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ABSTRACT The rapid development of the Internet of Things (IoTs) has driven the progress of intelligent
transportation systems (ITS), which provides basic elements, such as vehicles, traffic lights, cameras,
roadside units (RSUs) and their interconnected 5G communications, to constitute the Internet of vehicles
(IoVs). In the IoVs, an intelligent vehicle can not only share information with the infrastructures like RSUs
by vehicle to infrastructure (V2I) communication but also with vehicles on the road through vehicle-to-
vehicle (V2V) communications. We thus expect that vehicles can collaborate with other well-resourced
and idling vehicles, making full use of the wasted resources. However, existing approaches cannot achieve
this goal due to the increasing strict delay constraints and the dynamic characteristics of the IoVs tasks.
To improve the utilization of resources and perform better resource management, in this paper, we propose
a hybrid task offloading scheme (HyTOS) based on deep reinforcement learning (DRL), which achieves the
vehicle-to-edge (V2E) and V2V offloading by jointly considers the delay constraints and resource demand.
To perform optimal offloading decision-making, we introduce a dynamic decision-making method, namely
deep Q networks (DQN). To verify the effectiveness of this approach, we choose three baseline offloading
approaches (one game theory-based and two single-scenario approaches) and perform a series of simulation
experiments. The simulation results demonstrate that, compared to the baseline offloading approaches, our
approach can effectively reduce task delay and energy consumption, achieving high-efficiency resource
management.

INDEX TERMS Internet of vehicles (IoVs), task offloading, vehicle to edge (V2E), vehicle to vehicle (V2V),
deep reinforcement learning (DRL).

I. INTRODUCTION vehicles, all of which require massive computation and stor-

In the scenario of the Internet of vehicles (IoVs), vehicles
are equipped with plenty of sensors, cameras, and com-
puting units to support autonomous vehicle analysis and
decision-making. With the implementation of diverse appli-
cations, such as augmented reality (AR), image-assisted nav-
igation, intelligent vehicle control, and 3D gaming, there are
new requirements and challenges producing in autonomous
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age resources, as well as a strict latency requirement. For
instance, the latency of the autonomous vehicle steering is
hoped less than 100ms [1]. In addition, the real-time oper-
ating system of an autonomous vehicle needs to process
about 1GB of data per second because there are hundreds
of sensors on vehicles generating a sea of data [2], which
may easily exhaust the vehicle’s onboard resources to process
data. Although a more powerful processor such as GPU can
be installed in vehicles to support the increasing computation
demand, it will also incur higher energy consumption, which
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affects the energy efficiency and mileage of the vehicle.
Therefore, ensuring a good quality of service (QoS) in a
resources limited intelligent vehicle is still a challenge.

To overcome the resource limitation of the single-vehicle
and avoid the long transmission delay of cloud computing
(CQC), the deployment of computing capacity at the [oVs edge
has become an effective alternative scheme. Multi-access
edge computing (MEC) can deliver CC services near the
vehicles, bringing the possibility to support computation-
and resource-intensive applications while satisfying critical
latency requirements [3]. For example, vision-based percep-
tion and feature extraction tasks with convolutional neural
networks (CNNs) can be processed at the MEC server, i.e.,
vehicle-to-edge (V2E) offloading. However, due to geograph-
ical distribution and the deployment cost constraints, it is
hard to deploy the infrastructure in all areas [4]. In this case,
collaboration with other vehicles by vehicle-to-vehicle (V2V)
communication is an effective solution.

In addition, V2V task offloading is strongly necessary for
the IoVs scenarios because 1) The application’s stringent
latency requirements are often a prerequisite of V2V com-
munication, where round-trip communication from infras-
tructure or roadside units (RSUs) and task congestion may
make the delay-sensitive services invalid; 2) Utilizing net-
work infrastructure like base station (BS) or RSU to deliver
and process the IoVs tasks will face higher costs, while the
V2V communication technology enables vehicle terminals to
directly exchange wireless information with each other with-
out forwarding through the base station, thus having lower
cost [5]; 3) The idle or underutilized computing resources
can be fully utilized for data processing, collection, and
storage, reducing resource and energy waste. 4) Especially,
in an urban scenario, vehicles usually gather for a variety
of reasons, such as traffic jams, passing through toll booths,
waiting for rush hour commute, or being attracted by attrac-
tive roadside scenery [6], these situations are quite unavoid-
able in our daily life. Figure 1 shows a specific example,
vehicles move slowly and gather for a short period in a traffic
light intersection, these vehicles gather at a relatively short
distance and form a ““resource pool”’, idles vehicles may have
abundant resources for task execution. Therefore, the task
vehicles with services overload can offload computation that
cannot be processed locally to these idle service vehicles (i.e.,
V2V task offloading).

