IEEE Access

Multidisciplinary  Rapid Review : Open Access Journal

Received 24 August 2022, accepted 7 September 2022, date of publication 12 September 2022,
date of current version 22 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3206363

== RESEARCH ARTICLE

Automatic Hajj and Umrah Ritual Detection
Using IMU Sensors

KHALIL CHIKHAOUI', MOHAMMED ELRASHIDY'!, MOTAZ ALFARRAJ“12, (Member, IEEE),
ALI H. MUQAIBEL 13, (Senior Member, IEEE), RIDA SADAGAH'!, AND ABDULLAH SHARQAWI'

!Electrical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
2SDAIA-KFUPM Joint Research Center for Artificial Intelligence, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
3Center for Communication Systems and Sensing, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Corresponding author: Motaz Alfarraj (motaz@kfupm.edu.sa)
The authors would like to acknowledge the Deanship of Research Oversight and Coordination (DROC) at King Fahd University of

Petroleum & Minerals (KFUPM) for the support under SDAIA-KFUPM Joint Research Center for Artificial Intelligence and the
Interdisciplinary Research Center for Communication Systems and Sensing

ABSTRACT A smartphone can provide a wide range of practical applications and services thanks to its
advanced sensing capabilities. However, the sector of Hajj and Umrah, which are rituals performed by
millions of pilgrims, still lacks intelligent solutions that can improve the pilgrim experience using these
sophisticated capabilities. This research aims to bridge this gap by introducing a solution that applies a
real-time monitoring process to different Umrah activities (i.e., Tawaf and Sa’i) using smartphone sensors.
In the proposed solution, the smartphone first tracks the pilgrim’s path with the help of inertial sensors,
commonly known as the inertial measurement unit (IMU). Then, an algorithm is developed to detect
and process the different activities performed by the user and provide helpful instructions accordingly
for a comfortable and successful experience. The proposed system was tested and validated using real
data for Tawaf and Sa’i activities. The extracted paths were compared with the GPS data for validation.
Results showed that the paths were extracted effectively and the algorithm monitored both Tawaf and Sa’i
successfully. The deviation between the real path and the extracted path using the proposed algorithm can

be enhanced with proper GPS assessment and step-length calibration.

INDEX TERMS Activity detection, Hajj, IMU sensing, indoor navigation, path tracking, PDR, Umrah.

I. INTRODUCTION

Tawaf, walking seven laps around the Kaaba while reciting
supplications and prayers, and Sa’i, walking between Safa
and Marwa seven times while reciting supplications and
prayers, are important rituals performed by millions of Mus-
lims throughout the year. The combination of the two of them
is known to Muslims as Umrah. Tawaf and Sa’i are also part
of the annual Islamic pilgrimage known as Hajj. According
to the Saudi General Authority of Statistics [1], the total
number of Muslims who performed Umrah in 2019 reached
19 million. Also, with up to 3 million pilgrimages gathered
between the 8th and the 13th of Dhu al-Hijjah, the twelfth
month in the Islamic calendar, Hajj is the largest annual mass
gathering globally [2]. The gathering of such huge numbers
normally creates big crowds that must be carefully managed
to provide a smooth experience.

The associate editor coordinating the review of this manuscript and
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The potential of smartphones remains untapped in the
sector of Hajj and Umrah. In a study published in Khan and
Shambour [3] investigated more than 200 applications used
to help pilgrims in the holy rituals. Results indicated that
most of these applications are primitive and provide very
basic services to the user. Examples of these services included
information on Hajj and Umrah rituals, live video, Qibla
(i.e., the direction towards which Muslim people face during
prayers) compass, and prayer schedule. We aim in this work
to bridge this gap by providing a smart solution that can be
used to benefit Hajj and Umrah sector. Namely, we design a
real-time, interactive, and automated Umrah detection service
that utilizes smartphone sensors. A smartphone application
collects the data from the smartphone’s motion sensors. Then,
an algorithm is designed to deliver useful information to
the pilgrim upon automatic identification and processing of
their Umrah activities. The delivered information includes
lap count, interactive guidance, supplications, and general
statistics about Umrah.
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The proposed system is expected to help in managing the
crowds and reduce the congestion in Hajj and Umrah through
autonomous detection and interactive guidance. Also, this
work can be extended to control and monitor other mass
gatherings such as large festivals and religious pilgrimages.

