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ABSTRACT The classic measurement-based method for load model parameter identification relies on lots
of transient simulations and optimization iterations, which is computationally intensive, and is unsuitable
to the terminal devices for recording load characteristic to participate in grid edge computing. To solve this
difficulty, a fast identification method for load model parameters based on jumping and steady-state points of
measured data is proposed, which greatly reduces the calculation time by avoiding the transient simulations
and random optimizations of the classic method, and at the same time, well retains the accuracy of identified
parameters. Firstly, the method extracts four points from measured data as calculation points, i.e., the point
after voltage sag, two points before and after voltage recovery, and the final steady-state point. Then, the
method calculates the state variables and powers at the four points through steady-state calculation, implicit
trapezoid integration method and Hermite—Simpson method respectively. Finally, according to the measured
powers of the four points, the method provides an initial key load model parameters through polynomial
approximation method and finds the optimal parameters through Nelder-Mead algorithm. The accuracy and
practicality of the method are demonstrated by test and field case studies, and the computation burden is less
than 2.5% of that in the classic method without obvious loss of identification accuracy.

INDEX TERMS Load model parameter identification, jumping and steady-state points, Hermite—Simpson
method, polynomial approximation, Nelder-Mead algorithm.

I. INTRODUCTION

Load model describes the relationship between load power
and load voltage, which plays an important role in power
system analysis, operation and control. It is well-known that
an accurate load model contributes to reliable dynamic and
static stability analysis, and hence has important influence on
secure operation of power system. Therefore, the load model
has received the attentions of many researchers in the past few
decades, and various load structure and its typical parameters
have been studied [1], [2], [3], [4]. However, the development
of modern power system brings challenges to load modeling.
On the one hand, the complexity and diversity of modern
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electrical loads are becoming increasingly prominent, which
make that one set of typical parameters of load models are
unsuitable for load modeling of whole power system, and call
for accurate load model parameters for different types of typ-
ical loads [5], [6], [7]. On the other hand, the development of
the renewable energy generation raises a new research topic
about the generalized load modeling, which has received
extensive attention in recent years [8].

The purpose of load modeling is to determine the model
structure and its parameters which describe the response of
load power with the load voltage changes. For the load model
structure, the simplest and most commonly used one is the
composite load model [9], i.e., induction motor paralleled
with the static load, which has clearly physical meaning
and can well reflect the dynamic and static characteristics
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of the load [10]. For determining the parameters, the
component-based method and the measurement-based
method are usually applied to load modeling in most
researches. The component-based method establishes the
load model based on the load composition and characteristic
of individual components, which has a clear physical mean-
ing [11], [12]. However, the complexity of modern electrical
load requires a huge work on load composition and its com-
ponents, making this method less used in nowadays. On the
other hand, the measurement-based method identifies the
load parameters based on field measured load data, without
the need to know detail load information, and hence gets more
and more practical application [13], [14].

The measurement-based method usually models the load
model parameter identification as a parameter optimization
problem. For a given set of measured load power and voltage,
the method simulates load power under the given voltage with
massive different load parameters, then searches the optimal
load parameters to minimize the deviation between the sim-
ulated and measured powers using some heuristic methods.
Usually, this method can offer quite accurate load parameters
with less efforts comparing to the component-based method.

For the field measured data required by the measurement-
based method, the dedicated load characteristic recording
devices begin to be deployed in power system in recent years
[15]. With the development of the edge computing in smart
grid, computing resources of terminal equipment will become
an important part of power grid operation and control in the
future. Thus those recording devices are required to undertake
the task of identifying parameters and uploading the results
instead of complete data, which contributes to reduce the
pressure of dispatch center and power communication net-
work [16], [17], [18].

However, the classic measurement-based method needs
to simulate load dynamic power under given load bus
voltage disturbance, which is a high computation bur-
den for the devices. At the same time, in order to find
the optimal parameters, the heuristic methods usually use
large populations and generations to avoid getting stuck
in local optimum [19], which also increase the number of
transient simulations by thousands, and makes the clas-
sic measurement-based method hard to be adopted in the
devices.

Fast parameter identification method for load model with
less computation burden is pursued by several researches
in recent years. A fast online parameter identification and
modeling method uses simplified composite load model
to reduce computation, but this method can only identify
the transient reactance of the motor and still needs tran-
sient simulation [20]. An imitation and transfer Q-learning-
based identification approach is proposed to accelerate the
identification rate and improve the identification accuracy
by balancing greedy search and random global search, but
this method still requires massive simulations and ran-
dom search [21]. A two-step method for fast identifica-
tion avoids transient simulations through 0+ method and

97666

220kV
110kV
E|
- Induction Motor
Static Load Model
Model

FIGURE 1. Composite load model with parallel connection of the static
load model and the induction motor model.

multi-layer searching method, but can only identify specific
parameters [22].