Therefore, we propose a hybrid task offloading scheme
(HyTOS) based on deep reinforcement learning (DRL) meth-
ods, which achieves the hybrid V2E and V2V task offloading
by jointly considering the delay constraints and resource
demand of the task. HyTOS improves the utilization of
scattered resources and efficiency of resource management.
Due to the recent advances in DRL techniques solving the
large-scale dynamic decision-making problems, we introduce
a lightweight deep Q network (DQN) method to learn the
optimal offloading decision. Our main contributions are as
summarized follows:
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FIGURE 1. Hybrid task offloading scenario of loVs.

o For urban scenarios, we propose a hybrid task
offloading scheme (HyTOS) of computation- and
resource-intensive IoVs tasks, which considers the col-
laboration of V2E and V2V task offloading, making full
use of the scattered resources;

o We propose a dynamic offloading method based on
DOQN to jointly perceive the time-varying characteristics
of vehicle tasks and resources distribution to optimize
the task delay and energy consumption;

o Conduct comparative experiments with the stat-of-the-
art game theory-based and single-scenario offloading
approaches to evaluate the effectiveness and adaptability
of the proposed approach.

The remainder of this paper is organized as follows.
We summarize related works in Section II and present the
system model and mathematical description in Section III.
In Section IV, we first model the hybrid task offloading
problem as a Markov decision process (MDP) and propose a
DQN-based hybrid offloading method to address this prob-
lem. Simulations are conducted in Section V to verify the
effectiveness of our proposed method by comparison with
benchmarks, finally, we summarize our paper in Section VI.

Il. RELATED WORKS

Recent advances in Internet of things (IoTs) have spawned
massive computing-intensive and delay-sensitive scenarios,
such as virtual reality (VR), autonomous vehicles, health-
care loTs, etc [7]. Computation offloading is considered a
promising technology to cope with these emerging trends.
The latest research has involved many new challenges, such
as joint low-latency, secure and reliable task offloading which
integrate software-defined networking(SDN) and blockchain
scheme to the healthcare IoTs [8], joint computation offload-
ing and resource allocation in fog radio access networks
enabled IoTs [9], cache-assisted computation offloading in
MEC systems to avoid duplicates in offloading [10], and
balances multiple system utilities rather than simple objective
maximization [11]. More related works can be found in a
recent survey [7], and this paper focuses on task offloading
in the IoVs scenario.
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A. V2E TASK OFFLOADING IN IoVs

Edge computing technology has been increasingly incorpo-
rated into the vehicle networks [12], [13], [14], [15], [16],
[17]. For example, Luo et al.. [12] used dynamic program-
ming to represent the tasks offload problem in multiple edge
servers, an improved greedy algorithm is proposed to mini-
mize delay. Matching theory is often used to find the appro-
priate offloading nodes, Gu et al. [13] introduced a distributed
offloading method based on matching theory, and two heuris-
tics were proposed to minimize the system delay. [14]
proposed a collaborative offloading scheme based on RL,
in which edge computing and CC are considered together
with low communication overhead, however, they didn’t take
the scattered vehicles resources into consideration. Since
game theory methods can solve decision-making problems
among multiple players, it has been increasingly adopted for
multi-user task offloading problems. Liu et al. [17] consid-
ered task offloading while ensuring the load balance of MEC
servers, making the best offloading decision based on game
theory. Similarly, Chen et al. [16] took the task offloading
problem into a multi-user game-theoretic process and develop
a distributed method to solve this problem. However, these
studies mainly focus on minimizing delay or cost and do
not address the energy consumption problem, especially in
electric vehicles (EVs) with limited batteries.

Some researchers take energy consumption as one of the
optimization goals in task offloading. For example, [18]
optimized the energy consumption of mobile devices and
MEC servers in task offloading, and they introduces a
meta-heuristics algorithm to get the approximate solution.
Yuan et al. [19] studies the collaborative computation offload-
ing of distributed CC and MEC, they maximize the profit
of service providers including response time, revenue, and
penalty costs for each task by optimizing the resources
allocation simultaneously. Chen et al. [20] considered the
time-varying communication and computational resources in
sliced wireless access networks (WAN), they formulated the
stochastic task offloading as a MDP problem and addressed
by reinforcement learning (RL) algorithm. However, the
above works are mainly aimed at short-term planning and do
not take multi-task and long-term task planning into account,
which is inapplicable in a large number of task requests
scenario.

B. V2V TASK OFFLOADING IN IoVs

Although MEC and CC or its collaboration can provide ample
computing power, this architecture still has inherent limita-
tions. For example, 1) CC faces the high data transmission
delay of remote data delivery, and task congestion in the
MEC server may fail the delay-sensitive tasks; 2) MEC and
CC need to bear high infrastructure deployment costs, not all
areas can be covered by infrastructure. Recently, researchers
have also turned their attention to V2V offloading strategies,
since vehicles can also be allocated with rich computing
resources and a lot of vehicle resources are underutilized.
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Most studies still consider collaboration task offloading
schemes and take the vehicles into account. For example, [21]
proposed a collaborative offloading approach that integrates
CC, MEC, as well as vehicles. the cooperative optimization
problem is addressed based on game-theory methods. Still,
this work mainly focuses on CC and MEC collaboration,
which is different from our work. Zhang et al. [22] also
proposed the approximate task offloading that jointly con-
siders the V2V and V2I collaborate scheme, and the edge
resource is effectively utilized to reduce the processing delay.
However, the above two works only considered single-target
optimization and didn’t optimize the energy consumption.

