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ABSTRACT A smartphone can provide a wide range of practical applications and services thanks to its
advanced sensing capabilities. However, the sector of Hajj and Umrah, which are rituals performed by
millions of pilgrims, still lacks intelligent solutions that can improve the pilgrim experience using these
sophisticated capabilities. This research aims to bridge this gap by introducing a solution that applies a
real-time monitoring process to different Umrah activities (i.e., Tawaf and Sa’i) using smartphone sensors.
In the proposed solution, the smartphone first tracks the pilgrim’s path with the help of inertial sensors,
commonly known as the inertial measurement unit (IMU). Then, an algorithm is developed to detect
and process the different activities performed by the user and provide helpful instructions accordingly
for a comfortable and successful experience. The proposed system was tested and validated using real
data for Tawaf and Sa’i activities. The extracted paths were compared with the GPS data for validation.
Results showed that the paths were extracted effectively and the algorithm monitored both Tawaf and Sa’i
successfully. The deviation between the real path and the extracted path using the proposed algorithm can
be enhanced with proper GPS assessment and step-length calibration.

14 INDEX TERMS Activity detection, Hajj, IMU sensing, indoor navigation, path tracking, PDR, Umrah.

I. INTRODUCTION15

Tawaf, walking seven laps around the Kaaba while reciting16

supplications and prayers, and Sa’i, walking between Safa17

and Marwa seven times while reciting supplications and18

prayers, are important rituals performed by millions of Mus-19

lims throughout the year. The combination of the two of them20

is known to Muslims as Umrah. Tawaf and Sa’i are also part21

of the annual Islamic pilgrimage known as Hajj. According22

to the Saudi General Authority of Statistics [1], the total23

number of Muslims who performed Umrah in 2019 reached24

19 million. Also, with up to 3 million pilgrimages gathered25

between the 8th and the 13th of Dhu al-Hijjah, the twelfth26

month in the Islamic calendar, Hajj is the largest annual mass27

gathering globally [2]. The gathering of such huge numbers28

normally creates big crowds that must be carefully managed29

to provide a smooth experience.30

The associate editor coordinating the review of this manuscript and
approving it for publication was Shaohua Wan.

The potential of smartphones remains untapped in the 31

sector of Hajj and Umrah. In a study published in Khan and 32

Shambour [3] investigated more than 200 applications used 33

to help pilgrims in the holy rituals. Results indicated that 34

most of these applications are primitive and provide very 35

basic services to the user. Examples of these services included 36

information on Hajj and Umrah rituals, live video, Qibla 37

(i.e., the direction towards which Muslim people face during 38

prayers) compass, and prayer schedule. We aim in this work 39

to bridge this gap by providing a smart solution that can be 40

used to benefit Hajj and Umrah sector. Namely, we design a 41

real-time, interactive, and automatedUmrah detection service 42

that utilizes smartphone sensors. A smartphone application 43

collects the data from the smartphone’s motion sensors. Then, 44

an algorithm is designed to deliver useful information to 45

the pilgrim upon automatic identification and processing of 46

their Umrah activities. The delivered information includes 47

lap count, interactive guidance, supplications, and general 48

statistics about Umrah. 49
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The proposed system is expected to help in managing the50