A. RELATED WORK

Human activity recognition has gained increasing attention
for the past three decades [4], [5], [6], [7]. Different activity
recognition techniques are implemented using motion sen-
sors (e.g., accelerometers [8], [9], [10]), microphones [11],
[12], and cameras [13] to infer different sets of human activi-
ties. The settings of different activity detection techniques fall
into two categories. In the first category, the employed sen-
sors are embedded in a wearable device [10], [14]. The second
category includes systems that use smartphone-embedded
sensors for activity recognition [15], [16]. Wearable sensors
have the advantage of providing a controlled relationship
between the sensor data and the target activity. However,
in the second category, more sophisticated algorithms are
required to predict this relation. Nonetheless, it is more fea-
sible and cost-efficient to use smartphone sensors for large
target population events such as Hajj and Umrah.

Different approaches for activity recognition from both
categories target activities like walking, running, cycling,
sleeping, and making conversations. However, a pilgrim per-
forms a collection of these activities during any of the Umrah
rituals. Since the main objective of this work is to detect these
rituals (i.e., Tawaf and Sa’i), utilizing simple activity recog-
nition techniques will not be sufficient for detecting more
complex activities like the ones performed during Umrah.
Therefore, we attempt a different approach where pilgrim’s
ritual activities can be inferred from tracking and analyzing
their walking path. Existing smartphone applications used for
similar tasks (e.g., Tawaf App [17] and Al-Magsad [18]) use
hybrid approaches for path tracking based on Bluetooth Low
Energy (BLE), Wi-Fi, and GPS. For utilizing such resources,
external tag installation is required. Moreover, direct user
interaction is required for the mentioned applications to be
able to recognize the starting point of the ritual. Finally,
each application specializes in detecting a specific activity
(e.g., counting the number of laps during Tawaf or indoor nav-
igation). However, none of these applications are designed for
detecting all Umrah activities.

Different techniques employ smartphone sensors for posi-
tioning purposes. Ashraf et al. [19] reviewed such tech-
niques, including Wi-Fi, BLE, Pedestrian Dead Reckoning
(PDR), Geomagnetic, GPS, and camera-based localization.
Except for PDR, though, other techniques require either
external infrastructure [20], which is not available in Tawaf
and Sa’i areas, or relatively high power consumption [19],
[21]. Indoor localization techniques generally suffer from the
first drawback, since they are mostly designed to leverage
Wi-Fi tags (e.g., [22]). Yu et al. [20] attribute the mentioned
issues to navigation methods other than inertial navigation,
which includes strapdown inertial navigation systems (SINS)
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and PDR. SINS is specifically used when the IMU unit is
rigidly attached to the tracked object [23] or, in the case of
pedestrian tracking, mounted to the user’s feet [20]. PDR,
on the other hand, does not suffer from this limitation [20].
Considering its capability of tracking pedestrians using IMU
units embedded in smartphones, we choose PDR for path
tracking.

PDR technique [24], [25], [26], [27] used for path tracking
in this work consists of two main stages. The first stage is step
counting and travel distance estimation. The second stage is
heading estimation. Algorithms that use smartphone sensor
data to achieve the objectives of each stage can be found either
separately or combined in the literature. Step counting is a
topic of interest for many researchers. Brajdic and Harle [28]
evaluated different step counting and walk detection algo-
rithms at six different phone positions. The authors reported
that windowed peak detection methods for accelerometer data
are favored for step detection with an error rate of less than
3%. A more recent work [29] proposed an algorithm that
defines three measures for analyzing the accelerometer data:
periodicity, similarity, and continuity. A step is verified when
these three measures meet certain conditions. The algorithm
outperformed the conventional peak detection-based method.
Relying on measures such as similarity and periodicity may
require the studied walk to be uniform to a certain degree.
During Umrah, though, pilgrims’ movements are expected
to be more complex considering the usual crowd situations
in Tawaf and Sai areas. Rodriguez et al. [30] presented a
model where peak-valley detection is used for step counting.
They used a combination of support vector machines and a
standard deviation-based classifier for validating the results
of the standard step counting strategy. Pham et al. [31] pro-
posed an algorithm that finds suitable minimal peak detec-
tion, minimal peak prominence, dynamic thresholding, and
vibration elimination and leverages them to solve problems
like over-counting, under-counting, and false walking which
can be encountered by the standard method. The method-
ology was tested on a peak detection algorithm. It is also
common to use fast Fourier transform (FFT) to detect and
count steps [32], [33].

Works focusing on heading estimation usually propose a
mathematical model that fuses the fetched data from IMU
units to determine the device’s 3D orientation via either
Euler’s angles or quaternions. The fusion process usually
involves Kalman filters, and sometimes quaternions. The next
step is to use the orientation of the device along with the data
from the IMU unit to estimate the heading of the user [34],
[35], [36]. It is important to notice, though, that smartphones
readily provide the pitch, roll, and azimuth of the device using
a virtual sensor called the orientation sensor. This sensor is
created using a fusion process similar to the one described
above [37].