A new fast parameter identification method for composite
load model is proposed to apply in the load characteristic
recording devices in this paper, which avoids simulating the
powers at hundreds of sampling points and massive ran-
dom optimizations in heuristic method. Specifically, only
four jumping and steady-state points of the measured data,
including one point after voltage sag, two points before and
after voltage recovery, and one point corresponding to final
steady-state, are extracted to approximately express the entire
dynamic process. The state variables of the load model at final
steady-state point are calculated by steady-state calculation,
while those at the points after voltage sag and voltage recov-
ery are calculated by the implicit trapezoidal method, and
those at the point before voltage recovery are calculated by
Hermite—Simpson method [23]. With the known state vari-
ables at the four points, their corresponding load powers can
be easily calculated. Then, initial parameters are calculated
by polynomial approximation method [24], and based on that,
the optimal parameters are identified through Nelder-Mead
algorithm [25]. The calculation process of this method is
very simple compared with the classic measurement-based
method, and hence the calculation time is less than 2.5% of
that in the classic method with similar identification accuracy.

This paper is organized in the following way. Section II
introduces the classic measurement-based load modeling
method. Section III presents the detail steps of the proposed
method. Section IV and V give the test case studies and field
case studies respectively. Section VI concludes the paper.

Il. CLASSIC MEASUREMENT-BASED LOAD MODELING
METHOD FOR COMPOSITE LOAD MODEL
A. COMPOSITE LOAD MODEL
The simplest common load model structure used in power
system is the composite load model shown in Fig.1, which is
composed of static and dynamic load in parallel [9]. Because
the fluctuation of frequency in power system is usually small,
the influence of system frequency on load is ignored.

The static load model usually presents its active power Pg
and reactive power Qs as polynomial functions of load bus
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voltage U [9], i.e.,

pe_p (1) (1)
s = Pso | pz Uo + pi U +Pp
= v 2+ (L) +

Os = 0Oso qz(a) 611(70> qp

where Pso and Qso represent the rated active and reactive
powers respectively; p;, pi, Pp» 4z, gi and g, which satisfy
the constraint p; + p; +p, = 1 and g; + g; + g, = 1, are the
load parameters for active and reactive powers respectively.
Because the load parameters can be interpreted as the propor-
tions of constant impedance load, constant current load and
constant power load, they are usually called ZIP parameters.

The dynamic load is usually modeled as third-order elec-
tromechanical transient model of induction motor, which
contains two differential equations for rotor voltage and one
differential equation for rotor motion, that is

ey

dE/ 1
d _ _ / v/ /
o Téo [Eq + (X —XD4] + SCUsEq
dE! 1
q
ar _T,QO[E‘; — (X = XDl — sy 2)
ds T T
_]dt - m (S

where E} and Ec’l are the d-axis and g-axis transient electromo-
tive forces of the motor respectively, s is the slip of the rotor,
ws is the synchronous speed of the stator, 7j is the inertia time
constant of the rotor, Iq and I, are the currents of the stator
respectively.

The other symbols in (2) are functions of previous param-
eters or variables. Specifically, X" and X represents the tran-
sient and open-circuit reactance respectively, T} is the time
constant of the rotor circuit when the stator circuit is open,
T and T¢ are the mechanical and electromagnetic torques of
the motor respectively. They can be calculated by

X'= Xs + Xer/ (Xr + Xm)

X =X+ X
I = X; + X
R:
Te = Eyla + Eglq
Tm = Tmol[A(l — $)* + B(1 — 5) + C] A3)

where X is the leakage reactance of the stator, X; and R; are
the leakage reactance and resistance of the rotor, Xy, is the
magnetizing reactance of the motor, Ty is the steady-state
mechanical torque, and A, B, C are the mechanical torque
coefficients, satisfying the constraint of A(1 — 50)> + B(1 —
s0) + C = 1, where sq is the initial slip of the rotor.

Besides (2), the third-order electromechanical transient
model of induction motor also contains two algebraic equa-
tions for stator voltage, that is

Ui = Ryla — X'l + E}

4
Ug = Rslq +X'la + E @
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where, Uy and Uy are the voltage of the stator respectively,
Ry is the resistance of the stator.

The E é, E(;, and s in (2) are the three state variables of the
electromechanical transient model, which reflect the dynamic
characteristics of the load and directly determine the output
power of induction motor. Once those state variables under
the given voltage are known, the active power P)1 and reactive
power O of induction motor can be calculated by

Py = Ualy + Ugly

Om = Uqlq — Uqly

Combing (1) and (5), the total active power Pr and reactive
power Qr of the load can be calculated by

Py =Ps + Py
OL = 0s + Om

To quantify the active power proportion of induction motor
in whole load, Py1/PL, at steady-state is defined as induction
motor ratio Pper, which is an important parameter of the load
model.

&)

(6)

B. LOAD MODEL PARAMETERS

For the above composite load model, there are 14 independent
parameters to be determined, including four static load model
parameters, i.e., p;, pi, gz, gi, and ten dynamic load model
parameters, i.€., Pper, Xs, X, Rs, Ry, Xm, A, B, 50, Tj.

However, if all parameters are to be identified, the accuracy
of the identification may not be guaranteed, and at the same
time, it will consume a lot of computing time [26]. Therefore,
only some important parameters need to be identified, while
others are fixed as their typical values.

It has been verified that the parameters of static load model
have lower sensitivities compared with those of dynamic
load model [26], while for the parameters of induction motor
model, most researches indicate that Xp, X, Rs, Tj, A and
B have less effects on the load power dynamic [26], [27].
Thus, Pper, 0, Xs and R; are chosen as key parameters to be
identified in this paper.