On the contrary, some researchers merely consider the
V2V task offloading. Chen et al. [6] studied the task offload-
ing scenario which purely support by V2V collaboration, they
formulated the offloading process as a Min-Max problem
and solved by the Particle Swarm Optimization Algorithm.
However, purely considering V2V offloading cannot solve
the task offloading problem perfectly, due to the limited
vehicle resource and service interruption caused by move-
ment. We believe that the task offloading of urban vehicular
scenarios must jointly consider the edge and idle vehicle, and
make full use of scattered resources.

IlIl. SYSTEM MODEL

A. TASK MODEL

Fig. 1 depicts the IoVs computing offloading of urban sce-
nario that supports V2E and V2V collaboration. In this sce-
nario, vehicles from four directions gather at an intersection
waiting for the traffic light. RSU or MEC server is deployed
near the vehicles and connected with a BS by a wired link.
The red device indicates the service vehicle (SV) that can
offer computing assistance. In contrast, yellow indicates the
overload task vehicle (TV) that needs to offload the task to
relieve its computational load. Both TVs and SVs connect to
the MEC server in real-time and send the task requirements
as well as available computing resource capacity to the MEC
server. Therefore, the MEC server will act as the global con-
troller of the coverage area, combined with the AI algorithm
installed on the MEC server to automatically make intelligent
offloading decisions.

In this paper, we consider multiple vehicles and a MEC
server scenarios. All computing nodes that can provide ser-
vices are indicated by N = {ng, ni,na,....ny,}, where
ng represents the edge server (i.e., RSU), and we denote its
computing resource capacity as Fp. In addition, there are
m vehicles with idle computing resources that can provide
computing assistance in the resources pool, namely SVs,
which are represented as n,,, and SV n,, with the computing
capacity of F,,. The ith computing task generates by task
vehicle k at time slot # € T that needs to be offloaded to the
RSU or SV, is represented by a tuple v}'{(t) = {ci(1), bi(t), ©;},
where c¢;(¢) indicates the size of the calculation amount (that
is, the total CPU cycles) of the tasks v;'(, bi(t) represents the
data size of the task v, ®; is the maximum delay tolerance
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TABLE 1. Symbols used in this paper.

[ Symbols | Explanation |
no the edge server, e.g., RSU, ng € N
Nom, the service vehicle, n,, € N
k task vehicle, k € K
Fy computing power of the edge server
Fr computing power of the service vehicle
t the time slot, t € T’
7 the i-th offloading tasks, i € V'
v () the i-th task generated by TV k at time ¢
c; (t) the size of the CPU calculation amount of task v} (¢)
b; (t) the data size of task v} (t)
O; maximum delay tolerance of task vy,
rvZev the transmission rate between TV and RSU or SV
B¢ the system bandwidth between TV and RSU
BY the system bandwidth between TV and SV
No the noise power
pg transmission power of the TV k
h}é?oe the channel gain between the TV k£ and RSU ng
hzzfr’l the channel gain between the TV k and SV n,,
d;ﬁ 0 distance between the TV and the RSU
d;fn distance between the TV and the SV
5 the loss coefficients
1 the computing resources allocated to task v;. by TV k
k. the computing resources allocated to task v;. by SV n.m,
A the proportion of tasks processed locally
Dé;’:“vl the task coTnln.uting delay of local processing .
itran the data transmission delay of V2E or V2V offloading
ZQCZ’:L the computing delay of V2E or V2V offloading
5 the computing power allocated to task v;. by the RSU ng
k. the computing power allocated to task vz by the SV ny,
Eﬁocal the energy consumption of local processing
E;’Qe the energy consumption of V2E task offloading
EZVQU the energy consumption of V2V task offloading
€ the switched coefficient
Po the transceiver power between the TV k and the RSU ng
P, the transceiver power between the TV k and the SV n,,

of the delay-sensitive task v};, and k € K, K represents the
total number of task vehicles, i € V, V is the total number
of computing tasks of all vehicles. Each task is regarded
as unsuccessful if the task delay tolerance is exceeded after
being executed. Table 1 lists the main symbols used in this
work.