crowds and reduce the congestion in Hajj and Umrah through51

autonomous detection and interactive guidance. Also, this52

work can be extended to control and monitor other mass53

gatherings such as large festivals and religious pilgrimages.54

A. RELATED WORK55

Human activity recognition has gained increasing attention56

for the past three decades [4], [5], [6], [7]. Different activity57

recognition techniques are implemented using motion sen-58

sors (e.g., accelerometers [8], [9], [10]), microphones [11],59

[12], and cameras [13] to infer different sets of human activi-60

ties. The settings of different activity detection techniques fall61

into two categories. In the first category, the employed sen-62

sors are embedded in awearable device [10], [14]. The second63

category includes systems that use smartphone-embedded64

sensors for activity recognition [15], [16]. Wearable sensors65

have the advantage of providing a controlled relationship66

between the sensor data and the target activity. However,67

in the second category, more sophisticated algorithms are68

required to predict this relation. Nonetheless, it is more fea-69

sible and cost-efficient to use smartphone sensors for large70

target population events such as Hajj and Umrah.71

Different approaches for activity recognition from both72

categories target activities like walking, running, cycling,73

sleeping, and making conversations. However, a pilgrim per-74

forms a collection of these activities during any of the Umrah75

rituals. Since the main objective of this work is to detect these76

rituals (i.e., Tawaf and Sa’i), utilizing simple activity recog-77

nition techniques will not be sufficient for detecting more78

complex activities like the ones performed during Umrah.79

Therefore, we attempt a different approach where pilgrim’s80

ritual activities can be inferred from tracking and analyzing81

their walking path. Existing smartphone applications used for82

similar tasks (e.g., Tawaf App [17] and Al-Maqsad [18]) use83

hybrid approaches for path tracking based on Bluetooth Low84

Energy (BLE), Wi-Fi, and GPS. For utilizing such resources,85

external tag installation is required. Moreover, direct user86

interaction is required for the mentioned applications to be87

able to recognize the starting point of the ritual. Finally,88

each application specializes in detecting a specific activity89

(e.g., counting the number of laps during Tawaf or indoor nav-90

igation). However, none of these applications are designed for91

detecting all Umrah activities.92

Different techniques employ smartphone sensors for posi-93

tioning purposes. Ashraf et al. [19] reviewed such tech-94

niques, including Wi-Fi, BLE, Pedestrian Dead Reckoning95

(PDR), Geomagnetic, GPS, and camera-based localization.96

Except for PDR, though, other techniques require either97

external infrastructure [20], which is not available in Tawaf98

and Sa’i areas, or relatively high power consumption [19],99

[21]. Indoor localization techniques generally suffer from the100

first drawback, since they are mostly designed to leverage101

Wi-Fi tags (e.g., [22]). Yu et al. [20] attribute the mentioned102

issues to navigation methods other than inertial navigation,103

which includes strapdown inertial navigation systems (SINS)104

and PDR. SINS is specifically used when the IMU unit is 105

rigidly attached to the tracked object [23] or, in the case of 106

pedestrian tracking, mounted to the user’s feet [20]. PDR, 107

on the other hand, does not suffer from this limitation [20]. 108

Considering its capability of tracking pedestrians using IMU 109

units embedded in smartphones, we choose PDR for path 110

tracking. 111

PDR technique [24], [25], [26], [27] used for path tracking 112

in this work consists of twomain stages. The first stage is step 113

counting and travel distance estimation. The second stage is 114

heading estimation. Algorithms that use smartphone sensor 115

data to achieve the objectives of each stage can be found either 116

separately or combined in the literature. Step counting is a 117

topic of interest for many researchers. Brajdic and Harle [28] 118

evaluated different step counting and walk detection algo- 119

rithms at six different phone positions. The authors reported 120

that windowed peak detectionmethods for accelerometer data 121

are favored for step detection with an error rate of less than 122

3%. A more recent work [29] proposed an algorithm that 123

defines three measures for analyzing the accelerometer data: 124

periodicity, similarity, and continuity. A step is verified when 125

these three measures meet certain conditions. The algorithm 126

outperformed the conventional peak detection-based method. 127

Relying on measures such as similarity and periodicity may 128

require the studied walk to be uniform to a certain degree. 129

During Umrah, though, pilgrims’ movements are expected 130

to be more complex considering the usual crowd situations 131

in Tawaf and Sai areas. Rodríguez et al. [30] presented a 132

model where peak-valley detection is used for step counting. 133

They used a combination of support vector machines and a 134

standard deviation-based classifier for validating the results 135

of the standard step counting strategy. Pham et al. [31] pro- 136

posed an algorithm that finds suitable minimal peak detec- 137

tion, minimal peak prominence, dynamic thresholding, and 138

vibration elimination and leverages them to solve problems 139

like over-counting, under-counting, and false walking which 140

can be encountered by the standard method. The method- 141

ology was tested on a peak detection algorithm. It is also 142

common to use fast Fourier transform (FFT) to detect and 143

count steps [32], [33]. 144

Works focusing on heading estimation usually propose a 145

mathematical model that fuses the fetched data from IMU 146

units to determine the device’s 3D orientation via either 147

Euler’s angles or quaternions. The fusion process usually 148

involves Kalman filters, and sometimes quaternions. The next 149

step is to use the orientation of the device along with the data 150

from the IMU unit to estimate the heading of the user [34], 151

[35], [36]. It is important to notice, though, that smartphones 152

readily provide the pitch, roll, and azimuth of the device using 153

a virtual sensor called the orientation sensor. This sensor is 154

created using a fusion process similar to the one described 155

above [37]. 156

B. CONTRIBUTION 157

While the above mentioned works utilize step counting and 158

heading estimation techniques to detect relatively simple 159
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actions likewalking and running, themain contribution of this160

work is to use the path found by applying PDR to recognize161

more complicated actions, namely, Tawaf and Sa’i. In this162

work, we design a system that is implemented on a mobile163

application.1 In summary, this system is composed of two164

steps that enable ritual detection in real-time. The two steps165

are:166

• Developing a PDR algorithm for path tracking. The167

algorithm is customized for the Umrah rituals and pro-168

vides reliable tracking in indoor and outdoor environ-169

ments using the smartphone sensors only without any170

external infrastructure needed.171

• Developing an algorithm to detect and monitor Tawaf172

and Sa’i activities automatically without user activation173

(The application will collect GPS data periodically in174

the background ‘‘upon user approval’’ and the detection175

process automatically starts when the user is within the176

Tawaf area).177

Since the objective of this work is to detect Umrah rituals178

given the pilgrim’s path, the developed PDR technique is179

similar to what can be found in the literature. For step count-180

ing, a peak detection method is followed after fetching and181

filtering the accelerometer data. A similar approach can be182

found in [38]. For heading estimation, the output of the orien-183

tation sensor will be directly used, along with accelerometer184

correction. The role of PDR in this paper is to provide a path185

that can be appreciated by the detection algorithm. Therefore,186

aiming for a robust, novel, PDR algorithm is not one of the187

objectives of this work.188

Finally, this work is expected to contribute to important189

aspects related to organization tasks in Masjid al-Haram like190

crowd management in Tawaf and Sa’i areas.191

The rest of the paper is organized as follows. Section II192

introduces the system framework and explains the underlying193

processes that include pre-processing of sensors’ readings194

(Section II-A), path tracking using PDR (Section II-B), and195

real-time detection and monitoring (Section II-C). Section III196

provides results analysis for the different stages in the pro-197

posed model. Finally, the paper is concluded in Section V.198

II. SYSTEM FRAMEWORK199

We propose a 3-stage system as shown in Fig. 1. The inputs to200

the system come from three sensors in the user’s smartphone;201

accelerometer, orientation sensor, and GPS. The readings of202

the accelerometer and the orientation sensor are provided by203

the inertial measurement unit (IMU) in the smartphone. The204

data is passed sequentially through the three stages of the205

system.206

In the first stage, the data is pre-processed for the PDR207

algorithm. A standard coordinate rotation technique is used208

for converting the given data from the device coordinate209

system (DCS) to the global coordinate system (GCS).210

1We expect the pilgrim to carry a smartphone device with a pre-installed
software application. The used smartphone must include a GPS and an IMU
to operate the software properly.

FIGURE 1. Diagram of the proposed ritual detection and monitoring
system.