C. PARAMETER IDENTIFICATION METHOD

The purpose of the classic measurement-based method is
to find a set of key parameters to minimize the deviation
between the simulated and measured powers under the given
voltage, and the objective function can be described as

N
=3 [Petk) = Putk))? + (Qctk) = Qu0)?] ()
k=1
where the P., Q., Py,, and Q,, are the simulated and measured
powers respectively, N is the total sampling points.

Due to the complexity of the above optimization prob-
lem, the heuristic algorithms are usually used to iden-
tify the key parameters, such as, ant colony algorithm
(ACO) [28], particle swarm algorithm (PSO) [28], genetic
algorithm (GA) [29], and particle swarm-genetic hybrid
algorithm (PSO-GA) [19].
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FIGURE 2. lllustration for extraction of point 0 to 4 from one typical
voltage curve of the measured data.

However, when using heuristic algorithms, hundreds of
iterations and thousands of transient simulations are usually
required to find the optimal parameter values, which makes
the classic measurement-based method cannot be adapt to
load characteristic recording devices.

IIl. PARAMETER IDENTIFICATION METHOD BASED ON
JUMPING AND STEADY-STATE POINTS

A. THE MOTIVATION OF THE PROPOSED METHOD

There are two main issues in the classic measurement-based
method, which make it unsuitable to the devices. One is that
the objective function needs to calculate the powers at each
sampling point through transient simulation, which is time
consuming. The other is that the optimization algorithm uses
heuristics to find the optimal parameters, which require a
large number of populations and iterations. To solve these
issues, a new method is proposed in this paper.

1) OBJECTIVE FUNCTION

Take one typical voltage curve of the measured data shown
in Fig. 2 as an example. It can be seen that four points,
i.e., one point after voltage sag, two points before and after
voltage recovery, and one point corresponding to final steady-
state, can describe the key dynamic characteristics of the load
approximately, which are denoted as point 1 to 4 respectively.
Based on this observation, the optimization objective function
in (7) can be simplified to the deviation between the calcu-
lated and measured powers of point 1 to 4, that is

4
J = Z [(Pc(i) - Pm(i))2 + (Qetiy — Qm(i))z] ®)
i=1
where, Py, Oci)> Pm(i)» and Q) are the calculated and
measured powers of point i respectively. Besides the four
points, the initial steady-state point before voltage sag is
defined as point 0, which is crucial for calculating the powers
of point 1 to 4.

For different field measured data, the occurrence and dura-
tion of the voltage sag can be different, so a method to
determine the corresponding times of point O to 4 is needed,
and the specific algorithm will be given in section III-B.

In order to calculate P.; and Q.; in (8), it is first
necessary to solve the state variables of point 1 to 4.
In section III-C, the state variables of point 1 to 4 will
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be calculated by steady-state initialization method, implicit
trapezoidal method, and Hermite—Simpson method respec-
tively instead of transient simulation.

2) OPTIMIZATION ALGORITHM

A two-stage identification algorithm is proposed in
section III-D to find the optimal parameters of (8). In the
first stage, the algorithm approximates the powers of point
1 to 4 as polynomial functions of load parameters, and
transforms (8) into an explicit equation of the parameters to
be identified. By directly solving the explicit equation, the
initial parameters can be obtained. In the second stage, the
Nelder-Mead algorithm is used to iteratively find the optimal
parameters based on the initial parameters.

This algorithm uses dozens of direct search to avoid mas-
sive random search, and hence needs less iterations and com-
putation burden compared with the heuristics used in the
classic method.

B. DETERMINATION THE CORRESPONDING TIMES OF
POINT O TO 4

The problem of determining the corresponding times of point
0 to 3 can be regarded as change-point detection problem of
voltage curve. As shown in Fig. 2, the curve can be divided
into five parts by point 0 to 3, whose corresponding times are
T, to T4 respectively.

For convenience, define the voltage derivative as U’, the
average value of U’ in each part as U’. Taking the part B
as an example, it can be seen that U’ is almost constant,
S0 Z% [U'(1) — U’]2 in part B is also quite small, and the
other parts are similar. Thus, the sum of the deviation squares
between U’ and U’ of each part can be used as optimization
target, and its mathematical model is described as

50T
miny =3 3 [v'o - 0]
i=1 t=T;_

Ui+ At)—U()
At

T;

S U0 ©)
t=Tj_)
0=To<T; <---

where At is the sampling step, 7o and 7 are the start and end
times of the measured data respectively.

Ty to T4 can be easily determined by pruned exact linear
time method [30], which are the corresponding times of point
0to 3.

As for point 4, its corresponding time will be set to
Ts directly, because this point can be considered as the final
steady-state after the dynamic process.

U'(r) =
sty gr=tizTia
At

<Ti<---<Ts

C. CALCULATION STATE VARIABLES OF POINT 0 TO 4

1) POINT O AND POINT 4

Point 0 is the initial steady-state point, so the differential parts
of (2) at point O are zero based on the steady-state condition.
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Therefore, the state variables of point O can be calculated by
(10) using the steady-state initialization method of induction
motor.

1
0= — - [Eqo) + X = X)lao)] + s0,@:Eqq
do

1
0= -~ [Ego — X = XDyl = s0@sEjq) (10
do

0 = Tmo) — Te)

Point 4 is regarded as the final steady-state point of the
measured data, and its state variables usually change very
slowly over time, which can be approximated as constant.
Thus the state variables of point 4 can be calculated in the
same way as point 0.

