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ABSTRACT Risk prediction is the most sensitive and critical activity in the Software Development Life
Cycle (SDLC). It might determine whether the project succeeds or fails. To increase the success probability
of a software project, the risk should be predicted at the early stages. This study proposed a novel model
based on the requirement risk dataset to predict software requirement risks using Tree-Family -Machine-
Learning (TF-ML) approaches. Moreover, the proposed model is compared with the state-of-the-art models
to determine the best-suited methodology based on the nature of the dataset. These strategies are assessed
and evaluated using a variety of metrics. The findings of this study may be reused as a baseline for future
studies and research, allowing the results of any proposed approach, model, or framework to be benchmarked
and easily checked.

10 INDEX TERMS Risk in requirements, risk dataset for requirements, tree family machine learning technique.

I. INTRODUCTION11

Requirement Engineering (RE) is a well-organized and12

systematic approach to gathering users’ requirements for a13

software system [1]. Lately, we have seen a developing14

enthusiasm for software systems that can screen their con-15

dition and, if necessary, change their requirements to keep16

on satisfying their purpose [2]. This specific software usually17

comprises a base system liable for the fundamental function-18

alities, alongside a part that screens the base system, examines19

the data, and responds suitably to ensure that the system20

keeps on executing its necessary functions. RE is regarded21

as the most fundamental stage in software development since22

it primarily involves eliciting, documenting, and maintaining23

stakeholders’ requirements [3]. Meeting and ensuring that24

stakeholders’ essential needs are met regularly is one of25

The associate editor coordinating the review of this manuscript and

approving it for publication was Jolanta Mizera-Pietraszko .

the primary reasons for producing a high-quality software 26

system [4], [5]. 27

There is consistently a casual of inexact procedures dur- 28

ing the time spent in the Software Development Life Cycle 29

(SDLC), which may likely defeat software organization or 30

software development. These questionable procedures are 31

known as software risks. The risks burst from various risk 32

influences established in an assortment of exercises in the 33

SDLC. If these risks are not distinguished appropriately, 34

they may get liable for the disaster of the project [6]. These 35

elements should be separated and moderated to restrict the 36

software cost and schedule by risk estimations in the SDLC’s 37

underlying phases. Because requirement collection is the first 38

part of SDLC, forecasting risks at this stage may boost soft- 39

ware productivity and quality while decreasing the likelihood 40

of catastrophes in the project [4], [6]. 41

Keeping the earlier issue of risk prediction at the early stage 42

of software needs in mind, numerous researchers assessed 43
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and created several models applying various categoriza-44