In the second stage, the PDR technique is used to infer the 211

user’s path from the pre-processed data by step counting and 212

heading estimation. Step counting, which is mainly inferred 213

from the accelerometer, is used for step detection and stride 214

length estimation. As for heading estimation, it is mainly 215

inferred from the orientation sensor. 216

The final stage of the proposed framework is to detect 217

the users’ activity and provide them with useful information 218

based on their location and situation. 219

FIGURE 2. (a): Device Coordinate System (DCS) with the three angles
visualized. (b): Global Coordinate System (GCS).

A. PRE-PROCESSING 220

The data provided by smartphone sensors is measured with 221

respect to the smartphone’s coordinate system (i.e., DCS). 222
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Since smartphones are held in different positions and orien-223

tations with respect to different pilgrims, the fetched smart-224

phone sensor data does not directly indicate the pilgrim’s225

velocity and heading. Rendering the data useful for step226

counting and heading estimation requires applying a proper227

rotation matrix to express the raw data in terms of the GCS.228

Fig. 2 illustrates the difference between the two conventional229

coordinate systems (i.e., DCS and GCS). The rotation matrix230

used for conversion between the two systems is given by231

R(θ, φ) =

 cosφ 0 − sinφ
sin θ sinφ cos θ sin θ cosφ
cos θ sinφ − sin θ cos θ cosφ

 (1)232

where θ and φ denote pitch and roll angles, respectively.233

It should be noticed that (1) is used for adjusting the tilt234

of the DCS to be aligned with the xy plane of the GCS.235

As far as the step counting and heading estimation processes236

are concerned, only tilt compensation [39] for the fetched237

acceleration vector, aDCS , from the device’s IMU unit -is238

required.239

Therefore, the corrected acceleration components, aGCS ,240

is given by241

aGCS = R(θ, φ)>aDCS (2)242

B. PDR FOR PATH TRACKING243

For the path tracking task, we opted for the PDR technique244

due to two main reasons. First, since most of the Umrah245

rituals are performed in an indoor environment, PDR was246

chosen as it relies solely on the inertial sensors provided in the247

smartphone. Furthermore, PDR does not require an external248

infrastructure to be installed, unlike BLE or Wi-Fi-based249

methods [19]. PDR technique [24], [25], [26] consists of250

two main stages. The first stage is step counting and travel251

distance estimation. The second stage is updating the heading252

angle after each detected step to infer the corresponding path.253

Fig. 3 illustrates the process of drawing the user’s path using254

PDR technique. The position of the user at time instant t is255

given by256

Nt = Nt−1 + SLt−1 × cos9t−1257

Et = Et−1 + SLt−1 × sin9t−1 (3)258

where Nt and Et are the current northing and easting, Nt−1259

and Et−1 are the previous coordinates, SLt−1 is the length of260

the previous step, and9t−1 is the previous heading angle with261

respect to the north. This section studies the step counting262

process, and heading estimation.263

1) STEP DETECTION264

Step counting is the main process in PDR systems [24], along265

with heading estimation. Rather than abiding by the standard266

definition of a gait cycle [40], [41], which is convenient267

for bio-mechanical simulation considerations, we follow the268

step-phase definition as in [24] which describes the typical269

behavior of a pedestrian’s acceleration.270

FIGURE 3. Pedestrian dead reckoning (PDR) path illustration.

FIGURE 4. Smartphone acceleration during a normal walk shows (a) the
double (fake) peaks, and (b) the z-component of acceleration after BPF.

A possible approach for step detection is to monitor the 271

smartphone’s acceleration [24], [42]. Regardless of the phone 272

position relative to the user, each step has a significant con- 273

tribution to the acceleration magnitude, given by 274

a =
√
a2x + a2y + a2z (4) 275

Using this approach for step detection, however, yields 276

erroneous results due to two sources of distortion. First, 277

small-scale fluctuations of the phone while moving, and sec- 278

ond, sudden rotations of the user that results in large-scale 279

noise. The first problem results in double (fake) peaks like 280

the ones encircled in Fig. 4a. To solve this problem, a Band 281
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Pass Filter (BPF) with cut-off frequencies of (0.5− 10 Hz) is282

applied. The cut-off frequencies were obtained empirically283

to minimize the step counting error. The second problem284

(i.e., sudden rotations) results in undesirable peaks due to the285

sudden increments in the global horizontal acceleration com-286

ponents. These noisy peaks cannot be removed with filters as287

they are identical to the real peaks. Due to this issue, accelera-288

tionmagnitude obtained from (4) is not always the best option289

for step counting. However, since this problem results from290

changes in the global horizontal acceleration components291

only, the global vertical component of the acceleration can be292

used for step counting instead of the magnitude. This com-293

ponent can be obtained using the tilt compensation technique294

discussed in Section II-A. Fig. 4b shows a plot of the isolated295

vertical acceleration component in time after applying BPF296

to remove the double peaks.297

2) DISTANCE ESTIMATION298

The ultimate goal of step counting is to estimate the crossed299

distance by the user and draw his path, which will be used300

accordingly in the detection algorithm. In this work, the301

Weinberg formula given by302

SLi = K
√
amax,i − amin,i (5)303

is used to estimate the length of each step taken by the304

user [43], [44]. Weinberg formula is an empirical relation that305

is commonly utilized in PDR systems to estimate the step306

length with respect to the user’s acceleration.307

In (5), SLi is the length of the ith step that occurred in308

a certain time window, amax,i and amin,i are the maximum309

and minimum acceleration values in the same time window,310

respectively, and K -factor is a constant for unit conversion311

that is set depending on the user’s step size. In our study, we312

use two different approaches to tune the value of K . The first313

approach is to train the tuning process based on GPS data.314

If GPS data is not available, as in an indoor environment,315

we set the step length to its average (73.6 cm [43]) and train316

the K -factor so that the resultant average step length matches317

this value. The sum of step lengths during the desired duration318

results in the distance crossed by the user, which will be319

combined with the heading angle (i.e., the last stage of PDR)320

to draw the user’s path.321

Although distance estimation is needed for path tracking,322

accurate estimations are not required for a valid detection of323

the rituals as will be discussed in II-C. Therefore, even if324

the step length was chosen to be constant, the algorithm is325

still functioning. In other words, the output path will have the326

same shape but will be scaled according to the K -factor and327

will not affect the detection performance.328

3) HEADING ESTIMATION329

The orientation sensor is used to update the heading of the330

user at each step. However, as the smartphone can be ran-331

domly carried by the user, a method for correcting the phone332

orientation to ensure the consistency of the smartphone with333

the direction of the user is needed.334

FIGURE 5. Front view of the pilgrim with common phone settings. The
phone is positioned horizontally or vertically in a belt fastened on the
(a) front side, (b) left or right sides or (c) in a bag held on the front side of
the pilgrim.