B. CONTRIBUTION
While the above mentioned works utilize step counting and
heading estimation techniques to detect relatively simple
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actions like walking and running, the main contribution of this
work is to use the path found by applying PDR to recognize
more complicated actions, namely, Tawaf and Sa’i. In this
work, we design a system that is implemented on a mobile
application.! In summary, this system is composed of two
steps that enable ritual detection in real-time. The two steps
are:

o Developing a PDR algorithm for path tracking. The
algorithm is customized for the Umrah rituals and pro-
vides reliable tracking in indoor and outdoor environ-
ments using the smartphone sensors only without any
external infrastructure needed.

o Developing an algorithm to detect and monitor Tawaf
and Sa’i activities automatically without user activation
(The application will collect GPS data periodically in
the background ‘“upon user approval” and the detection
process automatically starts when the user is within the
Tawaf area).

Since the objective of this work is to detect Umrah rituals
given the pilgrim’s path, the developed PDR technique is
similar to what can be found in the literature. For step count-
ing, a peak detection method is followed after fetching and
filtering the accelerometer data. A similar approach can be
found in [38]. For heading estimation, the output of the orien-
tation sensor will be directly used, along with accelerometer
correction. The role of PDR in this paper is to provide a path
that can be appreciated by the detection algorithm. Therefore,
aiming for a robust, novel, PDR algorithm is not one of the
objectives of this work.

Finally, this work is expected to contribute to important
aspects related to organization tasks in Masjid al-Haram like
crowd management in Tawaf and Sa’i areas.

The rest of the paper is organized as follows. Section II
introduces the system framework and explains the underlying
processes that include pre-processing of sensors’ readings
(Section II-A), path tracking using PDR (Section II-B), and
real-time detection and monitoring (Section II-C). Section III
provides results analysis for the different stages in the pro-
posed model. Finally, the paper is concluded in Section V.

Il. SYSTEM FRAMEWORK

We propose a 3-stage system as shown in Fig. 1. The inputs to
the system come from three sensors in the user’s smartphone;
accelerometer, orientation sensor, and GPS. The readings of
the accelerometer and the orientation sensor are provided by
the inertial measurement unit (IMU) in the smartphone. The
data is passed sequentially through the three stages of the
system.

In the first stage, the data is pre-processed for the PDR
algorithm. A standard coordinate rotation technique is used
for converting the given data from the device coordinate
system (DCS) to the global coordinate system (GCS).

I'we expect the pilgrim to carry a smartphone device with a pre-installed
software application. The used smartphone must include a GPS and an IMU
to operate the software properly.

98234

@
2

E. Accelerometer Orientation GPS
=

De-Rotation

DeRot-
Acceleration

Step Counting

o0
g
=
= Distance Estimation ‘ Heading Estimation
=
=
z ! ]
— Path
I
= "
2
2 ‘ Sa’i Detection ‘ ‘ Tawaf Detection ‘
&
D
= |
2
2 Information
g to User

FIGURE 1. Diagram of the proposed ritual detection and monitoring
system.

In the second stage, the PDR technique is used to infer the
user’s path from the pre-processed data by step counting and
heading estimation. Step counting, which is mainly inferred
from the accelerometer, is used for step detection and stride
length estimation. As for heading estimation, it is mainly
inferred from the orientation sensor.

The final stage of the proposed framework is to detect
the users’ activity and provide them with useful information
based on their location and situation.

(b)

FIGURE 2. (a): Device Coordinate System (DCS) with the three angles
visualized. (b): Global Coordinate System (GCS).

A. PRE-PROCESSING
The data provided by smartphone sensors is measured with
respect to the smartphone’s coordinate system (i.e., DCS).
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Since smartphones are held in different positions and orien-
tations with respect to different pilgrims, the fetched smart-
phone sensor data does not directly indicate the pilgrim’s
velocity and heading. Rendering the data useful for step
counting and heading estimation requires applying a proper
rotation matrix to express the raw data in terms of the GCS.
Fig. 2 illustrates the difference between the two conventional
coordinate systems (i.e., DCS and GCS). The rotation matrix
used for conversion between the two systems is given by

cos ¢ 0 —sin¢
sinfsing cosf sin6 cos¢ D
cosfsing —siné cosd cos P

RO, ¢) =

where 6 and ¢ denote pitch and roll angles, respectively.
It should be noticed that (1) is used for adjusting the tilt
of the DCS to be aligned with the xy plane of the GCS.
As far as the step counting and heading estimation processes
are concerned, only tilt compensation [39] for the fetched
acceleration vector, apcs, from the device’s IMU unit -is
required.

