IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 16 August 2022, accepted 9 September 2022, date of publication 12 September 2022,

date of current version 22 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3206382

==l RESEARCH ARTICLE

Analysis of Tree-Family Machine Learning
Techniques for Risk Prediction in

Software Requirements

BILAL KHAN“1, RASHID NASEEM 2, IFTIKHAR ALAM’, INAYAT KHAN 3,

HISHAM ALASMARY*3, AND TAJ RAHMAN ®

! Department of Computer Science, City University of Science and Information Technology, Peshawar 25000, Pakistan
2Department of IT and Computer Science, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur 22620, Pakistan

3Department of Computer Science, The University of Buner, Buner 19281, Pakistan

4Department of Computer Science, College of Computer Science, King Khalid University, Abha 62529, Saudi Arabia

SInformation Security and Cybersecurity Unit, King Khalid University, Abha 62529, Saudi Arabia

SDepartment of Computer Science, Qurtuba University of Science and Technology, Peshawar 24830, Pakistan

Corresponding author: Inayat Khan (inayat_khan@uop.edu.pk)

This work was supported by the Deanship of Scientific Research at King Khalid University through the Large Groups Project under

Grant RGP.2/201/43.

ABSTRACT Risk prediction is the most sensitive and critical activity in the Software Development Life
Cycle (SDLC). It might determine whether the project succeeds or fails. To increase the success probability
of a software project, the risk should be predicted at the early stages. This study proposed a novel model
based on the requirement risk dataset to predict software requirement risks using Tree-Family -Machine-
Learning (TF-ML) approaches. Moreover, the proposed model is compared with the state-of-the-art models
to determine the best-suited methodology based on the nature of the dataset. These strategies are assessed
and evaluated using a variety of metrics. The findings of this study may be reused as a baseline for future
studies and research, allowing the results of any proposed approach, model, or framework to be benchmarked

and easily checked.

INDEX TERMS Risk in requirements, risk dataset for requirements, tree family machine learning technique.

I. INTRODUCTION

Requirement Engineering (RE) is a well-organized and
systematic approach to gathering users’ requirements for a
software system [1]. Lately, we have seen a developing
enthusiasm for software systems that can screen their con-
dition and, if necessary, change their requirements to keep
on satisfying their purpose [2]. This specific software usually
comprises a base system liable for the fundamental function-
alities, alongside a part that screens the base system, examines
the data, and responds suitably to ensure that the system
keeps on executing its necessary functions. RE is regarded
as the most fundamental stage in software development since
it primarily involves eliciting, documenting, and maintaining
stakeholders’ requirements [3]. Meeting and ensuring that
stakeholders’ essential needs are met regularly is one of

The associate editor coordinating the review of this manuscript and

approving it for publication was Jolanta Mizera-Pietraszko

98220

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

the primary reasons for producing a high-quality software
system [4], [5].

There is consistently a casual of inexact procedures dur-
ing the time spent in the Software Development Life Cycle
(SDLC), which may likely defeat software organization or
software development. These questionable procedures are
known as software risks. The risks burst from various risk
influences established in an assortment of exercises in the
SDLC. If these risks are not distinguished appropriately,
they may get liable for the disaster of the project [6]. These
elements should be separated and moderated to restrict the
software cost and schedule by risk estimations in the SDLC’s
underlying phases. Because requirement collection is the first
part of SDLC, forecasting risks at this stage may boost soft-
ware productivity and quality while decreasing the likelihood
of catastrophes in the project [4], [6].

Keeping the earlier issue of risk prediction at the early stage
of software needs in mind, numerous researchers assessed

VOLUME 10, 2022

https://orcid.org/0000-0002-6816-3776
https://orcid.org/0000-0002-4952-8100
https://orcid.org/0000-0003-0895-9665
https://orcid.org/0000-0001-9590-3744
https://orcid.org/0000-0002-2298-5037

B. Khan et al.: Analysis of TF ML Techniques for Risk Prediction in Software Requirements

IEEE Access

and created several models applying various categoriza-
tion algorithms. However, any broad-spectrum preparation
to kick-start the use of these techniques is tough to come
up with. Overall, despite significant variances in the exper-
iments, it was revealed that no one methodology confers
higher precision to different approaches based on additional
data. Most studies have employed various assessment mea-
sures to increase accuracy. Still, to our knowledge, no one
has concentrated on decreasing the error rate, which is also a
critical feature of any prediction model [12], [13]. This study
has the following two primary objectives.

i To present a risk prediction model (in TF-ML mod-
els) that will aid in cost and schedule reductions and
improve project quality by lowering the likelihood of
project failure.

ii To compare the results of classification models to find
the best efficient methodology for risk prediction in the
SDLC Requirement phase.

This study’s primary contributions are as follows:

i We analyzed ten alternative TF-ML approaches for risk
prediction in software requirements (CDT, CS-Forest,
DS, Forest-PA, HT, J48, LMT, RF, RT, and REP-T).

ii We reveal the insight of the experiments using RAE,
MAE, RRSE, RMSE, recall, precision, F-measure,
MCC, and accuracy metrics.

iii We do several tests on the software requirements
risk dataset from Zenodo repository, available at
https://zenodo.org/record/1209601#.Xpa9mUAzZdg.

The rest of the paper is divided into six sections.

Section 2 describes the experimental methodology,
Sections 3 and 4 discuss model assessment and comparison
and the details of all applied techniques, respectively, and
Section 5 gives practical results and discussions. The con-
cluding section is covered in Section 6.

Il. LITERATURE REVIEW

Requirement Engineering (RE) is an organized and system-
atic approach to gathering users’ requirements for a software
system [7]. It usually comprises a system accountable for
the basic functionalities, examines the data, and responds
suitably. The RE is considered the essential stage in software
development since it mainly consists of eliciting, document-
ing, and maintaining stakeholders’ requirements [8]. There
is consistently a casual of inexact procedures during the
time spent in the SDLC, which may likely downfall a soft-
ware organization or software development process. These
questionable procedures are known as software risks [9].
If threats/risks are not handled appropriately, they may get
liable for the disaster of the project [6]. The dangers have a
significant influence on software requirements. They turn out
to be the cause of software or stakeholder harm. As a result,
risks must be predicted early in the SDLC to increase project
success possibilities because risk evaluation at this point will
be more helpful and will increase software production [10],
[47]. When risks are appropriately handled, it also helps to
reduce the likelihood of software project failure.

VOLUME 10, 2022

Frequent solutions for predicting software risk at different
phases in SDLC are available. In contrast, infrequent methods
are available to predict risks in the software requirements
phase in the literature [6], [11]. A risk prediction model
encompasses data mining classification methods and is pro-
posed to predict risks on the project’s Software Requirement
Specifications (SRS). The TF approach is one of the strangest
techniques for organizing the most significant variables and
their interactions between two or more variables. TFs can
develop new features with more significant predicting poten-
tial for object variables. It needs less data purification than
other modelling methodologies. It is not biased to a consid-
erable degree by outliers and missing data [17], [18], [19].

The reasoning for utilizing TF-ML techniques has been
considered one of the optimum and most often used super-
vised learning methods [12], [13]. Tree-based techniques
increase predictive models’ accuracy, stability, and inter-
pretability [14]. TF-ML techniques effectively map non-
linear interactions utilizing heterogeneous linear models.
When dealing with all sorts of obstacles, they are adap-
tive (regression or classification). Both continuous and cat-
egorical input and output variables can be used with these
approaches [15], [16].