Albeit random, typical smartphone settings and orienta- 335

tions during Umrah activities can be predicted. Two common 336

settings are depicted in Fig. 5a and 5b. The front bag setting 337

in Fig. 5c is similar to the front belt setting in Fig. 5a in 338

terms of the pilgrim’s heading analysis. Ideally, there are two 339

possible phone orientations for every setting in Fig. 5. If the 340

longitudinal side of the phone is perpendicular to the xy-plane 341

of the GCS (See Fig. 2b), then the phone position is vertical. 342

If the longitudinal side of the phone is parallel to the xy-plane 343

of the GCS, then the phone position is horizontal. 344

Another common setting for the phone is when it is held 345

in front of the user by his hand. We consider two possible 346

phone positions for this setting as well. One position is the 347

portrait mode, which is similar to the vertical position, and 348

the second position is the landscape mode, which is similar 349

to the horizontal position. 350

Considering these pre-defined positions for the smart- 351

phone while performing the rituals and modifying the 352

heading estimation accordingly; will ease the process of the 353

heading correction significantly compared to the random held 354

situation, and hence, reduce the complexity of the model and 355

the real-time processing. 356

To successfully estimate the pilgrim’s heading with respect 357

to his smartphone, it is first required to detect the smartphone 358

orientation using the uncompensated acceleration compo- 359

nents. Smartphone orientation is determined by identifying 360

the component dominated by the acceleration of gravity. 361

Compared to the other acceleration components, the target 362

component, ai, is their maximum. In other words, we seek ai 363

such that 364

ai = max {|ax |, |ay|, |az|} (6) 365

where {ax , ay, az} is a set of the uncompensated components 366

of the fetched vector, aDCS . Fig. 6 shows the acceleration for 367

three different cases; vertical, horizontal, and on the hand. 368

After determining the gravity acceleration component, 369

ai, tilt compensation is applied to the acceleration vector. 370

Fig. 7b and 7c illustrate the corrected acceleration direc- 371

tions of the phone that correspond to the settings depicted 372
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FIGURE 6. Acceleration components for different phone orientations.
(a) vertical (ai = ay ), (b) horizontal (ai = ax ), (c) on hand (ai = az ).

FIGURE 7. (a) Top view of a pilgrim while moving forward. Smartphone
heading in (b) front and (c) side positions with respect to the direction of
the motion vector after tilt compensation.

in Fig. 5a and 5b, respectively. An angle is assigned to align373

the heading of the conceivably untilted device with the user’s374

direction of motion as shown in Fig. 7a.375

For ideal device orientation (i.e., perfectly vertical or hori-376

zontal phone positions), the possible values for the mentioned377

angle are 0o, ±90o, or −180o. However, deviation from the 378

ideal situations may cause more than one axis to contribute 379

to the motion vector. Hence, to account for these deviations, 380

we define 381

θdi = tan−1

 ai√
a2x + a2y

 (7) 382

where θdi is the angle of deviation on a certain axis 383

as illustrated in Fig. 7, ax and ay are the corrected 384

acceleration x and y components, respectively, and ai is the 385

deviated acceleration component obtained by (6). 386

The angle, θdi, is added to the ideal angle values to correct 387

the heading of the device. The total correction angle for every 388

situation of the device is in Table 1. The acceleration vector, 389

on which the complete heading estimation process operates, 390

is obtained by averaging acceleration values received during 391

the time taken for one step. 392

In case the smartphone was held in a way that was not 393

identified by the system, the user is notified to adjust his 394

phone in one of the positions as seen in Fig. 5. 395

TABLE 1. Angle correction for heading estimation.

C. RITUAL DETECTION 396

After obtaining the path of the user using the PDR technique, 397

we design algorithms to detect and monitor the activity of 398

the user. In this section, a detailed explanation of the ritual 399

detection algorithms will be provided. 400

1) TAWAF DETECTION 401

For the first ritual, Tawaf, an algorithmwas built to differenti- 402

ate between Tawaf performing and non-performing pilgrims. 403

Detecting Tawaf movements allows providing feedback to 404

the user based on their current lap count and position. The 405

algorithm depends mainly on the angle with respect to the 406

Kaaba center for detection. Which is the center of rotation for 407

the Tawaf ritual. The Kaaba center is also used as a reference 408

in our detection as it is a fixed point with known coordinates. 409

Furthermore, several other conditions are used to check for 410

the integrity of the detection to avoid errors as will be shown. 411
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FIGURE 8. Tawaf detection algorithm flowchart.