Therefore, the corrected acceleration components, agcs,
is given by

accs = RO, ¢) "apcs )

B. PDR FOR PATH TRACKING

For the path tracking task, we opted for the PDR technique
due to two main reasons. First, since most of the Umrah
rituals are performed in an indoor environment, PDR was
chosen as it relies solely on the inertial sensors provided in the
smartphone. Furthermore, PDR does not require an external
infrastructure to be installed, unlike BLE or Wi-Fi-based
methods [19]. PDR technique [24], [25], [26] consists of
two main stages. The first stage is step counting and travel
distance estimation. The second stage is updating the heading
angle after each detected step to infer the corresponding path.
Fig. 3 illustrates the process of drawing the user’s path using
PDR technique. The position of the user at time instant ¢ is
given by

Ny = N;_1+SL;_1 xcosV¥,_
Et = E[_] + SL[_l X sin \Ijt_l (3)

where N; and E; are the current northing and easting, N,_|
and E;_ are the previous coordinates, SL,_1 is the length of
the previous step, and W,_1 is the previous heading angle with
respect to the north. This section studies the step counting
process, and heading estimation.

1) STEP DETECTION

Step counting is the main process in PDR systems [24], along
with heading estimation. Rather than abiding by the standard
definition of a gait cycle [40], [41], which is convenient
for bio-mechanical simulation considerations, we follow the
step-phase definition as in [24] which describes the typical
behavior of a pedestrian’s acceleration.
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FIGURE 4. Smartphone acceleration during a normal walk shows (a) the
double (fake) peaks, and (b) the z-component of acceleration after BPF.

A possible approach for step detection is to monitor the
smartphone’s acceleration [24], [42]. Regardless of the phone
position relative to the user, each step has a significant con-
tribution to the acceleration magnitude, given by

a:,/a)%+a§+a§ (@)

Using this approach for step detection, however, yields
erroneous results due to two sources of distortion. First,
small-scale fluctuations of the phone while moving, and sec-
ond, sudden rotations of the user that results in large-scale
noise. The first problem results in double (fake) peaks like
the ones encircled in Fig. 4a. To solve this problem, a Band
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Pass Filter (BPF) with cut-off frequencies of (0.5 — 10 Hz) is
applied. The cut-off frequencies were obtained empirically
to minimize the step counting error. The second problem
(i.e., sudden rotations) results in undesirable peaks due to the
sudden increments in the global horizontal acceleration com-
ponents. These noisy peaks cannot be removed with filters as
they are identical to the real peaks. Due to this issue, accelera-
tion magnitude obtained from (4) is not always the best option
for step counting. However, since this problem results from
changes in the global horizontal acceleration components
only, the global vertical component of the acceleration can be
used for step counting instead of the magnitude. This com-
ponent can be obtained using the tilt compensation technique
discussed in Section II-A. Fig. 4b shows a plot of the isolated
vertical acceleration component in time after applying BPF
to remove the double peaks.

2) DISTANCE ESTIMATION
The ultimate goal of step counting is to estimate the crossed
distance by the user and draw his path, which will be used
accordingly in the detection algorithm. In this work, the
Weinberg formula given by

SLi =K Amax,i — Amin,i 4)

is used to estimate the length of each step taken by the
user [43], [44]. Weinberg formula is an empirical relation that
is commonly utilized in PDR systems to estimate the step
length with respect to the user’s acceleration.

In (5), SL; is the length of the jth step that occurred in
a certain time window, dyqy,; and ap,,; are the maximum
and minimum acceleration values in the same time window,
respectively, and K-factor is a constant for unit conversion
that is set depending on the user’s step size. In our study, we
use two different approaches to tune the value of K. The first
approach is to train the tuning process based on GPS data.
If GPS data is not available, as in an indoor environment,
we set the step length to its average (73.6 cm [43]) and train
the K -factor so that the resultant average step length matches
this value. The sum of step lengths during the desired duration
results in the distance crossed by the user, which will be
combined with the heading angle (i.e., the last stage of PDR)
to draw the user’s path.

Although distance estimation is needed for path tracking,
accurate estimations are not required for a valid detection of
the rituals as will be discussed in II-C. Therefore, even if
the step length was chosen to be constant, the algorithm is
still functioning. In other words, the output path will have the
same shape but will be scaled according to the K -factor and
will not affect the detection performance.

3) HEADING ESTIMATION

The orientation sensor is used to update the heading of the
user at each step. However, as the smartphone can be ran-
domly carried by the user, a method for correcting the phone
orientation to ensure the consistency of the smartphone with
the direction of the user is needed.
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FIGURE 5. Front view of the pilgrim with common phone settings. The
phone is positioned horizontally or vertically in a belt fastened on the

(a) front side, (b) left or right sides or (c) in a bag held on the front side of
the pilgrim.