B. COMMUNICATION MODEL

In this hybrid offloading scenario, we consider that each task
can be processed locally, or collaborated with RSU or SV to
reduce the task delay and ensure a better user experience. The
task data must be transmitted to the corresponding devices
as long as the task is offloaded to RSU or SV. The TV and
the RSU are connected through the cellular network, and the
transmission rate is calculated by:

=B 1v2e)2
B¢ PT ~dy o 1]
Vv2e k k,01"°k,0
= .] 1= 0 KD
" K| 0821 No }

where B¢ represents the vehicle to edge system bandwidth and
shared by |K| task vehicles, p,{ represents the transmission
power of the TV k&, d,; g indicates the distance between the
TV k and the RSU ng and B is the loss coefficients, hZzg is the
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channel gain between the TV and the RSU, and Ny represent
noise power.

The RSU has the capacity of a relatively limited resource
compared to the cloud server, so the task congestion and
queuing are still inevitable when RSU is overloaded with
excess tasks offloading. The task quality may be degraded and
the QoS of tasks cannot be guaranteed. Therefore, offload-
ing the task to SVs is necessary when RSU is overloaded.
Similarly, When the TV offloads the computing task to SVs
for processing, its data and calculation results are transmitted
through V2V communication, the channel transmission rate
is calculated by [23]:

B’ PE - d

rv2v —-log2{1+ k,m }’

= keK,meN.
K| No

@

Similarly, BY represents the vehicle to vehicle system band-
width and shared by |K| task vehicles, d,; 51 indicates the
distance between the TV k and the SV n,,, h,‘:zl; is the channel
gain between the TV and the SV. The transmission rates
between TV and RSU, TV and SV all follow Shannon’s
theorem [24] but have different system bandwidth, distance
coverage, etc.

C. COMPUTING DELAY MODEL

The task execution brings a certain delay whether the task is
processed locally or offloaded to the RSU or SV, including
the date transmission delay and processing delay. When the
TV has sufficient computing resources, or the computation
pressure of the task is relatively low, the task is considered
to be processed locally to reduce data transmission delay.
In this case, the overall delay is equal to the computation
delay, which is determined by the total CPU cycles of the
task v;'( and the available computing capacity of the TV. The
overall delay in local processing of task v}, can be calculated
by:

Dgocal —

Abici
—fc', ieV, kek, 3)
l

k

where, A € [0, 1] indicates the proportion of tasks processed
locally, b; is the data size of task v;;, c; represents the CPU
cycles requirement to process a unit of data, and f; is the CPU
frequency of TV allocated to process task v} itself.
However, purely local processing can’t guarantee the task
QoS, as for the computation-intensive or larger amounts
of tasks, and all tasks processes locally will bring higher
energy consumption compared with transmitting data to other
servers, which is not conducive to the battery life of the
vehicle. Therefore, the computing-intensive task needs to be
offloaded to RSU or other SVs with sufficient resources for
processing. The total delay includes the processing delay in
the RSU or SVs and the transmission delay of the data, which
is calculated by:
Dv29,v _ Dv2€.v +Dv2€,v

i — i, tran i,com’

ieV, “4)
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Vv2e,v

where D’ represents the data transmission delay when

offloading to the RSU or SV, i.e., Dﬁfan or sztran, which
is calculated by the ratio of the data volume to the channel
transmission rate:

DVZe,V _ (1 - )‘)bi

i,tran — rv2e,v ’

ev, 5)

where (1 —A) indicates the proportion of task offloading. Note
that, the size of the calculation result return back is much
smaller than that of the raw data, so it can be ignored during
transmission [21]. Meanwhile, D'V is the processing delay

i,com
of the task in the RSU or SV:
ey (1= Mbici
icom = foi‘m
where foi) , denote the CPU frequency allocated to task vf( by

the RSU ng and SV n,,, respectively, i.e., foi and fni.
Finally, we can denote the total delay of the task as follows:

, 1€V, meN, (6)

plal — plocal 4 pr2ev ey, ™

D. ENERGY CONSUMPTION MODEL

The energy consumption is also non-negligible during the
process of task execution and data transmission. Therefore,
the energy consumption optimization is crucial for a hybrid
offloading system. The energy consumption of CPU-based
computing can be calculated by f? [25], where f is the CPU
frequency and ¢ is the switching coefficient which depends
on the CPU architecture. Then, the total energy consumption
of tasks processed locally is calculated by:

Eilucal — S(fki)%i’ ieV,kek. ®)

Similarly, the energy of task offloading is calculated by (9).
In addition to the basic computing energy consumption,
it produces extra energy consumption for data transmission:
(I —21)b;

Vv2e,v __ iN2y ..
Ei - S(fO,m) Aci+ Pom rv2ev

, 1eV, meN,
©)

where Py ,, represent the transceiver power between the TV
k and the RSU ny, and the transceiver power between the TV
and the SV n,,, respectively, i.e., Pop and Py,.