2) POINT 1 AND POINT 3

Point 1 and point 3 are the jumping points of the measured
data. Ideally, the state variables of point 1 and point 3 can
be approximately considered as those of point 0 and point
2 due to the voltage sag and voltage recovery are a short-
time process. However, some field measured data reveal that
the voltage sag may last more than 0.02s. Thus, the dynamic
processes during voltage sag and voltage recovery are con-
sidered here, and the state variables at point 1 and point 3 are
calculated by popular implicit trapezoidal method, i.e.,

h
Xkl — Xk = 7k (e +fev1) (11)

Applying (11) to (2), the differential equations of induction
motor are converted to algebraic equations. With known state
variables of point 0, the state variables of point 1 can be
obtained by solving

’ ’ fo1 ’ ’
Ed(]) = Ed(()) + T{S(O)wsEq(o) + S(])CUSEq(l)

1
- T—/[Eé(o) + (X = X))
do

1

— By + X = X)lay )
do

lo1
Eq1) = Eqo) + 5 {=50@sEq) — smesEqq) 12

1

- T—,[E[l(o) — (X = X))
do
1

- T_’[E‘/l(l) - (X - X/)Id(l)]}
do

Lol (T, T,
S(1) = S m© — Te)
2 T

+ Ty — Te1))

where, 7o is the time interval between point 0 and point 1.
The state variables of point 3 can be calculated in the same
way after knowing the state variables of point 2.
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FIGURE 3. Schematic diagram of the Trapezoidal and Hermite-Simpson
methods.

3) POINT 2

In most cases, the duration of voltage sag between point 1 and
point 2 is more than 0.04s, which leads a remarkable change
of state variables. Therefore, the state variables calculated by
large-step implicit trapezoidal method have notable errors.
Because of this, more accurate Hermite—Simpson method is
used to calculate the state variables of point 2.

As shown in Fig. 3, the Hermite—Simpson method approx-
imates the system dynamic as quadratic function, while
the implicit trapezoidal method approximates that as lin-
ear function [23]. Therefore, when the step size is large,
the Hermite—Simpson method is much more accurate than
the implicit trapezoidal method. Thus, the Hermite—Simpson
method is more suitable for the change trajectory of the state
variables between point 1 and point 2, and only adds a small
amount of computation burden compared with the implicit
trapezoidal method.

In Hermite—Simpson method, xx4; can be calculated by
(13), which increases the f; 0.5 term compared with (11), and
the change of state variables between the x; and x4 is trans-
formed to Simpson quadrature from continuous integral [23].

hi
Vel =Xk = (e + 405 + fea1) (13)

However, (13) cannot be directly applied to solve the state
variables of point 2, because f;+¢.5 is a function of the extra
state variable xj 0.5, which are unknown. Therefore, a second
collocation equation shown in (14) is used to calculate x 495
by constructing an interpolation [23].

1 Iy
Xet05 = 5 (ke + Xe41) + n (e = fe+1) (14)

Applying (13) and (14) to (2), the state variables of point
2 can be calculated by solving

1

t
X5 = 5 [x1) +x2)] + % [F(x(1)) — F(x2))]

12
X) = X1+ ¢ [F(x1)) + 4F(x(1.5) + F(x2)]  (15)

T
where, x = [E @ Egs s] represents the state variables of the
points, 12 is the time interval between point 1 and point 2,
F represents the right hand sides of the differential equations
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in (2), which can be describes as (16).

1
—7 [E} + X — X)la] + sosE]

F= |- [Eg1 T - X’)Iq] + sw.E} (16)
7, (Tm = Te)

D. TWO-STAGE IDENTIFICATION ALGORITHM FOR LOAD
MODEL PARAMETERS

A two-stage identification algorithm with less computation
burden is proposed to find optimal parameters of the load
model, which can minimize the optimization objective in (8).
In the first stage, the algorithm obtains an approximate solu-
tion as initial parameters, and in the second stage, the initial
parameters will be refined to obtain the optimal parameters.

1) CALCULATE INITIAL PARAMETERS BASED ON
POLYNOMIAL APPROXIMATION

Polynomial approximation method can be used to obtain
a simple polynomial function that approximates a complex
relationship between inputs and output of a model, which is
one of the state-of-art technique in power system analysis and
control [24], [31], [32].

For the underlying parameter identification problem, this
method is adopted to obtain explicit polynomial func-
tions, which approximately describe the implicit relationship
between the powers at point 1 to 4 and the parameters p to
be identified. Then, substitute those explicit functions into
(8) to obtain an polynomial approximation function of the
optimization objective, and the p that gets minimum value of
the polynomial approximation function can be easily solved
out, which serves as the initial parameters of load model.

Let the approximated polynomial function denoted as

S~SP = Y ca®n(p)

0<[n|=<!/

a7

where, § can represent Py or O, S (p) is a polynomial
approximation function, n = (ny, ..., ng) includes the orders
of polynomial for each parameter, [n| = n; + ... + ny,
d is the number of the parameters to be identified, [ is
the order of the polynomial approximation, ¢y is the basis
function coefficient, ®,(p) is the basis function. The reason
of using polynomial to approximate the powers at point 1 to
4 rather than the objective function (8) is to obtain a relatively
accurate initial parameters with the same order of polynomial
approximation.