Albeit random, typical smartphone settings and orienta-
tions during Umrah activities can be predicted. Two common
settings are depicted in Fig. 5a and 5b. The front bag setting
in Fig. 5c is similar to the front belt setting in Fig. 5a in
terms of the pilgrim’s heading analysis. Ideally, there are two
possible phone orientations for every setting in Fig. 5. If the
longitudinal side of the phone is perpendicular to the xy-plane
of the GCS (See Fig. 2b), then the phone position is vertical.
If the longitudinal side of the phone is parallel to the xy-plane
of the GCS, then the phone position is horizontal.

Another common setting for the phone is when it is held
in front of the user by his hand. We consider two possible
phone positions for this setting as well. One position is the
portrait mode, which is similar to the vertical position, and
the second position is the landscape mode, which is similar
to the horizontal position.

Considering these pre-defined positions for the smart-
phone while performing the rituals and modifying the
heading estimation accordingly; will ease the process of the
heading correction significantly compared to the random held
situation, and hence, reduce the complexity of the model and
the real-time processing.

To successfully estimate the pilgrim’s heading with respect
to his smartphone, it is first required to detect the smartphone
orientation using the uncompensated acceleration compo-
nents. Smartphone orientation is determined by identifying
the component dominated by the acceleration of gravity.
Compared to the other acceleration components, the target
component, a;, is their maximum. In other words, we seek a;
such that

aj = max {|ax|, ay|, |a:[} Q)

where {ay, ay, a;} is a set of the uncompensated components
of the fetched vector, apcs. Fig. 6 shows the acceleration for
three different cases; vertical, horizontal, and on the hand.
After determining the gravity acceleration component,
a;, tilt compensation is applied to the acceleration vector.
Fig. 7b and 7c illustrate the corrected acceleration direc-
tions of the phone that correspond to the settings depicted
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FIGURE 6. Acceleration components for different phone orientations.
(a) vertical (a; = ay), (b) horizontal (a; = ax), (c) on hand (a; = a;).
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angle are 0%, £90°, or —180°. However, deviation from the
ideal situations may cause more than one axis to contribute
to the motion vector. Hence, to account for these deviations,
we define

1 a;

2 2
[ay + a;

where 6; is the angle of deviation on a certain axis
as illustrated in Fig. 7, a, and a, are the corrected
acceleration x and y components, respectively, and a; is the
deviated acceleration component obtained by (6).

The angle, 6,4, is added to the ideal angle values to correct
the heading of the device. The total correction angle for every
situation of the device is in Table 1. The acceleration vector,
on which the complete heading estimation process operates,
is obtained by averaging acceleration values received during
the time taken for one step.

In case the smartphone was held in a way that was not
identified by the system, the user is notified to adjust his
phone in one of the positions as seen in Fig. 5.

64 = tan~

(N

TABLE 1. Angle correction for heading estimation.

(a)

Oax T T

O

!

Position Orientation Condition  Angle Correction
Portrait mode - 04
On the hand Landscape mode az >0 90 + 04y
a; <0 —90 + gdy
. Ay > 0 04z
Vertical a, <0 —180+ 0,
Front
Horizontal az >0 90 + Bay
a; <0 —90 + Qdy
Vertical tz <0 —90 + fay
. ag >0 90 + 04y
Side :
Horizontal ay >0 Oux
ay, <0 —180 + 04z

vertical

horizontal

(b)

O
| i

horizontal

04y

vertical

(c)

FIGURE 7. (a) Top view of a pilgrim while moving forward. Smartphone
heading in (b) front and (c) side positions with respect to the direction of
the motion vector after tilt compensation.

in Fig. 5a and 5b, respectively. An angle is assigned to align
the heading of the conceivably untilted device with the user’s
direction of motion as shown in Fig. 7a.

For ideal device orientation (i.e., perfectly vertical or hori-
zontal phone positions), the possible values for the mentioned
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C. RITUAL DETECTION

After obtaining the path of the user using the PDR technique,
we design algorithms to detect and monitor the activity of
the user. In this section, a detailed explanation of the ritual
detection algorithms will be provided.

1) TAWAF DETECTION

For the first ritual, Tawaf, an algorithm was built to differenti-
ate between Tawaf performing and non-performing pilgrims.
Detecting Tawaf movements allows providing feedback to
the user based on their current lap count and position. The
algorithm depends mainly on the angle with respect to the
Kaaba center for detection. Which is the center of rotation for
the Tawaf ritual. The Kaaba center is also used as a reference
in our detection as it is a fixed point with known coordinates.
Furthermore, several other conditions are used to check for
the integrity of the detection to avoid errors as will be shown.
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FIGURE 8. Tawaf detection algorithm flowchart.

The inputs to the algorithm are GPS and IMU sensors’ data.
Fig. 8 shows the overall flowchart for the algorithm. The
explanation of the algorithm will focus on the path generated
using IMU sensors (the PDR path).