The inputs to the algorithm are GPS and IMU sensors’ data.412

Fig. 8 shows the overall flowchart for the algorithm. The413

explanation of the algorithm will focus on the path generated414

using IMU sensors (the PDR path).415

The first step in the algorithm is initializing the path416

starting point using the GPS. The assumption here is that417

the GPS data is collected periodically in the background418

for a certain period to automatically trigger the algorithm.419

However, if background data collection is disabled, then the420

activation is needed to start the algorithm. After that, since421

the center of rotation’s location (Kaaba center) has fixed422

GPS coordinates, the polar coordinates of each point in the423

path are obtainable with respect to the Kaaba center (cen-424

ter of rotation). The algorithm starts by checking multiple425

conditions before recognizing that the pilgrim is performing426

Tawaf, and therefore, triggering the detection algorithm. The427

main triggering conditions are the distance and the starting428

angle checks. both check conditions must be fulfilled before429

triggering the detection. for the distance check, the pilgrim430

must be within a certain distance from the Kaaba to start the431

Tawaf. The second one is the starting angle condition, which432

is fulfilled when the pilgrim is in the correct position around433

the Kaaba to start the Tawaf. This angle is approximately434

−π/4 rads with respect to the north which is the location of 435

Al-Hajar Al-Aswad which is where Muslims start the ritual 436

as indicated by the Tawaf line in Fig. 9). 437

After that, the algorithm starts monitoring, detecting, and 438

counting the laps. For this part of the algorithm, the Tawaf 439

area is divided into 5 regions, where every region occupies 440

one-quarter of the complete area except for the quarter con- 441

taining the starting line. This quarter is divided into two 442

in order to create a region barrier at the start/end line of 443

each lap to detect lap endings. This is because completion 444

of the previous region is used as a condition to continue the 445

algorithm. Fig. 9 labels all the mentioned regions. 446

The algorithm monitors the process by continuously col- 447

lecting data samples (i.e., pilgrim’s position with time). The 448

algorithm ensures that each sample complies with certain 449

conditions to make sure the pilgrim is still performing Tawaf. 450

The main condition involves the angle, through which the 451

algorithm checks if the pilgrim is in the same region as the 452

one indicated by the previous sample. If the pilgrim is not 453

in the current region, the algorithm checks if the pilgrim is 454

in the next/following region. If this is the case, the algorithm 455

checks that the number of samples taken during the previous 456

region is reasonable enough to expect a region transition. This 457

serves as the second condition which is a time restriction 458

where the pilgrim must have spent enough time/samples in 459

the current region for it to be considered a completed region. 460

The third condition is the radius condition, for which the 461

pilgrim must stay within a certain radius or this will cause 462

the algorithm to stop. If any of the conditions to continue the 463

algorithm are broken, then this prompts the pilgrim to check 464

whether they plan to continue, stop, or take a break and then 465

continue the ritual. These actions will go on where the region 466

counter resets every lap, and the algorithm stops when the 467

lap counter reaches 7 (i.e., the pilgrim has finished the Tawaf 468

ritual). To accommodate random errors, a success percentage 469

is introduced as a minimum requirement for the number of 470

samples that need to be correct for proper region transition. 471

The success percentage is currently set to 90%, but it can be 472

adjusted in real-time on-site testing for extreme cases. 473

2) SA’i DETECTION 474

After Tawaf, pilgrims move to the Sa’i (Masa’a) area to per- 475

form the Sa’i ritual (see Fig. 9). An algorithm is designed to 476

detect the Sa’i and provide useful information to the pilgrim 477

based on his activity. First, the algorithm checks if the pilgrim 478

enters the Masa’a area and starts Sa’i by analyzing the path. 479

Once the pilgrim crosses more than 100 meters, in the 480

direction of Al-Marwa (Fig. 9), during which his heading 481

angle is within [−30o, 0o] with respect to the North, the Sa’i 482

algorithm is triggered. The direction is obtained directly from 483

the corrected heading angles used to estimate the direction of 484

the pedestrian. 485

After the automatic trigger is initialized, instantaneous 486

samples are passed through the algorithm to check direc- 487

tion integrity and to calculate the distance traveled through 488

each lap. Practically speaking, pilgrims move in a direction 489
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FIGURE 9. Diagram of Tawaf and Sa’i areas. Regions used for detection in
the Tawaf Detection Algorithm are shown in the Tawaf area.

estimated to be within [−30o, 0o] during a Safa lap and490

[150o, 180o] during a Marwa lap on average. These values491

are chosen based on the direction of the Masa’a as shown492

in Fig. 9. During Sa’i detection, if the pilgrim changed his493

direction before finishing the lap, or took more than the494

average time during the lap; a message is sent to him to check495

if he is continuing or stopping the Sa’i. Once the pilgrim496

finishes 7 laps, a notification message is sent to the user.497

An illustration of the developed algorithm is shown in Fig. 10.498

III. RESULTS AND DISCUSSION499

Detailed results and analysis for path tracking and detection500

algorithms are reported and discussed in this section.501

TABLE 2. Average distance deviation of the path of the inertial sensors
with respect to the GPS path.

A. PATH TRACKING502

Here we show the results of heading estimation by comparing503

several paths before and after angle correction. Fig. 11a shows504

a corrected path in the case of holding the phone by hand.505

FIGURE 10. Sa’i detection algorithm.

Fig. 11a includes three paths, the GPS path in blue, the PDR 506

path before the angle correction in dotted yellow, and the 507

path using the same technique with angle correction in red. 508

Fig. 11b and Fig. 11c show two paths of the user while carry- 509

ing the phone horizontally to the belt as in the situation (b). 510

As discussed in Section II-B, the path detection algorithm 511

monitors the phone position and updates it with each step. 512

Fig. 11d shows the output path in case a transition between 513

different phone positions occurs. First, the user was walking 514

in a straight line while keeping the phone in his pocket, then 515

he/she held it by hand in portrait mode. Fig. 11e shows a 516

simple correction for the heading angle in the case of holding 517

the phone by hand but in a tilted position. 518

To examine the reliability of the extracted PDR path, 519

we test its accuracy by comparing it with the GPS data as 520

a reference. Table. 2 shows the average distance deviation 521

between the PDR and the GPS paths for different distances 522

and phone positions. Results show that as the distance trav- 523

eled increases, the deviation between the paths becomes 524

larger due to the accumulation of error. This can be improved 525

by updating the location regularly using GPS. We also notice 526

that the phone position is a major source of error. Unlike 527

holding the phone by hand, putting it in the pocket or holding 528

it to the belt makes it more vulnerable to vibrations, there- 529

fore, accuracy reduction is expected even with the proposed 530

heading correction approach. 531

B. TAWAF DETECTION VALIDATION 532

To verify the Tawaf detection algorithm, it was tested using a 533

real path as shown in Fig. 12a. The location illustrated in the 534

figure was chosen for its similarity to the Tawaf area. Also, 535
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FIGURE 11. PDR paths before and after correction for different situations. (a) phone on the hand (portrait mode), (b) and (c) phone carried horizontally
to the belt, in (d) phone was initially in the pocket then carried by hand, and (e) phone on the hand (tilted).