We analyzed Tree Family Machine Learning (TF-
ML) methods for software requirement risk prediction.
Some of the TF-ML techniques include the Decision Tree
(J48), Forest by Penalizing Attributes (Forest-PA), REP-Tree
(REP-T), Decision Stump (DS), Credal Decision Tree (CDT),
Random Forest (RF), Random Tree (RT), Hoeffding Tree
(HT), Cost-Sensitive Decision Forest (CS-Forest), and Logis-
tic Model Tree (LMT). On the Zenodo repository dataset, sev-
eral methods are employed. The studies are validated using
root relative squared error (RRSE), root mean squared error
(RMSE), relative absolute error (RAE), mean fundamental
error (MAE), accuracy, Matthew’s Correlation Coefficient
(MCC), recall, F-measure (FM), and precision.

If a project fails to fulfil the user’s needs, budget, or time-
line, the product’s quality suffers. As a result, it is more
likely to fail [14]. So, to limit effort and the likelihood of
failure, a product must be built within the budget and schedule
constraints. The late discovery of risk has a more significant
effect on project failure. It is also necessary to forecast risk
early in the SDLC process (Software Requirements).

The data obtained from previous projects can be used
for the growth by either using machine learning (ML)
approaches, such as Artificial Network Network (ANN), and
Support Vector Machines (SVM)or a mathematical method-
ology, including study of association and linear regression
[45], [46]. Moreover, Software shortcoming prediction aim
to forecast defect-prone mechanisms before the testing stage
of SDLC [48].

lll. EXPERIMENTAL METHODOLOGY

This research aims to analyse TF-ML approaches for risk
prediction in software requirements using the Zenodo repos-
itory dataset. The dataset used contains the 13 characteristics

98221

IEEE Access

B. Khan et al.: Analysis of TF ML Techniques for Risk Prediction in Software Requirements

TABLE 1. List of attributes with distinct types.
— Software Requirements |
S. No. Name Type Distinct Dafaset _ J= Risk Dataset
1 Requirements Nominal | 292 EEECTE—
5 Proiect Cat Nominal | 4 Training and Testing
o) ef: ategoty om%na Training and Testing [+~ Mechanism of Data for |
3 Requirement Category | Nominal | 10 each Test Case Model
4 Risk Target Category Nominal | 22 COLCSE | L s
5 Probability Numeric | 81 isgj lil\i};’ I}'g: TF-ML Techniques
6 Magnitude of Risk Nominal o
: RT, end REP-T
7 Impact Nominal | 5 ‘Cl ----- f -------------- !
8 Dimension of Risk Nominal | 13 MAE. RAE Classification 1 1 :;Sifzvﬁtz tg;g;ugs i
9 Affecting No of | Numeric | 9 RMSE, RRSE, Bl S D ‘
Modules : : Preciston,
10 Fixing Duration (Days) | Numeric | 12 Recall, F- Performance Evaluation
11 Fix Cost (% of Project) | Numeric | 10 measure,
12 Priority Numeric | 293 MCC, and
13 Risk Level Nominal | 5 Accuracy Optimal
Solution
Count and Weight of each Level FIGURE 2. Methodology workflow.
160
o 135135.0 TABLE 2. Training and testing mechanism for each test case model.
120 S. No. Test Case Training Testing
Model
100 1 Case 1 90 % 10 %
80 75 75.0 2 Case 2 80 % 20 %
3 Case 3 70 % 30 %
60 T 4 Case 4 60 % 40 %
¥ 5 Case 5 50 % 50 %
s 6 Case 6 40 % 60 %
20 16 16.0 7 Case 7 30 % 70 %
. BN 8 Case 8 20 % 80 %
Lavel] Level2 Lavel2 Level3 Lavel3 9 Case 9 10 % 90%
i 5 5 4 . 10 Case 10 10-Fold Cross-validation

mCount = Weight

FIGURE 1. Count and weight of each class (level).

stated in Table 1 and 299 occurrences. The data is divided
into five categories: level 1, level 2, level 3, level 4, and
level 5 [6]. Figure 1 depicts the count and weight of each level.
Figure 2 depicts the whole workflow of this investigation.
Data is separated into 90% and 10% for training and testing,
respectively, and this procedure is applied in different test sce-
narios, where data testing is raised while training is dropped
by 10%. Training and testing are 80% and 20% in the second
scenario, respectively. These examples determine the most
effective testing and training splitting criteria. Table 2 lists
the testing and training instances. We have performed 10 dif-
ferent types of experiminations based on data splitting for

98222

training and testing purposes to show the better data splitting
mechanism in this regards. In case 1, the data is divided into
90% for training and 10% for testing, in case to we decrease
the training and increase the testing by 10%, so 80% is used
for training and the rest of 20% I sused for testing and so
on upto 10% for training and 90% for testing. In the last sce-
nario, 10-fold cross-validation is used. Many studies advocate
10-fold cross-validation as a benchmark [15], [16].

The employed techniques are evaluated using standard
evaluation measures presented in the subsequent.

IV. MODEL EVALUATION AND COMPARISON

Various assessment metrics evaluate ten TF-ML approaches,
including J48, HT, CDT, RF, RT, LMT, CS-Forest, and
REP-T. A 10-fold cross-validation procedure is employed
for training and testing where the dataset is partitioned into

VOLUME 10, 2022

B. Khan et al.: Analysis of TF ML Techniques for Risk Prediction in Software Requirements

IEEE Access

ten subdivisions of equivalent dimensions. One subdivision is
utilized for testing in the first fold, while the remaining nine
are used for training. Furthermore, the second subdivision in
the second fold is utilized for testing, while the remaining
nine are used for training. This method will be repeated
until each subdivision has been tested [15]. Assessment is
done based on MAE [17], [18], RAE [17], [19], RMSE
[20], [21], RRSE [17], [19], precision [22], [23], recall [22],
[24], F-measure [25], [26], MCC [25], [27], and accuracy
[26], [28], [29], where, P;; is the rate of prediction by the
precise model, 7 is the goal value for record ji, I stands for
record j (out of n records), n is the number of errors, |y; — y|
is the absolute error. However, TP is used for the total of
true-positive classification. At the same time, FN denotes the
count of false-negative classification, FP is the count of false-
positive classifications, and TN is the count of true-negative
classification. These assessments can be calculated using the
following equations:

| Q——
MAE = 2% Ivi=)l M
n
o pi =T
RAE = —ZJ;I pi— 7|)
Z]:l |T/—T|
| —— 5
RMSE = \/5 ijl oi—1 3)
" (P —T)
RRSE = M 4)
Y (1 -1)
. TP
Precision = ——— @)
TP 4+ FP
TP
Recall = —— 6)
TP 4+ FN
2 % Precision + Recall
FM = — (N
Precision 4+ Recall
MCC — (TN % TP) — (FN * FP)
= J(FP+ TP)(EN + TP)(IN + FP)(IN + FN)
®
TP + TN
Accuracy = + ©

TP + TN + FP + FN

V. EMPLOYED TF-ML TECHNIQUES

ML approaches are presently widely utilized to extract
important information from enormous data in various fields.
Recognizing communities in social networks, Cybersecurity,
bioinformatics, and improving the design process to generate
high-quality software systems are just a few of the real-world
uses of ML [30]. ML and TF-ML-based SDP solutions have
also been explored [31], [22], [32]. Table 3 presents the list
of all TF-ML techniques used in this study.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

This section illustrates the study’s findings and discussion.
Ten TF-ML approaches are used and assessed using a variety
of criteria. Experimentation utilises various test case com-
ponents (See Table 2). Each module examines the strategies

VOLUME 10, 2022

TABLE 3. List of TF-ML techniques used in this study.

S. No. TF-ML Technique References
1 Credal Decision Tree [33]133][34]
2 Cost-Sensitive Decision | [35][34][34]
Forest
3 Decision Stump [36][32][36]
4 Forest by Penalizing | [26] [37][35]
Attributes
5 Hoeffding Tree [34][34][36]
6 Decision Tree (J48) [38]1[39] [40]
7 Logistic Model Tree [34]1[36] [41]
8 Random Forest [26][42] [43]
9 Random Tree [34][36][44]
10 REP-Tree [34][34] [44]

to discover the best solution for risk prediction in soft-
ware requirements. Each TF-ML approach calculates Cor-
rectly Classified Instances (CCI) and Incorrectly Classified
Instances (ICI). Table 4 depicts the complete analysis of
CCI and ICI. Each column represents a test case module,
indicating how data is separated into testing and training.
Ten alternative scenarios have been devised to improve data
analysis for this goal. The second column represents CCI and
ICI concerning each test case module.