tion algorithms. However, any broad-spectrum preparation45

to kick-start the use of these techniques is tough to come46

up with. Overall, despite significant variances in the exper-47

iments, it was revealed that no one methodology confers48

higher precision to different approaches based on additional49

data. Most studies have employed various assessment mea-50

sures to increase accuracy. Still, to our knowledge, no one51

has concentrated on decreasing the error rate, which is also a52

critical feature of any prediction model [12], [13]. This study53

has the following two primary objectives.54

i To present a risk prediction model (in TF-ML mod-55

els) that will aid in cost and schedule reductions and56

improve project quality by lowering the likelihood of57

project failure.58

ii To compare the results of classification models to find59

the best efficient methodology for risk prediction in the60

SDLC Requirement phase.61

This study’s primary contributions are as follows:62

i We analyzed ten alternative TF-ML approaches for risk63

prediction in software requirements (CDT, CS-Forest,64

DS, Forest-PA, HT, J48, LMT, RF, RT, and REP-T).65

ii We reveal the insight of the experiments using RAE,66

MAE, RRSE, RMSE, recall, precision, F-measure,67

MCC, and accuracy metrics.68

iii We do several tests on the software requirements69

risk dataset from Zenodo repository, available at70

https://zenodo.org/record/1209601#.Xpa9mUAzZdg.71

The rest of the paper is divided into six sections.72

Section 2 describes the experimental methodology,73

Sections 3 and 4 discuss model assessment and comparison74

and the details of all applied techniques, respectively, and75

Section 5 gives practical results and discussions. The con-76

cluding section is covered in Section 6.77

II. LITERATURE REVIEW78

Requirement Engineering (RE) is an organized and system-79

atic approach to gathering users’ requirements for a software80

system [7]. It usually comprises a system accountable for81

the basic functionalities, examines the data, and responds82

suitably. The RE is considered the essential stage in software83

development since it mainly consists of eliciting, document-84

ing, and maintaining stakeholders’ requirements [8]. There85

is consistently a casual of inexact procedures during the86

time spent in the SDLC, which may likely downfall a soft-87

ware organization or software development process. These88

questionable procedures are known as software risks [9].89

If threats/risks are not handled appropriately, they may get90

liable for the disaster of the project [6]. The dangers have a91

significant influence on software requirements. They turn out92

to be the cause of software or stakeholder harm. As a result,93

risks must be predicted early in the SDLC to increase project94

success possibilities because risk evaluation at this point will95

be more helpful and will increase software production [10],96

[47]. When risks are appropriately handled, it also helps to97

reduce the likelihood of software project failure.98

Frequent solutions for predicting software risk at different 99

phases in SDLC are available. In contrast, infrequent methods 100

are available to predict risks in the software requirements 101

phase in the literature [6], [11]. A risk prediction model 102

encompasses data mining classification methods and is pro- 103

posed to predict risks on the project’s Software Requirement 104

Specifications (SRS). The TF approach is one of the strangest 105

techniques for organizing the most significant variables and 106

their interactions between two or more variables. TFs can 107

develop new features with more significant predicting poten- 108

tial for object variables. It needs less data purification than 109

other modelling methodologies. It is not biased to a consid- 110

erable degree by outliers and missing data [17], [18], [19]. 111

The reasoning for utilizing TF-ML techniques has been 112

considered one of the optimum and most often used super- 113

vised learning methods [12], [13]. Tree-based techniques 114

increase predictive models’ accuracy, stability, and inter- 115

pretability [14]. TF-ML techniques effectively map non- 116

linear interactions utilizing heterogeneous linear models. 117

When dealing with all sorts of obstacles, they are adap- 118

tive (regression or classification). Both continuous and cat- 119

egorical input and output variables can be used with these 120

approaches [15], [16]. 121

We analyzed Tree Family Machine Learning (TF- 122

ML) methods for software requirement risk prediction. 123

Some of the TF-ML techniques include the Decision Tree 124

(J48), Forest by Penalizing Attributes (Forest-PA), REP-Tree 125

(REP-T), Decision Stump (DS), Credal Decision Tree (CDT), 126

Random Forest (RF), Random Tree (RT), Hoeffding Tree 127

(HT), Cost-Sensitive Decision Forest (CS-Forest), and Logis- 128

ticModel Tree (LMT). On the Zenodo repository dataset, sev- 129

eral methods are employed. The studies are validated using 130

root relative squared error (RRSE), root mean squared error 131

(RMSE), relative absolute error (RAE), mean fundamental 132

error (MAE), accuracy, Matthew’s Correlation Coefficient 133

(MCC), recall, F-measure (FM), and precision. 134

If a project fails to fulfil the user’s needs, budget, or time- 135

line, the product’s quality suffers. As a result, it is more 136

likely to fail [14]. So, to limit effort and the likelihood of 137

failure, a product must be built within the budget and schedule 138

constraints. The late discovery of risk has a more significant 139

effect on project failure. It is also necessary to forecast risk 140

early in the SDLC process (Software Requirements). 141

The data obtained from previous projects can be used 142

for the growth by either using machine learning (ML) 143

approaches, such as Artificial Network Network (ANN), and 144

Support Vector Machines (SVM )or a mathematical method- 145

ology, including study of association and linear regression 146

[45], [46]. Moreover, Software shortcoming prediction aim 147

to forecast defect-prone mechanisms before the testing stage 148

of SDLC [48]. 149

III. EXPERIMENTAL METHODOLOGY 150

This research aims to analyse TF-ML approaches for risk 151

prediction in software requirements using the Zenodo repos- 152

itory dataset. The dataset used contains the 13 characteristics 153
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TABLE 1. List of attributes with distinct types.

