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ABSTRACT The classic measurement-based method for load model parameter identification relies on lots
of transient simulations and optimization iterations, which is computationally intensive, and is unsuitable
to the terminal devices for recording load characteristic to participate in grid edge computing. To solve this
difficulty, a fast identification method for load model parameters based on jumping and steady-state points of
measured data is proposed, which greatly reduces the calculation time by avoiding the transient simulations
and random optimizations of the classic method, and at the same time, well retains the accuracy of identified
parameters. Firstly, the method extracts four points from measured data as calculation points, i.e., the point
after voltage sag, two points before and after voltage recovery, and the final steady-state point. Then, the
method calculates the state variables and powers at the four points through steady-state calculation, implicit
trapezoid integration method and Hermite–Simpson method respectively. Finally, according to the measured
powers of the four points, the method provides an initial key load model parameters through polynomial
approximation method and finds the optimal parameters through Nelder-Mead algorithm. The accuracy and
practicality of the method are demonstrated by test and field case studies, and the computation burden is less
than 2.5% of that in the classic method without obvious loss of identification accuracy.
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INDEX TERMS Load model parameter identification, jumping and steady-state points, Hermite–Simpson
method, polynomial approximation, Nelder-Mead algorithm.

I. INTRODUCTION17

Load model describes the relationship between load power18

and load voltage, which plays an important role in power19

system analysis, operation and control. It is well-known that20

an accurate load model contributes to reliable dynamic and21

static stability analysis, and hence has important influence on22

secure operation of power system. Therefore, the load model23

has received the attentions of many researchers in the past few24

decades, and various load structure and its typical parameters25

have been studied [1], [2], [3], [4]. However, the development26

of modern power system brings challenges to load modeling.27

On the one hand, the complexity and diversity of modern28
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electrical loads are becoming increasingly prominent, which 29

make that one set of typical parameters of load models are 30

unsuitable for load modeling of whole power system, and call 31

for accurate load model parameters for different types of typ- 32

ical loads [5], [6], [7]. On the other hand, the development of 33

the renewable energy generation raises a new research topic 34

about the generalized load modeling, which has received 35

extensive attention in recent years [8]. 36

The purpose of load modeling is to determine the model 37

structure and its parameters which describe the response of 38

load power with the load voltage changes. For the load model 39

structure, the simplest and most commonly used one is the 40

composite load model [9], i.e., induction motor paralleled 41

with the static load, which has clearly physical meaning 42

and can well reflect the dynamic and static characteristics 43
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of the load [10]. For determining the parameters, the44

component-based method and the measurement-based45

method are usually applied to load modeling in most46

researches. The component-based method establishes the47

load model based on the load composition and characteristic48

of individual components, which has a clear physical mean-49

ing [11], [12]. However, the complexity of modern electrical50

load requires a huge work on load composition and its com-51

ponents, making this method less used in nowadays. On the52

other hand, the measurement-based method identifies the53

load parameters based on field measured load data, without54

the need to know detail load information, and hence gets more55

and more practical application [13], [14].56

The measurement-based method usually models the load57

model parameter identification as a parameter optimization58

problem. For a given set of measured load power and voltage,59

the method simulates load power under the given voltage with60

massive different load parameters, then searches the optimal61

load parameters to minimize the deviation between the sim-62

ulated and measured powers using some heuristic methods.63

Usually, this method can offer quite accurate load parameters64

with less efforts comparing to the component-based method.65

For the field measured data required by the measurement-66

based method, the dedicated load characteristic recording67

devices begin to be deployed in power system in recent years68

[15]. With the development of the edge computing in smart69

grid, computing resources of terminal equipment will become70

an important part of power grid operation and control in the71

future. Thus those recording devices are required to undertake72

the task of identifying parameters and uploading the results73

instead of complete data, which contributes to reduce the74

pressure of dispatch center and power communication net-75

work [16], [17], [18].76

However, the classic measurement-based method needs77

to simulate load dynamic power under given load bus78

voltage disturbance, which is a high computation bur-79

den for the devices. At the same time, in order to find80

the optimal parameters, the heuristic methods usually use81

large populations and generations to avoid getting stuck82

in local optimum [19], which also increase the number of83

transient simulations by thousands, and makes the clas-84

sic measurement-based method hard to be adopted in the85

devices.86

Fast parameter identification method for load model with87

less computation burden is pursued by several researches88

in recent years. A fast online parameter identification and89

modeling method uses simplified composite load model90

to reduce computation, but this method can only identify91

the transient reactance of the motor and still needs tran-92

sient simulation [20]. An imitation and transfer Q-learning-93

based identification approach is proposed to accelerate the94

identification rate and improve the identification accuracy95

by balancing greedy search and random global search, but96

this method still requires massive simulations and ran-97

dom search [21]. A two-step method for fast identifica-98

tion avoids transient simulations through 0+ method and99

FIGURE 1. Composite load model with parallel connection of the static
load model and the induction motor model.

