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ABSTRACT Risk prediction is the most sensitive and critical activity in the Software Development Life
Cycle (SDLC). It might determine whether the project succeeds or fails. To increase the success probability
of a software project, the risk should be predicted at the early stages. This study proposed a novel model
based on the requirement risk dataset to predict software requirement risks using Tree-Family -Machine-
Learning (TF-ML) approaches. Moreover, the proposed model is compared with the state-of-the-art models
to determine the best-suited methodology based on the nature of the dataset. These strategies are assessed
and evaluated using a variety of metrics. The findings of this study may be reused as a baseline for future
studies and research, allowing the results of any proposed approach, model, or framework to be benchmarked

and easily checked.

INDEX TERMS Risk in requirements, risk dataset for requirements, tree family machine learning technique.

I. INTRODUCTION

Requirement Engineering (RE) is a well-organized and
systematic approach to gathering users’ requirements for a
software system [1]. Lately, we have seen a developing
enthusiasm for software systems that can screen their con-
dition and, if necessary, change their requirements to keep
on satisfying their purpose [2]. This specific software usually
comprises a base system liable for the fundamental function-
alities, alongside a part that screens the base system, examines
the data, and responds suitably to ensure that the system
keeps on executing its necessary functions. RE is regarded
as the most fundamental stage in software development since
it primarily involves eliciting, documenting, and maintaining
stakeholders’ requirements [3]. Meeting and ensuring that
stakeholders’ essential needs are met regularly is one of
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the primary reasons for producing a high-quality software
system [4], [5].

There is consistently a casual of inexact procedures dur-
ing the time spent in the Software Development Life Cycle
(SDLC), which may likely defeat software organization or
software development. These questionable procedures are
known as software risks. The risks burst from various risk
influences established in an assortment of exercises in the
SDLC. If these risks are not distinguished appropriately,
they may get liable for the disaster of the project [6]. These
elements should be separated and moderated to restrict the
software cost and schedule by risk estimations in the SDLC’s
underlying phases. Because requirement collection is the first
part of SDLC, forecasting risks at this stage may boost soft-
ware productivity and quality while decreasing the likelihood
of catastrophes in the project [4], [6].

Keeping the earlier issue of risk prediction at the early stage
of software needs in mind, numerous researchers assessed

VOLUME 10, 2022


https://orcid.org/0000-0002-6816-3776
https://orcid.org/0000-0002-4952-8100
https://orcid.org/0000-0003-0895-9665
https://orcid.org/0000-0001-9590-3744
https://orcid.org/0000-0002-2298-5037

B. Khan et al.: Analysis of TF ML Techniques for Risk Prediction in Software Requirements

IEEE Access

and created several models applying various categoriza-
tion algorithms. However, any broad-spectrum preparation
to kick-start the use of these techniques is tough to come
up with. Overall, despite significant variances in the exper-
iments, it was revealed that no one methodology confers
higher precision to different approaches based on additional
data. Most studies have employed various assessment mea-
sures to increase accuracy. Still, to our knowledge, no one
has concentrated on decreasing the error rate, which is also a
critical feature of any prediction model [12], [13]. This study
has the following two primary objectives.

i To present a risk prediction model (in TF-ML mod-
els) that will aid in cost and schedule reductions and
improve project quality by lowering the likelihood of
project failure.

ii To compare the results of classification models to find
the best efficient methodology for risk prediction in the
SDLC Requirement phase.

This study’s primary contributions are as follows:

i We analyzed ten alternative TF-ML approaches for risk
prediction in software requirements (CDT, CS-Forest,
DS, Forest-PA, HT, J48, LMT, RF, RT, and REP-T).

ii We reveal the insight of the experiments using RAE,
MAE, RRSE, RMSE, recall, precision, F-measure,
MCC, and accuracy metrics.

iii We do several tests on the software requirements
risk dataset from Zenodo repository, available at
https://zenodo.org/record/1209601#.Xpa9mUAzZdg.

The rest of the paper is divided into six sections.

Section 2 describes the experimental methodology,
Sections 3 and 4 discuss model assessment and comparison
and the details of all applied techniques, respectively, and
Section 5 gives practical results and discussions. The con-
cluding section is covered in Section 6.

