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ABSTRACT The rapid development of the Internet of Things (IoTs) has driven the progress of intelligent
transportation systems (ITS), which provides basic elements, such as vehicles, traffic lights, cameras,
roadside units (RSUs) and their interconnected 5G communications, to constitute the Internet of vehicles
(IoVs). In the IoVs, an intelligent vehicle can not only share information with the infrastructures like RSUs
by vehicle to infrastructure (V2I) communication but also with vehicles on the road through vehicle-to-
vehicle (V2V) communications. We thus expect that vehicles can collaborate with other well-resourced
and idling vehicles, making full use of the wasted resources. However, existing approaches cannot achieve
this goal due to the increasing strict delay constraints and the dynamic characteristics of the IoVs tasks.
To improve the utilization of resources and perform better resource management, in this paper, we propose
a hybrid task offloading scheme (HyTOS) based on deep reinforcement learning (DRL), which achieves the
vehicle-to-edge (V2E) and V2V offloading by jointly considers the delay constraints and resource demand.
To perform optimal offloading decision-making, we introduce a dynamic decision-making method, namely
deep Q networks (DQN). To verify the effectiveness of this approach, we choose three baseline offloading
approaches (one game theory-based and two single-scenario approaches) and perform a series of simulation
experiments. The simulation results demonstrate that, compared to the baseline offloading approaches, our
approach can effectively reduce task delay and energy consumption, achieving high-efficiency resource
management.
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INDEX TERMS Internet of vehicles (IoVs), task offloading, vehicle to edge (V2E), vehicle to vehicle (V2V),
deep reinforcement learning (DRL).

I. INTRODUCTION20

In the scenario of the Internet of vehicles (IoVs), vehicles21

are equipped with plenty of sensors, cameras, and com-22

puting units to support autonomous vehicle analysis and23

decision-making. With the implementation of diverse appli-24

cations, such as augmented reality (AR), image-assisted nav-25

igation, intelligent vehicle control, and 3D gaming, there are26

new requirements and challenges producing in autonomous27

The associate editor coordinating the review of this manuscript and

approving it for publication was Amjad Mehmood .

vehicles, all of which require massive computation and stor- 28

age resources, as well as a strict latency requirement. For 29

instance, the latency of the autonomous vehicle steering is 30

hoped less than 100ms [1]. In addition, the real-time oper- 31

ating system of an autonomous vehicle needs to process 32

about 1GB of data per second because there are hundreds 33

of sensors on vehicles generating a sea of data [2], which 34

may easily exhaust the vehicle’s onboard resources to process 35

data. Although a more powerful processor such as GPU can 36

be installed in vehicles to support the increasing computation 37

demand, it will also incur higher energy consumption, which 38
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affects the energy efficiency and mileage of the vehicle.39

Therefore, ensuring a good quality of service (QoS) in a40

resources limited intelligent vehicle is still a challenge.41

To overcome the resource limitation of the single-vehicle42

and avoid the long transmission delay of cloud computing43

(CC), the deployment of computing capacity at the IoVs edge44

has become an effective alternative scheme. Multi-access45

edge computing (MEC) can deliver CC services near the46

vehicles, bringing the possibility to support computation-47

and resource-intensive applications while satisfying critical48

latency requirements [3]. For example, vision-based percep-49

tion and feature extraction tasks with convolutional neural50

networks (CNNs) can be processed at the MEC server, i.e.,51

vehicle-to-edge (V2E) offloading. However, due to geograph-52

ical distribution and the deployment cost constraints, it is53

hard to deploy the infrastructure in all areas [4]. In this case,54

collaborationwith other vehicles by vehicle-to-vehicle (V2V)55

communication is an effective solution.56

In addition, V2V task offloading is strongly necessary for57

the IoVs scenarios because 1) The application’s stringent58

latency requirements are often a prerequisite of V2V com-59

munication, where round-trip communication from infras-60

tructure or roadside units (RSUs) and task congestion may61

make the delay-sensitive services invalid; 2) Utilizing net-62

work infrastructure like base station (BS) or RSU to deliver63

and process the IoVs tasks will face higher costs, while the64

V2V communication technology enables vehicle terminals to65

directly exchange wireless information with each other with-66

out forwarding through the base station, thus having lower67

cost [5]; 3) The idle or underutilized computing resources68

can be fully utilized for data processing, collection, and69

storage, reducing resource and energy waste. 4) Especially,70

in an urban scenario, vehicles usually gather for a variety71

of reasons, such as traffic jams, passing through toll booths,72

waiting for rush hour commute, or being attracted by attrac-73

tive roadside scenery [6], these situations are quite unavoid-74

able in our daily life. Figure 1 shows a specific example,75

vehicles move slowly and gather for a short period in a traffic76

light intersection, these vehicles gather at a relatively short77

distance and form a ‘‘resource pool’’, idles vehicles may have78

abundant resources for task execution. Therefore, the task79

vehicles with services overload can offload computation that80

cannot be processed locally to these idle service vehicles (i.e.,81

V2V task offloading).82

Therefore, we propose a hybrid task offloading scheme83

(HyTOS) based on deep reinforcement learning (DRL) meth-84

ods, which achieves the hybrid V2E and V2V task offloading85

by jointly considering the delay constraints and resource86

demand of the task. HyTOS improves the utilization of87

scattered resources and efficiency of resource management.88

Due to the recent advances in DRL techniques solving the89

large-scale dynamic decision-making problems, we introduce90

a lightweight deep Q network (DQN) method to learn the91

optimal offloading decision. Our main contributions are as92

summarized follows:93

FIGURE 1. Hybrid task offloading scenario of IoVs.