The first step in the algorithm is initializing the path
starting point using the GPS. The assumption here is that
the GPS data is collected periodically in the background
for a certain period to automatically trigger the algorithm.
However, if background data collection is disabled, then the
activation is needed to start the algorithm. After that, since
the center of rotation’s location (Kaaba center) has fixed
GPS coordinates, the polar coordinates of each point in the
path are obtainable with respect to the Kaaba center (cen-
ter of rotation). The algorithm starts by checking multiple
conditions before recognizing that the pilgrim is performing
Tawaf, and therefore, triggering the detection algorithm. The
main triggering conditions are the distance and the starting
angle checks. both check conditions must be fulfilled before
triggering the detection. for the distance check, the pilgrim
must be within a certain distance from the Kaaba to start the
Tawaf. The second one is the starting angle condition, which
is fulfilled when the pilgrim is in the correct position around
the Kaaba to start the Tawaf. This angle is approximately
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—m /4 rads with respect to the north which is the location of
Al-Hajar Al-Aswad which is where Muslims start the ritual
as indicated by the Tawaf line in Fig. 9).

After that, the algorithm starts monitoring, detecting, and
counting the laps. For this part of the algorithm, the Tawaf
area is divided into 5 regions, where every region occupies
one-quarter of the complete area except for the quarter con-
taining the starting line. This quarter is divided into two
in order to create a region barrier at the start/end line of
each lap to detect lap endings. This is because completion
of the previous region is used as a condition to continue the
algorithm. Fig. 9 labels all the mentioned regions.

The algorithm monitors the process by continuously col-
lecting data samples (i.e., pilgrim’s position with time). The
algorithm ensures that each sample complies with certain
conditions to make sure the pilgrim is still performing Tawaf.
The main condition involves the angle, through which the
algorithm checks if the pilgrim is in the same region as the
one indicated by the previous sample. If the pilgrim is not
in the current region, the algorithm checks if the pilgrim is
in the next/following region. If this is the case, the algorithm
checks that the number of samples taken during the previous
region is reasonable enough to expect a region transition. This
serves as the second condition which is a time restriction
where the pilgrim must have spent enough time/samples in
the current region for it to be considered a completed region.
The third condition is the radius condition, for which the
pilgrim must stay within a certain radius or this will cause
the algorithm to stop. If any of the conditions to continue the
algorithm are broken, then this prompts the pilgrim to check
whether they plan to continue, stop, or take a break and then
continue the ritual. These actions will go on where the region
counter resets every lap, and the algorithm stops when the
lap counter reaches 7 (i.e., the pilgrim has finished the Tawaf
ritual). To accommodate random errors, a success percentage
is introduced as a minimum requirement for the number of
samples that need to be correct for proper region transition.
The success percentage is currently set to 90%, but it can be
adjusted in real-time on-site testing for extreme cases.

2) SA'i DETECTION

After Tawaf, pilgrims move to the Sa’i (Masa’a) area to per-
form the Sa’i ritual (see Fig. 9). An algorithm is designed to
detect the Sa’i and provide useful information to the pilgrim
based on his activity. First, the algorithm checks if the pilgrim
enters the Masa’a area and starts Sa’i by analyzing the path.
Once the pilgrim crosses more than 100 meters, in the
direction of Al-Marwa (Fig. 9), during which his heading
angle is within [—307, 0°] with respect to the North, the Sa’i
algorithm is triggered. The direction is obtained directly from
the corrected heading angles used to estimate the direction of
the pedestrian.

After the automatic trigger is initialized, instantaneous
samples are passed through the algorithm to check direc-
tion integrity and to calculate the distance traveled through
each lap. Practically speaking, pilgrims move in a direction
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FIGURE 9. Diagram of Tawaf and Sa’i areas. Regions used for detection in
the Tawaf Detection Algorithm are shown in the Tawaf area.

estimated to be within [—30°, 0°] during a Safa lap and
[150°, 180°] during a Marwa lap on average. These values
are chosen based on the direction of the Masa’a as shown
in Fig. 9. During Sa’i detection, if the pilgrim changed his
direction before finishing the lap, or took more than the
average time during the lap; a message is sent to him to check
if he is continuing or stopping the Sa’i. Once the pilgrim
finishes 7 laps, a notification message is sent to the user.
An illustration of the developed algorithm is shown in Fig. 10.

IIl. RESULTS AND DISCUSSION
Detailed results and analysis for path tracking and detection
algorithms are reported and discussed in this section.

TABLE 2. Average distance deviation of the path of the inertial sensors
with respect to the GPS path.