Two fundamental issues of the polynomial approximation
are to determine the basis function and its corresponding
coefficients. The polynomial chaos theory uses orthogonal
polynomials as the basis for polynomial approximation [33],
and the basis function ®(p) is obtained by multiplying each
univariate orthogonal polynomial ¢; ,,,(p;), i.e.,

d
o) = [ ]._, dim (@) (18)
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The choice of ¢; ,,(p;) for each parameter p; can be related
to its probability distribution. For the general parameter inter-
val, its probability distribution can be considered as uniform
distribution, and its corresponding polynomial is Legendre
polynomial [24].

For the polynomial coefficient cp, it can be calculated
by (19) through collocation method based on sparse grid
integration, which originates from orthogonal projection
theory [34].

M
1
tn == bu®a®™)S ™)

m=1

19)

where, M is the total number of collocation points, p™ is
the collocation point, b, is the collocation point coefficient.
C = (®n(p), Pu(p)) is a constant, where (-, -) is the inner
product of any two functions. The detail selection method for
collocation points can be found in [34], which is omitted here
for simplicity.

Based on (17) to (19), the explicit power functions for the
parameters to be identified at point 1 to 4 can be obtained, and
the optimization objective in (8) can be also approximated
in a polynomial form. It should be noted that the obtained
polynomial function is a global approximation over the entire
parameter variation region, rather than a local approximation
at expansion point like Taylor expansion.

Therefore, the minimum value of (8) and the corresponding
parameters can be easily obtained by the trust region method
based on interior point [35]. However, due to the errors in
polynomial approximation, the parameters solved by this
method can only serve as initial parameters.

2) FIND OPTIMAL PARAMETERS BASED ON NELDER-MEAD
ALGORITHM

Nelder-Mead algorithm is used here to refine the initial
parameters, which can directly search the optimal value of
a objective function based on function values without the
need of derivative information [25]. This algorithm iteratively
transforms and updates a geometry with n + 1 vertices in a
n-dimensional parameter space, which is called simplex, and
finally converges to the optimal parameter value.

The dimension of the parameter space here is the number of
the parameters to be identified d, and the initial vertices of the
simplex are chosen as the initial parameters together with d
collocation points, which are closest to the initial parameters,
and those vertices are denoted as vy, v, - -+, Vg41.

At each iteration, the algorithm sorts the d + 1 ver-
tices according to its corresponding objective function values
which are calculated by (8), and then performs appropriate
operations on those vertices, such as reflection, expansion,
contraction, and shrink [36], so that the simplex moves closer
to the optimal parameters. A schematic diagram of these
operations in 2-dimensional space is shown in Fig. 4.

The steps for each iteration of Nelder-Mead algorithm:

1) Sort. Calculate J(v;) at each vertex and sort as J(vy) <

J(vy) < < J(V4+1), where J is the objective

VOLUME 10, 2022



Y. Chen et al.: Fast Parameter Identification Method for Composite Load Model

IEEE Access

Worst vertex

Inside Contraction

The centroid without the
worst vertex

v
o — Vv,
v S~ ’ ~
1 S~ A N 1
o S 1
-~ ~
~ ~ S VOL‘ '
~
L ~<. '\ < 1
. Mo !
Shrink S0 !
~ é& Reflection
o V. N N
Outside Contraction -

Expansion Vv,

FIGURE 4. The reflection, expansion, contraction, and shrink operations
of the Nelder-Mead algorithm in 2-dimensional space (v;, v,, and vs are
the simplex vertices, and J(v;) < J(vy) < J(v3)).

function in (8), v441 is the worst vertex, then calculate
d
the centroid of the d best vertices v = 5 > i
i=1

2) Reflection. Calculate the reflection poinf Vv, = V+
o(V — vg441), where « is reflection coefficient, usually
as 1. If J(vy) < J(v;) < J(vq), replace V441 with v,.

3) Expansion. If J(v,) < J(v}), then calculate the expan-
sion point v, = vV + B(v, — V), where 8 is expansion
coefficient, satisfying g > 1.If J(v,) < J(v,), replace
V441 With v,, otherwise v;..

4) Outside contraction. If J(vg) < J(v;) < J(v441), cal-
culate the outside contraction point v, = V+y (v, —V),
where y is contraction coefficient, satisfying 0 < y <
1.If J(vye) < J(v,), replace vy with v, otherwise
g0 to 6).

5) Inside contraction. If J(v,) > J(v441), calculate the
inside contraction point v;, = v—y (v, — V). If J(v;) <
J(vg41), replace vy with v, otherwise, go to 6).

6) Shrink. The simplex shrinks towards vy, i.e., V; =
vi+8(vi—vy),i=2,3,---,d+ 1, where § is shrink
coefficient, satisfying 0 < § < 1. Then, replace v; with
V..

l
1

d+1 2
7) Convergence Test. If d+—1 YUV —J@P} <
i=1

&, where ¢ is the given precision, then output the opti-
mal solution is v;, otherwise continue to iterate.

Based on the above steps of Nelder-Mead algorithm, the
optimal parameters which can minimize (8) can be easily
obtained through usually twenty iterations with the initial
parameters.

E. THE STEP OF THE PROPOSED METHOD

Based on the simplified objective function (8), state variable
calculation method and two-stage identification algorithm
introduced in section III-A to III-D, the steps of the pro-
posed fast parameter identification method for composite
load model are as follows.
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1) Input measured voltage and power; give the number
and ranges of the parameters to be identified; set the
polynomial approximation order.