In contrast, the proportion of CCI and ICI attained by each
approach for each test case module is represented by the
remainder of the columns. The best test case that we con-
sider 1s 10-Fold cross-validation, the most utilized standard.
In Table 3, CDT and F-PA (in two cases) outperform other
techniques depending on different test case modules. While
using the best test case module (10-fold cross-validation),
CDT surpasses the other approaches used. Tables 5, 6, 7,
and 8 show the results of the MAE, RMSE, RAE %, and
RRSE % analyses, respectively. The first column in each
table represents the test case modules, while the remaining
columns indicate the results of each approach. Each table dis-
plays the most outstanding performance of CDT and J48 (in
one example) to minimise error rate by employing different
test case modules. The best outcomes of each technique are
presented in bold text in the respective table. If there is a
need to decrease the error rate in forecasting risks in software
requirements, this study suggests CDT and J48 techniques.
However, we have mostly seen researchers split the data into
20 % to 40% for testing and 60% to 80% for training or
suggest 10-Fold cross-validation. In these cases, this study
recommends the CDT technique to reduce error rates com-
pared to the other utilized techniques.

Tables 9, 10, 11, and 12 show the outcome analysis of
average precision, recall, F-measure, and MCC. CDT, F-PA,
and J48 exceed other approaches in each table to achieve
better results. A “?” sign appears in Tables 9, 11, and 12.
Due to the “0” value in the confusion matrix, this is a Weka
auto-generated symbol. If there is a need to divide a value and
that value becomes ““0,” we know that “0”’ is not divisible,

98223

IEEE Access

B. Khan et al.: Analysis of TF ML Techniques for Risk Prediction in Software Requirements

TABLE 4. Number of CCl and ICI obtaining from different percentage split test cases.

Test Modes | CDT | CS-F DS F-PA | HT J48 | LMT | RF RT | REP-T
269 || Goew | (19w | @84%) | 647%) | (21%) | @59% | (67.6% | (534% | 46106 | a4 2%
“ 2299.4%) (14:23.1%) ?351.6%) ?355.3%) Z257.9%) ?184.1%) ?279.4%) (1424?.6%) (1;35.9) (15550.8%)
@9 | @i | @ | @ | Gosw | @5 | @1 | 199% | 6415 | 695% | @39
“ ?160.9%) ?366%) Z351.4%) ?92.2%) ?154.6) ?160.9) ?280.1%) ?365.9%) 2330.5%) (1533.1%)
00 || o309 | 6949 | 67.5% | s6.6%) | @11%) | 08.6%) | 379 | 66.5% | a5 |
! (1;7%) (6340.6%) ?382.5%) ?183.4%) ?172.9%) 31.4%) ?146.3%) (7303.5%) (15168.5%) (15156.5%)
a9 || 120 | 820 | 676%) | o) | o0 | 975%) | @650 | (240 | sy | s
! f2.8%) 5371.8%) ?382.4%) ?5%) (1180%) ?2.2%) ?143.4%) ?244.6%) ?574.2%) ?574.2%)
19 || e | 0Live) | (64 | 96.6%) | (s8.6%) | 973% | 599%) | 69.8% | aa3ve | e
“ (64%) ?238.9%) 5303.6%) 33.4%) (1171.4%) ?2.7%) (1150.1%) ?350.2%) ?535.7%) (8535.7%)
a0 | | orsm | (1800 | 67.5% | o3| @83%) | 9679 | o179 | (7.5% | @asave | ez
! ?2.5%) 5294.2%) ?392.5%) ?5%) (1141.7%) ?3.3%) (12?.3%) ?272.5%) (6521.7%) (6575.8%)
(79050 « ?976.7%) (6774.4%) (6617.8%) f998.9%) ?932.2%) ?987.8%) ?910%) f741.1%) (34?3.3%) ?493.3%)
! ?3.3%) (2235.6%) ?392.2%) 21.1%) (77.8%) ?2.2%) ?10%) ?268.9%) 3516.7%) f516.7%)
?6050 CCI ?998.3%) ?695%) ?606.7%) ?975%) ?963.3%) ?986.7%) ?975%) ?:?3.3%) ?:0%) ?:0%)
“ (11.7%) ?315%) ?303.3%) (35%) ?6.7%) ?3.3%) ?5%) (1106.7%) (3660%) ?660%)
(930(/);0 CCI ?1000%) (1680%) 2693.3%) (31000%) 5866.7%) ?996.7%) ?983.3%) ?736.7%) (1316.7%) 2316.7%)
! ?0%) (150%) (1316.7%) ?0%) ?13.3%) (13.3%) ?6.7%) 323.3%) (1693.3%) (1693.3%)
@9 || own | 1320 | 699% | 0575 | @hsw | 0639 | 03 | @330 | a2 | @52
! (62%) ?206.8%) ?300.1%) (1:.3%) (13056.5%) (131.7%) ?71%) ?106.7%) ?;8%) (156:.8%)

according to many formulae. Weka displays the “?”’ sign
instead of an error message. The best techniques that increase
the rate of precision, recall, F-measure, and MCC here are
CDT, F-PA, and J48. However, CDT and F-PA outperform
on best test case modules, e.g. 10% to 40% for testing and
60% to 90% for training, on 10-Fold cross-validation. The
outcomes of REP-T, DS, and CF-F for Tables 9, 11, and 12
do not generate accurate results due to multiple O values as a
divider in the confusion matrix. Moreover, on test modules 10
and 90 for training and testing, respectively, no technique
performs well. The recommendation of analyzing employed

98224

techniques via precision, recall, F-measure, and MCC on the
best test case module is the CDT technique for risk prediction
is software requirements.

Table 13 shows the detailed accuracy of the particular
technique evaluated on each test case module. The analysis
highlighted in this table represents that CDT, F-PA, and J48
outperform well instead of other employed methods. More-
over, these three techniques, CDT, F-PA, and J48, CDT and
F-PA (only in two cases), are recommended to better predict
risk in software requirements on the best test case module
of 10-Fold cross-validation. While for other best test case

VOLUME 10, 2022

B. Khan et al.: Analysis of TF ML Techniques for Risk Prediction in Software Requirements

IEEE Access

TABLE 5. MAE analysis of individual techniques on each test case module.

J:SZS CDT CS-F DS F-PA HT J48 LMT RF RT REP-T
10 & 90 0.1319 0.2668 0.1649 0.193 0.1157 0.0654 0.1289 0.2303 0.2386 0.2713
20 & 80 0.0527 0.2712 0.1677 0.1489 0.0596 0.0435 0.0856 0.2191 0.1606 0.2756
30&70 | 0.0347 | 02694 | 0.1653 | 0.1379 | 0.0572 | 0.0057 | 0.0674 | 0.2088 | 0.2434 | 0.2777
40 & 60 0.0176 0.2714 0.1659 0.2072 0.0499 0.0118 0.0605 0.203 0.2789 0.2799
50 & 50 0.0219 0.2709 0.1703 0.1836 0.0552 0.0142 0.0573 0.1960 0.2775 0.28
60 &40 | 0.0121 | 02678 | 0.1695 | 0.148 0.0513 | 0.0144 | 0.0377 | 0.1934 | 02607 | 0.2804
70 & 30 0.0174 0.2622 0.1697 0.2077 0.0421 0.013 0.038 0.2056 0.2753 0.2812
80 & 20 0.0109 0.2628 0.1751 0.2042 0.0409 0.0172 0.0245 0.2002 0.2795 0.284
90 & 10 | 0.0054 0.2655 0.1834 0.1461 0.0564 0.018 0.0379 0.2028 0.2872 0.2891
10Fold 0.0126 0.2538 0.1681 0.1635 0.1439 0.0183 0.0321 0.1912 0.1428 0.2796
TABLE 6. RMSE analysis of individual techniques on each test case module.