Il. LITERATURE REVIEW

Requirement Engineering (RE) is an organized and system-
atic approach to gathering users’ requirements for a software
system [7]. It usually comprises a system accountable for
the basic functionalities, examines the data, and responds
suitably. The RE is considered the essential stage in software
development since it mainly consists of eliciting, document-
ing, and maintaining stakeholders’ requirements [8]. There
is consistently a casual of inexact procedures during the
time spent in the SDLC, which may likely downfall a soft-
ware organization or software development process. These
questionable procedures are known as software risks [9].
If threats/risks are not handled appropriately, they may get
liable for the disaster of the project [6]. The dangers have a
significant influence on software requirements. They turn out
to be the cause of software or stakeholder harm. As a result,
risks must be predicted early in the SDLC to increase project
success possibilities because risk evaluation at this point will
be more helpful and will increase software production [10],
[47]. When risks are appropriately handled, it also helps to
reduce the likelihood of software project failure.
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Frequent solutions for predicting software risk at different
phases in SDLC are available. In contrast, infrequent methods
are available to predict risks in the software requirements
phase in the literature [6], [11]. A risk prediction model
encompasses data mining classification methods and is pro-
posed to predict risks on the project’s Software Requirement
Specifications (SRS). The TF approach is one of the strangest
techniques for organizing the most significant variables and
their interactions between two or more variables. TFs can
develop new features with more significant predicting poten-
tial for object variables. It needs less data purification than
other modelling methodologies. It is not biased to a consid-
erable degree by outliers and missing data [17], [18], [19].

The reasoning for utilizing TF-ML techniques has been
considered one of the optimum and most often used super-
vised learning methods [12], [13]. Tree-based techniques
increase predictive models’ accuracy, stability, and inter-
pretability [14]. TF-ML techniques effectively map non-
linear interactions utilizing heterogeneous linear models.
When dealing with all sorts of obstacles, they are adap-
tive (regression or classification). Both continuous and cat-
egorical input and output variables can be used with these
approaches [15], [16].

We analyzed Tree Family Machine Learning (TF-
ML) methods for software requirement risk prediction.
Some of the TF-ML techniques include the Decision Tree
(J48), Forest by Penalizing Attributes (Forest-PA), REP-Tree
(REP-T), Decision Stump (DS), Credal Decision Tree (CDT),
Random Forest (RF), Random Tree (RT), Hoeffding Tree
(HT), Cost-Sensitive Decision Forest (CS-Forest), and Logis-
tic Model Tree (LMT). On the Zenodo repository dataset, sev-
eral methods are employed. The studies are validated using
root relative squared error (RRSE), root mean squared error
(RMSE), relative absolute error (RAE), mean fundamental
error (MAE), accuracy, Matthew’s Correlation Coefficient
(MCC), recall, F-measure (FM), and precision.

If a project fails to fulfil the user’s needs, budget, or time-
line, the product’s quality suffers. As a result, it is more
likely to fail [14]. So, to limit effort and the likelihood of
failure, a product must be built within the budget and schedule
constraints. The late discovery of risk has a more significant
effect on project failure. It is also necessary to forecast risk
early in the SDLC process (Software Requirements).

The data obtained from previous projects can be used
for the growth by either using machine learning (ML)
approaches, such as Artificial Network Network (ANN), and
Support Vector Machines (SVM )or a mathematical method-
ology, including study of association and linear regression
[45], [46]. Moreover, Software shortcoming prediction aim
to forecast defect-prone mechanisms before the testing stage
of SDLC [48].

lll. EXPERIMENTAL METHODOLOGY

This research aims to analyse TF-ML approaches for risk
prediction in software requirements using the Zenodo repos-
itory dataset. The dataset used contains the 13 characteristics
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TABLE 1. List of attributes with distinct types.
— Software Requirements |
S. No. Name Type Distinct Dafaset _ J= Risk Dataset
1 Requirements Nominal | 292 EEECTE—
5 Proiect Cat Nominal | 4 Training and Testing
o) ef: ategoty om%na Training and Testing [+~ Mechanism of Data for |
3 Requirement Category | Nominal | 10 each Test Case Model
4 Risk Target Category Nominal | 22 COLCSE | L s
5 Probability Numeric | 81 isgj lil\i};’ I}'g: TF-ML Techniques
6 Magnitude of Risk Nominal o
: RT, end REP-T
7 Impact Nominal | 5 ‘Cl ----- f -------------- !
8 Dimension of Risk Nominal | 13 MAE. RAE Classification 1 1 :;Sifzvﬁtz tg;g;ugs i
9 Affecting  No  of | Numeric | 9 RMSE, RRSE, Bl S D ‘
Modules : : Preciston,
10 Fixing Duration (Days) | Numeric | 12 Recall, F- Performance Evaluation
11 Fix Cost (% of Project) | Numeric | 10 measure,
12 Priority Numeric | 293 MCC, and
13 Risk Level Nominal | 5 Accuracy Optimal
Solution
Count and Weight of each Level FIGURE 2. Methodology workflow.
160
o 135135.0 TABLE 2. Training and testing mechanism for each test case model.
120 S. No. Test Case Training Testing
Model
100 1 Case 1 90 % 10 %
80 75 75.0 2 Case 2 80 % 20 %
3 Case 3 70 % 30 %
60 T 4 Case 4 60 % 40 %
¥ 5 Case 5 50 % 50 %
s 6 Case 6 40 % 60 %
20 16 16.0 7 Case 7 30 % 70 %
. BN 8 Case 8 20 % 80 %
Lavel ] Level2 Lavel2 Level3 Lavel3 9 Case 9 10 % 90%
i 5 5 4 . 10 Case 10 10-Fold Cross-validation

mCount = Weight

FIGURE 1. Count and weight of each class (level).