multi-layer searching method, but can only identify specific 100

parameters [22]. 101

A new fast parameter identification method for composite 102

load model is proposed to apply in the load characteristic 103

recording devices in this paper, which avoids simulating the 104

powers at hundreds of sampling points and massive ran- 105

dom optimizations in heuristic method. Specifically, only 106

four jumping and steady-state points of the measured data, 107

including one point after voltage sag, two points before and 108

after voltage recovery, and one point corresponding to final 109

steady-state, are extracted to approximately express the entire 110

dynamic process. The state variables of the loadmodel at final 111

steady-state point are calculated by steady-state calculation, 112

while those at the points after voltage sag and voltage recov- 113

ery are calculated by the implicit trapezoidal method, and 114

those at the point before voltage recovery are calculated by 115

Hermite–Simpson method [23]. With the known state vari- 116

ables at the four points, their corresponding load powers can 117

be easily calculated. Then, initial parameters are calculated 118

by polynomial approximationmethod [24], and based on that, 119

the optimal parameters are identified through Nelder-Mead 120

algorithm [25]. The calculation process of this method is 121

very simple compared with the classic measurement-based 122

method, and hence the calculation time is less than 2.5% of 123

that in the classic methodwith similar identification accuracy. 124

This paper is organized in the following way. Section II 125

introduces the classic measurement-based load modeling 126

method. Section III presents the detail steps of the proposed 127

method. Section IV and V give the test case studies and field 128

case studies respectively. Section VI concludes the paper. 129

II. CLASSIC MEASUREMENT-BASED LOAD MODELING 130

METHOD FOR COMPOSITE LOAD MODEL 131

A. COMPOSITE LOAD MODEL 132

The simplest common load model structure used in power 133

system is the composite load model shown in Fig.1, which is 134

composed of static and dynamic load in parallel [9]. Because 135

the fluctuation of frequency in power system is usually small, 136

the influence of system frequency on load is ignored. 137

The static load model usually presents its active power PS 138

and reactive power QS as polynomial functions of load bus 139
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voltage U [9], i.e.,140 
PS = PS0

[
pz

(
U
U0

)2

+ pi

(
U
U0

)
+ pp

]

QS = QS0

[
qz

(
U
U0

)2

+ qi

(
U
U0

)
+ qp

] (1)141

where PS0 and QS0 represent the rated active and reactive142

powers respectively; pz, pi, pp, qz, qi and qp, which satisfy143

the constraint pz + pi + pp = 1 and qz + qi + qp = 1, are the144

load parameters for active and reactive powers respectively.145

Because the load parameters can be interpreted as the propor-146

tions of constant impedance load, constant current load and147

constant power load, they are usually called ZIP parameters.148

The dynamic load is usually modeled as third-order elec-149

tromechanical transient model of induction motor, which150

contains two differential equations for rotor voltage and one151

differential equation for rotor motion, that is152 

dE ′d
dt
= −

1
T ′d0

[E ′d + (X − X ′)Id]+ sωsE ′q

dE ′q
dt
= −

1
T ′d0

[E ′q − (X − X ′)Iq]− sωsE ′d

Tj
ds
dt
= Tm − Te

(2)153

whereE ′d andE
′
q are the d-axis and q-axis transient electromo-154

tive forces of the motor respectively, s is the slip of the rotor,155

ωs is the synchronous speed of the stator, Tj is the inertia time156

constant of the rotor, Id and Iq are the currents of the stator157

respectively.158

The other symbols in (2) are functions of previous param-159

eters or variables. Specifically, X ′ and X represents the tran-160

sient and open-circuit reactance respectively, T ′d0 is the time161

constant of the rotor circuit when the stator circuit is open,162

Tm and Te are the mechanical and electromagnetic torques of163

the motor respectively. They can be calculated by164

X ′ = Xs + XrXm/ (Xr + Xm)165

X = Xs + Xm166

T ′d0 =
Xr + Xm

Rr
167

Te = E ′dId + E
′
qIq168

Tm = Tm0[A(1− s)2 + B(1− s)+ C] (3)169

where Xs is the leakage reactance of the stator, Xr and Rr are170

the leakage reactance and resistance of the rotor, Xm is the171

magnetizing reactance of the motor, Tm0 is the steady-state172

mechanical torque, and A, B, C are the mechanical torque173

coefficients, satisfying the constraint of A(1− s0)2 + B(1 −174

s0)+ C = 1, where s0 is the initial slip of the rotor.175

Besides (2), the third-order electromechanical transient176

model of induction motor also contains two algebraic equa-177

tions for stator voltage, that is178 {
Ud = RsId − X ′Iq + E ′d
Uq = RsIq + X ′Id + E ′q

(4)179

where, Ud and Uq are the voltage of the stator respectively, 180

Rs is the resistance of the stator. 181

The E ′d, E
′
q, and s in (2) are the three state variables of the 182

electromechanical transient model, which reflect the dynamic 183

characteristics of the load and directly determine the output 184

power of induction motor. Once those state variables under 185

the given voltage are known, the active powerPM and reactive 186

power QM of induction motor can be calculated by 187{
PM = UdId + UqIq
QM = UqId − UdIq