• For urban scenarios, we propose a hybrid task 94

offloading scheme (HyTOS) of computation- and 95

resource-intensive IoVs tasks, which considers the col- 96

laboration of V2E and V2V task offloading, making full 97

use of the scattered resources; 98

• We propose a dynamic offloading method based on 99

DQN to jointly perceive the time-varying characteristics 100

of vehicle tasks and resources distribution to optimize 101

the task delay and energy consumption; 102

• Conduct comparative experiments with the stat-of-the- 103

art game theory-based and single-scenario offloading 104

approaches to evaluate the effectiveness and adaptability 105

of the proposed approach. 106

The remainder of this paper is organized as follows. 107

We summarize related works in Section II and present the 108

system model and mathematical description in Section III. 109

In Section IV, we first model the hybrid task offloading 110

problem as a Markov decision process (MDP) and propose a 111

DQN-based hybrid offloading method to address this prob- 112

lem. Simulations are conducted in Section V to verify the 113

effectiveness of our proposed method by comparison with 114

benchmarks, finally, we summarize our paper in Section VI. 115

II. RELATED WORKS 116

Recent advances in Internet of things (IoTs) have spawned 117

massive computing-intensive and delay-sensitive scenarios, 118

such as virtual reality (VR), autonomous vehicles, health- 119

care IoTs, etc [7]. Computation offloading is considered a 120

promising technology to cope with these emerging trends. 121

The latest research has involved many new challenges, such 122

as joint low-latency, secure and reliable task offloading which 123

integrate software-defined networking(SDN) and blockchain 124

scheme to the healthcare IoTs [8], joint computation offload- 125

ing and resource allocation in fog radio access networks 126

enabled IoTs [9], cache-assisted computation offloading in 127

MEC systems to avoid duplicates in offloading [10], and 128

balances multiple system utilities rather than simple objective 129

maximization [11]. More related works can be found in a 130

recent survey [7], and this paper focuses on task offloading 131

in the IoVs scenario. 132

VOLUME 10, 2022 102779



C. Wu et al.: Delay Constrained Hybrid Task Offloading of IoV: A DRL Method

A. V2E TASK OFFLOADING IN IoVs133

Edge computing technology has been increasingly incorpo-134

rated into the vehicle networks [12], [13], [14], [15], [16],135

[17]. For example, Luo et al.. [12] used dynamic program-136

ming to represent the tasks offload problem in multiple edge137

servers, an improved greedy algorithm is proposed to mini-138

mize delay. Matching theory is often used to find the appro-139

priate offloading nodes, Gu et al. [13] introduced a distributed140

offloading method based on matching theory, and two heuris-141

tics were proposed to minimize the system delay. [14]142

proposed a collaborative offloading scheme based on RL,143

in which edge computing and CC are considered together144

with low communication overhead, however, they didn’t take145

the scattered vehicles resources into consideration. Since146

game theory methods can solve decision-making problems147

among multiple players, it has been increasingly adopted for148

multi-user task offloading problems. Liu et al. [17] consid-149

ered task offloading while ensuring the load balance of MEC150

servers, making the best offloading decision based on game151

theory. Similarly, Chen et al. [16] took the task offloading152

problem into amulti-user game-theoretic process and develop153

a distributed method to solve this problem. However, these154

studies mainly focus on minimizing delay or cost and do155

not address the energy consumption problem, especially in156

electric vehicles (EVs) with limited batteries.157

Some researchers take energy consumption as one of the158

optimization goals in task offloading. For example, [18]159

optimized the energy consumption of mobile devices and160

MEC servers in task offloading, and they introduces a161

meta-heuristics algorithm to get the approximate solution.162

Yuan et al. [19] studies the collaborative computation offload-163

ing of distributed CC and MEC, they maximize the profit164

of service providers including response time, revenue, and165

penalty costs for each task by optimizing the resources166

allocation simultaneously. Chen et al. [20] considered the167

time-varying communication and computational resources in168

sliced wireless access networks (WAN), they formulated the169

stochastic task offloading as a MDP problem and addressed170

by reinforcement learning (RL) algorithm. However, the171

above works are mainly aimed at short-term planning and do172

not take multi-task and long-term task planning into account,173

which is inapplicable in a large number of task requests174

scenario.175

B. V2V TASK OFFLOADING IN IoVs176

AlthoughMEC andCC or its collaboration can provide ample177

computing power, this architecture still has inherent limita-178

tions. For example, 1) CC faces the high data transmission179

delay of remote data delivery, and task congestion in the180

MEC server may fail the delay-sensitive tasks; 2) MEC and181

CC need to bear high infrastructure deployment costs, not all182

areas can be covered by infrastructure. Recently, researchers183

have also turned their attention to V2V offloading strategies,184

since vehicles can also be allocated with rich computing185

resources and a lot of vehicle resources are underutilized.186

Most studies still consider collaboration task offloading 187

schemes and take the vehicles into account. For example, [21] 188

proposed a collaborative offloading approach that integrates 189

CC, MEC, as well as vehicles. the cooperative optimization 190

problem is addressed based on game-theory methods. Still, 191

this work mainly focuses on CC and MEC collaboration, 192

which is different from our work. Zhang et al. [22] also 193

proposed the approximate task offloading that jointly con- 194

siders the V2V and V2I collaborate scheme, and the edge 195

resource is effectively utilized to reduce the processing delay. 196

However, the above two works only considered single-target 197

optimization and didn’t optimize the energy consumption. 198

On the contrary, some researchers merely consider the 199

V2V task offloading. Chen et al. [6] studied the task offload- 200

ing scenario which purely support by V2V collaboration, they 201

formulated the offloading process as a Min-Max problem 202

and solved by the Particle Swarm Optimization Algorithm. 203

However, purely considering V2V offloading cannot solve 204

the task offloading problem perfectly, due to the limited 205

vehicle resource and service interruption caused by move- 206

ment. We believe that the task offloading of urban vehicular 207

scenarios must jointly consider the edge and idle vehicle, and 208

make full use of scattered resources. 209

III. SYSTEM MODEL 210

A. TASK MODEL 211

Fig. 1 depicts the IoVs computing offloading of urban sce- 212

nario that supports V2E and V2V collaboration. In this sce- 213

nario, vehicles from four directions gather at an intersection 214

waiting for the traffic light. RSU or MEC server is deployed 215

near the vehicles and connected with a BS by a wired link. 216

The red device indicates the service vehicle (SV) that can 217

offer computing assistance. In contrast, yellow indicates the 218

overload task vehicle (TV) that needs to offload the task to 219

relieve its computational load. Both TVs and SVs connect to 220

the MEC server in real-time and send the task requirements 221

as well as available computing resource capacity to the MEC 222

server. Therefore, the MEC server will act as the global con- 223

troller of the coverage area, combined with the AI algorithm 224

installed on theMEC server to automatically make intelligent 225

offloading decisions. 226

In this paper, we consider multiple vehicles and a MEC 227

server scenarios. All computing nodes that can provide ser- 228

vices are indicated by N = {n0, n1, n2, . . . .nm}, where 229

n0 represents the edge server (i.e., RSU), and we denote its 230

computing resource capacity as F0. In addition, there are 231

m vehicles with idle computing resources that can provide 232

computing assistance in the resources pool, namely SVs, 233

which are represented as nm, and SV nm with the computing 234

capacity of Fm. The ith computing task generates by task 235

vehicle k at time slot t ∈ T that needs to be offloaded to the 236

RSU or SV, is represented by a tuple vik (t) = {ci(t), bi(t),2i}, 237

where ci(t) indicates the size of the calculation amount (that 238

is, the total CPU cycles) of the tasks vik , bi(t) represents the 239

data size of the task vik , 2i is the maximum delay tolerance 240
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TABLE 1. Symbols used in this paper.