The total energy consumption of task v;'( is calculated by:

gl = plocal L g2V ey, (10)
E. PROBLEM FORMULATION

This paper aims jointly optimize the delay and energy con-
sumption of the tasks, and control two optimized goals by
parameters @ € [0, 1]. However, these two optimization
objectives have different units and cannot be accumulated

directly, needing to be normalized. We first divide the average

ZV plotal
task delay Dy = ==p~— and average energy consump-

14 total
Z[:I E;

tion Eqpe = == by the respective maximum task delay
Dyux > 0 and maximum energy consumption Ej,,, > 0 of
all offloaded tasks V in the current time, and get the delay and
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energy consumption utility o4 and o, € [-1,1], respectively,
as shown in (11) and (12):

—D,

04 = max{—1, —= + 1} e [—1, 1], (11)
Diax
_Eave

O¢ =max{—l,E—+l}€ [—1,1]. (12)

max

Therefore, the objective function is defined as (13), max-
imizing the weight sum of o; and o, by optimizing the
offloading decision {xﬁn, A}, where xfn is the task offloading
variable as defined in Section IV-A:

|4
obj : arg max Z(aod + (1 — a)oe). (13)
b A
V .
st fom<Fom i€V.meN. (14)
i=1

0 < Pom <Py - (15)
Dl <@; ieV. (16)

The constraints are represented by (14)-(16), where the
computing resources and transmission power allocated to
tasks v}; cannot exceed their resource capacity and maximum
transmission power of the edge servers and service vehicles.
The delay constraint of task v;'( is represented by (16), tasks
that exceed the delay constraint will be dropped.

IV. DRL-BASED HYBRID OFFLOADING MODEL

A. MARKOV DECISION PROCESS

The RL method is different from traditional supervised
learning and unsupervised learning, it learns the opti-
mal strategy through extensively exploring the environ-
ment, and constantly improving strategies through rewards
and punishments, it’s therefore particularly suitable for
autonomous decision-making problems. Recently, RL has
shown excellent performance and adaptability in controlling
and decision-making problems. This paper will realize the
hybrid offloading decision through the advanced RL method.
The task offloading process can be modeled as a MDP prob-
lem [26], [27], which includes three basic elements: M =
{S(2), A(t), R(t)}, where S(¢) and A(¢) represents the state
space set and action space set, R(¢) represents the reward
function, and defined as follows:

1) STATE SPACE
The offloading task may be generated by multiple TVs, thus
we can define the state S(¢) as follows:

S(1) = {d(0), u(t), b(1), (1)}, a7

where d(t) = {do(t),di(t),dr(t)...} indicates the
distance between the TV and RSU or SV, u(®) =
{uo(t), ui(t), up(t) ...} indicate the available resource of the
RSU and SVs, b(¢) and ¢(¢) indicates the data volume of the
task and total CPU cycles requirement, respectively.
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FIGURE 2. The architecture of proposed DQN algorithm.

2) ACTION SPACE

The agent selects the best offloading server (i.e., RSU or
SVs) based on task demand and the resources capacity. The
selects actions A(t) according to the current policy at time ¢
is defined as:

At) = {x},, A}, (18)

where x,’;l = {-1,0,1,2,...,N}, x,’;1 = —1 denotes the
task that is processed locally, x/, = 0 denotes part or all of
the tasks that are offloaded to the RSU for execution, xfn =
{1,2,3,...N} denotes the task v}'{ that is offloaded to the
corresponding SV for execution, and A denotes the proportion
of task offloading. After executing the current action a(t) €
A(t), the system enters the next state s(t + 1) € S(¢) and
obtains a immediate reward r(¢). This paper jointly minimize
the delay and energy consumption of task offloading. There-
fore, in each step, the instant reward uses both two targets for
policy optimization as defined in objective function (13). The
instant reward of the RL is defined as:

r(t) = aog + (1 — a)o,. (19)

The DRL method aims to find an optimal policy to maxi-
mize the cumulative reward R(t) = Z[T: 1 (t) while follow-
ing the policy.

B. DQN-BASED HYBRID OFFLOADING ALGORITHM

Although traditional RL has a good efficiency in address-
ing the control problem, it also has some limitations. For
example, the RL algorithm based on Q-table faces the curse
of dimensionality [28], which is not suitable for large-scale
decision-making problems. On the contrary, Deep RL (DRL)
uses the deep neural network (DNN) to fit Q-table, solv-
ing the disadvantage of table-based reinforcement learn-
ing. Currently, DRL has a good application prospect in
decision-making and controlling problems. The DQN algo-
rithm has better performance on dealing with discrete action
spaces. Compared with multiple neural network based DRL
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algorithms, like Double DQN and actor-critic DRL, the DQN
algorithm is lightweight and insensitive to hyper-parameters,
and more suitable for the low-latency decision-making sce-
nario. Therefore, we introduce a DQN-based hybrid strategy
offloading method in this paper. The architecture and learning
process of our proposed DQN-based algorithm are shown in
Figure 2.