Test CDT CS-F DS F-PA HT J48 LMT RF RT REP-T
Modes
10& 90 | 0.2936 | 0.3447 | 0.2982 | 0.294 0.319 0.2238] 0.3254 | 0.3317 | 0.4079 | 0.3786
20& 80 | 0.1916 | 0.3459 | 0.2966 | 0.2317 | 0.2102 | 0.2086 | 0.2621 | 0.3107 | 0.3265 | 0.3782
30&70 | 0.1586 | 0.3421 | 0.3006 | 0.2282 | 0.2016 | 0.0758 | 0.2322 | 0.2963 | 0.4061 | 0.3778
40 & 60 | 0.1066 | 0.3458 | 0.2979 | 0.2804 | 0.1814 | 0.0938 | 0.2086 | 0.2858 | 0.3768 | 0.376
50& 50 | 0.1256 | 0.3443 | 0.3015 | 0.2646 | 0.1918 | 0.1028 | 0.198 0.2807 | 0.3783 | 0.378
60 &40 | 0.1004 | 0.3411 | 0.3003 | 0.2108 | 0.1821 | 0.1137 | 0.1572 | 0.2724 | 0.4003 | 0.3765
70 &30 | 0.1151 | 0.3352 | 0.2981 | 0.2749 | 0.1557 | 0.0906 | 0.1877 | 0.2881 | 0.3798 | 0.3775
80 & 20 | 0.0806 | 0.3371 0.3011 0.2762 | 0.1615 | 0.1109 | 0.1115 | 0.2769 | 0.3877 | 0.3816
90 & 10 | 0.014 0.3404 | 0.3095 | 0.2029 | 0.2136 | 0.1138 | 0.1483 | 0.2802 | 0.403 0.3879
10Fold | 0.0888 | 0.3262 | 0.29 0.2332] 0.2737 | 0.12 0.1472] 0.2655 | 0.2718 | 0.374

TABLE 7. RAE% analysis of individual techniques on each test case module.

RI:;ZS CDT CS-F DS F-PA HT J48 LMT RF RT REP-T
10 & 90 | 47.4115 | 95.8801 | 59.2414 | 69.3684 | 41.585 | 23.5115 | 46.3262 | 82.7636 | 85.7455 | 97.5013
20 & 80 | 18.8936 | 97.1778 | 60.0882 | 53.379 | 21.3573 | 15.5947 | 30.6865 | 78.5254 | 57.5599 | 98.7766
30& 70 | 12.3843 | 96.2585 | 59.0425 | 49.2527 | 20.4235 | 2.0514 | 24.0967 | 74.5864 | 86.9468 | 99.2038
40 & 60 | 6.2681 96.4239 | 58.9401 | 73.607 17.7102 | 4.1961 21.4863 | 72.1323 | 99.0926 | 99.43
50 & 50 | 7.789 96.3102 | 60.5401 | 65.2549 | 19.6403 | 5.0442 | 20.3576 | 69.6666 | 98.6381 | 99.5415
60 &40 | 4.299 95.1436 | 60.2337 | 52.5887 | 18.2279 | 5.1325 13.3936 | 68.7302 | 92.6396 | 99.6172
70 &30 | 6.1808 | 92.9407 | 60.1609 | 73.6286 | 14.9221 | 4.6075 13.4713 | 72.8683 | 97.5757 | 99.6788
80 & 20 | 3.8428 | 92.2879 | 61.4793 | 71.7035 | 14.3788 | 6.0277 | 8.6021 70.307 | 98.1447 | 99.7413
90 & 10 | 1.8714 | 91.6634 | 63.3165 | 50.4208 | 19.4666 | 6.217 13.092 | 70.0144 | 99.1382 | 99.8055
10Fold | 4.498 90.5256 | 59.9518 | 58.309 | 51.3256 | 6.5157 11.4635 | 68.2109 | 50.9484 | 99.7374

modules, e.g. 10% to 40% for testing and 60% to 90% for
training, CDT and F-PA (only in two cases) both outperform
other techniques. Figure 3 also describes the accuracy per-
centage of each technique concerning the individual test case
module.

VII. DISCUSSION

This research focuses on the performance analysis of TF-ML
approaches to suggest an optimal solution for risk prediction
in software requirements. In a nutshell, ended our analysis

VOLUME 10, 2022

with outccomes that best cases for training and testing on
the aforementioned datases are the first 4 data training and
testing cases that are 90% and 10% for training and testing to
60% and 40% for training and testing, and the last case that is
10-fold cross-validation. Now, if the goal is to reduce the error
rate, our study shows that CDT outperforms other applied
strategies on all of the selected (best test case) modules in
Figures 4 (MAE and RMSE) and 5 (RAE% and RRSE%).
Similarly, in the cases of recall, precision, F-measure, MCC,
and accuracy, as shown in Figures 6 and 7, CDT outperform

98225

IEEE Access

B. Khan et al.: Analysis of TF ML Techniques for Risk Prediction in Software Requirements

TABLE 8. RRSE% analysis of individual techniques on each test case module.

NI:;ZS CDT | CS-F DS F-PA HT J48 LMT RF RT REP-T
10 & 90 | 77.9801 | 91.5502 | 79.2039 | 78.0653 | 84.7217 | 59.4383 | 86.4283 | 88.0812 | 108.3193 | 100.5403
20 & 80 | 50.7739 | 91.6528 | 78.5915 | 61.4035 | 55.7019 | 55.2756 | 69.4584 | 82.3395 | 86.5208 | 100.2266
30 & 70 | 42.0357 | 90.6822 | 79.6791 | 60.4745 | 53.431 20.0828 | 61.5491 | 78.5371 | 107.6214 | 100.1186
40 & 60 | 28.3614 | 91.9879 | 79.2443 | 74.5964 | 48.2664 | 24.9598 | 55.5051 | 76.0319 | 100.2393 | 100.0279
50 & 50 | 33.2542 | 91.1323 | 79.8098 | 70.0319 | 50.7674 | 27.2177 | 52.4186 | 74.3044 | 100.1337 | 100.0569
60 & 40 | 26.6719 | 90.6352 | 79.7809 | 56.0112 | 48.3856 | 30.1959 | 41.755 | 72.3749 | 106.3628 | 100.0242
70 & 30 | 30.5042 | 88.8161 | 78.9966 | 72.8564 | 41.2657 | 24.001 49.7326 | 76.3534 | 100.6475 | 100.0268
80 & 20 | 21.1181 | 88.3789 | 78.9325 | 72.4146 | 42.3328 | 29.0702 | 29.2304 | 72.5892 | 101.6425 | 100.048
90 & 10 | 3.6009 | 87.7937 | 79.8258 | 52.3342 | 55.104 29.3517 | 38.2495 | 72.2861 | 103.96 100.0697
10Fold | 23.741 | 87.2203 | 77.5487 | 62.3448 | 73.1888 | 32.0907 | 39.3501 | 70.9953 | 72.6893 | 99.998
TABLE 9. Precision analysis of individual techniques on each test case module.
REP-
Test Modes CDT | CS-F | DS | F-PA HT J48 LMT RF RT T
10 & 90 ? ? ? ? ! ? ? ? ? ?
20 & 80 ? ? ? ? 0.856 | 0.890 0.782 ? ? ?
30& 70 0938 |? ? ? 0.876 | 0.986 0.838 ? 0.367 ?
40 & 60 0973 |? ? 0.956 0.909 | 0.979 0.875 ? ? ?
50 & 50 0.965 |? ? 0.968 0.897 | 0.975 0911 ? ? ?
60 & 40 0977 |? ? 0.955 0.890 | 0.970 0.921 0.818 | 0.395 ?
70 & 30 0.967 |? ? 0.990 0.933 | 0.981 0.913 ? ? ?
80 & 20 0.984 |2 RE 0.947 [0.973 10.953 [0860 |? ?
90 & 10 1.000 | ? 2 11000 [0.908 0970 0945 |2 ? ?
10Fold 0980 | 0.772 |2 10957 0794 [0964 |0930 [0.851 [0.748 |2
TABLE 10. Recall analysis of individual techniques on each test case module.
REP-
Test Modes CDT | CS-F DS F-PA HT J48 LMT RF RT T
10 & 90 0.706 | 0.580 | 0.684 | 0.647 0.721 | 0.859 0.677 | 0.554 | 0.461 | 0.442
20 & 80 0.891 | 0.640 | 0.686 | 0.908 0.854 | 0.891 0.799 | 0.640 | 0.695 | 0.439
30 & 70 0.933] 0.694 | 0.675 | 0.866 0.871 | 0.986 0.837 | 0.665 | 0.435 | 0.445
40 & 60 0.972 1 0.682 | 0.676 | 0.950 0.899 | 0.978 0.866 | 0.754 | 0.458 | 0.458
50 & 50 0.960 | 0.711 | 0.664 | 0.966 0.886 | 0.973 0.899 | 0.698 | 0.443 | 0.443
60 & 40 0.975 1 0.758 | 0.675 | 0.950 0.883 | 0.967 0.917 | 0.775 | 0.483 | 0.442
70 & 30 0.967 | 0.744 | 0.678 | 0.989 0.922 | 0.978 0.900 | 0.711 | 0.433 | 0.433
80 & 20 0.983] 0.650 | 0.667 | 0.950 0.933 | 0.967 0.950 | 0.833 | 0.400 | 0.400
90 & 10 1.000 | 0.600 | 0.633 | 1.000 0.867 | 0.967 0.933 | 0.767 | 0.367 | 0.367
10Fold 0.980 | 0.732 | 0.699 | 0.957 0.645 | 0.963 0.930 | 0.833 | 0.719 | 0.452