of the delay-sensitive task vik , and k ∈ K , K represents the241

total number of task vehicles, i ∈ V , V is the total number242

of computing tasks of all vehicles. Each task is regarded243

as unsuccessful if the task delay tolerance is exceeded after244

being executed. Table 1 lists the main symbols used in this245

work.246

B. COMMUNICATION MODEL247

In this hybrid offloading scenario, we consider that each task248

can be processed locally, or collaborated with RSU or SV to249

reduce the task delay and ensure a better user experience. The250

task data must be transmitted to the corresponding devices251

as long as the task is offloaded to RSU or SV. The TV and252

the RSU are connected through the cellular network, and the253

transmission rate is calculated by:254

rv2e =
Be

|K |
· log2{1+

pTk · d
−β

k,0 |h
v2e
k,0|

2

N0
}, k ∈ K , (1)255

whereBe represents the vehicle to edge system bandwidth and256

shared by |K | task vehicles, pTk represents the transmission257

power of the TV k , d−βk,0 indicates the distance between the258

TV k and the RSU n0 and β is the loss coefficients, hv2ek,0 is the259

channel gain between the TV and the RSU, and N0 represent 260

noise power. 261

The RSU has the capacity of a relatively limited resource 262

compared to the cloud server, so the task congestion and 263

queuing are still inevitable when RSU is overloaded with 264

excess tasks offloading. The task qualitymay be degraded and 265

the QoS of tasks cannot be guaranteed. Therefore, offload- 266

ing the task to SVs is necessary when RSU is overloaded. 267

Similarly, When the TV offloads the computing task to SVs 268

for processing, its data and calculation results are transmitted 269

through V2V communication, the channel transmission rate 270

is calculated by [23]: 271

rv2v =
Bv

|K |
· log2{1+

pTk · d
−β
k,m|h

v2v
k,m|

2

N0
}, k ∈ K ,m ∈ N . 272

(2) 273

Similarly,Bv represents the vehicle to vehicle system band- 274

width and shared by |K | task vehicles, d−βk,m indicates the 275

distance between the TV k and the SV nm, hv2vk,m is the channel 276

gain between the TV and the SV. The transmission rates 277

between TV and RSU, TV and SV all follow Shannon’s 278

theorem [24] but have different system bandwidth, distance 279

coverage, etc. 280

C. COMPUTING DELAY MODEL 281

The task execution brings a certain delay whether the task is 282

processed locally or offloaded to the RSU or SV, including 283

the date transmission delay and processing delay. When the 284

TV has sufficient computing resources, or the computation 285

pressure of the task is relatively low, the task is considered 286

to be processed locally to reduce data transmission delay. 287

In this case, the overall delay is equal to the computation 288

delay, which is determined by the total CPU cycles of the 289

task vik and the available computing capacity of the TV. The 290

overall delay in local processing of task vik can be calculated 291

by: 292

Dlocali =
λbici
f ik

, i ∈ V , k ∈ K , (3) 293

where, λ ∈ [0, 1] indicates the proportion of tasks processed 294

locally, bi is the data size of task vik , ci represents the CPU 295

cycles requirement to process a unit of data, and f ik is the CPU 296

frequency of TV allocated to process task vik itself. 297

However, purely local processing can’t guarantee the task 298

QoS, as for the computation-intensive or larger amounts 299

of tasks, and all tasks processes locally will bring higher 300

energy consumption compared with transmitting data to other 301

servers, which is not conducive to the battery life of the 302

vehicle. Therefore, the computing-intensive task needs to be 303

offloaded to RSU or other SVs with sufficient resources for 304

processing. The total delay includes the processing delay in 305

the RSU or SVs and the transmission delay of the data, which 306

is calculated by: 307

Dv2e,vi = Dv2e,vi,tran + D
v2e,v
i,com, i ∈ V , (4) 308
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where Dv2e,vi,tran represents the data transmission delay when309