In the RL processing, an action-value function Q (s, a) is
used to represent the expected reward of taking action a at the
current state s(t):

Ox(s,a)=E" {Z yrt+1)|s@)=s,a@t)=a;. (20)

t=0

Further, O (s, a) can be rewritten as follow based on the
Markov property:

On(s,a) =Y PL (s, a,s)]
s'eS
+y Y w($ld)g (s s, @D

daea

where P?’S, represents the state transition probability, r is the
immediate reward after taking an action a in state s, 7w (s|a)
represents the current policy, and y represents the discount to
future rewards.

Q*(s, a) represents the optimal state-action value function
that indicates the optimal strategy a is taken under the state s.
Therefore, Q*(s, a) can be expressed as:

0*(s, a) = Z P{lr(s,a,sH] +y max q*(s,s)]. (22)

s'es

DQN integrates an replay buffer D to cache and reuse
the experiences, and randomly extracts experiences from D
to train the DNN. Afterward, DQN further introduces a tar-
get network Q to eliminate experience correlation between
samples. Finally, DQN uses the temporal-difference (TD)
learning method to minimize the loss function of evaluating
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network Q and Q, and guide the direction of the network
parameters 6 optimization:

L©®) = (Q(s, a,0)—[r(s,a,s')+y max Q(s', s', })]), (23)
a/
where © and 6 is the parameters of the Q and Q, respectively.

The parameter ¢ of the Q is copied from Q at every fixed step.
The specific steps of the algorithm are shown in Algorithm 1.

Algorithm 1 DQN-Based Task Offloading Algorithm

Data: current state: s(z)

Result: optimal offloading decision a(t)
1 Initialize: replay buffer, network parameters: D, 6,
2 for each episode do

3 initialize pre-processed sequenced ¢ = ¢y, ;
4 forr=[1,T] do
5 obtain the environment’s state s(¢);
6 with probability € random select an action
a(t) ora(t) = arg mgzx 0(s,a,0,9);
7 executed a(t), obtain r(z), gets next state
s+ 1);
8 set preprocess ¢;+1 = Py,
9 add {s(z), a(t), r(t), s(t + 1)} into replay
buffer D ;
10 randomly sample the experience from D;
11 /I calculate the target value y; //
12 if ¢;11 is terminal state then
13 ‘ Yi = Fj;
14 else
15 ‘ yi = rj + max o', d, 9);
a
16 end
17 update 6 based on loss function L(6) of (23);
18 update ¢+ < 6 at a fixed-interval;
19 output the optimal strategy: {x.,, A};
20 end
21 end

C. ALGORITHM COMPLEXITY

Assuming that the DQN-based hybrid offloading algorithm
needs to train M episodes to converge, and train the DQN
agent for N time steps in each episode, i,e., 7 = N. In algo-
rithm 1, the initialization process (line 1) only runs once, the
first “for” loop (lines 2-3) performs 2M operations, while the
second ““for” loop (lines 4-20) performs 12NM operations,
in which the “if”’ loop (lines 12-16) performs 2MN opera-
tions. Therefore, the total complexity is O2M + 12MN + 1).
In our actual training process, the algorithm has converged
well after 100 episodes of training, as shown in Fig. 3 and
Fig. 4. We trained the DQN agent with 2000 time steps in each
episode, i.e., N = 2000, and tasks are randomly generated
within 2000 time steps. Therefore, M can be considered a
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TABLE 2. Experimental settings.

Number of vehicles [10, 40]
Number of task vehicles [1, 5]
An RSU coverage 200m
V2E system bandwidth 12 MHz
V2V system bandwidth 8 MHz
Channel gain 127+30logd
Gaussian noise -174dBm/Hz
Average task CPU requirements [0.5, 2]Giga cycles
Average data size [2,10]MB
Transmission power [5,38]dBm
Computing power of edge server [5, 35]GHz
Computing power of service vehicle [2, 8]GHz

constant, and the total complexity of the proposed algorithm
is O(MN), which implies that the proposed algorithm has a
relatively small complexity.

V. PERFORMANCE EVALUATION

A. SIMULATION SETTING

In this section we discuss a quasi-static scenario involving
a single MEC server and multiple vehicles [29]. In urban
scenes, vehicles will inevitably gather, as discussed in
section I. In each time slot, assume that the vehicle’s position
remains the same, and the channel remains stable since the
vehicle may still not move for a few seconds or moved for a
very short distance in the scenario mentioned above. The RSU
is connected to the base station and MEC server by a wire
link, and an RSU will cover the vehicles within a radius of
200m. V2V communication adopts the dedicated short-range
communication (DSRC) [23] technology. We consider the
total number of 10-40 vehicles, in each period, 1-5 TVs
generate tasks at time slot r randomly and simultaneously
with the mean task interval of 10 time steps, each episode lasts
2000 time steps (T = 2000), the rest of the vehicles can be
seen as the SVs with different resource capacities. These tasks
have various data sizes and computing requirements. The
resource capacity of RSU and SVs follows a uniform distri-
bution. Moreover, the channel gain follows 127 + 30logd and
the total bandwidth of the system is 20 MHz. Additionally,
the Gaussian noise N9 = —174dBm/Hz [29]. The detailed
simulation settings are summarized in Table 2.