this location is an open area where GPS data is reliable and536

can be used as a benchmark for path extraction and Tawaf537

detection. Fig. 12b shows the resulting PDR and the GPS538

paths. The similarity between the two extracted paths proves539

the reliability of the implemented PDR in terms of Tawaf540

detection. It can be noticed, however, that some walking541

patterns in the PDR path appear to be out of sync compared542

to the GPS path in Fig. 12b. This means that some path543

curves are shown in different places on the two paths. Such544

errors occur due to the difference in sampling rates and the545

error accumulation in the PDR path when using the inertial546

sensors as compared to the GPS. The smartphone used in the547

experiment has a fixed sampling rate of 1 Hz for GPS data,548

compared to 50 Hz for the inertial sensors. Naturally, these549

errors propagate through PDR, which is an iterative process.550

Error propagation does not occur in GPS as it uses an absolute551

reference.552

Despite the apparent mismatch between the fetched paths553

at various points in 12b, the overall similarity enables an554

accurate Tawaf detection. To validate Tawaf detection, PDR555

and GPS paths are inputted individually to the detection556

algorithm. Fig. 14 shows the final output of the algorithm.557

In both cases, Tawaf was detected correctly, including the558

start/end points, regions, and number of laps. Each lap was559

detected individually and at the correct time. This shows560

that both the path extraction and the Tawaf detection work561

properly in the correct conditions. The path was started after562

the starting Tawaf position, this is to test that the start position563

conditions are working. This means that the first lap (Orange)564

will not be counted as a part of Tawaf which is why it is 565

shown as the pre-Tawaf path in the figures below. This also 566

confirms that if a pilgrim did not start Tawaf at the correct 567

starting angle range, the first lap will not count because it was 568

not complete. The path in the test was completed at the end 569

with 7 complete laps to confirm a complete Tawaf detection. 570

This link2 shows a video demonstrating the algorithm running 571

and detecting the ritual from the path. The PDR path is also 572

very smooth compared to the path from the GPS. This is 573

again due to the high sampling rate used in the IMU sensors 574

which is not possible for the GPS sensor. The algorithm also 575

handles any errors that break the Tawaf continuity conditions 576

(e.g. going in the reverse direction) by pausing the process 577

and waiting for the pilgrim’s response. If the response is to 578

continue the data collection will continue from the last correct 579

sample. If there is no response, or the response was to stop the 580

algorithm, then the algorithm will reset. 581

Although results for Tawaf detection are satisfactory in the 582

experiment conditions, further testing is needed to see the 583

performance in real Tawaf conditions. This is due to many 584

factors such as the different geographical locations and the 585

large number of mobile phones in the area which could affect 586

the GPS data. Also, the two methods (GPS and PDR) need 587

to be tested independently to study their effect on the battery 588

life. Notably, the PDR curve is very smooth compared to the 589

GPS curve due to its high sampling. However, as both paths 590

were successfully detected, it might be worth lowering the 591

2Algorithm Demonstration Video: youtu.be/O3bFb-4c4kE
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FIGURE 12. (a) Tawaf test verification area, and (b) Extracted paths used
for verification.

FIGURE 13. (a) Sa’i test verification area, and (b) Extracted paths used for
verification.

FIGURE 14. Tawaf detection algorithm output visualization (a) with real
data using GPS, and (b) inertial sensors (PDR).