(5) 188

Combing (1) and (5), the total active power PL and reactive 189

power QL of the load can be calculated by 190{
PL = PS + PM
QL = QS + QM

(6) 191

To quantify the active power proportion of induction motor 192

in whole load, PM/PL at steady-state is defined as induction 193

motor ratio Pper, which is an important parameter of the load 194

model. 195

B. LOAD MODEL PARAMETERS 196

For the above composite loadmodel, there are 14 independent 197

parameters to be determined, including four static load model 198

parameters, i.e., pz, pi, qz, qi, and ten dynamic load model 199

parameters, i.e., Pper, Xs, Xr, Rs, Rr, Xm, A, B, s0, Tj. 200

However, if all parameters are to be identified, the accuracy 201

of the identification may not be guaranteed, and at the same 202

time, it will consume a lot of computing time [26]. Therefore, 203

only some important parameters need to be identified, while 204

others are fixed as their typical values. 205

It has been verified that the parameters of static load model 206

have lower sensitivities compared with those of dynamic 207

load model [26], while for the parameters of induction motor 208

model, most researches indicate that Xm, Xr, Rs, Tj, A and 209

B have less effects on the load power dynamic [26], [27]. 210

Thus, Pper, s0, Xs and Rr are chosen as key parameters to be 211

identified in this paper. 212

C. PARAMETER IDENTIFICATION METHOD 213

The purpose of the classic measurement-based method is 214

to find a set of key parameters to minimize the deviation 215

between the simulated and measured powers under the given 216

voltage, and the objective function can be described as 217

J =
N∑
k=1

[
(Pc(k)− Pm(k))2 + (Qc(k)− Qm(k))2

]
(7) 218

where the Pc,Qc, Pm, andQm are the simulated and measured 219

powers respectively, N is the total sampling points. 220

Due to the complexity of the above optimization prob- 221

lem, the heuristic algorithms are usually used to iden- 222

tify the key parameters, such as, ant colony algorithm 223

(ACO) [28], particle swarm algorithm (PSO) [28], genetic 224

algorithm (GA) [29], and particle swarm-genetic hybrid 225

algorithm (PSO-GA) [19]. 226
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FIGURE 2. Illustration for extraction of point 0 to 4 from one typical
voltage curve of the measured data.

However, when using heuristic algorithms, hundreds of227

iterations and thousands of transient simulations are usually228

required to find the optimal parameter values, which makes229

the classic measurement-based method cannot be adapt to230

load characteristic recording devices.231

III. PARAMETER IDENTIFICATION METHOD BASED ON232

JUMPING AND STEADY-STATE POINTS233

A. THE MOTIVATION OF THE PROPOSED METHOD234

There are two main issues in the classic measurement-based235

method, which make it unsuitable to the devices. One is that236

the objective function needs to calculate the powers at each237

sampling point through transient simulation, which is time238

consuming. The other is that the optimization algorithm uses239

heuristics to find the optimal parameters, which require a240

large number of populations and iterations. To solve these241

issues, a new method is proposed in this paper.242

1) OBJECTIVE FUNCTION243

Take one typical voltage curve of the measured data shown244

in Fig. 2 as an example. It can be seen that four points,245

i.e., one point after voltage sag, two points before and after246

voltage recovery, and one point corresponding to final steady-247

state, can describe the key dynamic characteristics of the load248

approximately, which are denoted as point 1 to 4 respectively.249

Based on this observation, the optimization objective function250

in (7) can be simplified to the deviation between the calcu-251

lated and measured powers of point 1 to 4, that is252

J =
4∑
i=1

[(
Pc(i) − Pm(i)

)2
+
(
Qc(i) − Qm(i)

)2] (8)253

where, Pc(i), Qc(i), Pm(i), and Qm(i) are the calculated and254

measured powers of point i respectively. Besides the four255

points, the initial steady-state point before voltage sag is256

defined as point 0, which is crucial for calculating the powers257

of point 1 to 4.258

For different field measured data, the occurrence and dura-259

tion of the voltage sag can be different, so a method to260

determine the corresponding times of point 0 to 4 is needed,261

and the specific algorithm will be given in section III-B.262

In order to calculate Pc(i) and Qc(i) in (8), it is first263

necessary to solve the state variables of point 1 to 4.264

In section III-C, the state variables of point 1 to 4 will265

be calculated by steady-state initialization method, implicit 266

trapezoidal method, and Hermite–Simpson method respec- 267

tively instead of transient simulation. 268

2) OPTIMIZATION ALGORITHM 269

A two-stage identification algorithm is proposed in 270

section III-D to find the optimal parameters of (8). In the 271

first stage, the algorithm approximates the powers of point 272

1 to 4 as polynomial functions of load parameters, and 273

transforms (8) into an explicit equation of the parameters to 274

be identified. By directly solving the explicit equation, the 275

initial parameters can be obtained. In the second stage, the 276

Nelder-Mead algorithm is used to iteratively find the optimal 277

parameters based on the initial parameters. 278

This algorithm uses dozens of direct search to avoid mas- 279

sive random search, and hence needs less iterations and com- 280

putation burden compared with the heuristics used in the 281

classic method. 282

B. DETERMINATION THE CORRESPONDING TIMES OF 283

POINT 0 TO 4 284

The problem of determining the corresponding times of point 285

0 to 3 can be regarded as change-point detection problem of 286

voltage curve. As shown in Fig. 2, the curve can be divided 287

into five parts by point 0 to 3, whose corresponding times are 288

T1 to T4 respectively. 289

For convenience, define the voltage derivative as U ′, the 290

average value of U ′ in each part as Ū ′. Taking the part B 291

as an example, it can be seen that U ′ is almost constant, 292

so
∑T2

T1

[
U ′(t)− Ū ′

]2
in part B is also quite small, and the 293

other parts are similar. Thus, the sum of the deviation squares 294

between U ′ and Ū ′ of each part can be used as optimization 295

target, and its mathematical model is described as 296

minY =
5∑
i=1

Ti∑
t=Ti−1

[
U ′(t)− Ū ′i

]2
297

s.t.