offloading to the RSU or SV, i.e., Dv2ei,tran or Dv2vi,tran, which310

is calculated by the ratio of the data volume to the channel311

transmission rate:312

Dv2e,vi,tran =
(1− λ)bi
rv2e,v

, i ∈ V , (5)313

where (1−λ) indicates the proportion of task offloading. Note314

that, the size of the calculation result return back is much315

smaller than that of the raw data, so it can be ignored during316

transmission [21]. Meanwhile, Dv2e,vi,com is the processing delay317

of the task in the RSU or SV:318

Dv2e,vi,com =
(1− λ)bici

f i0,m
, i ∈ V , m ∈ N , (6)319

where f i0,m denote the CPU frequency allocated to task vik by320

the RSU n0 and SV nm, respectively, i.e., f i0 and f
i
m.321

Finally, we can denote the total delay of the task as follows:322

Dtotali = Dlocali + Dv2e,vi , i ∈ V . (7)323

D. ENERGY CONSUMPTION MODEL324

The energy consumption is also non-negligible during the325

process of task execution and data transmission. Therefore,326

the energy consumption optimization is crucial for a hybrid327

offloading system. The energy consumption of CPU-based328

computing can be calculated by εf 2 [25], where f is the CPU329

frequency and ε is the switching coefficient which depends330

on the CPU architecture. Then, the total energy consumption331

of tasks processed locally is calculated by:332

E locali = ε(f ik )
2ci, i ∈ V , k ∈ K . (8)333

Similarly, the energy of task offloading is calculated by (9).334

In addition to the basic computing energy consumption,335

it produces extra energy consumption for data transmission:336

Ev2e,vi = ε(f i0,m)
2λci + P0,m

(1− λ)bi
rv2e,v

, i ∈ V , m ∈ N ,337

(9)338

where P0,m represent the transceiver power between the TV339

k and the RSU n0, and the transceiver power between the TV340

and the SV nm, respectively, i.e., P0 and Pm.341

The total energy consumption of task vik is calculated by:342

E totali = E locali + Ev2e,vi , i ∈ V . (10)343

E. PROBLEM FORMULATION344

This paper aims jointly optimize the delay and energy con-345

sumption of the tasks, and control two optimized goals by346

parameters α ∈ [0, 1]. However, these two optimization347

objectives have different units and cannot be accumulated348

directly, needing to be normalized.We first divide the average349

task delay Dave =
∑V

i=1 D
total
i

V and average energy consump-350

tion Eave =
∑V

i=1 E
total
i

V by the respective maximum task delay351

Dmax > 0 and maximum energy consumption Emax > 0 of352

all offloaded tasks V in the current time, and get the delay and353

energy consumption utility od and oe ∈ [-1,1], respectively, 354

as shown in (11) and (12): 355

od = max{−1,
−Dave
Dmax

+ 1} ∈ [−1, 1], (11) 356

oe = max{−1,
−Eave
Emax

+ 1} ∈ [−1, 1]. (12) 357

Therefore, the objective function is defined as (13), max- 358

imizing the weight sum of od and oe by optimizing the 359

offloading decision {x im, λ}, where x
i
m is the task offloading 360

variable as defined in Section IV-A: 361

obj : arg max
{xim,λ}

V∑
i=1

(αod + (1− α)oe). (13) 362

s.t.
V∑
i=1

f i0,m ≤ F0,m, i ∈ V , m ∈ N . (14) 363

0 ≤ P0,m ≤ Pmax0,m . (15) 364

Dtotali ≤ 2i , i ∈ V . (16) 365

The constraints are represented by (14)-(16), where the 366

computing resources and transmission power allocated to 367

tasks vik cannot exceed their resource capacity and maximum 368

transmission power of the edge servers and service vehicles. 369

The delay constraint of task vik is represented by (16), tasks 370

that exceed the delay constraint will be dropped. 371

IV. DRL-BASED HYBRID OFFLOADING MODEL 372

A. MARKOV DECISION PROCESS 373

The RL method is different from traditional supervised 374

learning and unsupervised learning, it learns the opti- 375

mal strategy through extensively exploring the environ- 376

ment, and constantly improving strategies through rewards 377

and punishments, it’s therefore particularly suitable for 378

autonomous decision-making problems. Recently, RL has 379

shown excellent performance and adaptability in controlling 380

and decision-making problems. This paper will realize the 381

hybrid offloading decision through the advanced RL method. 382

The task offloading process can be modeled as a MDP prob- 383

lem [26], [27], which includes three basic elements: M = 384

{S(t),A(t),R(t)}, where S(t) and A(t) represents the state 385

space set and action space set, R(t) represents the reward 386

function, and defined as follows: 387

1) STATE SPACE 388

The offloading task may be generated by multiple TVs, thus 389

we can define the state S(t) as follows: 390

S(t) = {d(t), u(t), b(t), c(t)}, (17) 391

where d(t) = {d0(t), d1(t), d2(t) . . .} indicates the 392

distance between the TV and RSU or SV, u(t) = 393

{u0(t), u1(t), u2(t) . . .} indicate the available resource of the 394

RSU and SVs, b(t) and c(t) indicates the data volume of the 395

task and total CPU cycles requirement, respectively. 396
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FIGURE 2. The architecture of proposed DQN algorithm.