FIGURE 1. Count and weight of each class (level).

stated in Table 1 and 299 occurrences. The data is divided154

into five categories: level 1, level 2, level 3, level 4, and155

level 5 [6]. Figure 1 depicts the count andweight of each level.156

Figure 2 depicts the whole workflow of this investigation.157

Data is separated into 90% and 10% for training and testing,158

respectively, and this procedure is applied in different test sce-159

narios, where data testing is raised while training is dropped160

by 10%. Training and testing are 80% and 20% in the second161

scenario, respectively. These examples determine the most162

effective testing and training splitting criteria. Table 2 lists163

the testing and training instances. We have performed 10 dif-164

ferent types of experiminations based on data splitting for165

FIGURE 2. Methodology workflow.

TABLE 2. Training and testing mechanism for each test case model.

training and testing purposes to show the better data splitting 166

mechanism in this regards. In case 1, the data is divided into 167

90% for training and 10% for testing, in case to we decrease 168

the training and increase the testing by 10%, so 80% is used 169

for training and the rest of 20% I sused for testing and so 170

on upto 10% for training and 90% for testing. In the last sce- 171

nario, 10-fold cross-validation is used.Many studies advocate 172

10-fold cross-validation as a benchmark [15], [16]. 173

The employed techniques are evaluated using standard 174

evaluation measures presented in the subsequent. 175

IV. MODEL EVALUATION AND COMPARISON 176

Various assessment metrics evaluate ten TF-ML approaches, 177

including J48, HT, CDT, RF, RT, LMT, CS-Forest, and 178

REP-T. A 10-fold cross-validation procedure is employed 179

for training and testing where the dataset is partitioned into 180
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ten subdivisions of equivalent dimensions. One subdivision is181

utilized for testing in the first fold, while the remaining nine182

are used for training. Furthermore, the second subdivision in183

the second fold is utilized for testing, while the remaining184

nine are used for training. This method will be repeated185

until each subdivision has been tested [15]. Assessment is186

done based on MAE [17], [18], RAE [17], [19], RMSE187

[20], [21], RRSE [17], [19], precision [22], [23], recall [22],188

[24], F-measure [25], [26], MCC [25], [27], and accuracy189

[26], [28], [29], where, Pij is the rate of prediction by the190

precise model, Tj is the goal value for record ji, I stands for191

record j (out of n records), n is the number of errors, |yi − y|192

is the absolute error. However, TP is used for the total of193

true-positive classification. At the same time, FN denotes the194

count of false-negative classification, FP is the count of false-195

positive classifications, and TN is the count of true-negative196

classification. These assessments can be calculated using the197

following equations:198

MAE =
1
2

∑n

j=1
|yi − y| (1)199

RAE =

∑n
j=1

∣∣pij − T ∣∣∑n
j=1

∣∣Tj−T ∣∣ (2)200

RMSE =

√
1
2

∑n

j=1
(yi − 1)2 (3)201

RRSE =

√√√√∑n
j=1

(
Pij − Tj

)2∑n
j=1

(
Tj − T

)2 (4)202

Precision =
TP

TP+ FP
(5)203

Recall =
TP

TP+ FN
(6)204

FM =
2 ∗ Precision+ Recall
Precision+ Recall

(7)205

MCC =
(TN ∗ TP)− (FN ∗ FP)

√
(FP+ TP)(FN + TP)(TN + FP)(TN + FN )

206

(8)207

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(9)208

V. EMPLOYED TF-ML TECHNIQUES209

ML approaches are presently widely utilized to extract210

important information from enormous data in various fields.211

Recognizing communities in social networks, Cybersecurity,212

bioinformatics, and improving the design process to generate213

high-quality software systems are just a few of the real-world214

uses of ML [30]. ML and TF-ML-based SDP solutions have215

also been explored [31], [22], [32]. Table 3 presents the list216

of all TF-ML techniques used in this study.217

VI. EXPERIMENTAL RESULTS AND DISCUSSION218

This section illustrates the study’s findings and discussion.219

Ten TF-ML approaches are used and assessed using a variety220

of criteria. Experimentation utilises various test case com-221

ponents (See Table 2). Each module examines the strategies222

TABLE 3. List of TF-ML techniques used in this study.