U ′(t) =
U (t +1t)− U (t)

1t

Ū ′i =
Ti − Ti−1
1t

Ti∑
t=Ti−1

U ′(t)

0 = T0 < T1 < · · · < Ti < · · · < T5

(9) 298

where1t is the sampling step, T0 and T5 are the start and end 299

times of the measured data respectively. 300

T1 to T4 can be easily determined by pruned exact linear 301

time method [30], which are the corresponding times of point 302

0 to 3. 303

As for point 4, its corresponding time will be set to 304

T5 directly, because this point can be considered as the final 305

steady-state after the dynamic process. 306

C. CALCULATION STATE VARIABLES OF POINT 0 TO 4 307

1) POINT 0 AND POINT 4 308

Point 0 is the initial steady-state point, so the differential parts 309

of (2) at point 0 are zero based on the steady-state condition. 310

97668 VOLUME 10, 2022



Y. Chen et al.: Fast Parameter Identification Method for Composite Load Model

Therefore, the state variables of point 0 can be calculated by311

(10) using the steady-state initialization method of induction312

motor.313 

0 = −
1
T ′d0

[E ′d(0) + (X − X ′)Id(0)]+ s(0)ωsE ′q(0)

0 = −
1
T ′d0

[E ′q(0) − (X − X ′)Iq(0)]− s(0)ωsE ′d(0)

0 = Tm(0) − Te(0)

(10)314

Point 4 is regarded as the final steady-state point of the315

measured data, and its state variables usually change very316

slowly over time, which can be approximated as constant.317

Thus the state variables of point 4 can be calculated in the318

same way as point 0.319

2) POINT 1 AND POINT 3320

Point 1 and point 3 are the jumping points of the measured321

data. Ideally, the state variables of point 1 and point 3 can322

be approximately considered as those of point 0 and point323

2 due to the voltage sag and voltage recovery are a short-324

time process. However, some field measured data reveal that325

the voltage sag may last more than 0.02s. Thus, the dynamic326

processes during voltage sag and voltage recovery are con-327

sidered here, and the state variables at point 1 and point 3 are328

calculated by popular implicit trapezoidal method, i.e.,329

xk+1 − xk =
hk
2
(fk + fk+1) (11)330

Applying (11) to (2), the differential equations of induction331

motor are converted to algebraic equations. With known state332

variables of point 0, the state variables of point 1 can be333

obtained by solving334 

E ′d(1) = E ′d(0) +
t01
2
{s(0)ωsE ′q(0) + s(1)ωsE ′q(1)

−
1
T ′d0

[E ′d(0) + (X − X ′)Id(0)]

−
1
T ′d0

[E ′d(1) + (X − X ′)Id(1)]}

E ′q(1) = E ′q(0) +
t01
2
{−s(0)ωsE ′d(0) − s(1)ωsE ′d(1)

−
1
T ′d0

[E ′q(0) − (X − X ′)Id(0)]

−
1
T ′d0

[E ′q(1) − (X − X ′)Id(1)]}

s(1) = s(0) +
t01
2

1
Tj
(Tm(0) − Te(0)

+Tm(1) − Te(1))

(12)335

where, t01 is the time interval between point 0 and point 1.336

The state variables of point 3 can be calculated in the same337

way after knowing the state variables of point 2.338

FIGURE 3. Schematic diagram of the Trapezoidal and Hermite–Simpson
methods.

3) POINT 2 339

In most cases, the duration of voltage sag between point 1 and 340

point 2 is more than 0.04s, which leads a remarkable change 341

of state variables. Therefore, the state variables calculated by 342

large-step implicit trapezoidal method have notable errors. 343

Because of this, more accurate Hermite–Simpson method is 344

used to calculate the state variables of point 2. 345

As shown in Fig. 3, the Hermite–Simpson method approx- 346

imates the system dynamic as quadratic function, while 347

the implicit trapezoidal method approximates that as lin- 348

ear function [23]. Therefore, when the step size is large, 349

the Hermite–Simpson method is much more accurate than 350

the implicit trapezoidal method. Thus, the Hermite–Simpson 351

method is more suitable for the change trajectory of the state 352

variables between point 1 and point 2, and only adds a small 353

amount of computation burden compared with the implicit 354

trapezoidal method. 355

In Hermite–Simpson method, xk+1 can be calculated by 356

(13), which increases the fk+0.5 term compared with (11), and 357

the change of state variables between the xk and xk+1 is trans- 358

formed to Simpson quadrature from continuous integral [23]. 359

xk+1 − xk =
hk
6
(fk + 4fk+0.5 + fk+1) (13) 360

However, (13) cannot be directly applied to solve the state 361

variables of point 2, because fk+0.5 is a function of the extra 362

state variable xk+0.5, which are unknown. Therefore, a second 363

collocation equation shown in (14) is used to calculate xk+0.5 364

by constructing an interpolation [23]. 365

xk+0.5 =
1
2
(xk + xk+1)+

hk
8
(fk − fk+1) (14) 366

Applying (13) and (14) to (2), the state variables of point 367

2 can be calculated by solving 368

x(1.5) =
1
2

[
x(1) + x(2)

]
+
t12
8

[
F(x(1))− F(x(2))