Trial Phone position Distance [m]  Average deviation [m]

1 On hand 205.9 2.89
2 On hand 104.9 1.54
3 On hand 438.5 33
4 Front (horizontal) 375.7 7.33
5 Side (horizontal) 403.8 5.6

A. PATH TRACKING

Here we show the results of heading estimation by comparing
several paths before and after angle correction. Fig. 11a shows
a corrected path in the case of holding the phone by hand.
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FIGURE 10. Sa'i detection algorithm.

Fig. 11a includes three paths, the GPS path in blue, the PDR
path before the angle correction in dotted yellow, and the
path using the same technique with angle correction in red.
Fig. 11b and Fig. 11c show two paths of the user while carry-
ing the phone horizontally to the belt as in the situation (b).

As discussed in Section II-B, the path detection algorithm
monitors the phone position and updates it with each step.
Fig. 11d shows the output path in case a transition between
different phone positions occurs. First, the user was walking
in a straight line while keeping the phone in his pocket, then
he/she held it by hand in portrait mode. Fig. 11e shows a
simple correction for the heading angle in the case of holding
the phone by hand but in a tilted position.

To examine the reliability of the extracted PDR path,
we test its accuracy by comparing it with the GPS data as
a reference. Table. 2 shows the average distance deviation
between the PDR and the GPS paths for different distances
and phone positions. Results show that as the distance trav-
eled increases, the deviation between the paths becomes
larger due to the accumulation of error. This can be improved
by updating the location regularly using GPS. We also notice
that the phone position is a major source of error. Unlike
holding the phone by hand, putting it in the pocket or holding
it to the belt makes it more vulnerable to vibrations, there-
fore, accuracy reduction is expected even with the proposed
heading correction approach.

B. TAWAF DETECTION VALIDATION

To verify the Tawaf detection algorithm, it was tested using a
real path as shown in Fig. 12a. The location illustrated in the
figure was chosen for its similarity to the Tawaf area. Also,
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FIGURE 11. PDR paths before and after correction for different situations. (a) phone on the hand (portrait mode), (b) and (c) phone carried horizontally
to the belt, in (d) phone was initially in the pocket then carried by hand, and (e) phone on the hand (tilted).

this location is an open area where GPS data is reliable and
can be used as a benchmark for path extraction and Tawaf
detection. Fig. 12b shows the resulting PDR and the GPS
paths. The similarity between the two extracted paths proves
the reliability of the implemented PDR in terms of Tawaf
detection. It can be noticed, however, that some walking
patterns in the PDR path appear to be out of sync compared
to the GPS path in Fig. 12b. This means that some path
curves are shown in different places on the two paths. Such
errors occur due to the difference in sampling rates and the
error accumulation in the PDR path when using the inertial
sensors as compared to the GPS. The smartphone used in the
experiment has a fixed sampling rate of 1 Hz for GPS data,
compared to 50 Hz for the inertial sensors. Naturally, these
errors propagate through PDR, which is an iterative process.
Error propagation does not occur in GPS as it uses an absolute
reference.

Despite the apparent mismatch between the fetched paths
at various points in 12b, the overall similarity enables an
accurate Tawaf detection. To validate Tawaf detection, PDR
and GPS paths are inputted individually to the detection
algorithm. Fig. 14 shows the final output of the algorithm.
In both cases, Tawaf was detected correctly, including the
start/end points, regions, and number of laps. Each lap was
detected individually and at the correct time. This shows
that both the path extraction and the Tawaf detection work
properly in the correct conditions. The path was started after
the starting Tawaf position, this is to test that the start position
conditions are working. This means that the first lap (Orange)
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will not be counted as a part of Tawaf which is why it is
shown as the pre-Tawaf path in the figures below. This also
confirms that if a pilgrim did not start Tawaf at the correct
starting angle range, the first lap will not count because it was
not complete. The path in the test was completed at the end
with 7 complete laps to confirm a complete Tawaf detection.
This link? shows a video demonstrating the algorithm running
and detecting the ritual from the path. The PDR path is also
very smooth compared to the path from the GPS. This is
again due to the high sampling rate used in the IMU sensors
which is not possible for the GPS sensor. The algorithm also
handles any errors that break the Tawaf continuity conditions
(e.g. going in the reverse direction) by pausing the process
and waiting for the pilgrim’s response. If the response is to
continue the data collection will continue from the last correct
sample. If there is no response, or the response was to stop the
algorithm, then the algorithm will reset.

Although results for Tawaf detection are satisfactory in the
experiment conditions, further testing is needed to see the
performance in real Tawaf conditions. This is due to many
factors such as the different geographical locations and the
large number of mobile phones in the area which could affect
the GPS data. Also, the two methods (GPS and PDR) need
to be tested independently to study their effect on the battery
life. Notably, the PDR curve is very smooth compared to the
GPS curve due to its high sampling. However, as both paths
were successfully detected, it might be worth lowering the

2Algorithm Demonstration Video: youtu.be/O3bFb-4c4kE
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FIGURE 12. (a) Tawaf test verification area, and (b) Extracted paths used
for verification.