sampling of the IMU sensors to optimize energy consump-592

tion. Although the error accumulation could cause an error the593

longer the path, it can be addressed by re-initializing the path594

periodically using the GPS to reset the accumulated error.595

C. SA’i DETECTION VALIDATION596

Unlike Tawaf, GPS is not expected to perform well in terms597

of path tracking for pilgrims performing Sa’i, which is an598

indoor environment. Therefore, to validate the Sa’i detection599

algorithm, an experiment is conducted in an open area as seen600

in Fig. 13a to simulate Sa’i and compare the PDR path with601

the GPS path. Like Tawaf detection validation, the PDR path602

was extracted and compared to the GPS path. The two paths603

are shown in Fig. 13b, where the PDR path is plotted in red604

and the GPS path is plotted in blue.605

As illustrated in Fig. 10, the algorithm considers time,606

distance, and heading direction to count the lap. Therefore,607

unless the user starts from the correct starting point of the608

Sa’i ritual, labeled as Safa in Fig. 9, the algorithm will not 609

be triggered, and laps will not be counted. On the other hand, 610

when a user performs extra laps (i.e., more than seven laps), 611

which is the case in Fig. 13b, the algorithm terminates the 612

activity and sends a message that the Sa’i ritual is completed. 613

Considering the similarity between the two paths in 614

Fig. 13b, the PDR-based tracking approach is successful. 615

It can be noticed that there are also some synchronization 616

issues due to, as discussed in III-B, the difference in sampling 617

rates between GPS and the IMU unit. It can be noticed that 618

the PDR path is smoother than the GPS path due to the high 619

sampling rate for the IMU unit. 620

IV. LIMITATIONS 621

One major limitation to the process explained in II-C is the 622

need for periodically collecting background GPS data before 623

triggering the detection algorithm. The sampling rate of GPS 624

is required to be high enough to detect the start of the ritual. 625

Otherwise, the algorithm may not be triggered and, conse- 626

quently, may not be able to perform its task correctly. Back- 627

ground collection of the GPS data could affect the battery life 628

of the phone, especially at high sampling rates. More analysis 629

is needed to determine the optimal period of background GPS 630

data collection to automatically detect the starting point of the 631

ritual and minimize battery utilization. Also, if background 632

data collection is disabled, the detection process will require 633

user activation. 634

Another limitation is imposed by the algorithm’s depen- 635

dency on specific phone positions. Phone positions that are 636

not considered in II-B3 may occur, albeit rarely, due to 637

unexpected situations like falling and sliding. The algorithm 638

handles such abnormalities by requesting the user to adjust 639

their device, which can be inconvenient for the user. Another 640

situation where user’s input is required is when they decide 641

to take a break. If the algorithm is not informed directly by 642

the user that Tawaf or Sa’i is stopped, the algorithm stops 643

tracking and then restarts at the beginning of the next lap. 644

In this case, the detection process will be incomplete, since 645

the pilgrim needs to complete the current lap when they 646

return to the ritual. Therefore, a better error handling process 647

that enables the algorithm to automatically recover when the 648

pilgrim returns to the correct path would be beneficial in the 649

future. 650

Finally, the proposed algorithm naturally inherits the limi- 651

tations of the employed tracking algorithm. The main draw- 652

back of PDR is error accumulation in its extracted path points 653

(see Section III-A). As a solution, the use of GPS data to 654

correct the paths regularly is proposed. However, GPS access 655

is not always available during the rituals, hence, the system 656

is more vulnerable to making errors in indoor areas like the 657

Sa’i area. 658

V. CONCLUSION 659

In this research, an algorithm is designed to track pilgrims 660

who are performing Umrah and detect their activities. The 661

path detection algorithm utilizes IMU sensors to estimate 662
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the change in the pilgrim’s position and heading, and then663

update his location. Several conditions were used in detection664

algorithms to assist the output decision regarding the situation665

and the activity of the user. The designed system provides666

the pilgrim with useful information, depending on his activity667

and location, such as the number of laps, real-time guidance,668

and supplications. Deviation from the path due to accumula-669

tion of error is investigated for different phone positions. The670

deviated path can be restored by the assessment of GPS.671

In future research, more work is needed to apply and672

test both the path tracking and ritual detection in real-world673

conditions to improve the overall system and especially the674

Sa’i detection algorithm. An introduction of a better error675

handling system might prove highly beneficial as people676

may not have the time to look at their phones during these677

rituals. It is also important to look at the optimization of the678

parameters used in the algorithms such as the sampling rates679

of inertial sensors and GPS background data collection fre-680

quency. Furthermore, the continuation of this research might681

prove useful in the area of crowd management as the number682

of people who perform such rituals all year round is huge,683

especially during the Hajj season.684

REFERENCES685

[1] (2019). Umrah Statistics Bulletin. Accessed: Jul. 2020. [Online]. Avail-686

able: https://www.stats.gov.sa/en/6590-0687

[2] A. A. Owaidah, D. Olaru, M. Bennamoun, F. Sohel, and R. N. Khan,688

‘‘Modelling mass crowd using discrete event simulation: A case study689

of integrated Tawaf and Sayee rituals during Hajj,’’ IEEE Access, vol. 9,690

pp. 79424–79448, 2021.691

[3] E. A. Khan and M. K. Y. Shambour, ‘‘An analytical study of mobile appli-692

cations for Hajj and Umrah services,’’ Appl. Comput. Informat., vol. 14,693

no. 1, pp. 37–47, Jan. 2018.694

[4] E. J. Lind, S. Jayaraman, S. Park, R. Rajamanickam, R. Eisler, G. Burghart,695

and T. McKee, ‘‘A sensate liner for biomedical monitoring applications,’’696

Stud. Health Technol. Informat., vol. 50, no. 4, pp. 258–264, 1998.697

[5] J. Farringdon, A. J. Moore, N. Tilbury, J. Church, and P. D. Biemond,698

‘‘Wearable sensor badge & sensor jacket for context awareness,’’ in Proc.699

3rd Int. Symp. Wearable Comput., Oct. 1999, pp. 107–113.700

[6] C. A. Ronao and S.-B. Cho, ‘‘Deep convolutional neural networks for701

human activity recognition with smartphone sensors,’’ in Proc. Int. Conf.702

Neural Inf. Process. Cham, Switzerland: Springer, 2015, pp. 46–53.703

[7] C. A. Ronao and S.-B. Cho, ‘‘Human activity recognition with smartphone704

sensors using deep learning neural networks,’’ Expert Syst. Appl., vol. 59,705

pp. 235–244, Oct. 2016.706

[8] A. Bayat, M. Pomplun, and D. A. Tran, ‘‘A study on human activity707

recognition using accelerometer data from smartphones,’’ Proc. Comput.708

Sci., vol. 34, pp. 450–457, Jan. 2014. [Online]. Available: https://www.709

sciencedirect.com/science/article/pii/S1877050914008643710

[9] I. Andrey, ‘‘Real-time human activity recognition from accelerome-711

ter data using convolutional neural networks,’’ Appl. Soft Comput.,712

vol. 62, pp. 915–922, Jan. 2017. [Online]. Available: https://www.713

sciencedirect.com/science/article/pii/S1568494617305665714

[10] T. Choudhury, S. Consolvo, B. Harrison, J. Hightower, A. LaMarca,715

L. LeGrand, A. Rahimi, A. Rea, G. Bordello, B. Hemingway, P. Klasnja,716

K. Koscher, J. Landay, J. Lester, D. Wyatt, and D. Haehnel, ‘‘The mobile717

sensing platform: An embedded activity recognition system,’’ IEEE Per-718

vasive Comput., vol. 7, no. 2, pp. 32–41, Apr./Jun. 2008.719

[11] J. A.Ward, P. Lukowicz, G. Troster, and T. E. Starner, ‘‘Activity recognition720