the other used methodologies. According to these analy-
ses, this study recommended CDT as the best technique for
forecasting risks in the software requirements. It can be seen
from Figures 4-7 that in each scenario whether it is reducing
the error rate or increasing the accuracy, CDT is recom-
mended as the best solution as compared to the rest of the
employed techniques.

98226

A. THREATS TO VALIDITY
This section discusses the impacts that might jeopardize the
validity of this study endeavour.

1) INTERNAL RELIABILITY
The analysis in this study is represented by a set of
well-known assessment measures employed in prior studies.

VOLUME 10, 2022

B. Khan et al.: Analysis of TF ML Techniques for Risk Prediction in Software Requirements I E E E ACC@SS

TABLE 11. F-measure analysis of individual techniques on each test case module.

Test Modes CDT CS-F DS | F-PA | HT J48 LMT RF RT R]%P-
10 & 90 ? ? ? ? ? ? ? ? ? ?
20 & 80 ? ? ? ? 0.846 | 0.890 | 0.788 | ? ? ?
30& 70 0.933 ? ? ? 0.871 |1 0986 | 0.833 |? 0.383 | ?
40 & 60 0.972 ? ? 0.950 10901 | 0.978 | 0.865 |? ? ?
50 & 50 0.960 ? ? 0.966 | 0.887 | 0.973 |1 0.896 |? ? ?
60 & 40 0.975 ? ? 0.948 | 0.883 | 0.967 | 0916 | 0.729 |0.409 |?
70 & 30 0.966 ? ? 0.989 10923 10978 | 0901 |? ? ?
80 & 20 0.983 ? ? ? 0.935 1 0967 10949 |0.798 |? ?
90 & 10 1.000 ? ? 1.000 | 0.869 | 0.966 | 0934 |? ? ?
10Fold 0.980 0.699 ? 0.953 |1 0.691 | 0963 | 0929 | 0.805 |0.684 |?
TABLE 12. MCC analysis of individual techniques on each test case module.
REP-
Test Modes CDT CS-F DS F-PA HT J48 LMT RF RT T
10 & 90 ? ? ? ? ? ? ? ? ? ?
20 & 80 ? ? ? ? 0.800 0.870 | 0.728 | ? ? ?
30& 70 0915 | ? ? ? 0.826 0.981 | 0.781 | ? 0.161 | ?
40 & 60 0.965 | ? ? 0.932 0.863 0972 10818 |? ? ?
50 & 50 0.946 | ? ? 0.958 0.844 0.966 | 0.871 |? ? ?
60 & 40 0.967 | ? ? 0.935 0.836 0.958 | 0.891 | 0.678 | 0.188 | ?
70 & 30 0952 |? ? 0.986 0.898 0.975 1 0.866 |? ? ?
80 & 20 0979 |? ? ? 0.919 0.962 | 0932 | 0.767 |? ?
90 & 10 1.000 | ? ? 1.000 0.846 0.958 10917 |? ? ?
10Fold 0.975 | 0.613 ? 0.946 0.601 0.952 10905 | 0.766 | 0.596 |?

TABLE 13. Accuracy details of each technique concerning individual test case module.

Test CDT | CS-F | DS F-PA | HT
Modes

J48 LMT RF RT REP-T

10 & 90 70.6% | 57.9% | 68.4% 64.7% 72.1%

85.9% 67.6% 55.4% 46.1% 44.2%

20 & 80 89.1% | 64% 68.6% 90.8% 85.4%

89.1% 79.9% 64.1% 69.5% 43.9%

30& 70 93.3% | 69.4% | 67.5% 86.6% 87.1%

98.6% 83.7% 66.5% 43.5% 44.5%

40 & 60 97.2% | 68.2% | 67.6% 95% 90%

97.8% 86.6% 75.4% 45.8% 45.8%

50 & 50 96% 71.1% | 66.4% 96.6% 88.6%

97.3% 89.9% 69.8% 44.3% 44.3%

60 & 40 97.5% | 75.8% | 67.5% 95% 88.3%

96.7% 91.7% 77.5% 48.3% 44.2%

70 & 30 96.7% | 74.4% | 67.8% 98.9% 92.2%

97.8% 90% 71.1% 43.3% 43.3%

80 & 20 98.3% | 65% 66.7% 95% 93.3%

96.7% 95% 83.3% | 40% 40%

90 & 10 100% | 60% 63.3% 100% 86.7%

96.7% 93.3% 76.7% 36.7% 36.7%

10Fold 98% 73.2% | 69.9% 95.7% 64.5%

96.3% 93% 83.3% 72% 45.2%

Some of these criteria assess the error rate, while others
quantify accuracy. Along these lines, there is a risk that the
renewal of specific contemporary standards as a replacement
for previous standards may decrease the results achieved.
Furthermore, the approaches utilized in this study can be
modified with some new methods that can be combined and
produce better results than the prior methods.

VOLUME 10, 2022

2) EXTERNAL VALIDITY

We ran tests on a dataset from the Zenodo archive,
which can be found at: https://zenodo.org/record/1209601#.
Xpa9mUAzZdg. Suppose we attach the comprehensive
approaches to other data obtained from multiple software
development organizations via surveys and other methods or
replace this dataset with another dataset. In that case, the

98227

IEEE Access

B. Khan et al.: Analysis of TF ML Techniques for Risk Prediction in Software Requirements

mCDT mCS-F mDS ®mF-PA mHT =J48 mLMT ®WRF ®WRT EREP-T

100.00%

80.00%
60.00%
40.00%
o e
0.00%

10&90 20&80 30&70 40&60 50&50 60&40 70&30 80&20 90&10 10Fold

FIGURE 3. Accuracy percentage representation concerning each test case module.