2) ACTION SPACE397

The agent selects the best offloading server (i.e., RSU or398

SVs) based on task demand and the resources capacity. The399

selects actions A(t) according to the current policy at time t400

is defined as:401

A(t) = {x im, λ}, (18)402

where x im = {−1, 0, 1, 2, . . . ,N }, x
i
m = −1 denotes the403

task that is processed locally, x im = 0 denotes part or all of404

the tasks that are offloaded to the RSU for execution, x im =405

{1, 2, 3, . . .N } denotes the task vik that is offloaded to the406

corresponding SV for execution, and λ denotes the proportion407

of task offloading. After executing the current action a(t) ∈408

A(t), the system enters the next state s(t + 1) ∈ S(t) and409

obtains a immediate reward r(t). This paper jointly minimize410

the delay and energy consumption of task offloading. There-411

fore, in each step, the instant reward uses both two targets for412

policy optimization as defined in objective function (13). The413

instant reward of the RL is defined as:414

r(t) = αod + (1− α)oe. (19)415

The DRL method aims to find an optimal policy to maxi-416

mize the cumulative reward R(t) =
∑T

t=1 r(t) while follow-417

ing the policy.418

B. DQN-BASED HYBRID OFFLOADING ALGORITHM419

Although traditional RL has a good efficiency in address-420

ing the control problem, it also has some limitations. For421

example, the RL algorithm based on Q-table faces the curse422

of dimensionality [28], which is not suitable for large-scale423

decision-making problems. On the contrary, Deep RL (DRL)424

uses the deep neural network (DNN) to fit Q-table, solv-425

ing the disadvantage of table-based reinforcement learn-426

ing. Currently, DRL has a good application prospect in427

decision-making and controlling problems. The DQN algo-428

rithm has better performance on dealing with discrete action429

spaces. Compared with multiple neural network based DRL430

algorithms, like Double DQN and actor-critic DRL, the DQN 431

algorithm is lightweight and insensitive to hyper-parameters, 432

and more suitable for the low-latency decision-making sce- 433

nario. Therefore, we introduce a DQN-based hybrid strategy 434

offloadingmethod in this paper. The architecture and learning 435

process of our proposed DQN-based algorithm are shown in 436

Figure 2. 437

In the RL processing, an action-value function Qπ (s, a) is 438

used to represent the expected reward of taking action a at the 439

current state s(t): 440

Qπ (s, a) = Eπ
{
∞∑
t=0

γ r(t + 1) | s(t) = s, a(t) = a

}
. (20) 441

Further, Qπ (s, a) can be rewritten as follow based on the 442

Markov property: 443

Qπ (s, a) =
∑
s′∈S

Pas,s′ [r(s, a, s
′)] 444

+γ
∑
a′∈a

π (s′|a′)qπ (s′, s′)], (21) 445

where Pas,s′ represents the state transition probability, r is the 446

immediate reward after taking an action a in state s, π (s|a) 447

represents the current policy, and γ represents the discount to 448

future rewards. 449

Q∗(s, a) represents the optimal state-action value function 450

that indicates the optimal strategy a is taken under the state s. 451

Therefore, Q∗(s, a) can be expressed as: 452

Q∗(s, a) =
∑
s′∈S

Pas,s′ [r(s, a, s
′)]+ γ max

a′
q∗(s, s′)]. (22) 453

DQN integrates an replay buffer D to cache and reuse 454

the experiences, and randomly extracts experiences from D 455

to train the DNN. Afterward, DQN further introduces a tar- 456

get network Q to eliminate experience correlation between 457

samples. Finally, DQN uses the temporal-difference (TD) 458

learning method to minimize the loss function of evaluating 459
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network Q and Q, and guide the direction of the network460

parameters θ optimization:461

L(θ ) = (Q(s, a, θ)−[r(s, a, s′)+γ max
a′

Q(s′, s′, ϑ)]), (23)462

where ϑ and θ is the parameters of the Q and Q, respectively.463

The parameter ϑ of theQ is copied fromQ at every fixed step.464

The specific steps of the algorithm are shown in Algorithm 1.465

Algorithm 1 DQN-Based Task Offloading Algorithm

Data: current state: s(t)
Result: optimal offloading decision a(t)

1 Initialize: replay buffer, network parameters: D, θ , ϑ