to discover the best solution for risk prediction in soft- 223

ware requirements. Each TF-ML approach calculates Cor- 224

rectly Classified Instances (CCI) and Incorrectly Classified 225

Instances (ICI). Table 4 depicts the complete analysis of 226

CCI and ICI. Each column represents a test case module, 227

indicating how data is separated into testing and training. 228

Ten alternative scenarios have been devised to improve data 229

analysis for this goal. The second column represents CCI and 230

ICI concerning each test case module. 231

In contrast, the proportion of CCI and ICI attained by each 232

approach for each test case module is represented by the 233

remainder of the columns. The best test case that we con- 234

sider is 10-Fold cross-validation, the most utilized standard. 235

In Table 3, CDT and F-PA (in two cases) outperform other 236

techniques depending on different test case modules. While 237

using the best test case module (10-fold cross-validation), 238

CDT surpasses the other approaches used. Tables 5, 6, 7, 239

and 8 show the results of the MAE, RMSE, RAE %, and 240

RRSE % analyses, respectively. The first column in each 241

table represents the test case modules, while the remaining 242

columns indicate the results of each approach. Each table dis- 243

plays the most outstanding performance of CDT and J48 (in 244

one example) to minimise error rate by employing different 245

test case modules. The best outcomes of each technique are 246

presented in bold text in the respective table. If there is a 247

need to decrease the error rate in forecasting risks in software 248

requirements, this study suggests CDT and J48 techniques. 249

However, we have mostly seen researchers split the data into 250

20 % to 40% for testing and 60% to 80% for training or 251

suggest 10-Fold cross-validation. In these cases, this study 252

recommends the CDT technique to reduce error rates com- 253

pared to the other utilized techniques. 254

Tables 9, 10, 11, and 12 show the outcome analysis of 255

average precision, recall, F-measure, and MCC. CDT, F-PA, 256

and J48 exceed other approaches in each table to achieve 257

better results. A ‘‘?’’ sign appears in Tables 9, 11, and 12. 258

Due to the ‘‘0’’ value in the confusion matrix, this is a Weka 259

auto-generated symbol. If there is a need to divide a value and 260

that value becomes ‘‘0,’’ we know that ‘‘0’’ is not divisible, 261

VOLUME 10, 2022 98223



B. Khan et al.: Analysis of TF ML Techniques for Risk Prediction in Software Requirements

TABLE 4. Number of CCI and ICI obtaining from different percentage split test cases.

according to many formulae. Weka displays the ‘‘?’’ sign262

instead of an error message. The best techniques that increase263

the rate of precision, recall, F-measure, and MCC here are264

CDT, F-PA, and J48. However, CDT and F-PA outperform265

on best test case modules, e.g. 10% to 40% for testing and266

60% to 90% for training, on 10-Fold cross-validation. The267

outcomes of REP-T, DS, and CF-F for Tables 9, 11, and 12268

do not generate accurate results due to multiple 0 values as a269

divider in the confusion matrix. Moreover, on test modules 10270

and 90 for training and testing, respectively, no technique271

performs well. The recommendation of analyzing employed272

techniques via precision, recall, F-measure, and MCC on the 273

best test case module is the CDT technique for risk prediction 274

is software requirements. 275

Table 13 shows the detailed accuracy of the particular 276

technique evaluated on each test case module. The analysis 277

highlighted in this table represents that CDT, F-PA, and J48 278

outperform well instead of other employed methods. More- 279

over, these three techniques, CDT, F-PA, and J48, CDT and 280

F-PA (only in two cases), are recommended to better predict 281

risk in software requirements on the best test case module 282

of 10-Fold cross-validation. While for other best test case 283
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TABLE 5. MAE analysis of individual techniques on each test case module.

TABLE 6. RMSE analysis of individual techniques on each test case module.

TABLE 7. RAE% analysis of individual techniques on each test case module.

modules, e.g. 10% to 40% for testing and 60% to 90% for284

training, CDT and F-PA (only in two cases) both outperform285

other techniques. Figure 3 also describes the accuracy per-286

centage of each technique concerning the individual test case287

module.288

VII. DISCUSSION289

This research focuses on the performance analysis of TF-ML290

approaches to suggest an optimal solution for risk prediction291

in software requirements. In a nutshell, ended our analysis292

with outccomes that best cases for training and testing on 293

the aforementioned datases are the first 4 data training and 294

testing cases that are 90% and 10% for training and testing to 295

60% and 40% for training and testing, and the last case that is 296

10-fold cross-validation. Now, if the goal is to reduce the error 297

rate, our study shows that CDT outperforms other applied 298

strategies on all of the selected (best test case) modules in 299

Figures 4 (MAE and RMSE) and 5 (RAE% and RRSE%). 300

Similarly, in the cases of recall, precision, F-measure, MCC, 301

and accuracy, as shown in Figures 6 and 7, CDT outperform 302
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TABLE 8. RRSE% analysis of individual techniques on each test case module.