2) Determine the corresponding times of point 0 to 4 based
on the method in section III-B.

3) Calculate the collocation points for the given parameter
ranges based on sparse grid integration [34].

4) Calculate the state variables of point 1 to 4 at colloca-
tion points based on (10), (12), and (16), then calculate
the load powers at point 1 to 4 through (1) to (6).

5) Calculate basis function coefficient based on (19), then
obtain the power explicit equations at point 1 to 4 as
shown in (17).

6) Bring the power explicit equations into (8), and obtain
the initial parameters by directly solving it.

7) Form a simplex with the initial parameters and d collec-
tion points which are closest to the initial parameters.

8) Perform appropriate operations and update the simplex
based on section III-D2.

9) Repeat 8) until convergence, finally output the optimal
parameters as identified parameters.

Based on the above steps, the identified parameters can
be easily obtained. The accuracy of the identified parameters
depends on the calculation errors of state variables at point
1 to 4 in section III-C, and the detailed accuracy analysis will
be presented in section IV-A.

Compared to the classic measurement-based method, the
proposed method accelerates the identification progress from
the following two aspects:

1) The proposed method speeds up the calculation of state
variables at point 1 to 4 through approximate calcula-
tion presented in section III-C, instead of the step-by-
step transient simulation.

2) The proposed method uses a two-stage identification
algorithm presented in section III-D, which reduces
the scale of optimization, and hence speeds up the
identification speed.

The detail computation burden of the proposed method will
be analyzed in section IV-B.

IV. TEST CASE STUDY

A single-machine-infinite-bus system shown in Fig. 5 is built
to verify the high accuracy, less computation burden and good
robustness of the proposed method, where the load includes
induction motor load and static load in polynomial form. The
values of load parameters are shown in Table 1, which are the
typical values for Chinese load model parameters.

A three-phase short circuit fault is set at 50% of the tie
line at 0.1s, and then cleared at 0.2s. The voltage, active and
reactive powers of the load are simulated for 1s with the
step size of 0.001s, which are served as measured data for
parameter identification of load model.

It has been pointed out in section II-B that Pper, so, X, and
R; have higher sensitivities to the dynamic process than the
other parameters. Thus, in this paper, those parameters will
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P=10p.u.

Q=1.0pu.
U=1.05p.u. Static Load

ZIP

RO

Induction Motor Load

71, =0.001 +j0.0576

Infinity Bus

FIGURE 5. Single-machine-infinite-bus system where the load includes
induction motor load and static load.

TABLE 1. The typical values of load model parameters.

Parameter Value Parameter Value
Pye; 0.6 S0 0.0116
Parameters of Xs 0.18 R 0.02
Induction Motor Rs 0 X 0.12
L
oad X 35 T, 2
A 0.85 B 0
Parameters of Pz 1 Pi
Static Load - 1 a

be identified, and the other parameters are fixed as typical
values as shown in Table 1.

A. ACCURACY ANALYSIS

The accuracy of the proposed method is analyzed from two
aspects. One is the calculation errors of state variables and
powers at point 1 to 4, and the other is the relative errors
of the identified parameters and the corresponding simulated
powers.

1) STATE VARIABLES AND POWERS AT POINT 1 TO 4

For the given parameters in Table 1, the values of state
variables and powers at point 1 to 4 are calculated by the
method proposed in section III-C and transient simulation
respectively, which are shown in Table 2.

The table also shows the relative errors between two meth-
ods. It can be seen from the table that the state variables
calculated by proposed method have an error of less than 3%,
and the powers have an error of less than 2%, indicating that
the state variables and powers of point 1 to 4 are calculated
quite accurately.

2) IDENTIFIED PARAMETERS AND THE CORRESPONDING
SIMULATED POWERS
The two-stage algorithm for load model parameter identi-
fication proposed in section III-D is used to identify the
key parameters from the measured data, and the identified
parameters along with relative errors are shown in Table 3.
It can be seen from the table that the parameter with
the largest relative error is Xs, whose error is 1.25%, and
the relative errors of the other parameters are all less than
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FIGURE 6. Comparison between the measured and simulated powers,
where Pm, Qm, Pc, and Qc are the measured and simulated powers
respectively, Ep and Eq are the absolute errors between the measured
and simulated powers.

1%, indicating that the identified parameters of the proposed
two-stage identification algorithm are quite accurate.

With the identified parameters, the active and reactive pow-
ers of the load can be simulated out, which are compared with
the measured powers in Fig. 6. It can be seen from Fig. 6 that
the simulated powers can well match the measured powers,
and the absolute errors between simulated and measured
powers are less than 0.01p.u..

In order to quantitatively evaluate the accuracy of the
power curves, define the average power error indexes ep
and g between the simulated and measured powers as (20),
which are used to indirectly assess the accuracy of the iden-
tified parameters when the actual values of load parameters
are unknown.

Pc(k) - Pm(k)

1N
8P:]VZ

2| Pk
1A 0ck) — O(k)
TN ,; Ouk) e

where, P., O, P,,, and Q,, are the same as those of (7).

It can be figured out that the ¢p and g based on the iden-
tified parameters are 1.52% and 0.41% respectively, which
shows that the simulated powers can well fit the measured
powers, and also indirectly shows the accuracy of the identi-
fied parameters.