2 for each episode do
3 initialize pre-processed sequenced φ1 = φs1 ;
4 for t = [1,T] do
5 obtain the environment’s state s(t);
6 with probability ε random select an action

a(t) or a(t) = argmax
a
Q(s, a, θ, ϑ) ;

7 executed a(t), obtain r(t), gets next state
s(t + 1);

8 set preprocess φt+1 = φst+1 ;
9 add {s(t), a(t), r(t), s(t + 1)} into replay

buffer D ;
10 randomly sample the experience from D;
11 // calculate the target value yi //
12 if φj+1 is terminal state then
13 yi = rj;
14 else
15 yi = rj + max

a′
Q(s′, a′, ϑ);

16 end
17 update θ based on loss function L(θ ) of (23);
18 update ϑ ← θ at a fixed-interval;
19 output the optimal strategy: {x im, λ};
20 end
21 end

C. ALGORITHM COMPLEXITY466

Assuming that the DQN-based hybrid offloading algorithm467

needs to train M episodes to converge, and train the DQN468

agent for N time steps in each episode, i,e., T = N . In algo-469

rithm 1, the initialization process (line 1) only runs once, the470

first ‘‘for’’ loop (lines 2-3) performs 2M operations, while the471

second ‘‘for’’ loop (lines 4-20) performs 12NM operations,472

in which the ‘‘if’’ loop (lines 12-16) performs 2MN opera-473

tions. Therefore, the total complexity is O(2M +12MN +1).474

In our actual training process, the algorithm has converged475

well after 100 episodes of training, as shown in Fig. 3 and476

Fig. 4.We trained theDQN agent with 2000 time steps in each477

episode, i.e., N = 2000, and tasks are randomly generated478

within 2000 time steps. Therefore, M can be considered a479

TABLE 2. Experimental settings.

constant, and the total complexity of the proposed algorithm 480

is O(MN ), which implies that the proposed algorithm has a 481

relatively small complexity. 482

V. PERFORMANCE EVALUATION 483

A. SIMULATION SETTING 484

In this section we discuss a quasi-static scenario involving 485

a single MEC server and multiple vehicles [29]. In urban 486

scenes, vehicles will inevitably gather, as discussed in 487

section I. In each time slot, assume that the vehicle’s position 488

remains the same, and the channel remains stable since the 489

vehicle may still not move for a few seconds or moved for a 490

very short distance in the scenariomentioned above. TheRSU 491

is connected to the base station and MEC server by a wire 492

link, and an RSU will cover the vehicles within a radius of 493

200m. V2V communication adopts the dedicated short-range 494

communication (DSRC) [23] technology. We consider the 495

total number of 10-40 vehicles, in each period, 1-5 TVs 496

generate tasks at time slot t randomly and simultaneously 497

with themean task interval of 10 time steps, each episode lasts 498

2000 time steps (T = 2000), the rest of the vehicles can be 499

seen as the SVswith different resource capacities. These tasks 500

have various data sizes and computing requirements. The 501

resource capacity of RSU and SVs follows a uniform distri- 502

bution. Moreover, the channel gain follows 127+30logd and 503

the total bandwidth of the system is 20 MHz. Additionally, 504

the Gaussian noise N0 = −174dBm/Hz [29]. The detailed 505

simulation settings are summarized in Table 2. 506

We compare the proposed approach with the local process- 507

ing approach, single scenario offloading approach, and the 508

advanced hybrid offloading approach to verify the advantages 509

and disadvantages of our proposed approach. The comparison 510

approaches are described as follows: 511

• Our proposed DQN-based hybrid offloading algorithm 512

using two DNN networks to approximate the Q and 513

Q target network, and configures the following hyper- 514

parameters: 1) learning rate= 0.01, 2) discount factor γ 515

= 0.95. 3) buffer size |B| = 10000 with batch size |b| = 516

64. 4) DNN networks with a depth of 64 hidden layers 517

to balance the complexity and training performance. 518

• Local processing (LC): LC considers tasks are only 519

processed locally, whichwill reduce the additional trans- 520

mission delay and energy consumption. 521
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FIGURE 3. The impact of learning rate.

