two local386

semantic players, that are the Exploration and the Exploita-387

tion players, which have opposite intentions towards the388

parameter to be tuned. So, the game is played locally at each389

node without the need for the global perspective assumed in390

other game-theoretic implementations. Fig. 3 demonstrates391

the flowchart of the proposed algorithm.392

2) STRATEGIES OF THE PLAYERS393

The aim of the Exploration player tominimize the value of the394

γ parameter in (2), while the aim of the Exploitation player to395

FIGURE 3. The flowchart of the proposed algorithm.

maximize the same parameter. The Exploration player aims 396

to let more ants explore the network rather than utilizing the 397

best-known routes marked by high pheromone values in the 398

pheromone table T i. To achieve this target, it tries to reduce 399

the parameter’s value to make a great reliance on the new 400

incoming information (τ id ) carried by the BANTs in updating 401

the pheromone table’s value. In this case, we consider that 402

the pheromone evaporation is high. On the other hand, the 403

Exploitation player aims to maximize the parameter to get 404

the most benefit from the existing value in the routing table 405

and relies less on the new incoming value with the BANTs. 406

In Eq. (2), the value of γ is between 0 and 1. In our imple- 407

mentation, we give the freedom to the Exploration player to 408

set a value γ1 for γ between 0 and γLimit and the freedom to 409

the Exploitation player to set a value γ2for γ between γLimit 410

and 1. That is: 411

0 ≤ γ1 ≤ γLimit ≤ γ2 ≤ 1 (5) 412
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TABLE 1. Setting the strategies for the players.

γLimit is an arbitrary value between 0 and 1, that is the413

maximum value the Exploration player can assign to γ and,414

at the same time, is the minimum value that the Exploita-415

tion player can assign to γ . The decision taken by every416

player is based upon one QoS metric, the BANTs carry417

the metric measurement through their journey from the des-418

tination node back to the sender node. We associated the419

Signal to Noise Ratio (SNR) metric with the Exploration420

player and the End-to-End Delay (EED) metric with the421

Exploitation player. Other player-metric associations can be422

utilized in different environments. The definitions of SNR423

and EED can be found in [32] and [33]. The raw mea-424

surements of both QoS metrics are transformed into Low,425

Moderate, and High categories, and then a strategy is chosen426

by the associated player as shown in Table 1. The boundaries427

between the Low,Moderate, and High categories are arbitrary428

and are metric-environment specific. For a video streaming429

environment, for example, the numerical boundaries for the430

categories of the EED metric in Table 1 may be set differ-431

ently from a MANET environment used for a text exchange432

application.433

The strategy chosen by the player k is either434

s1 = γkL , s2 = γ kM or s3 = γ kH for the Low, Moderate, and435

High metric measurements respectively, k ∈ {1, 2}. The strat-436

egy is determined as the corresponding third of the allowed437

range for the player to set the γ parameter r . Since we have438

only one value for the γ parameter to be set in (2) at the node439

level, the final γ value is determined according to Table 2440

as follows:441

TABLE 2. Value of γ parameter based on players’ contribution.