B. COMPUTATION BURDEN ANALYSIS

The computation burdens of the proposed method and the
classic measurement-based load modeling method are com-
pared in Table 4, where the classic method adopts the objec-
tive function (7), and uses particle swarm-genetic hybrid
algorithm to identify the load model parameters, while the
proposed method adopts the simplified objective function (8),
and uses two-stage identification algorithm in section III-D.
From Table 4, it can be seen that,

1) For the points needed in objective function, the pro-
posed method requires only four points, i.e., point
1 to 4, while the classic method requires 1000 points.

2) For the calculation method of state variables, the pro-
posed method uses a simpler direct calculation by (10),
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TABLE 2. State variables and powers of point 1 to 4 calculated by the method proposed in section I1I-C and transient simulation.

Point 1 Point 2 Point 3 Point 4
Proposed ~ Transient Error Proposed ~ Transient Error Proposed  Transient Error Proposed ~ Transient Error
E:i 0.8646 0.8630 0.18% 0.1439 0.1414 1.80% 0.1442 0.1402 2.86% 0.8513 0.8513 0.00%
E; -0.1963 -0.1965  -0.10%  -0.2388 -0.2405 -0.68% -0.2387 -0.2393 -0.27% -0.1991 -0.1987 0.18%
s 0.0116 0.0117 -0.35% 0.0375 0.0376 -0.22% 0.0375 0.0378 -0.64 % 0.0119 0.0119 0.18%
P -0.2283 -0.2253 1.34% 0.0704 0.0715 -1.62% 0.9297 0.9293 0.04% 0.9887 0.9873 0.14%
Q -0.6574 -0.6572 0.04% -0.0415 -0.0417  -0.36% 2.1241 2.1246 -0.03% 0.9783 0.9785 -0.03%
TABLE 3. Comparison of the identified parameters with their actual 5

values of the two-stage identification algorithm.

Parameter Identified Value Actual Value Relative Error
Boer 0.6029 0.6 0.49%
S0 0.01169 0.0116 0.81%
X 0.1778 0.18 -1.25%
R: 0.0199 0.02 -0.50%

(12), and (16) instead of step-by-step transient simula-
tion required by the classic method.

3) For the initial parameters calculation, the proposed
method needs 4.75s to polynomial approximation of
the powers at point 1 to 4, and 1.54s to solve the poly-
nomial equation of objective function, which altogether
takes 6.29s to obtain the initial parameters.

4) For the optimal parameters calculation, the proposed
method has 5 vertices with 24 iterations, and requires
to calculate the objective function for 216 times, which
takes 2.38s. While the classic method has 30 popula-
tions with 50 iterations, and requires to calculate the
objective function for 4500 times, which takes 375s.
Obviously, the time needed by the proposed method is
less than 1/100 of that needed by the classic method.

5) For the total calculation time, the proposed method
spends 8.67s, which is less than 2.5% of 375s spent by
the classic method.

Obviously, the proposed method has less computation bur-
den and performs much faster compared with the classic
method.

C. ROBUSTNESS ANALYSIS

The robustness of the proposed method is analyzed from the
effect of the sampling error in the measured data. Fig. 7 shows
the ep and g¢ calculated based on the identified parameters
of the measured data, which are superimposed with different
sampling errors.

It can be seen from Fig. 7 that the power errors approx-
imately linearly increase with the increase of the sampling
errors. When the sampling error is less than 1%, the ep and g¢
are less than 3.5% and 2% respectively, even if the sampling
error reaches 2%, the power errors are still less than 5%.
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FIGURE 7. Average errors of active and reactive powers under the
different sampling errors.

All of these show that the proposed method can maintain a
well power fitting degree and good robustness in the face of
sampling error.

Usually, the sampling error of the load characteristic
recording devices is 0.2%. According to Fig. 7, the ep and &g
under this sampling error are 1.83% and 0.68% respectively.
Therefore, the proposed method can fully meet the sampling
accuracy of the devices.

V. FIELD CASE STUDY
Based on the field measured data recorded by load char-
acteristic recording devices in 110kV outgoing lines of
220kV meshed power system, the practicality of the proposed
method is analyzed. The field measured data are shown in
Table 5, covering different voltage sag ratios, durations of
voltage sag, and fault types. The proposed and classic meth-
ods are used for parameter identification from these field
measured data respectively, and the key parameters to be
identified are the same as those in section IV, with the other
parameters fixed as typical values as shown in Table 1.

Taking fault 1 and 2 as examples, Fig. 8 shows the positions
of the extracted point O to 3 in their measured voltage curves,
where the positions of point 4 are not shown because their
corresponding times exceed the maximal value of the horizon
axis. It can been seen from Fig. 8 that the corresponding times
of point 1 to 3 can be correctly determined by the method
proposed in section III-B.

It should be noted that, the true values of load parameters
for field measured data are unknown. Thus, the parameters
identified by the classic method are served as benchmark
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TABLE 4. Comparison of the computation burdens between the proposed and classic methods.