FIGURE 13. (a) Sa’i test verification area, and (b) Extracted paths used for
verification.
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FIGURE 14. Tawaf detection algorithm output visualization (a) with real
data using GPS, and (b) inertial sensors (PDR).

sampling of the IMU sensors to optimize energy consump-
tion. Although the error accumulation could cause an error the
longer the path, it can be addressed by re-initializing the path
periodically using the GPS to reset the accumulated error.

C. SA'i DETECTION VALIDATION
Unlike Tawaf, GPS is not expected to perform well in terms
of path tracking for pilgrims performing Sa’i, which is an
indoor environment. Therefore, to validate the Sa’i detection
algorithm, an experiment is conducted in an open area as seen
in Fig. 13a to simulate Sa’i and compare the PDR path with
the GPS path. Like Tawaf detection validation, the PDR path
was extracted and compared to the GPS path. The two paths
are shown in Fig. 13b, where the PDR path is plotted in red
and the GPS path is plotted in blue.

As illustrated in Fig. 10, the algorithm considers time,
distance, and heading direction to count the lap. Therefore,
unless the user starts from the correct starting point of the
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Sa’i ritual, labeled as Safa in Fig. 9, the algorithm will not
be triggered, and laps will not be counted. On the other hand,
when a user performs extra laps (i.e., more than seven laps),
which is the case in Fig. 13b, the algorithm terminates the
activity and sends a message that the Sa’i ritual is completed.

Considering the similarity between the two paths in
Fig. 13b, the PDR-based tracking approach is successful.
It can be noticed that there are also some synchronization
issues due to, as discussed in I1I-B, the difference in sampling
rates between GPS and the IMU unit. It can be noticed that
the PDR path is smoother than the GPS path due to the high
sampling rate for the IMU unit.

IV. LIMITATIONS

One major limitation to the process explained in II-C is the
need for periodically collecting background GPS data before
triggering the detection algorithm. The sampling rate of GPS
is required to be high enough to detect the start of the ritual.
Otherwise, the algorithm may not be triggered and, conse-
quently, may not be able to perform its task correctly. Back-
ground collection of the GPS data could affect the battery life
of the phone, especially at high sampling rates. More analysis
is needed to determine the optimal period of background GPS
data collection to automatically detect the starting point of the
ritual and minimize battery utilization. Also, if background
data collection is disabled, the detection process will require
user activation.

Another limitation is imposed by the algorithm’s depen-
dency on specific phone positions. Phone positions that are
not considered in II-B3 may occur, albeit rarely, due to
unexpected situations like falling and sliding. The algorithm
handles such abnormalities by requesting the user to adjust
their device, which can be inconvenient for the user. Another
situation where user’s input is required is when they decide
to take a break. If the algorithm is not informed directly by
the user that Tawaf or Sa’i is stopped, the algorithm stops
tracking and then restarts at the beginning of the next lap.
In this case, the detection process will be incomplete, since
the pilgrim needs to complete the current lap when they
return to the ritual. Therefore, a better error handling process
that enables the algorithm to automatically recover when the
pilgrim returns to the correct path would be beneficial in the
future.

Finally, the proposed algorithm naturally inherits the limi-
tations of the employed tracking algorithm. The main draw-
back of PDR is error accumulation in its extracted path points
(see Section III-A). As a solution, the use of GPS data to
correct the paths regularly is proposed. However, GPS access
is not always available during the rituals, hence, the system
is more vulnerable to making errors in indoor areas like the
Sa’i area.

V. CONCLUSION

In this research, an algorithm is designed to track pilgrims
who are performing Umrah and detect their activities. The
path detection algorithm utilizes IMU sensors to estimate
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the change in the pilgrim’s position and heading, and then
update his location. Several conditions were used in detection
algorithms to assist the output decision regarding the situation
and the activity of the user. The designed system provides
the pilgrim with useful information, depending on his activity
and location, such as the number of laps, real-time guidance,
and supplications. Deviation from the path due to accumula-
tion of error is investigated for different phone positions. The
deviated path can be restored by the assessment of GPS.

In future research, more work is needed to apply and
test both the path tracking and ritual detection in real-world
conditions to improve the overall system and especially the
Sa’i detection algorithm. An introduction of a better error
handling system might prove highly beneficial as people
may not have the time to look at their phones during these
rituals. It is also important to look at the optimization of the
parameters used in the algorithms such as the sampling rates
of inertial sensors and GPS background data collection fre-
quency. Furthermore, the continuation of this research might
prove useful in the area of crowd management as the number
of people who perform such rituals all year round is huge,
especially during the Hajj season.
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