3) THE UTILITY FUNCTIONS 442

The utility function of player 1 (Exploration player) is the 443

average SNR measurement of the next three generations of 444

the BANTs after setting the new value of the γ parameter 445

in Table 2. Similarly, the EED measurement is the utility 446

function for player 2 (Exploitation player). So, SNR(γ ) and 447

EED(γ ) are the utility functions of the two players corre- 448

spondingly. Each of which is a QoS function measured from 449

the MANET environment and is based on a single variable 450

(γ ) from the point of view of each player. In other words, 451

after setting the γ parameter from Table 2, we send FANTs 452

according to the modified pheromone table, then wait for the 453

BANTs carrying the SNR and EED information from the 454

environment for 3 successive generations, and average 455

the results. 456

4) EQUILIBRIUM POINT 457

We consider the equilibrium is reached if the SNR(γ ) and 458

EED(γ ) functions satisfy the following conditions: (1) the 459

metric category is elevated from Low to Moderate or from 460

Moderate to High, and (2) the metric category remains con- 461

stant for the next 3 consecutive generations. In this case, the 462

equilibrium equation (3) is satisfied by reaching the point 463

that there is no reason to change the strategy to obtain more 464

benefits in the utility functions SNR (γ ) and EED(γ ). If no 465

stability is reached, then the current measurements of SNR 466

and EED are utilized to initiate another game and change the 467

γ parameter again, then testing for the equilibrium till it is 468

reached. 469

5) GAME THEATER 470

Any communicating node can initiate the game after detect- 471

ing a degradation in the performance of the incoming QoS 472

measurements carried by the BANTs with a minimum pre- 473

determined threshold. In our experiments, we considered 474

detecting a 30% degradation in the used QoS metrics as a 475

trigger to initiate the game. 476

The game is played locally at every node, and the local 477

pheromone table is updated according to the new value given 478

to the γ parameter that indicates pheromone evaporation rate. 479

IV. RESULTS AND DISCUSSION 480

A. SIMULATION ENVIRONMENT 481

Experiments are implemented using the NS2.34 simulator 482

[34]. Simulation environment is a PC Intel core i3 CPU 483

with 8 GB RAM. The experiments are performed by varying 484

the number of communicating nodes from 20 to 100. Other 485

environmental settings are listed in Table 3. The proposed 486

algorithm is compared with the AntHocNet and the AODV 487

algorithms regarding the effect of the network size on the 488

average EED, the Packet Loss Ratio, and the Throughput 489

metrics. The AODV is a reactive routing algorithm that is 490

discussed in section II. In the first three experiments, we com- 491

pare the proposed algorithm against AntHocNet and AODV 492

in terms of EED, Packet Loss Ratio, and Throughput in 493
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TABLE 3. Chosen parameters for the simulation environment.

multiple simulation sessions using different numbers of nodes494

in each session. In these sessions, we fixed the parameters495

γ = 0.7 and β = 20 for the AntHocNet as stated in the496

original work. The proposed algorithm starts initially with497

γ = 0.7 and then modifies it according to the network498

conditions as described in the algorithm. In the proposed499

algorithm and the other two compared algorithms, 20% of500

the nodes are moving. The fourth experiment demonstrates501

the effect of varying the γLimit parameter on the proposed502

algorithm’s performance in terms of EED.503

B. COMPARING THE PROPOSED ALGORITHM AGAINST504

ANTHOCNET AND AODV IN END-TO-END DELAY METRIC505

The End-to-End delay metric is defined as the average time506

taken for packets to travel from a source node to a destination507

node in a network. It gathers all types of delay for a certain508

packet from its source till it reaches its destination. If we are509

tracing the packet delay from a sender node i to a destination510

node j, we denote the delay from i to j as Di,j as follows [32]:511

Di,j = Pi + Qi + P+
B
b
+ Qj + Pj (6)512

Pi, Pj are the processing delays at nodes i and j, and Qi, Qj513

represent the queue delays at nodes i and j, respectively. P is514

the propagation delay, B is the bandwidth of the channel, and515

b is the size of the packet (measured in bits). B/b represents516

the transmission delay.517

Fig. 4 shows that the proposed algorithm starts with a518

higher EED value than the AntHocNet till approximately the519

number of nodes=50. For a number of nodes greater than 50,520

the proposed algorithm outperforms the AntHocNet in terms521

of EED. The difference between the proposed algorithm522

and the AntHocNet in terms of End-to-End delay reaches523

0.2 ms at a number of nodes=100 nodes. The reason for the524

advantage of the proposed algorithm over the AntHocNet for525

larger networks is that AntHocNet sets γ = 0.7, which gives526

an advantage to the Exploitation process over the Exploration527

process. In our algorithm, we give the two concepts the528

freedom to reach an equilibrium that leads to dynamicity in529

FIGURE 4. The EED metric for the proposed algorithm vs. AntHocNet and
AODV.