Proposed Method Classic Method

Points Needed in Objective Function

4 (point 1 to 4) 1000 (all sampling points)

Calculation Method of State Variables

direct calculation by (10), (12), (16)

step-by-step transient simulation

Initial Time of Polynomial Approximation 4.75s -
Parametf:rs Time of Solving Polynomial 1.545 )
Calculation Equation of Objective Function :
Number of Vertex/Population 5 30
Optimal Iteration 24 50
Parameters Number of Calculating
Calculation Objective Function 216 4500
Time 2.38s 375s
Total Calculation Time 8.67s 375s
TABLE 5. The field measured data in 110kV sub-transmission lines. PO T T T
ir PO \ p -~
Voltage ~ Duration of \ P3 P3 @— ~
Fault  Line Name . Fault Type ’
sag ratio  Voltage Sag 09} \ | .
=
1 LP Line 15.9% 0.038s Single-phase Fault § U% @\—@p) |
L P1 ]
2 XTLine  28.9% 0.12s Three-phase Fault 0.8 \ T |
3 LZ Line 5.8% 0.028s Single-phase Fault . P1 Fault 1
07pF — — = —— — — -
4 FH Line 20.7% 0.04s Single-phase Fault 7 P2 Fault 2
5 LT Line 21.2% 0.038s Single-phase Fault 0 0.1 0.2 0.3 0.4
t/s

The voltage sag ratio is (Unnital — Usag)/Unitial>» Where Upnigial is the
voltage amplitude before the sag, and U, is the average voltage

amplitude during the sag.

TABLE 6. Average deviations and calculation times between the

proposed and classic methods for all 5 faults.

Prer 7.85%
Average Relative Deviation 50 6.91%
of Identified Parameter X, 5.08%
R, 8.19%
. . Proposed 8.90s

Average Calculation Time
Classic 373s

values. Table 6 shows the average relative deviations of the
identified parameters between the proposed and classic meth-
ods for all 5 faults, along with the calculation times of these
two methods. It can be seen from Table 6 that,

1) The parameter with the largest average relative devia-
tion is R,, which is 8.19%. It shows that the identified
parameters of the two methods are quite close.

2) The average calculation time of the proposed method
is 8.90s, which is less than 2.5% of that of the classic
method.

It should also be noted that the field measured data contain

the true load powers. Thus the average values of ep and g¢
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FIGURE 8. The positions of point 0 to 3 in voltage curves of fault 1 and 2,
where PO to P3 are the point 0 to 3, U% is the voltage sag ratio, T is the
duration of voltage sag. Since the total durations of fault 1 and 2 are
different, only the voltage curves of 0-0.4s are shown here.

TABLE 7. The average values of ¢p and ¢q of the proposed and classic
methods for all 5 faults.

Average of ep Average of e
Proposed Method 5.22% 11.12%
Classic Method 4.78% 10.14%
Deviation 0.45% 0.98%

of the proposed and classic methods for all 5 faults can be
calculated directly, which are compared in Table 7. Besides,
Fig. 9 and Fig. 10 compare the powers simulated by the
identified parameters of the proposed and classic methods in
fault 1 and 2 with respect to their corresponding measured
powers. The Table 7, Fig. 9 and Fig. 10 show that,

1) The average values of ¢p and e of the proposed
method for all 5 faults are 5.22% and 11.12% respec-
tively, and the figures show that the simulated powers
based on the identified parameters can well fit the
measured powers in the field measured data.

2) The deviations between the average values of ep and
g of the two methods are less than 1%, which shows
that although the identified parameters between the

VOLUME 10, 2022
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FIGURE 9. Comparison between the powers simulated by the identified
parameters of the proposed and classic methods with the measured
powers in fault 1.

1.1 0.7

P
5 0.7 Ny 5 0.2

S 77— Measured| < Measured

~o03F WO . Q0.3 .

Classic | ~ 77| =e—-- Classic
01 - — = Proposed 08 - = = Proposed
0 0.2 0.4 0 0.2 0.4

t/s t/s

(a) Active power (b) Reactive power

FIGURE 10. Comparison between the powers simulated by the identified
parameters of the proposed and classic methods with the measured
powers in fault 2.

two methods have a deviation as large as 8.19%, the
simulated powers of the two methods with respect to
measured powers have similar errors.

In summary, the proposed method can maintain similar
accuracy of the classic method, while has shorter computation
time and good practicality in field measured data.

VI. CONCLUSION

A fast parameter identification method for composite load
model based on jumping and steady-state points of the mea-
sured data is proposed in this paper, which adopts the follow-
ing three unique techniques:

1) The four points, i.e., one point after voltage sag,
two points before and after voltage recovery, and the
final steady-state point, are extracted to approximately
express the entire dynamic process and greatly simplify
the objective function.

2) The three techniques, i.e., steady-state calculation,
implicit trapezoid method and Hermite—Simpson
method, are used to calculate the state variables of the
four points directly, which greatly reduce the computa-
tion burden.

3) A two-stage identification algorithm, which adopts
polynomial approximation method and Nelder-Mead
algorithm to obtain initial parameters and optimal
parameters respectively, is proposed to reduce the com-
putation scale and time of the identification.

The test case studies show the proposed method has high
accuracy, less computation burden and good robustness,
while the field case studies show the proposed method has
good practicality in field measured data, and hence the calcu-
lation time of the proposed method is less than 2.5% of that

VOLUME 10, 2022

in the classic method without obvious loss of identification
accuracy.

The further research direction of current work can be
twofold. One is to research more flexible characteristic
extraction method regarding voltage curve rather than the
current four specific points. The other is to extend to the
generalized load model so that disperse renewable energy
generation can be considered in load model.
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