stated in Table 1 and 299 occurrences. The data is divided
into five categories: level 1, level 2, level 3, level 4, and
level 5 [6]. Figure 1 depicts the count and weight of each level.
Figure 2 depicts the whole workflow of this investigation.
Data is separated into 90% and 10% for training and testing,
respectively, and this procedure is applied in different test sce-
narios, where data testing is raised while training is dropped
by 10%. Training and testing are 80% and 20% in the second
scenario, respectively. These examples determine the most
effective testing and training splitting criteria. Table 2 lists
the testing and training instances. We have performed 10 dif-
ferent types of experiminations based on data splitting for

98222

training and testing purposes to show the better data splitting
mechanism in this regards. In case 1, the data is divided into
90% for training and 10% for testing, in case to we decrease
the training and increase the testing by 10%, so 80% is used
for training and the rest of 20% I sused for testing and so
on upto 10% for training and 90% for testing. In the last sce-
nario, 10-fold cross-validation is used. Many studies advocate
10-fold cross-validation as a benchmark [15], [16].

The employed techniques are evaluated using standard
evaluation measures presented in the subsequent.

IV. MODEL EVALUATION AND COMPARISON

Various assessment metrics evaluate ten TF-ML approaches,
including J48, HT, CDT, RF, RT, LMT, CS-Forest, and
REP-T. A 10-fold cross-validation procedure is employed
for training and testing where the dataset is partitioned into

VOLUME 10, 2022



B. Khan et al.: Analysis of TF ML Techniques for Risk Prediction in Software Requirements

IEEE Access

ten subdivisions of equivalent dimensions. One subdivision is
utilized for testing in the first fold, while the remaining nine
are used for training. Furthermore, the second subdivision in
the second fold is utilized for testing, while the remaining
nine are used for training. This method will be repeated
until each subdivision has been tested [15]. Assessment is
done based on MAE [17], [18], RAE [17], [19], RMSE
[20], [21], RRSE [17], [19], precision [22], [23], recall [22],
[24], F-measure [25], [26], MCC [25], [27], and accuracy
[26], [28], [29], where, P;; is the rate of prediction by the
precise model, 7 is the goal value for record ji, I stands for
record j (out of n records), n is the number of errors, |y; — y|
is the absolute error. However, TP is used for the total of
true-positive classification. At the same time, FN denotes the
count of false-negative classification, FP is the count of false-
positive classifications, and TN is the count of true-negative
classification. These assessments can be calculated using the
following equations:

| Q——
MAE = 2% Ivi=)l M
n
o pi =T
RAE = —ZJ;I pi— 7| )
Z]:l |T/—T|
| —— 5
RMSE = \/5 ijl oi—1 3)
" (P —T)
RRSE = M 4)
Y (1 -1)
. TP
Precision = ——— @)
TP 4+ FP
TP
Recall = —— 6)
TP 4+ FN
2 % Precision + Recall
FM = — (N
Precision 4+ Recall
MCC — (TN % TP) — (FN * FP)
= J(FP+ TP)(EN + TP)(IN + FP)(IN + FN)
®
TP + TN
Accuracy = + ©

TP + TN + FP + FN

V. EMPLOYED TF-ML TECHNIQUES

ML approaches are presently widely utilized to extract
important information from enormous data in various fields.
Recognizing communities in social networks, Cybersecurity,
bioinformatics, and improving the design process to generate
high-quality software systems are just a few of the real-world
uses of ML [30]. ML and TF-ML-based SDP solutions have
also been explored [31], [22], [32]. Table 3 presents the list
of all TF-ML techniques used in this study.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

This section illustrates the study’s findings and discussion.
Ten TF-ML approaches are used and assessed using a variety
of criteria. Experimentation utilises various test case com-
ponents (See Table 2). Each module examines the strategies
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TABLE 3. List of TF-ML techniques used in this study.

S. No. TF-ML Technique References
1 Credal Decision Tree [33]133][34]
2 Cost-Sensitive Decision | [35][34][34]
Forest
3 Decision Stump [36][32][36]
4 Forest by Penalizing | [26] [37][35]
Attributes
5 Hoeffding Tree [34][34][36]
6 Decision Tree (J48) [38]1[39] [40]
7 Logistic Model Tree [34]1[36] [41]
8 Random Forest [26][42] [43]
9 Random Tree [34][36][44]
10 REP-Tree [34][34] [44]

to discover the best solution for risk prediction in soft-
ware requirements. Each TF-ML approach calculates Cor-
rectly Classified Instances (CCI) and Incorrectly Classified
Instances (ICI). Table 4 depicts the complete analysis of
CCI and ICI. Each column represents a test case module,
indicating how data is separated into testing and training.
Ten alternative scenarios have been devised to improve data
analysis for this goal. The second column represents CCI and
ICI concerning each test case module.