FIGURE 5. The packet loss ratio metric for the proposed algorithm vs.
AntHocNet and AODV.

route selection that is reflected upon delay time. The AODV 530

algorithm has a greater delay compared with the proposed 531

algorithm and the AntHocNet. 532

C. COMPARING THE PROPOSED ALGORITHM AGAINST 533

ANTHOCNET AND AODV IN PACKET LOSS RATIO 534

The packet loss ratio metric measures the ratio of the number 535

of lost packets to the total number of sent packets. As shown 536

in Fig. 5, the proposed algorithm is relatively equivalent to 537

AntHocNet for a number of nodes of less than 60, and then 538

it outperforms AntHocNet in terms of the Packet Loss Ratio 539

for larger networks up to 100 nodes. The reason is that our 540

algorithm gives the nodes the flexibility to search more routes 541

or retain the best-known routes according to the network 542

conditions. This route selection flexibility reduces the packet 543

loss. The two algorithms are nearly equivalent for small num- 544

ber of nodes as there is no many alternative routes to explore 545

in case of bad performance. In larger networks (>50 nodes), 546

the proposed algorithm’s notion of giving the Exploration 547

player more freedom is reflected in the performance metrics. 548

Both of the proposed algorithm and AntHocNet outperform 549

the AODV algorithm in terms of packet loss ratio. 550

D. COMPARING THE PROPOSED ALGORITHM AGAINST 551

ANTHOCNET AND AODV IN THROUGHPUT 552

The throughput metric is the rate at which information is 553

sent successfully through the network [35]. Fig.6 shows the 554

throughput of the proposed algorithm against AntHocNet 555

and AODV. Both of the proposed algorithm and AntHocNet 556
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FIGURE 6. The packet loss ratio metric for the proposed algorithm vs.
AntHocNet and AODV.

FIGURE 7. Effect of γLimit parameter on the EED metric for the proposed.

outperform the AODV algorithm in terms of throughput for557

a number of nodes greater than 20. The proposed algorithm558

outperforms the AntHocNet for a number of nodes greater559

than 40 and up to a number of nodes of 100 nodes.560

E. THE EFFECT OF THE ϒLimit PARAMETER UPON THE561

PROPOSED ALGORITHM’S EED METRIC562

The γLimit parameter is the boundary between the maximum563

value that the Exploration player can assign to γ and the lower564

value that the Exploitation player can assign to it. In Fig.7,565

we test the impact of changing γLimit upon the EED metric.566

It is obvious that giving equal chances to the Exploration567

and Exploitation players by setting γLimit = 0.5 pours in568

the benefit of the EED metric. On the other hand, forcing569

the algorithm to give one player an advantage over the other570

player -either by increasing or decreasing γLimit - is harmful571

to the overall performance.572

V. CONCLUSION AND FUTURE WORK573

This paper introduced a game theoretic approach to optimize574

online the γ parameter in the AntHocNet routing algorithm.575

This parameter controls the contribution share of the explo-576

ration notion and the exploitation notion in calculating the577

amounts of pheromone in the pheromone table. Parameters in578

the AntHocNet are tuned offline, which gives some rigidity579

to the algorithm. The proposed algorithm uses the notion of580

game theory and considers two semantic players, who are the581

Exploration and Exploitation players. The two players have582

contradictory plans towards the γ parameter. The Exploration583

player aims to lower it in order to increase pheromone evap- 584

oration, while the Exploitation player aims to increase the 585

parameter and decrease the evaporation rate. The proposed 586

algorithm introduces an equilibrium between the two players 587

to tune the parameter. Experimental results show that the 588

proposed algorithm is competitive with the AntHocNet in rel- 589

atively small networks and outperforms it in large networks. 590

Future work is intended to conduct more experimental results 591

and perform more QoS metrics associations with the game 592

players. 593
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