]
369

x(2) = x(1) +
t12
6

[
F(x(1))+ 4F(x(1.5))+ F(x(2))

]
(15) 370

where, x =
[
E ′d,E

′
q, s
]T

represents the state variables of the 371

points, t12 is the time interval between point 1 and point 2, 372

F represents the right hand sides of the differential equations 373
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in (2), which can be describes as (16).374

F =


−

1
T ′d0

[
E ′d + (X − X ′)Id

]
+ sωsE ′q

−
1
T ′d0

[
E ′q + (X − X ′)Iq

]
+ sωsE ′d

1
Tj
(Tm − Te)

 (16)375

D. TWO-STAGE IDENTIFICATION ALGORITHM FOR LOAD376

MODEL PARAMETERS377

A two-stage identification algorithm with less computation378

burden is proposed to find optimal parameters of the load379

model, which can minimize the optimization objective in (8).380

In the first stage, the algorithm obtains an approximate solu-381

tion as initial parameters, and in the second stage, the initial382

parameters will be refined to obtain the optimal parameters.383

1) CALCULATE INITIAL PARAMETERS BASED ON384

POLYNOMIAL APPROXIMATION385

Polynomial approximation method can be used to obtain386

a simple polynomial function that approximates a complex387

relationship between inputs and output of a model, which is388

one of the state-of-art technique in power system analysis and389

control [24], [31], [32].390

For the underlying parameter identification problem, this391

method is adopted to obtain explicit polynomial func-392

tions, which approximately describe the implicit relationship393

between the powers at point 1 to 4 and the parameters p to394

be identified. Then, substitute those explicit functions into395

(8) to obtain an polynomial approximation function of the396

optimization objective, and the p that gets minimum value of397

the polynomial approximation function can be easily solved398

out, which serves as the initial parameters of load model.399

Let the approximated polynomial function denoted as400

S (p) ≈ S̃ (p) =
∑

0≤|n|≤l

cn8n (p) (17)401

where, S can represent Pc(i) or Qc(i), S̃ (p) is a polynomial402

approximation function, n = (n1, . . . , nd ) includes the orders403

of polynomial for each parameter, |n| = n1 + . . . + nd ,404

d is the number of the parameters to be identified, l is405

the order of the polynomial approximation, cn is the basis406

function coefficient, 8n(p) is the basis function. The reason407

of using polynomial to approximate the powers at point 1 to408

4 rather than the objective function (8) is to obtain a relatively409

accurate initial parameters with the same order of polynomial410

approximation.411

Two fundamental issues of the polynomial approximation412

are to determine the basis function and its corresponding413

coefficients. The polynomial chaos theory uses orthogonal414

polynomials as the basis for polynomial approximation [33],415

and the basis function8n(p) is obtained by multiplying each416

univariate orthogonal polynomial φi,ni (pi), i.e.,417

8n(p) =
∏d

i=1
φi,ni (pi) (18)418

The choice of φi,ni (pi) for each parameter pi can be related 419

to its probability distribution. For the general parameter inter- 420

val, its probability distribution can be considered as uniform 421

distribution, and its corresponding polynomial is Legendre 422

polynomial [24]. 423

For the polynomial coefficient cn, it can be calculated 424

by (19) through collocation method based on sparse grid 425

integration, which originates from orthogonal projection 426

theory [34]. 427

cn =
1
C

M∑
m=1

bm8n(p(m))S(p(m)) (19) 428

where, M is the total number of collocation points, p(m) is 429

the collocation point, bm is the collocation point coefficient. 430

C = 〈8n(p),8n(p)〉 is a constant, where 〈·, ·〉 is the inner 431

product of any two functions. The detail selection method for 432

collocation points can be found in [34], which is omitted here 433

for simplicity. 434

Based on (17) to (19), the explicit power functions for the 435

parameters to be identified at point 1 to 4 can be obtained, and 436

the optimization objective in (8) can be also approximated 437

in a polynomial form. It should be noted that the obtained 438

polynomial function is a global approximation over the entire 439

parameter variation region, rather than a local approximation 440

at expansion point like Taylor expansion. 441

Therefore, theminimumvalue of (8) and the corresponding 442

parameters can be easily obtained by the trust region method 443

based on interior point [35]. However, due to the errors in 444

polynomial approximation, the parameters solved by this 445

method can only serve as initial parameters. 446

2) FIND OPTIMAL PARAMETERS BASED ON NELDER-MEAD 447

ALGORITHM 448

Nelder-Mead algorithm is used here to refine the initial 449

parameters, which can directly search the optimal value of 450

a objective function based on function values without the 451

need of derivative information [25]. This algorithm iteratively 452

transforms and updates a geometry with n + 1 vertices in a 453

n-dimensional parameter space, which is called simplex, and 454

finally converges to the optimal parameter value. 455

The dimension of the parameter space here is the number of 456

the parameters to be identified d , and the initial vertices of the 457

simplex are chosen as the initial parameters together with d 458

collocation points, which are closest to the initial parameters, 459

and those vertices are denoted as v1, v2, · · · , vd+1. 460

At each iteration, the algorithm sorts the d + 1 ver- 461

tices according to its corresponding objective function values 462

which are calculated by (8), and then performs appropriate 463

operations on those vertices, such as reflection, expansion, 464

contraction, and shrink [36], so that the simplex moves closer 465

to the optimal parameters. A schematic diagram of these 466

operations in 2-dimensional space is shown in Fig. 4. 467

The steps for each iteration of Nelder-Mead algorithm: 468

1) Sort. Calculate J (vj) at each vertex and sort as J (v1) ≤ 469

J (v2) ≤ · · · ≤ J (vd+1), where J is the objective 470
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FIGURE 4. The reflection, expansion, contraction, and shrink operations
of the Nelder-Mead algorithm in 2-dimensional space (v1, v2, and v3 are
the simplex vertices, and J(v1) ≤ J(v2) ≤ J(v3)).