In contrast, the proportion of CCI and ICI attained by each
approach for each test case module is represented by the
remainder of the columns. The best test case that we con-
sider 1s 10-Fold cross-validation, the most utilized standard.
In Table 3, CDT and F-PA (in two cases) outperform other
techniques depending on different test case modules. While
using the best test case module (10-fold cross-validation),
CDT surpasses the other approaches used. Tables 5, 6, 7,
and 8 show the results of the MAE, RMSE, RAE %, and
RRSE % analyses, respectively. The first column in each
table represents the test case modules, while the remaining
columns indicate the results of each approach. Each table dis-
plays the most outstanding performance of CDT and J48 (in
one example) to minimise error rate by employing different
test case modules. The best outcomes of each technique are
presented in bold text in the respective table. If there is a
need to decrease the error rate in forecasting risks in software
requirements, this study suggests CDT and J48 techniques.
However, we have mostly seen researchers split the data into
20 % to 40% for testing and 60% to 80% for training or
suggest 10-Fold cross-validation. In these cases, this study
recommends the CDT technique to reduce error rates com-
pared to the other utilized techniques.

Tables 9, 10, 11, and 12 show the outcome analysis of
average precision, recall, F-measure, and MCC. CDT, F-PA,
and J48 exceed other approaches in each table to achieve
better results. A “?” sign appears in Tables 9, 11, and 12.
Due to the “0” value in the confusion matrix, this is a Weka
auto-generated symbol. If there is a need to divide a value and
that value becomes ““0,” we know that “0”’ is not divisible,
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TABLE 4. Number of CCl and ICI obtaining from different percentage split test cases.

Test Modes | CDT | CS-F DS F-PA | HT J48 | LMT | RF RT | REP-T
269 || Goew | (19w | @84%) | 647%) | (21%) | @59% | (67.6% | (534% | 46106 | a4 2%
“ 2299.4%) (14:23.1%) ?351.6%) ?355.3%) Z257.9%) ?184.1%) ?279.4%) (1424?.6%) (1;35.9) (15550.8%)
@9 | @i | @ | @ | Gosw | @5 | @1 | 199% | 6415 | 695% | @39
“ ?160.9%) ?366%) Z351.4%) ?92.2%) ?154.6) ?160.9) ?280.1%) ?365.9%) 2330.5%) (1533.1%)
00 || o309 | 6949 | 67.5% | s6.6%) | @11%) | 08.6%) | 379 | 66.5% | a5 |
! (1;7%) (6340.6%) ?382.5%) ?183.4%) ?172.9%) 31.4%) ?146.3%) (7303.5%) (15168.5%) (15156.5%)
a9 || 120 | 820 | 676%) | o) | o0 | 975%) | @650 | (240 | sy | s
! f2.8%) 5371.8%) ?382.4%) ?5%) (1180%) ?2.2%) ?143.4%) ?244.6%) ?574.2%) ?574.2%)
19 || e | 0Live) | (64 | 96.6%) | (s8.6%) | 973% | 599%) | 69.8% | aa3ve | e
“ (64%) ?238.9%) 5303.6%) 33.4%) (1171.4%) ?2.7%) (1150.1%) ?350.2%) ?535.7%) (8535.7%)
a0 | | orsm | (1800 | 67.5% | o3| @83%) | 9679 | o179 | (7.5% | @asave | ez
! ?2.5%) 5294.2%) ?392.5%) ?5%) (1141.7%) ?3.3%) (12?.3%) ?272.5%) (6521.7%) (6575.8%)
(79050 « ?976.7%) (6774.4%) (6617.8%) f998.9%) ?932.2%) ?987.8%) ?910%) f741.1%) (34?3.3%) ?493.3%)
! ?3.3%) (2235.6%) ?392.2%) 21.1%) (77.8%) ?2.2%) ?10%) ?268.9%) 3516.7%) f516.7%)
?6050 CCI ?998.3%) ?695%) ?606.7%) ?975%) ?963.3%) ?986.7%) ?975%) ?:?3.3%) ?:0%) ?:0%)
“ (11.7%) ?315%) ?303.3%) (35%) ?6.7%) ?3.3%) ?5%) (1106.7%) (3660%) ?660%)
(930(/);0 CCI ?1000%) (1680%) 2693.3%) (31000%) 5866.7%) ?996.7%) ?983.3%) ?736.7%) (1316.7%) 2316.7%)
! ?0%) (150%) (1316.7%) ?0%) ?13.3%) (13.3%) ?6.7%) 323.3%) (1693.3%) (1693.3%)
@9 || own | 1320 | 699% | 0575 | @hsw | 0639 | 03 | @330 | a2 | @52
! (62%) ?206.8%) ?300.1%) (1:.3%) (13056.5%) (131.7%) ?71%) ?106.7%) ?;8%) (156:.8%)

according to many formulae. Weka displays the “?”’ sign
instead of an error message. The best techniques that increase
the rate of precision, recall, F-measure, and MCC here are
CDT, F-PA, and J48. However, CDT and F-PA outperform
on best test case modules, e.g. 10% to 40% for testing and
60% to 90% for training, on 10-Fold cross-validation. The
outcomes of REP-T, DS, and CF-F for Tables 9, 11, and 12
do not generate accurate results due to multiple O values as a
divider in the confusion matrix. Moreover, on test modules 10
and 90 for training and testing, respectively, no technique
performs well. The recommendation of analyzing employed

98224

techniques via precision, recall, F-measure, and MCC on the
best test case module is the CDT technique for risk prediction
is software requirements.