We compare the proposed approach with the local process-
ing approach, single scenario offloading approach, and the
advanced hybrid offloading approach to verify the advantages
and disadvantages of our proposed approach. The comparison
approaches are described as follows:

o Our proposed DQN-based hybrid offloading algorithm
using two DNN networks to approximate the Q and
Q target network, and configures the following hyper-
parameters: 1) learning rate = 0.01, 2) discount factor y
= 0.95. 3) buffer size |B| = 10000 with batch size |b| =
64. 4) DNN networks with a depth of 64 hidden layers
to balance the complexity and training performance.

o Local processing (LC): LC considers tasks are only
processed locally, which will reduce the additional trans-
mission delay and energy consumption.
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FIGURE 4. The impact of discount factor.

o Single-scenario offloading algorithm: two separate
offloading algorithms that consider offloading the task
to the edge server (i.e., V2E) or service vehicle for
processing (i.e., V2V).

o Game-theory based hybrid offloading algorithm [30]
(GT-hybrid): GT-hybrid is a hybrid offloading method,
that considers offloading the task to the optimal comput-
ing node (i.e., RSU or SV) by getting the Nash equilib-
rium.

We conduct experiments on a Ubuntu 16.04 server with
Intel(R) Core(TM) i7-7820X CPU @ 3.60GHz and a
GeForce RTX 2080 Ti GPU. The experiments are running by
Python 3.6 and TensorFlow 1.14 and use Adam optimizer to
optimize the parameters.

B. PARAMETER ANALYSIS

To make the algorithm converge quickly and get better learn-
ing efficiency, we first verify the learning curves of differ-
ent learning rates and discount factors. Generally, the RL
algorithm’s converged speed will increase with the learning
rate. However, the convergence value cannot be guaranteed
to be optimal when the learning rate is too large, as the agent
may learn nothing, e.g., learning rate = 0.1 in Figure 3.
Conversely, if the learning rate is too small, it is difficult
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to obtain the optimal solution within an acceptable time.
As shown in Figure 3, DQN has the best learning effect when
the learning rate = 0.01 with the default discount factor =
0.99, which means that DQN can learn more strategies.

Except for the learning rate, we also verify the influence
of different discount factors. The discount factor is set from
0.93 to 0.99, and learning rate = 0.01. The results are shown
in Figure 4. The cumulative reward is smallest when the
discount factor = 0.97. When the discount factor = 0.95, the
DOQN has the best learning performance, and the convergence
reward is great than 130. In the subsequent simulations, we set
learning rate = 0.01, and discount factor = 0.95.

C. SIMULATION RESULT

1) TASK DELAY

The optimization objective of RL is to optimize the average
delay of all tasks, so the task quantity has an important sig-
nificance to the algorithm performance evaluation. Figure 5
shows the tendency of task delay as the increasing of of
task quantity. From Figure 5 we can observe that the V2E
offloading can process a few tasks well, the task delay is
relatively smart when the task quantity is small. However,
with the increasing of tasks, the available resources for each
task become less, resulting in a rapid increase in the delay
of V2E. Similarly, when task quantity is small, the V2V
offloading strategy can ensure lower task delay, but there is
an obvious effect on the task delay when the task quantity
increases due to the limited computing capacity.

In contrast, our approach adopts a hybrid offloading
strategy to handle multiple tasks, which better use of dis-
tributed resources, and considers the long-term gain of the
multi-task offloading decisions. Therefore, the advantages
of DQN-hybrid become obvious as the number of tasks
increases. The GT-hybrid offloading strategy outperforms
the single-scenario offloading approach (i.e., only consider
offload task to RSU or SV), while the proposed DQN-hybrid
outperforms all the baseline algorithms in terms of task delay.
Specifically, the task delay is reduced by 27%, 20%, 16%, and
14%, respectively.

Figure 6 shows the effect of the data volume on the
total task delay. Generally, the data transmission delay and
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computing delay will increase corresponding with the data
volume, as shown in the Figure. Nevertheless, the advantage
of our proposed approach is enhanced with the increase in
data volume, which further verifies that the DQN algorithm
has a better generalization ability when facing multiple tasks.

Better adaptability to resource changes is also crucial for
task offloading algorithms. Figure 7 shows the impact of the
available resources change of the MEC server on the task
delay. With available resources increasing, the total delay
of V2E and hybrid offload mechanisms decreases. When
computing resources are insufficient, the total system delay of
the V2E algorithm is larger than that of other algorithms. Indi-
cates that V2E offloading is appropriate when the resources of
the MEC servers are sufficient. The proposed hybrid offload-
ing algorithm DQN-hybrid selects the appropriate offloading
node by jointly considering the resources of RSU and SVs,
thus achieving the lowest total task delay regardless of the
resources of the edge server are sufficient.