function in (8), vd+1 is the worst vertex, then calculate471

the centroid of the d best vertices v̄ = 1
d

d∑
i=1

vi.472

2) Reflection. Calculate the reflection point vr = v̄ +473

α(v̄ − vd+1), where α is reflection coefficient, usually474

as 1. If J (v1) ≤ J (vr ) < J (vd ), replace vd+1 with vr .475

3) Expansion. If J (vr ) < J (v1), then calculate the expan-476

sion point ve = v̄ + β(vr − v̄), where β is expansion477

coefficient, satisfying β > 1. If J (ve) < J (vr ), replace478

vd+1 with ve, otherwise vr .479

4) Outside contraction. If J (vd ) ≤ J (vr ) < J (vd+1), cal-480

culate the outside contraction point voc = v̄+γ (vr−v̄),481

where γ is contraction coefficient, satisfying 0 < γ <482

1. If J (voc) ≤ J (vr ), replace vd+1 with voc, otherwise483

go to 6).484

5) Inside contraction. If J (vr ) ≥ J (vd+1), calculate the485

inside contraction point vic = v̄−γ (vr− v̄). If J (vic) <486

J (vd+1), replace vd+1 with vic, otherwise, go to 6).487

6) Shrink. The simplex shrinks towards v1, i.e., v′i =488

v1 + δ(vi − v1), i = 2, 3, · · · , d + 1, where δ is shrink489

coefficient, satisfying 0 < δ < 1. Then, replace vi with490

v′i.491

7) Convergence Test. If

{
1

d+1

d+1∑
i=1

[J (vi)− J (v̄)]2
} 1

2

≤492

ε, where ε is the given precision, then output the opti-493

mal solution is v1, otherwise continue to iterate.494

Based on the above steps of Nelder-Mead algorithm, the495

optimal parameters which can minimize (8) can be easily496

obtained through usually twenty iterations with the initial497

parameters.498

E. THE STEP OF THE PROPOSED METHOD499

Based on the simplified objective function (8), state variable500

calculation method and two-stage identification algorithm501

introduced in section III-A to III-D, the steps of the pro-502

posed fast parameter identification method for composite503

load model are as follows.504

1) Input measured voltage and power; give the number 505

and ranges of the parameters to be identified; set the 506

polynomial approximation order. 507

2) Determine the corresponding times of point 0 to 4 based 508

on the method in section III-B. 509

3) Calculate the collocation points for the given parameter 510

ranges based on sparse grid integration [34]. 511

4) Calculate the state variables of point 1 to 4 at colloca- 512

tion points based on (10), (12), and (16), then calculate 513

the load powers at point 1 to 4 through (1) to (6). 514

5) Calculate basis function coefficient based on (19), then 515

obtain the power explicit equations at point 1 to 4 as 516

shown in (17). 517

6) Bring the power explicit equations into (8), and obtain 518

the initial parameters by directly solving it. 519

7) Form a simplexwith the initial parameters and d collec- 520

tion points which are closest to the initial parameters. 521

8) Perform appropriate operations and update the simplex 522

based on section III-D2. 523

9) Repeat 8) until convergence, finally output the optimal 524

parameters as identified parameters. 525

Based on the above steps, the identified parameters can 526

be easily obtained. The accuracy of the identified parameters 527

depends on the calculation errors of state variables at point 528

1 to 4 in section III-C, and the detailed accuracy analysis will 529

be presented in section IV-A. 530

Compared to the classic measurement-based method, the 531

proposed method accelerates the identification progress from 532

the following two aspects: 533

1) The proposed method speeds up the calculation of state 534

variables at point 1 to 4 through approximate calcula- 535

tion presented in section III-C, instead of the step-by- 536

step transient simulation. 537

2) The proposed method uses a two-stage identification 538

algorithm presented in section III-D, which reduces 539

the scale of optimization, and hence speeds up the 540

identification speed. 541

The detail computation burden of the proposedmethodwill 542

be analyzed in section IV-B. 543

IV. TEST CASE STUDY 544

A single-machine-infinite-bus system shown in Fig. 5 is built 545

to verify the high accuracy, less computation burden and good 546

robustness of the proposed method, where the load includes 547

induction motor load and static load in polynomial form. The 548

values of load parameters are shown in Table 1, which are the 549

typical values for Chinese load model parameters. 550

A three-phase short circuit fault is set at 50% of the tie 551

line at 0.1s, and then cleared at 0.2s. The voltage, active and 552

reactive powers of the load are simulated for 1s with the 553

step size of 0.001s, which are served as measured data for 554

parameter identification of load model. 555

It has been pointed out in section II-B that Pper, s0, Xs, and 556

Rr have higher sensitivities to the dynamic process than the 557

other parameters. Thus, in this paper, those parameters will 558
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FIGURE 5. Single-machine-infinite-bus system where the load includes
induction motor load and static load.