Table 13 shows the detailed accuracy of the particular
technique evaluated on each test case module. The analysis
highlighted in this table represents that CDT, F-PA, and J48
outperform well instead of other employed methods. More-
over, these three techniques, CDT, F-PA, and J48, CDT and
F-PA (only in two cases), are recommended to better predict
risk in software requirements on the best test case module
of 10-Fold cross-validation. While for other best test case
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TABLE 5. MAE analysis of individual techniques on each test case module.

J:SZS CDT CS-F DS F-PA HT J48 LMT RF RT REP-T
10 & 90 0.1319 0.2668 0.1649 0.193 0.1157 0.0654 0.1289 0.2303 0.2386 0.2713
20 & 80 0.0527 0.2712 0.1677 0.1489 0.0596 0.0435 0.0856 0.2191 0.1606 0.2756
30&70 | 0.0347 | 02694 | 0.1653 | 0.1379 | 0.0572 | 0.0057 | 0.0674 | 0.2088 | 0.2434 | 0.2777
40 & 60 0.0176 0.2714 0.1659 0.2072 0.0499 0.0118 0.0605 0.203 0.2789 0.2799
50 & 50 0.0219 0.2709 0.1703 0.1836 0.0552 0.0142 0.0573 0.1960 0.2775 0.28
60 &40 | 0.0121 | 02678 | 0.1695 | 0.148 0.0513 | 0.0144 | 0.0377 | 0.1934 | 02607 | 0.2804
70 & 30 0.0174 0.2622 0.1697 0.2077 0.0421 0.013 0.038 0.2056 0.2753 0.2812
80 & 20 0.0109 0.2628 0.1751 0.2042 0.0409 0.0172 0.0245 0.2002 0.2795 0.284
90 & 10 | 0.0054 0.2655 0.1834 0.1461 0.0564 0.018 0.0379 0.2028 0.2872 0.2891
10Fold 0.0126 0.2538 0.1681 0.1635 0.1439 0.0183 0.0321 0.1912 0.1428 0.2796
TABLE 6. RMSE analysis of individual techniques on each test case module.

Test CDT CS-F DS F-PA HT J48 LMT RF RT REP-T
Modes
10& 90 | 0.2936 | 0.3447 | 0.2982 | 0.294 0.319 0.2238 ] 0.3254 | 0.3317 | 0.4079 | 0.3786
20& 80 | 0.1916 | 0.3459 | 0.2966 | 0.2317 | 0.2102 | 0.2086 | 0.2621 | 0.3107 | 0.3265 | 0.3782
30&70 | 0.1586 | 0.3421 | 0.3006 | 0.2282 | 0.2016 | 0.0758 | 0.2322 | 0.2963 | 0.4061 | 0.3778
40 & 60 | 0.1066 | 0.3458 | 0.2979 | 0.2804 | 0.1814 | 0.0938 | 0.2086 | 0.2858 | 0.3768 | 0.376
50& 50 | 0.1256 | 0.3443 | 0.3015 | 0.2646 | 0.1918 | 0.1028 | 0.198 0.2807 | 0.3783 | 0.378
60 &40 | 0.1004 | 0.3411 | 0.3003 | 0.2108 | 0.1821 | 0.1137 | 0.1572 | 0.2724 | 0.4003 | 0.3765
70 &30 | 0.1151 | 0.3352 | 0.2981 | 0.2749 | 0.1557 | 0.0906 | 0.1877 | 0.2881 | 0.3798 | 0.3775
80 & 20 | 0.0806 | 0.3371 0.3011 0.2762 | 0.1615 | 0.1109 | 0.1115 | 0.2769 | 0.3877 | 0.3816
90 & 10 | 0.014 0.3404 | 0.3095 | 0.2029 | 0.2136 | 0.1138 | 0.1483 | 0.2802 | 0.403 0.3879
10Fold | 0.0888 | 0.3262 | 0.29 0.2332 ] 0.2737 | 0.12 0.1472 ] 0.2655 | 0.2718 | 0.374

TABLE 7. RAE% analysis of individual techniques on each test case module.