FIGURE 4. The impact of discount factor.

• Single-scenario offloading algorithm: two separate522

offloading algorithms that consider offloading the task523

to the edge server (i.e., V2E) or service vehicle for524

processing (i.e., V2V).525

• Game-theory based hybrid offloading algorithm [30]526

(GT-hybrid): GT-hybrid is a hybrid offloading method,527

that considers offloading the task to the optimal comput-528

ing node (i.e., RSU or SV) by getting the Nash equilib-529

rium.530

We conduct experiments on a Ubuntu 16.04 server with531

Intel(R) Core(TM) i7-7820X CPU @ 3.60GHz and a532

GeForce RTX 2080 Ti GPU. The experiments are running by533

Python 3.6 and TensorFlow 1.14 and use Adam optimizer to534

optimize the parameters.535

B. PARAMETER ANALYSIS536

To make the algorithm converge quickly and get better learn-537

ing efficiency, we first verify the learning curves of differ-538

ent learning rates and discount factors. Generally, the RL539

algorithm’s converged speed will increase with the learning540

rate. However, the convergence value cannot be guaranteed541

to be optimal when the learning rate is too large, as the agent542

may learn nothing, e.g., learning rate = 0.1 in Figure 3.543

Conversely, if the learning rate is too small, it is difficult544

FIGURE 5. The impact of the tasks quantity on task delay.

to obtain the optimal solution within an acceptable time. 545

As shown in Figure 3, DQN has the best learning effect when 546

the learning rate = 0.01 with the default discount factor = 547

0.99, which means that DQN can learn more strategies. 548

Except for the learning rate, we also verify the influence 549

of different discount factors. The discount factor is set from 550

0.93 to 0.99, and learning rate = 0.01. The results are shown 551

in Figure 4. The cumulative reward is smallest when the 552

discount factor = 0.97. When the discount factor = 0.95, the 553

DQN has the best learning performance, and the convergence 554

reward is great than 130. In the subsequent simulations, we set 555

learning rate = 0.01, and discount factor = 0.95. 556

C. SIMULATION RESULT 557

1) TASK DELAY 558

The optimization objective of RL is to optimize the average 559

delay of all tasks, so the task quantity has an important sig- 560

nificance to the algorithm performance evaluation. Figure 5 561

shows the tendency of task delay as the increasing of of 562

task quantity. From Figure 5 we can observe that the V2E 563

offloading can process a few tasks well, the task delay is 564

relatively smart when the task quantity is small. However, 565

with the increasing of tasks, the available resources for each 566

task become less, resulting in a rapid increase in the delay 567

of V2E. Similarly, when task quantity is small, the V2V 568

offloading strategy can ensure lower task delay, but there is 569

an obvious effect on the task delay when the task quantity 570

increases due to the limited computing capacity. 571

In contrast, our approach adopts a hybrid offloading 572

strategy to handle multiple tasks, which better use of dis- 573

tributed resources, and considers the long-term gain of the 574

multi-task offloading decisions. Therefore, the advantages 575

of DQN-hybrid become obvious as the number of tasks 576

increases. The GT-hybrid offloading strategy outperforms 577

the single-scenario offloading approach (i.e., only consider 578

offload task to RSU or SV), while the proposed DQN-hybrid 579

outperforms all the baseline algorithms in terms of task delay. 580

Specifically, the task delay is reduced by 27%, 20%, 16%, and 581

14%, respectively. 582

Figure 6 shows the effect of the data volume on the 583

total task delay. Generally, the data transmission delay and 584
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FIGURE 6. The impact of data volume on task delay.

FIGURE 7. The impact of MEC resource changes on task delay.

computing delay will increase corresponding with the data585

volume, as shown in the Figure. Nevertheless, the advantage586

of our proposed approach is enhanced with the increase in587

data volume, which further verifies that the DQN algorithm588

has a better generalization ability when facing multiple tasks.589

Better adaptability to resource changes is also crucial for590

task offloading algorithms. Figure 7 shows the impact of the591

available resources change of the MEC server on the task592

delay. With available resources increasing, the total delay593

of V2E and hybrid offload mechanisms decreases. When594

computing resources are insufficient, the total system delay of595

theV2E algorithm is larger than that of other algorithms. Indi-596

cates that V2E offloading is appropriate when the resources of597

the MEC servers are sufficient. The proposed hybrid offload-598

ing algorithm DQN-hybrid selects the appropriate offloading599

node by jointly considering the resources of RSU and SVs,600

thus achieving the lowest total task delay regardless of the601

resources of the edge server are sufficient.602

Similarly, Figure 8 shows the impact of changes in the603

resource of the SVs on task delay. In a real situation, the604

resource capacity of the vehicle is less than that of the MEC605

server. The task delay of four algorithms decreases as the606

resource capacity increase, except for the V2E offloading,607

since V2E does not utilize the resources of SVs. As expected,608

when vehicle resources are scarce, V2V offloading has the609

FIGURE 8. The impact of vehicle resource changes on task delay.