TABLE 1. The typical values of load model parameters.

be identified, and the other parameters are fixed as typical559

values as shown in Table 1.560

A. ACCURACY ANALYSIS561

The accuracy of the proposed method is analyzed from two562

aspects. One is the calculation errors of state variables and563

powers at point 1 to 4, and the other is the relative errors564

of the identified parameters and the corresponding simulated565

powers.566

1) STATE VARIABLES AND POWERS AT POINT 1 TO 4567

For the given parameters in Table 1, the values of state568

variables and powers at point 1 to 4 are calculated by the569

method proposed in section III-C and transient simulation570

respectively, which are shown in Table 2.571

The table also shows the relative errors between two meth-572

ods. It can be seen from the table that the state variables573

calculated by proposed method have an error of less than 3%,574

and the powers have an error of less than 2%, indicating that575

the state variables and powers of point 1 to 4 are calculated576

quite accurately.577

2) IDENTIFIED PARAMETERS AND THE CORRESPONDING578

SIMULATED POWERS579

The two-stage algorithm for load model parameter identi-580

fication proposed in section III-D is used to identify the581

key parameters from the measured data, and the identified582

parameters along with relative errors are shown in Table 3.583

It can be seen from the table that the parameter with584

the largest relative error is Xs, whose error is 1.25%, and585

the relative errors of the other parameters are all less than586

FIGURE 6. Comparison between the measured and simulated powers,
where Pm, Qm, Pc , and Qc are the measured and simulated powers
respectively, EP and EQ are the absolute errors between the measured
and simulated powers.

1%, indicating that the identified parameters of the proposed 587

two-stage identification algorithm are quite accurate. 588

With the identified parameters, the active and reactive pow- 589

ers of the load can be simulated out, which are compared with 590

the measured powers in Fig. 6. It can be seen from Fig. 6 that 591

the simulated powers can well match the measured powers, 592

and the absolute errors between simulated and measured 593

powers are less than 0.01p.u.. 594

In order to quantitatively evaluate the accuracy of the 595

power curves, define the average power error indexes εP 596

and εQ between the simulated and measured powers as (20), 597

which are used to indirectly assess the accuracy of the iden- 598

tified parameters when the actual values of load parameters 599

are unknown. 600

εP =
1
N

N∑
k=1

∣∣∣∣Pc(k)− Pm(k)Pm(k)

∣∣∣∣ 601

εQ =
1
N

N∑
k=1

∣∣∣∣Qc(k)− Qm(k)Qm(k)

∣∣∣∣ (20) 602

where, Pc, Qc, Pm, and Qm are the same as those of (7). 603

It can be figured out that the εP and εQ based on the iden- 604

tified parameters are 1.52% and 0.41% respectively, which 605

shows that the simulated powers can well fit the measured 606

powers, and also indirectly shows the accuracy of the identi- 607

fied parameters. 608

B. COMPUTATION BURDEN ANALYSIS 609

The computation burdens of the proposed method and the 610

classic measurement-based load modeling method are com- 611

pared in Table 4, where the classic method adopts the objec- 612

tive function (7), and uses particle swarm-genetic hybrid 613

algorithm to identify the load model parameters, while the 614

proposedmethod adopts the simplified objective function (8), 615

and uses two-stage identification algorithm in section III-D. 616

From Table 4, it can be seen that, 617

1) For the points needed in objective function, the pro- 618

posed method requires only four points, i.e., point 619

1 to 4, while the classic method requires 1000 points. 620

2) For the calculation method of state variables, the pro- 621

posed method uses a simpler direct calculation by (10), 622
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TABLE 2. State variables and powers of point 1 to 4 calculated by the method proposed in section III-C and transient simulation.

TABLE 3. Comparison of the identified parameters with their actual
values of the two-stage identification algorithm.

(12), and (16) instead of step-by-step transient simula-623

tion required by the classic method.624

3) For the initial parameters calculation, the proposed625

method needs 4.75s to polynomial approximation of626

the powers at point 1 to 4, and 1.54s to solve the poly-627

nomial equation of objective function, which altogether628

takes 6.29s to obtain the initial parameters.629

4) For the optimal parameters calculation, the proposed630

method has 5 vertices with 24 iterations, and requires631

to calculate the objective function for 216 times, which632

takes 2.38s. While the classic method has 30 popula-633

tions with 50 iterations, and requires to calculate the634

objective function for 4500 times, which takes 375s.635

Obviously, the time needed by the proposed method is636

less than 1/100 of that needed by the classic method.637

5) For the total calculation time, the proposed method638

spends 8.67s, which is less than 2.5% of 375s spent by639

the classic method.640

Obviously, the proposed method has less computation bur-641

den and performs much faster compared with the classic642

method.643

C. ROBUSTNESS ANALYSIS644

The robustness of the proposed method is analyzed from the645

effect of the sampling error in themeasured data. Fig. 7 shows646

the εP and εQ calculated based on the identified parameters647

of the measured data, which are superimposed with different648

sampling errors.649

It can be seen from Fig. 7 that the power errors approx-650

imately linearly increase with the increase of the sampling651

errors.When the sampling error is less than 1%, the εP and εQ652

are less than 3.5% and 2% respectively, even if the sampling653

error reaches 2%, the power errors are still less than 5%.654

FIGURE 7. Average errors of active and reactive powers under the
different sampling errors.