RI:;ZS CDT CS-F DS F-PA HT J48 LMT RF RT REP-T
10 & 90 | 47.4115 | 95.8801 | 59.2414 | 69.3684 | 41.585 | 23.5115 | 46.3262 | 82.7636 | 85.7455 | 97.5013
20 & 80 | 18.8936 | 97.1778 | 60.0882 | 53.379 | 21.3573 | 15.5947 | 30.6865 | 78.5254 | 57.5599 | 98.7766
30& 70 | 12.3843 | 96.2585 | 59.0425 | 49.2527 | 20.4235 | 2.0514 | 24.0967 | 74.5864 | 86.9468 | 99.2038
40 & 60 | 6.2681 96.4239 | 58.9401 | 73.607 17.7102 | 4.1961 21.4863 | 72.1323 | 99.0926 | 99.43
50 & 50 | 7.789 96.3102 | 60.5401 | 65.2549 | 19.6403 | 5.0442 | 20.3576 | 69.6666 | 98.6381 | 99.5415
60 &40 | 4.299 95.1436 | 60.2337 | 52.5887 | 18.2279 | 5.1325 13.3936 | 68.7302 | 92.6396 | 99.6172
70 &30 | 6.1808 | 92.9407 | 60.1609 | 73.6286 | 14.9221 | 4.6075 13.4713 | 72.8683 | 97.5757 | 99.6788
80 & 20 | 3.8428 | 92.2879 | 61.4793 | 71.7035 | 14.3788 | 6.0277 | 8.6021 70.307 | 98.1447 | 99.7413
90 & 10 | 1.8714 | 91.6634 | 63.3165 | 50.4208 | 19.4666 | 6.217 13.092 | 70.0144 | 99.1382 | 99.8055
10Fold | 4.498 90.5256 | 59.9518 | 58.309 | 51.3256 | 6.5157 11.4635 | 68.2109 | 50.9484 | 99.7374

modules, e.g. 10% to 40% for testing and 60% to 90% for
training, CDT and F-PA (only in two cases) both outperform
other techniques. Figure 3 also describes the accuracy per-
centage of each technique concerning the individual test case
module.

VII. DISCUSSION

This research focuses on the performance analysis of TF-ML
approaches to suggest an optimal solution for risk prediction
in software requirements. In a nutshell, ended our analysis
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with outccomes that best cases for training and testing on
the aforementioned datases are the first 4 data training and
testing cases that are 90% and 10% for training and testing to
60% and 40% for training and testing, and the last case that is
10-fold cross-validation. Now, if the goal is to reduce the error
rate, our study shows that CDT outperforms other applied
strategies on all of the selected (best test case) modules in
Figures 4 (MAE and RMSE) and 5 (RAE% and RRSE%).
Similarly, in the cases of recall, precision, F-measure, MCC,
and accuracy, as shown in Figures 6 and 7, CDT outperform
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TABLE 8. RRSE% analysis of individual techniques on each test case module.

NI:;ZS CDT | CS-F DS F-PA HT J48 LMT RF RT REP-T
10 & 90 | 77.9801 | 91.5502 | 79.2039 | 78.0653 | 84.7217 | 59.4383 | 86.4283 | 88.0812 | 108.3193 | 100.5403
20 & 80 | 50.7739 | 91.6528 | 78.5915 | 61.4035 | 55.7019 | 55.2756 | 69.4584 | 82.3395 | 86.5208 | 100.2266
30 & 70 | 42.0357 | 90.6822 | 79.6791 | 60.4745 | 53.431 20.0828 | 61.5491 | 78.5371 | 107.6214 | 100.1186
40 & 60 | 28.3614 | 91.9879 | 79.2443 | 74.5964 | 48.2664 | 24.9598 | 55.5051 | 76.0319 | 100.2393 | 100.0279
50 & 50 | 33.2542 | 91.1323 | 79.8098 | 70.0319 | 50.7674 | 27.2177 | 52.4186 | 74.3044 | 100.1337 | 100.0569
60 & 40 | 26.6719 | 90.6352 | 79.7809 | 56.0112 | 48.3856 | 30.1959 | 41.755 | 72.3749 | 106.3628 | 100.0242
70 & 30 | 30.5042 | 88.8161 | 78.9966 | 72.8564 | 41.2657 | 24.001 49.7326 | 76.3534 | 100.6475 | 100.0268
80 & 20 | 21.1181 | 88.3789 | 78.9325 | 72.4146 | 42.3328 | 29.0702 | 29.2304 | 72.5892 | 101.6425 | 100.048
90 & 10 | 3.6009 | 87.7937 | 79.8258 | 52.3342 | 55.104 29.3517 | 38.2495 | 72.2861 | 103.96 100.0697
10Fold | 23.741 | 87.2203 | 77.5487 | 62.3448 | 73.1888 | 32.0907 | 39.3501 | 70.9953 | 72.6893 | 99.998
TABLE 9. Precision analysis of individual techniques on each test case module.
REP-
Test Modes CDT | CS-F | DS | F-PA HT J48 LMT RF RT T
10 & 90 ? ? ? ? ! ? ? ? ? ?
20 & 80 ? ? ? ? 0.856 | 0.890 0.782 ? ? ?
30& 70 0938 |? ? ? 0.876 | 0.986 0.838 ? 0.367 ?
40 & 60 0973 |? ? 0.956 0.909 | 0.979 0.875 ? ? ?
50 & 50 0.965 |? ? 0.968 0.897 | 0.975 0911 ? ? ?
60 & 40 0977 |? ? 0.955 0.890 | 0.970 0.921 0.818 | 0.395 ?
70 & 30 0.967 |? ? 0.990 0.933 | 0.981 0.913 ? ? ?
80 & 20 0.984 |2 RE 0.947 [0.973 10.953 [0860 |? ?
90 & 10 1.000 | ? 2 11000 [0.908 0970 0945 |2 ? ?
10Fold 0980 | 0.772 |2 10957 0794 [0964 |0930 [0.851 [0.748 |2
TABLE 10. Recall analysis of individual techniques on each test case module.
REP-
Test Modes CDT | CS-F DS F-PA HT J48 LMT RF RT T
10 & 90 0.706 | 0.580 | 0.684 | 0.647 0.721 | 0.859 0.677 | 0.554 | 0.461 | 0.442
20 & 80 0.891 | 0.640 | 0.686 | 0.908 0.854 | 0.891 0.799 | 0.640 | 0.695 | 0.439
30 & 70 0.933 ] 0.694 | 0.675 | 0.866 0.871 | 0.986 0.837 | 0.665 | 0.435 | 0.445
40 & 60 0.972 1 0.682 | 0.676 | 0.950 0.899 | 0.978 0.866 | 0.754 | 0.458 | 0.458
50 & 50 0.960 | 0.711 | 0.664 | 0.966 0.886 | 0.973 0.899 | 0.698 | 0.443 | 0.443
60 & 40 0.975 1 0.758 | 0.675 | 0.950 0.883 | 0.967 0.917 | 0.775 | 0.483 | 0.442
70 & 30 0.967 | 0.744 | 0.678 | 0.989 0.922 | 0.978 0.900 | 0.711 | 0.433 | 0.433
80 & 20 0.983 ] 0.650 | 0.667 | 0.950 0.933 | 0.967 0.950 | 0.833 | 0.400 | 0.400
90 & 10 1.000 | 0.600 | 0.633 | 1.000 0.867 | 0.967 0.933 | 0.767 | 0.367 | 0.367
10Fold 0.980 | 0.732 | 0.699 | 0.957 0.645 | 0.963 0.930 | 0.833 | 0.719 | 0.452