MAE and RMSE Analysis via Selected Test Case Modules (Training and Testing)

0.45
04
0.35

M

60&40 70&30 80&20 90&10 10Fold 60&40 70&30 80&20 950&10 10Fold

=]

MAE RMSE

BCDT mCS-F mDS WF-PA EHT mJ48 ELMT RF EMRT mREP-T
FIGURE 4. MAE and RMSE analysis via selected test case modules.

RAE% and RRSE% Analysis via Selected Test Case Modules (Training and
Testing)

60&40 70&30 80&20 90&10 10Fold 60&40 70&30 80&20 90&10 10Fold

100
8
6
4
2

©C o o o o

RAE% RRSE%

ECDT mCS-F mDS mF-PA mHT wJ48 ®mLMT ©RF ERT EREP-T

FIGURE 5. RAE% and RRSE% analysis via selected test case modules.

findings when calculating the error rates may be thrown in outcomes. Following that, a thorough examination was
off. Similarly, using varied datasets, the comprehensive carried out on a dataset taken from the Zenodo repository to
approaches may not be able to provide improved predictions determine the performance of the approaches used.

98228 VOLUME 10, 2022

B. Khan et al.: Analysis of TF ML Techniques for Risk Prediction in Software Requirements

IEEE Access

Precision, Recall, F-Measure, and MCC Analysis

1§ c r 7
0.8]I 1L | ‘ f | Il
os (Ml 1HH |1 | | |
o2 LI |
o LM “ “ || l|| ‘ n |
; 10 M | | al
o o o o =) o o o o - o o o o] o o o o =
& B & & & & o & & & & o B & & o o o & i
o o o o J o © o 9 g8l o o o J| o o o o o5
w ~ [+s] (=] w ~ [+s] (=] (V=] M~ =] [=3] w M~ [+ h
Precision Recall F-Measure MCC
mCDT ®mCS-F mDS MF-PA WHT wJ48 ®LMT ERF ERT EREP-T
FIGURE 6. Precision, recall, F-measure, and accuracy analysis via selected test case modules.
Accuracy Analysis
100.00%
80.00%
60.00%
40.00%
20.00% I I II
0.00%

60&40 70&30

ECDT ®mCS-F mDS MF-PA BHT =148

FIGURE 7. Accuracy analysis via selected test case modules.

3) CONSTRUCT VALIDITY

Several TF-ML techniques are compared against one another
in this study with a few performance assessment parameters.
Compared to other methodologies used by researchers in
recent years, the combination of procedures used in this study
is at the core of its reformist features. However, there is a
threat that if we add more innovative methods, the expanded
approaches will be exhausted. It’s also gratifying to see that
employing the most up-to-date performance evaluation mea-
sures yields better results that beat current findings.

VIil. CONCLUSION

Predicting requirement risk is an essential research topic that
receives increasing interest from researchers. This research
aims to create a model for predicting risk in software require-
ments. Ten different TF-ML techniques are used to find an
optimal solution for minimum error and maximum accuracy.

VOLUME 10, 2022

80&20 90&10 10Fold

HLMT ERF ERT HEREP-T

CDT outperforms other techniques in both error rate reduc-
tion and accuracy improvement among all the employed
techniques. The results of 10-fold cross-validation for MAE,
0.0888 for RMSE, 4.498 % for RAE, and 23.741 % for
RRSE are 0.0126 for MAE, 0.0888 for RMSE, 4.498 % for
RAE, and 23.741 % for RRSE. Furthermore, each accuracy,
recall, and F-measure achieved 0.980 outcomes. The CDT,
MCC result is 0.975, with a 98% accuracy. As a result,
this study recommends CDT for risk prediction in software
requirements. Moreover, complete findings can be utilized as
a starting point for other research. Any claim about improving
prediction through a new model, approach, or framework
may be benchmarked and evaluated. Class imbalance issues
should be committed to the databases for future development.
Furthermore, feature selection and ensemble learning strate-
gies should be investigated to improve enactment. Moreover,
this research may be utilized to identify the optimal classifier

98229

IEEE Access

B. Khan et al.: Analysis of TF ML Techniques for Risk Prediction in Software Requirements

for developing and deploying a model for risk prediction in
software requirements.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Yaseen, A. Mustapha, and N. Ibrahim, “An approach for
managing large-sized software requirements during prioritization,”
in Proc. IEEE Conf. Open Syst. (ICOS), Nov. 2018, pp. 98-103, doi:
10.1109/1C0OS.2018.8632806.

B. B. Duarte, A. L. de Castro Leal, R. de Almeida Falbo, G. Guizzardi,
R. S. S. Guizzardi, and V. E. S. Souza, “Ontological foundations for
software requirements with a focus on requirements at runtime,” Appl.
Ontol., vol. 13, no. 2, pp. 73-105, May 2018, doi: 10.3233/A0-180197.
F. Hujainah, R. B. A. Bakar, M. A. Abdulgabber, and K. Z. Zamli, “Soft-
ware requirements prioritisation: A systematic literature review on sig-
nificance, stakeholders, techniques and challenges,” IEEE Access, vol. 6,
pp. 71497-71523, 2018, doi: 10.1109/ACCESS.2018.2881755.

I. M. Keshta, M. Niazi, and M. Alshayeb, “Towards the imple-
mentation of requirements management specific practices (SP 1.1
and SP 1.2) for small- and medium-sized software development
organisations,” [ET Softw., vol. 14, no. 3, pp.308-317, Jun. 2020,
doi: 10.1049/iet-sen.2019.0180.

M. M. Otoom, “ABMIJ: An ensemble model for risk prediction in software
requirements,” Int. J. Comput. Sci. Netw. Secur., vol. 22, no. 3, p. 710,
2022.

Z.S. Shaukat, R. Naseem, and M. Zubair, “A dataset for software require-
ments risk prediction,” in Proc. IEEE Int. Conf. Comput. Sci. Eng. (CSE),
Oct. 2018, pp. 112-118, doi: 10.1109/CSE.2018.00022.

F. U. Hassan and T. Le, “Automated prioritization of requirements
to support risk-based construction inspection of highway projects
using LSTM neural network,” in Proc. Construct. Res. Congr., 2022,
pp. 1270-1277.

J. Dhlamini and I. Nhamu, “React reactive proa proactive,” ACM Press,
Eastern Cape, South Africa, Tech. Rep. 24, 2009, pp. 33—40.

B. Charbuty and A. Abdulazeez, ““Classification based on decision tree
algorithm for machine learning,” J. Appl. Sci. Technol. Trends, vol. 2, no. 1,
pp. 20-28, Mar. 2021, doi: 10.38094/jastt20165.

T. Zhang, R. P. Quevedo, H. Wang, Q. Fu, D. Luo, T. Wang,
G. G. de Oliveira, L. A. Guasselli, and C. D. Renno, “Improved tree-based
machine learning algorithms combining with bagging strategy for land-
slide susceptibility modeling,” Arab. J. Geosci., vol. 15, no. 2, pp. 1-19,
2022.

B. Khan, R. Naseem, F. Muhammad, G. Abbas, and S. Kim, “An empir-
ical evaluation of machine learning techniques for chronic kidney dis-
ease prophecy,” IEEE Access, vol. 8, pp.55012-55022, 2020, doi:
10.1109/ACCESS.2020.2981689.

B. Khan, R. Naseem, M. A. Shah, K. Wakil, A. Khan, M. 1. Uddin, and
M. Mahmoud, “Software defect prediction for healthcare big data: An
empirical evaluation of machine learning techniques,” J. Healthcare Eng.,
vol. 2021, pp. 1-16, Mar. 2021, doi: 10.1155/2021/8899263.