TABLE 9. Precision analysis of individual techniques on each test case module.

TABLE 10. Recall analysis of individual techniques on each test case module.

the other used methodologies. According to these analy-303

ses, this study recommended CDT as the best technique for304

forecasting risks in the software requirements. It can be seen305

from Figures 4-7 that in each scenario whether it is reducing306

the error rate or increasing the accuracy, CDT is recom-307

mended as the best solution as compared to the rest of the308

employed techniques.309

A. THREATS TO VALIDITY 310

This section discusses the impacts that might jeopardize the 311

validity of this study endeavour. 312

1) INTERNAL RELIABILITY 313

The analysis in this study is represented by a set of 314

well-known assessment measures employed in prior studies. 315
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TABLE 11. F-measure analysis of individual techniques on each test case module.

TABLE 12. MCC analysis of individual techniques on each test case module.

TABLE 13. Accuracy details of each technique concerning individual test case module.

Some of these criteria assess the error rate, while others316

quantify accuracy. Along these lines, there is a risk that the317

renewal of specific contemporary standards as a replacement318

for previous standards may decrease the results achieved.319

Furthermore, the approaches utilized in this study can be320

modified with some new methods that can be combined and321

produce better results than the prior methods.322

2) EXTERNAL VALIDITY 323

We ran tests on a dataset from the Zenodo archive, 324

which can be found at: https://zenodo.org/record/1209601#. 325

Xpa9mUAzZdg. Suppose we attach the comprehensive 326

approaches to other data obtained from multiple software 327

development organizations via surveys and other methods or 328

replace this dataset with another dataset. In that case, the 329
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FIGURE 3. Accuracy percentage representation concerning each test case module.

FIGURE 4. MAE and RMSE analysis via selected test case modules.

FIGURE 5. RAE% and RRSE% analysis via selected test case modules.

findings when calculating the error rates may be thrown330

off. Similarly, using varied datasets, the comprehensive331

approaches may not be able to provide improved predictions332

in outcomes. Following that, a thorough examination was 333

carried out on a dataset taken from the Zenodo repository to 334

determine the performance of the approaches used. 335
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FIGURE 6. Precision, recall, F-measure, and accuracy analysis via selected test case modules.

FIGURE 7. Accuracy analysis via selected test case modules.

3) CONSTRUCT VALIDITY336

Several TF-ML techniques are compared against one another337

in this study with a few performance assessment parameters.338

Compared to other methodologies used by researchers in339

recent years, the combination of procedures used in this study340

is at the core of its reformist features. However, there is a341

threat that if we add more innovative methods, the expanded342

approaches will be exhausted. It’s also gratifying to see that343

employing the most up-to-date performance evaluation mea-344

sures yields better results that beat current findings.345

VIII. CONCLUSION346

Predicting requirement risk is an essential research topic that347

receives increasing interest from researchers. This research348

aims to create a model for predicting risk in software require-349

ments. Ten different TF-ML techniques are used to find an350

optimal solution for minimum error and maximum accuracy.351

CDT outperforms other techniques in both error rate reduc- 352

tion and accuracy improvement among all the employed 353

techniques. The results of 10-fold cross-validation for MAE, 354

0.0888 for RMSE, 4.498 % for RAE, and 23.741 % for 355

RRSE are 0.0126 for MAE, 0.0888 for RMSE, 4.498 % for 356

RAE, and 23.741 % for RRSE. Furthermore, each accuracy, 357

recall, and F-measure achieved 0.980 outcomes. The CDT, 358

MCC result is 0.975, with a 98% accuracy. As a result, 359

this study recommends CDT for risk prediction in software 360

requirements. Moreover, complete findings can be utilized as 361

a starting point for other research. Any claim about improving 362

prediction through a new model, approach, or framework 363

may be benchmarked and evaluated. Class imbalance issues 364

should be committed to the databases for future development. 365

Furthermore, feature selection and ensemble learning strate- 366

gies should be investigated to improve enactment. Moreover, 367

this research may be utilized to identify the optimal classifier 368
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for developing and deploying a model for risk prediction in369

software requirements.370
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