the other used methodologies. According to these analy-
ses, this study recommended CDT as the best technique for
forecasting risks in the software requirements. It can be seen
from Figures 4-7 that in each scenario whether it is reducing
the error rate or increasing the accuracy, CDT is recom-
mended as the best solution as compared to the rest of the
employed techniques.
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A. THREATS TO VALIDITY
This section discusses the impacts that might jeopardize the
validity of this study endeavour.

1) INTERNAL RELIABILITY
The analysis in this study is represented by a set of
well-known assessment measures employed in prior studies.
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TABLE 11. F-measure analysis of individual techniques on each test case module.

Test Modes CDT CS-F DS | F-PA | HT J48 LMT RF RT R]%P-
10 & 90 ? ? ? ? ? ? ? ? ? ?
20 & 80 ? ? ? ? 0.846 | 0.890 | 0.788 | ? ? ?
30& 70 0.933 ? ? ? 0.871 |1 0986 | 0.833 |? 0.383 | ?
40 & 60 0.972 ? ? 0.950 10901 | 0.978 | 0.865 |? ? ?
50 & 50 0.960 ? ? 0.966 | 0.887 | 0.973 |1 0.896 |? ? ?
60 & 40 0.975 ? ? 0.948 | 0.883 | 0.967 | 0916 | 0.729 |0.409 |?
70 & 30 0.966 ? ? 0.989 10923 10978 | 0901 |? ? ?
80 & 20 0.983 ? ? ? 0.935 1 0967 10949 |0.798 |? ?
90 & 10 1.000 ? ? 1.000 | 0.869 | 0.966 | 0934 |? ? ?
10Fold 0.980 0.699 ? 0.953 |1 0.691 | 0963 | 0929 | 0.805 |0.684 |?
TABLE 12. MCC analysis of individual techniques on each test case module.
REP-
Test Modes CDT CS-F DS F-PA HT J48 LMT RF RT T
10 & 90 ? ? ? ? ? ? ? ? ? ?
20 & 80 ? ? ? ? 0.800 0.870 | 0.728 | ? ? ?
30& 70 0915 | ? ? ? 0.826 0.981 | 0.781 | ? 0.161 | ?
40 & 60 0.965 | ? ? 0.932 0.863 0972 10818 |? ? ?
50 & 50 0.946 | ? ? 0.958 0.844 0.966 | 0.871 |? ? ?
60 & 40 0.967 | ? ? 0.935 0.836 0.958 | 0.891 | 0.678 | 0.188 | ?
70 & 30 0952 |? ? 0.986 0.898 0.975 1 0.866 |? ? ?
80 & 20 0979 |? ? ? 0.919 0.962 | 0932 | 0.767 |? ?
90 & 10 1.000 | ? ? 1.000 0.846 0.958 10917 |? ? ?
10Fold 0.975 | 0.613 ? 0.946 0.601 0.952 10905 | 0.766 | 0.596 |?