B. Khan, R. Naseem, M. Ali, M. Arshad, and N. Jan, “Machine learning
approaches for liver disease diagnosing,” Int. J. Data Sci. Adv. Anal., vol. 1,
no. 1, pp. 27-31, 2019.

T. M. Carvajal, K. M. Viacrusis, L. F. T. Hernandez, H. T. Ho,
D. M. Amalin, and K. Watanabe, “Machine learning methods reveal
the temporal pattern of dengue incidence using meteorological factors in
metropolitan manila, Philippines,” BMC Infectious Diseases, vol. 18, no. 1,
pp. 1-15, Dec. 2018, doi: 10.1186/s12879-018-3066-0.

C. G. Raji and S. S. V. Chandra, “Graft survival prediction in liver
transplantation using artificial neural network models,” J. Comput. Sci.,
vol. 16, pp. 72-78, Sep. 2016, doi: 10.1016/j.jocs.2016.05.005.

P. Guo, T. Liu, Q. Zhang, L. Wang, and J. Xiao, “Developing
a dengue forecast model using machine learning: A case study in
China,” PLoS Negl. Trop. Dis., vol. 11, no. 10, pp.1-22, 2017,
doi: 10.1371/journal.pntd.0005973.

A. Al-Anazi and I. D. Gates, “A support vector machine algorithm
to classify lithofacies and model permeability in heterogeneous reser-
voirs,” Eng. Geol., vol. 114, nos. 3-4, pp. 267-277, Aug. 2010, doi:
10.1016/j.enggeo.2010.05.005.

T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald, ““Problems with
precision: A response to ‘comments on ‘data mining static code attributes
to learn defect Predictors,”” IEEE Trans. Softw. Eng., vol. 33, no. 9,
pp. 637-640, Sep. 2007, doi: 10.1109/TSE.2007.70721.

98230

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

(29]

(30]

[31]

(32]

(33]

(34]

(35]

(36]

(371

[38]

(39]

S. Vanderbeck, J. Bockhorst, R. Komorowski, D. E. Kleiner, and
S. Gawrieh, “Automatic classification of white regions in liver biopsies by
supervised machine learning,” Hum. Pathol., vol. 45, no. 4, pp. 785-792,
Apr. 2014, doi: 10.1016/j.humpath.2013.11.011.

H. Jin, S. Kim, and J. Kim, “Decision factors on effective liver patient data
prediction,” Int. J. Bio-Sci. Bio-Technol., vol. 6, no. 4, pp. 167-178, 2014,
doi: 10.14257/ijbsbt.2014.6.4.16.

H. Tong, B. Liu, and S. Wang, “Software defect prediction
using stacked denoising autoencoders and two-stage ensemble
learning,” Inf. Softw. Technol., vol. 96, pp.94-111, Apr. 2018, doi:
10.1016/j.infsof.2017.11.008.

A. Igbal, S. Aftab, U. Ali, Z. Nawaz, L. Sana, M. Ahmad, and A. Husen,
“Performance analysis of machine learning techniques on software defect
prediction using NASA datasets,” Int. J. Adv. Comput. Sci. Appl., vol. 10,
no. 5, pp. 300-308, 2019, doi: 10.14569/ijacsa.2019.0100538.

S. Jacob and G. Raju, “Software defect prediction in large space systems
through hybrid feature selection and classification,” Int. Arab J. Inf. Tech-
nol., vol. 14, no. 2, pp. 208-214, 2017.

A. Anand, L. Wilkinson, and D. N. Tuan, “An L-infinity norm visual clas-
sifier,” in Proc. 9th IEEE Int. Conf. Data Mining, Dec. 2009, pp. 687-692,
doi: 10.1109/ICDM.2009.119.

C. Manjula and L. Florence, “‘Deep neural network based hybrid approach
for software defect prediction using software metrics,” Cluster Comput.,
vol. 22, no. 4, pp. 9847-9863, 2019, doi: 10.1007/s10586-018-1696-z.
D.-L. Miholca, G. Czibula, and I. G. Czibula, “A novel approach for soft-
ware defect prediction through hybridizing gradual relational association
rules with artificial neural networks,” Inf. Sci., vol. 441, pp. 152-170,
May 2018, doi: 10.1016/j.ins.2018.02.027.

R. Malhotra and S. Kamal, “An empirical study to investigate over-
sampling methods for improving software defect prediction using imbal-
anced data,” Neurocomputing, vol. 343, pp. 120-140, May 2019, doi:
10.1016/j.neucom.2018.04.090.

J. Chen, Y. Yang, K. Hu, Q. Xuan, Y. Liu, and C. Yang, “Multiview
transfer learning for software defect prediction,” IEEE Access, vol. 7,
pp. 8901-8916, 2019, doi: 10.1109/ACCESS.2018.2890733.

C.J. Mantas and J. Abelldn, “Credal decision trees in noisy domains,” in
Proc. 22nd Eur. Symp. Artif. Neural Netw., Comput. Intell. Mach. Learn.
(ESANN), Apr. 2014, pp. 683-688.

Q. He, Z. Xu, S. Li, R. Li, S. Zhang, N. Wang, B. T. Pham, and W. Chen,
“Novel entropy and rotation forest-based credal decision tree classifier
for landslide susceptibility modeling,” Entropy, vol. 21, no. 2, p. 106,
Jan. 2019, doi: 10.3390/e21020106.

J. Abelldn and A. R. Masegosa, “‘An ensemble method using credal deci-
sion trees,” Eur. J. Oper. Res., vol. 205, no. 1, pp. 218-226, Aug. 2010,
doi: 10.1016/j.€jor.2009.12.003.

M. J. Siers and M. Z. Islam, “Cost sensitive decision forest and voting for
software defect prediction,” in Trends in Artificial Intelligence (Lecture
Notes in Computer Science), vol. 8862. Cham, Switzerland: Springer,
2014, pp. 929-936, doi: 10.1007/978-3-319-13560-1.

R. Naseem, B. Khan, A. Ahmad, A. Almogren, S. Jabeen, B. Hayat, and
M. A. Shah, “Investigating tree family machine learning techniques for
a predictive system to unveil software defects,” Complexity, vol. 2020,
pp. 1-21, Nov. 2020, doi: 10.1155/2020/6688075.

N. Nahar and F. Ara, “Liver disease prediction by using different decision
tree techniques,” Int. J. Data Mining Knowl. Manage. Process, vol. 8,no. 2,
pp. 1-9, Mar. 2018, doi: 10.5121/ijdkp.2018.8201.

L. Wilkinson, A. Anand, and D. N. Tuan, “CHIRP: A new classifier based
on composite hypercubes on iterated random projections,” in Proc. 17th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), 2011,
pp. 6-14, doi: 10.1145/2020408.2020418.

N. Adnan and Z. Islam, “PT U.S. CR,” Expert Syst. Appl., vol. 174,
Jun. 2020, doi: 10.1016/j.eswa.2017.08.002.

M. M. Saritas and A. Yasar, “Performance analysis of ANN and
naive Bayes classification algorithm for data classification,” Int.
J. Intell. Syst. Appl. Eng., vol. 7, no. 2, pp.88-91, Jan. 2019, doi:
10.18201/ijisae.2019252786.

S. Perveen, M. Shahbaz, K. Keshavjee, and A. Guergachi, “A systematic
machine learning based approach for the diagnosis of non-alcoholic fatty
liver disease risk and progression,” Sci. Rep., vol. 8, no. 1, pp. 1-12,
Dec. 2018, doi: 10.1038/541598-018-20166-x.

J.-J. Liu and J.-C. Liu, “An intelligent approach for reservoir quality
evaluation in tight sandstone reservoir using gradient boosting decision tree
algorithm—A case study of the Yanchang formation, mid-eastern Ordos
Basin, China,” Mar. Pet. Geol., vol. 126, Apr. 2021, Art. no. 104939.