Similarly, Figure 8 shows the impact of changes in the
resource of the SVs on task delay. In a real situation, the
resource capacity of the vehicle is less than that of the MEC
server. The task delay of four algorithms decreases as the
resource capacity increase, except for the V2E offloading,
since V2E does not utilize the resources of SVs. As expected,
when vehicle resources are scarce, V2V offloading has the
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highest processing delay, followed by LC. The reason is that
V2V task offloading brings additional transmission delay
compared to LC. As resources increase, however, V2V task
delays are smaller than that of the LC, because the delay
of V2V offloading is greatly reduced by parallel processing.
As for the hybrid offloading algorithms i.e., GT-hybrid and
DQN-bird, they have lower task delays because they fully
consider different processing nodes. However, the DQN algo-
rithm still has better performance than GT-hybrid, and the
delay is further reduced by about 10%.

2) ENERGY CONSUMPTION

With the proposal of energy saving and emission reduction,
electric vehicles have become an irresistible trend, elec-
tric vehicles are more sensitive to the energy consumption.
Figures 9 - 10 show the impact of the task quantity and data
volume on the vehicle’s energy consumption. Since V2E
offloading transmits all the data to RSU to process, the
vehicle’s energy consumption is only considered by the data
transmission, thus the V2E offloading has the smallest energy
consumption. On the contrary, V2V offloading incurs the
highest energy consumption because no matter where the task
offloads the energy consumption of vehicles is necessary, and
it’s slightly higher than that of LC offloading because the
transmission energy consumption is avoided in LC offload-
ing. While hybrid offloading approaches (i.e., GT-hybrid
and DQN-hybrid) have relatively low energy consumption.
Although sometimes our proposed DQN-hybrid methods are
higher than GT-hybrid, considering DQN-hybrid has a better
overall delay performance, it still has a better offloading
performance than GT-hybrid. In addition, the coefficient o
which controls the balance of two optimized goals was set
to 0.5 in these two experiments, different degrees of two
optimized goals will be obtained by adjusting the parameters.

3) SUCCESSFUL RATE

Figure 11 shows the results of the task successful rates of
the all algorithms under the conditions of low, medium, and
high resource capacity. As defined in Section III-A, a task
can complete before the maximum tolerate delay, we consider
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that it a successful service. We can concluded that the hybrid
offloading algorithm is better than the LC, V2E, and V2V
single-scenario offloading algorithms in different resource
capacities. In the case of low resources capacity, the task
successful rate of the hybrid offloading strategy is about
30%-40% higher than that of the single-scenario offloading
strategy, and the task successful rate improved by the hybrid
offloading strategy is about 15% when the resources are suffi-
cient. Our proposed DQN-hybrid offloading strategy is much
higher than the single-scenario offloading strategy in terms
of task successful rate. Moreover, compared with the state-
of-the-art hybrid offloading strategy based on game theory
i.e., GT-hybrid, our approach can improve the task successful
rate by about 5-8% among three cases.

In short, our proposed DQN-hybrid approach outper-
forms the single-scenario offload approaches both in delay
and energy consumption. Although GT-hybrid is another
hybrid offloading approach based on game theory, traditional
approaches like GT-hybrid mainly focus on immediate per-
formance, leading to performance degradation in the long
term. Therefore, the long-term performance of GT-hybrid is
inferior to DQN-hybrid. In detail, the average task delay of
DQN-hybrid is about 10-15% lower than that of GT-hybrid,
in the case of almost equivalent energy consumption.

Nevertheless, the current offloading method also has some
shortcomings. For example, 1) the DQN-based algorithm is
limited by the discrete action space, and it is difficult to exert
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the greatest advantage in continuous action space situations.
2) further exploring in generalization ability of the trained
DRL model, as well as the more realistic and complicated
scenarios are required, such as the dynamic task offloading
scenario that considers the vehicle movement, in which the
task must be completed before it switches from its corre-
sponding RSU to another.

VI. CONCLUSION

In this paper, we propose a hybrid task offloading scheme
(HyTOS) for the urban IoVs scenario, which jointly con-
siders V2E and V2V offloading to minimize the task delay
and energy consumption while making full use of scattered
resources of vehicles. We further propose a Deep Q-network
(DQN)-based optimal offloading method to satisfy the com-
puting requirements and ensure the delay constraints of the
task. The simulation results demonstrated that our approach
is significantly better than the single-scenario offloading
approaches, and has a better overall performance than the
advanced game-theory based hybrid offloading approach in
terms of task delay and successfully rate. Our approach has
good application prospects in delay-constrained and dynamic
IoVs scenarios. Future work is in progress to consider the
more dynamic task offloading scenario that consider the vehi-
cle movement.
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