TABLE 13. Accuracy details of each technique concerning individual test case module.

Test CDT | CS-F | DS F-PA | HT
Modes

J48 LMT RF RT REP-T

10 & 90 70.6% | 57.9% | 68.4% 64.7% 72.1%

85.9% 67.6% 55.4% 46.1% 44.2%

20 & 80 89.1% | 64% 68.6% 90.8% 85.4%

89.1% 79.9% 64.1% 69.5% 43.9%

30& 70 93.3% | 69.4% | 67.5% 86.6% 87.1%

98.6% 83.7% 66.5% 43.5% 44.5%

40 & 60 97.2% | 68.2% | 67.6% 95% 90%

97.8% 86.6% 75.4% 45.8% 45.8%

50 & 50 96% 71.1% | 66.4% 96.6% 88.6%

97.3% 89.9% 69.8% 44.3% 44.3%

60 & 40 97.5% | 75.8% | 67.5% 95% 88.3%

96.7% 91.7% 77.5% 48.3% 44.2%

70 & 30 96.7% | 74.4% | 67.8% 98.9% 92.2%

97.8% 90% 71.1% 43.3% 43.3%

80 & 20 98.3% | 65% 66.7% 95% 93.3%

96.7% 95% 83.3% | 40% 40%

90 & 10 100% | 60% 63.3% 100% 86.7%

96.7% 93.3% 76.7% 36.7% 36.7%

10Fold 98% 73.2% | 69.9% 95.7% 64.5%

96.3% 93% 83.3% 72% 45.2%

Some of these criteria assess the error rate, while others
quantify accuracy. Along these lines, there is a risk that the
renewal of specific contemporary standards as a replacement
for previous standards may decrease the results achieved.
Furthermore, the approaches utilized in this study can be
modified with some new methods that can be combined and
produce better results than the prior methods.
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2) EXTERNAL VALIDITY

We ran tests on a dataset from the Zenodo archive,
which can be found at: https://zenodo.org/record/1209601#.
Xpa9mUAzZdg. Suppose we attach the comprehensive
approaches to other data obtained from multiple software
development organizations via surveys and other methods or
replace this dataset with another dataset. In that case, the
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FIGURE 3. Accuracy percentage representation concerning each test case module.

MAE and RMSE Analysis via Selected Test Case Modules (Training and Testing)
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FIGURE 4. MAE and RMSE analysis via selected test case modules.

RAE% and RRSE% Analysis via Selected Test Case Modules (Training and
Testing)
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FIGURE 5. RAE% and RRSE% analysis via selected test case modules.

findings when calculating the error rates may be thrown in outcomes. Following that, a thorough examination was
off. Similarly, using varied datasets, the comprehensive carried out on a dataset taken from the Zenodo repository to
approaches may not be able to provide improved predictions determine the performance of the approaches used.
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FIGURE 6. Precision, recall, F-measure, and accuracy analysis via selected test case modules.
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FIGURE 7. Accuracy analysis via selected test case modules.

3) CONSTRUCT VALIDITY

Several TF-ML techniques are compared against one another
in this study with a few performance assessment parameters.
Compared to other methodologies used by researchers in
recent years, the combination of procedures used in this study
is at the core of its reformist features. However, there is a
threat that if we add more innovative methods, the expanded
approaches will be exhausted. It’s also gratifying to see that
employing the most up-to-date performance evaluation mea-
sures yields better results that beat current findings.

VIil. CONCLUSION

Predicting requirement risk is an essential research topic that
receives increasing interest from researchers. This research
aims to create a model for predicting risk in software require-
ments. Ten different TF-ML techniques are used to find an
optimal solution for minimum error and maximum accuracy.

VOLUME 10, 2022

80&20 90&10 10Fold

HLMT ERF ERT HEREP-T

CDT outperforms other techniques in both error rate reduc-
tion and accuracy improvement among all the employed
techniques. The results of 10-fold cross-validation for MAE,
0.0888 for RMSE, 4.498 % for RAE, and 23.741 % for
RRSE are 0.0126 for MAE, 0.0888 for RMSE, 4.498 % for
RAE, and 23.741 % for RRSE. Furthermore, each accuracy,
recall, and F-measure achieved 0.980 outcomes. The CDT,
MCC result is 0.975, with a 98% accuracy. As a result,
this study recommends CDT for risk prediction in software
requirements. Moreover, complete findings can be utilized as
a starting point for other research. Any claim about improving
prediction through a new model, approach, or framework
may be benchmarked and evaluated. Class imbalance issues
should be committed to the databases for future development.
Furthermore, feature selection and ensemble learning strate-
gies should be investigated to improve enactment. Moreover,
this research may be utilized to identify the optimal classifier
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for developing and deploying a model for risk prediction in
software requirements.
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