All of these show that the proposed method can maintain a 655

well power fitting degree and good robustness in the face of 656

sampling error. 657

Usually, the sampling error of the load characteristic 658

recording devices is 0.2%. According to Fig. 7, the εP and εQ 659

under this sampling error are 1.83% and 0.68% respectively. 660

Therefore, the proposed method can fully meet the sampling 661

accuracy of the devices. 662

V. FIELD CASE STUDY 663

Based on the field measured data recorded by load char- 664

acteristic recording devices in 110kV outgoing lines of 665

220kVmeshed power system, the practicality of the proposed 666

method is analyzed. The field measured data are shown in 667

Table 5, covering different voltage sag ratios, durations of 668

voltage sag, and fault types. The proposed and classic meth- 669

ods are used for parameter identification from these field 670

measured data respectively, and the key parameters to be 671

identified are the same as those in section IV, with the other 672

parameters fixed as typical values as shown in Table 1. 673

Taking fault 1 and 2 as examples, Fig. 8 shows the positions 674

of the extracted point 0 to 3 in their measured voltage curves, 675

where the positions of point 4 are not shown because their 676

corresponding times exceed the maximal value of the horizon 677

axis. It can been seen from Fig. 8 that the corresponding times 678

of point 1 to 3 can be correctly determined by the method 679

proposed in section III-B. 680

It should be noted that, the true values of load parameters 681

for field measured data are unknown. Thus, the parameters 682

identified by the classic method are served as benchmark 683
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TABLE 4. Comparison of the computation burdens between the proposed and classic methods.

TABLE 5. The field measured data in 110kV sub-transmission lines.

TABLE 6. Average deviations and calculation times between the
proposed and classic methods for all 5 faults.

values. Table 6 shows the average relative deviations of the684

identified parameters between the proposed and classic meth-685

ods for all 5 faults, along with the calculation times of these686

two methods. It can be seen from Table 6 that,687

1) The parameter with the largest average relative devia-688

tion is Rr , which is 8.19%. It shows that the identified689

parameters of the two methods are quite close.690

2) The average calculation time of the proposed method691

is 8.90s, which is less than 2.5% of that of the classic692

method.693

It should also be noted that the field measured data contain694

the true load powers. Thus the average values of εP and εQ695

FIGURE 8. The positions of point 0 to 3 in voltage curves of fault 1 and 2,
where P0 to P3 are the point 0 to 3, U% is the voltage sag ratio, T is the
duration of voltage sag. Since the total durations of fault 1 and 2 are
different, only the voltage curves of 0-0.4s are shown here.

TABLE 7. The average values of εP and εQ of the proposed and classic
methods for all 5 faults.

of the proposed and classic methods for all 5 faults can be 696

calculated directly, which are compared in Table 7. Besides, 697

Fig. 9 and Fig. 10 compare the powers simulated by the 698

identified parameters of the proposed and classic methods in 699

fault 1 and 2 with respect to their corresponding measured 700

powers. The Table 7, Fig. 9 and Fig. 10 show that, 701

1) The average values of εP and εQ of the proposed 702

method for all 5 faults are 5.22% and 11.12% respec- 703

tively, and the figures show that the simulated powers 704

based on the identified parameters can well fit the 705

measured powers in the field measured data. 706

2) The deviations between the average values of εP and 707

εQ of the two methods are less than 1%, which shows 708

that although the identified parameters between the 709
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FIGURE 9. Comparison between the powers simulated by the identified
parameters of the proposed and classic methods with the measured
powers in fault 1.

FIGURE 10. Comparison between the powers simulated by the identified
parameters of the proposed and classic methods with the measured
powers in fault 2.

two methods have a deviation as large as 8.19%, the710

simulated powers of the two methods with respect to711

measured powers have similar errors.712

In summary, the proposed method can maintain similar713

accuracy of the classicmethod, while has shorter computation714

time and good practicality in field measured data.715

VI. CONCLUSION716

A fast parameter identification method for composite load717

model based on jumping and steady-state points of the mea-718

sured data is proposed in this paper, which adopts the follow-719

ing three unique techniques:720

1) The four points, i.e., one point after voltage sag,721

two points before and after voltage recovery, and the722

final steady-state point, are extracted to approximately723

express the entire dynamic process and greatly simplify724

the objective function.725

2) The three techniques, i.e., steady-state calculation,726

implicit trapezoid method and Hermite–Simpson727

method, are used to calculate the state variables of the728

four points directly, which greatly reduce the computa-729

tion burden.730

3) A two-stage identification algorithm, which adopts731

polynomial approximation method and Nelder-Mead732

algorithm to obtain initial parameters and optimal733

parameters respectively, is proposed to reduce the com-734

putation scale and time of the identification.735

The test case studies show the proposed method has high736

accuracy, less computation burden and good robustness,737

while the field case studies show the proposed method has738

good practicality in field measured data, and hence the calcu-739

lation time of the proposed method is less than 2.5% of that740

in the classic method without obvious loss of identification 741

accuracy. 742

The further research direction of current work can be 743

twofold. One is to research more flexible characteristic 744

extraction method regarding voltage curve rather than the 745

current four specific points. The other is to extend to the 746

generalized load model so that disperse renewable energy 747

generation can be considered in load model. 748
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