highest processing delay, followed by LC. The reason is that 610

V2V task offloading brings additional transmission delay 611

compared to LC. As resources increase, however, V2V task 612

delays are smaller than that of the LC, because the delay 613

of V2V offloading is greatly reduced by parallel processing. 614

As for the hybrid offloading algorithms i.e., GT-hybrid and 615

DQN-bird, they have lower task delays because they fully 616

consider different processing nodes. However, the DQN algo- 617

rithm still has better performance than GT-hybrid, and the 618

delay is further reduced by about 10%. 619

2) ENERGY CONSUMPTION 620

With the proposal of energy saving and emission reduction, 621

electric vehicles have become an irresistible trend, elec- 622

tric vehicles are more sensitive to the energy consumption. 623

Figures 9 - 10 show the impact of the task quantity and data 624

volume on the vehicle’s energy consumption. Since V2E 625

offloading transmits all the data to RSU to process, the 626

vehicle’s energy consumption is only considered by the data 627

transmission, thus the V2E offloading has the smallest energy 628

consumption. On the contrary, V2V offloading incurs the 629

highest energy consumption because nomatter where the task 630

offloads the energy consumption of vehicles is necessary, and 631

it’s slightly higher than that of LC offloading because the 632

transmission energy consumption is avoided in LC offload- 633

ing. While hybrid offloading approaches (i.e., GT-hybrid 634

and DQN-hybrid) have relatively low energy consumption. 635

Although sometimes our proposed DQN-hybrid methods are 636

higher than GT-hybrid, considering DQN-hybrid has a better 637

overall delay performance, it still has a better offloading 638

performance than GT-hybrid. In addition, the coefficient α 639

which controls the balance of two optimized goals was set 640

to 0.5 in these two experiments, different degrees of two 641

optimized goals will be obtained by adjusting the parameters. 642

3) SUCCESSFUL RATE 643

Figure 11 shows the results of the task successful rates of 644

the all algorithms under the conditions of low, medium, and 645

high resource capacity. As defined in Section III-A, a task 646

can complete before themaximum tolerate delay, we consider 647
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FIGURE 9. The impact of tasks quantity on energy consumption.

FIGURE 10. The impact of data volumes on energy consumption.

that it a successful service. We can concluded that the hybrid648

offloading algorithm is better than the LC, V2E, and V2V649

single-scenario offloading algorithms in different resource650

capacities. In the case of low resources capacity, the task651

successful rate of the hybrid offloading strategy is about652

30%-40% higher than that of the single-scenario offloading653

strategy, and the task successful rate improved by the hybrid654

offloading strategy is about 15%when the resources are suffi-655

cient. Our proposed DQN-hybrid offloading strategy is much656

higher than the single-scenario offloading strategy in terms657

of task successful rate. Moreover, compared with the state-658

of-the-art hybrid offloading strategy based on game theory659

i.e., GT-hybrid, our approach can improve the task successful660

rate by about 5-8% among three cases.661

In short, our proposed DQN-hybrid approach outper-662

forms the single-scenario offload approaches both in delay663

and energy consumption. Although GT-hybrid is another664

hybrid offloading approach based on game theory, traditional665

approaches like GT-hybrid mainly focus on immediate per-666

formance, leading to performance degradation in the long667

term. Therefore, the long-term performance of GT-hybrid is668

inferior to DQN-hybrid. In detail, the average task delay of669

DQN-hybrid is about 10-15% lower than that of GT-hybrid,670

in the case of almost equivalent energy consumption.671

Nevertheless, the current offloading method also has some672

shortcomings. For example, 1) the DQN-based algorithm is673

limited by the discrete action space, and it is difficult to exert674

FIGURE 11. The successful ratio of tasks under various resource capacity.

the greatest advantage in continuous action space situations. 675

2) further exploring in generalization ability of the trained 676

DRL model, as well as the more realistic and complicated 677

scenarios are required, such as the dynamic task offloading 678

scenario that considers the vehicle movement, in which the 679

task must be completed before it switches from its corre- 680

sponding RSU to another. 681

VI. CONCLUSION 682

In this paper, we propose a hybrid task offloading scheme 683

(HyTOS) for the urban IoVs scenario, which jointly con- 684

siders V2E and V2V offloading to minimize the task delay 685

and energy consumption while making full use of scattered 686

resources of vehicles. We further propose a Deep Q-network 687

(DQN)-based optimal offloading method to satisfy the com- 688

puting requirements and ensure the delay constraints of the 689

task. The simulation results demonstrated that our approach 690

is significantly better than the single-scenario offloading 691

approaches, and has a better overall performance than the 692

advanced game-theory based hybrid offloading approach in 693

terms of task delay and successfully rate. Our approach has 694

good application prospects in delay-constrained and dynamic 695

IoVs scenarios. Future work is in progress to consider the 696

more dynamic task offloading scenario that consider the vehi- 697

cle movement. 698
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