VOLUME 10, 2022

http://dx.doi.org/10.1109/ICOS.2018.8632806
http://dx.doi.org/10.3233/AO-180197
http://dx.doi.org/10.1109/ACCESS.2018.2881755
http://dx.doi.org/10.1049/iet-sen.2019.0180
http://dx.doi.org/10.1109/CSE.2018.00022
http://dx.doi.org/10.38094/jastt20165
http://dx.doi.org/10.1109/ACCESS.2020.2981689
http://dx.doi.org/10.1155/2021/8899263
http://dx.doi.org/10.1186/s12879-018-3066-0
http://dx.doi.org/10.1016/j.jocs.2016.05.005
http://dx.doi.org/10.1371/journal.pntd.0005973
http://dx.doi.org/10.1016/j.enggeo.2010.05.005
http://dx.doi.org/10.1109/TSE.2007.70721
http://dx.doi.org/10.1016/j.humpath.2013.11.011
http://dx.doi.org/10.14257/ijbsbt.2014.6.4.16
http://dx.doi.org/10.1016/j.infsof.2017.11.008
http://dx.doi.org/10.14569/ijacsa.2019.0100538
http://dx.doi.org/10.1109/ICDM.2009.119
http://dx.doi.org/10.1007/s10586-018-1696-z
http://dx.doi.org/10.1016/j.ins.2018.02.027
http://dx.doi.org/10.1016/j.neucom.2018.04.090
http://dx.doi.org/10.1109/ACCESS.2018.2890733
http://dx.doi.org/10.3390/e21020106
http://dx.doi.org/10.1016/j.ejor.2009.12.003
http://dx.doi.org/10.1007/978-3-319-13560-1
http://dx.doi.org/10.1155/2020/6688075
http://dx.doi.org/10.5121/ijdkp.2018.8201
http://dx.doi.org/10.1145/2020408.2020418
http://dx.doi.org/10.1016/j.eswa.2017.08.002
http://dx.doi.org/10.18201/ijisae.2019252786
http://dx.doi.org/10.1038/s41598-018-20166-x

B. Khan et al.: Analysis of TF ML Techniques for Risk Prediction in Software Requirements

IEEE Access

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

M. N. Kumar, K. V. S. Koushik, and K. Deepak, ‘““Prediction of heart dis-
eases using data mining and machine learning algorithms and techniques |
request PDE,” Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., vol. 3, no. 3,
pp. 887-898, 2018, doi: 10.13140/RG.2.2.28488.83203.

A. N. Arbain and B. Y. P. Balakrishnan, “A comparison of data mining
algorithms for liver disease prediction on imbalanced data,” Int. J. Data
Sci. Adv. Anal., vol. 1, no. 1, pp. 1-11, 2019.

A. Gulia, R. Vohra, and P. Rani, “Liver patient classification using
intelligent techniques,” Int. J. Comput. Sci. Inf. Technol., vol. 5, no. 4,
pp. 5110-5115, 2014.

K. S. Dar and S. M. U. Azmeen, “‘Dengue fever prediction: A data mining
problem,” J. Data Mining Genomics Proteomics, vol. 6, no. 3, pp. 1-5,
2015, doi: 10.4172/2153-0602.1000181.

M. Siavvas, D. Tsoukalas, M. Jankovic, D. Kehagias, and D. Tzovaras,
“Technical debt as an indicator of software security risk: A machine
learning approach for software development enterprises,” Enterprise Inf.
Syst., vol. 16, no. 5, p. 1824017, 2022.

M. N. Mahdi, M. H. M. Zabil, A. R. Ahmad, R. Ismail, Y. Yusoff,
L. K. Cheng, M. S. B. M. Azmi, H. Natiq, and H. H. Naidu, “Software
project management using machine learning technique—A Review,” Appl.
Sci., vol. 11, no. 11, p. 5183, 2021.

I. Alam and S. Khusro, “Tailoring recommendations to groups of viewers
on smart TV: A real-time profile generation approach,” IEEE Access,
vol. 8, pp. 50814-50827, 2020.

C. Lépez-Martin, “Machine learning techniques for software testing effort
prediction,” Softw. Quality J., vol. 30, no. 1, pp. 65-100, 2022.

M. N. Uddin, B. Li, Z. Ali, P. Kefalas, I. Khan, and 1. Zada, “Software
defect prediction employing BILSTM and BERT-based semantic feature,”
Soft Comput., vol. 26, pp. 7877-7891, 2022.

BILAL KHAN is currently pursuing the Ph.D.
degree in computer software engineering with
the University of Engineering and Technology,
Mardan, Pakistan. He is also working as a Lecturer
at the Department of Computer Science, City Uni-
versity of Science and Information Technology,
Peshawar, Pakistan. His research interests include
natural language processing, machine learning,
and software engineering.

RASHID NASEEM was born in Landikotal,
Khyber Pakhtunkhwa, Pakistan. He received the
B.C.S. degree in computer science from the Uni-
versity of Peshawar, Pakistan, in 2008, the M.Phil.
degree in computer science from Quaid-I Azam
University, Pakistan, in 2011, and the Ph.D. degree
in information technology from the Universiti Tun
Hussein Onn Malaysia, in February 2017. He was
with software industry, from 2007 to 2008. He is
currently an Assistant Professor of software engi-

neering at the Pak-Austria Fachhochschule: Institute of Applied Sciences
and Technology, Haripur, Pakistan. Before, he has been a Lecturer at the
Department of Computer Science, City University of Science and Informa-
tion Technology, Peshawar, Pakistan, since 2012, and was promoted to an
Assistant Professor, in November 2017.

VOLUME 10, 2022

-
o

IFTIKHAR ALAM received the M.S. and Ph.D.
degrees in computer science from the Department
of Computer Science, University of Peshawar,
Pakistan. He is currently working as an Assis-
tant Professor of computer science with the City
University of Science and Information Technol-
ogy, Peshawar, Pakistan. His Ph.D. research is
user/group modeling on smart TV for enhancing
personalization services in general and recommen-
dations in specific. He published several papers in

international journals and conferences. His research interests include soft-
ware engineering, recommender systems, user modeling, group modeling,
smart TV, ubiquitous computing, web mining, search engines, augmented
reality, and mobile-based systems for people with special needs.

INAYAT KHAN received the Ph.D. degree in
computer science from the Department of Com-
puter Science, University of Peshawar, Pakistan.
His current research is based on the design and
development of context-aware adaptive user inter-
faces for minimizing drivers’ distractions. His
research interests include lifelogging, healthcare,
deep learning, ubiquitous computing, accessibil-
ity, and mobile-based assistive systems for people
with special needs. He published several papers in

international journals and conferences in these areas.

HISHAM ALASMARY received the M.Sc. degree
in computer science from The George Washing-
ton University, Washington, DC, USA, in 2016,
and the Ph.D. degree from the Department of
Computer Science, University of Central Florida,
in 2020. He is currently an Assistant Professor
at King Khalid University. His research interests
include software security, the IoT security and pri-
vacy, ML/DL applications in information security,
and adversarial machine learning.

TAJ RAHMAN received the B.S. degree in com-
puter science from the University of Malakand
Dir (Lower) Pakistan, in 2007, the M.S. degree
in computer science from Agriculture University,
Peshawar, Pakistan, in 2011, and the Ph.D. degree
in computer science from the School of Com-
puter and Communication Engineering, University
of Science and Technology Beijing, China. He is
currently working as an Assistant Professor at the
Department of Physical and Numerical Sciences,

Qurtuba University of Science and Technology, Peshawar. His research
interests include wireless sensor networks and the Internet of Things.

98231

http://dx.doi.org/10.13140/RG.2.2.28488.83203
http://dx.doi.org/10.4172/2153-0602.1000181