of assembly tasks using body-worn microphones and accelerometers,’’721

IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 10, pp. 1553–1567,722

Oct. 2006.723

[12] G. Laput, K. Ahuja, M. Goel, and C. Harrison, ‘‘Ubicoustics: Plug-and-724

play acoustic activity recognition,’’ in Proc. 31st Annu. ACM Symp. User725

Interface Softw. Technol., 2018, pp. 213–224.726

[13] P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea, ‘‘Machine 727

recognition of human activities: A survey,’’ IEEE Trans. Circuits Syst. 728

Video Technol., vol. 18, no. 11, pp. 1473–1488, Nov. 2008. 729

[14] A. M. Khan, ‘‘Recognizing physical activities using the axivity device,’’ 730

in Proc. 5th Int. Conf. eHealth, Telemed., Social Med. (eTELEMED), 731

Mar. 2013, pp. 4–7. [Online]. Available: http://www.comnets.uni- 732

bremen.de/cewit-tzi-workshop-2013/PDF/papers/Khan.pdf 733

[15] X. Su, H. Tong, and P. Ji, ‘‘Activity recognition with smartphone sensors,’’ 734

Tsinghua Sci. Technol., vol. 19, no. 3, pp. 235–249, Jun. 2014. 735

[16] Z. Chen, S. Xiang, J. Ding, and X. Li, ‘‘Smartphone sensor-based human 736

activity recognition using feature fusion and maximum full a posteriori,’’ 737

IEEE Trans. Instrum. Meas., vol. 69, no. 7, pp. 3992–4001, Jul. 2020. 738

[17] Tawaf App. Accessed: Mar. 11, 2021. [Online]. Available: http:// 739

www.gistic.org/tawafapp/ 740

[18] General Presidency of the Affairs of the Grand Mosque and the Prophet’s 741

Mosque. (Jan. 2019). Al Maqsad. [Online]. Available: https://apps. 742

apple.com/sa/app/al-maqsad/id1447123573 743

[19] I. Ashraf, S. Hur, and Y. Park, ‘‘Smartphone sensor based indoor position- 744

ing: Current status, opportunities, and future challenges,’’ Electron., vol. 9, 745

no. 6, p. 891, 2020. [Online]. Available: https://www.mdpi.com/2079- 746

9292/9/6/891 747

[20] N. Yu, Y. Li, X. Ma, Y. Wu, and R. Feng, ‘‘Comparison of pedestrian 748

tracking methods based on foot-and waist-mounted inertial sensors and 749

handheld smartphones,’’ IEEE Sensors J., vol. 19, no. 18, pp. 8160–8173, 750

Sep. 2019. 751

[21] I. Khan, S. Khusro, S. Ali, and J. Ahmad, ‘‘Sensors are power hungry: 752

An investigation of smartphone sensors impact on battery power from 753

lifelogging perspective,’’ Bahria Univ. J. ICT, vol. 9, pp. 8–19, Dec. 2016. 754

[22] W. Xu, L. Liu, S. Zlatanova, W. Penard, and Q. Xiong, ‘‘A pedestrian 755

tracking algorithm using grid-based indoor model,’’ Autom. Construct., 756

vol. 92, pp. 173–187, Aug. 2018. 757

[23] D. Titterton, J. L. Weston, and J. Weston, Strapdown Inertial Navigation 758

Technology, vol. 17. Edison, NJ, USA: IET, 2004. 759

[24] N.-H. Ho, P. H. Truong, and G.-M. Jeong, ‘‘Step-detection and adaptive 760

step-length estimation for pedestrian dead-reckoning at various walking 761

speeds using a smartphone,’’ Sensors, vol. 16, no. 9, p. 1423, 2016. 762

[25] M. Khedr and N. El-Sheimy, ‘‘S-PDR: SBAUPT-based pedestrian 763

dead reckoning algorithm for free-moving handheld devices,’’ Geo- 764

matics, vol. 1, no. 2, pp. 148–176, Mar. 2021. [Online]. Available: 765

https://www.mdpi.com/2673-7418/1/2/10 766

[26] J. Geng, L. Xia, J. Xia, Q. Li, H. Zhu, and Y. Cai, ‘‘Smartphone-based 767

pedestrian dead reckoning for 3D indoor positioning,’’ Sensors, vol. 21, 768

no. 24, p. 8180, 2021. [Online]. Available: https://www.mdpi.com/1424- 769

8220/21/24/8180 770

[27] M. Khedr and N. El-Sheimy, ‘‘S-pdr: Sbaupt-based pedestrian dead 771

reckoning algorithm for free-moving handheld devices,’’ Geomatics, 772

vol. 1, no. 2, pp. 148–176, 2021. [Online]. Available: https://www.mdpi. 773

com/2673-7418/1/2/10 774

[28] A. Brajdic and R. Harle, ‘‘Walk detection and step counting on uncon- 775

strained smartphones,’’ in Proc. ACM Int. joint Conf. Pervasive ubiquitous 776

Comput., 2013, pp. 225–234. 777

[29] F. Gu, K. Khoshelham, J. Shang, F. Yu, and Z. Wei, ‘‘Robust and accurate 778

smartphone-based step counting for indoor localization,’’ IEEE Sensors J., 779

vol. 17, no. 11, pp. 3453–3460, Jun. 2017. 780

[30] G. Rodríguez, F. Casado, R. Iglesias, C. Regueiro, and A. Nieto, ‘‘Robust 781

step counting for inertial navigation with mobile phones,’’ Sensors, vol. 18, 782

no. 9, p. 3157, Sep. 2018. 783

[31] V. T. Pham, D. A. Nguyen, N. D. Dang, H. H. Pham, V. A. Tran, 784

K. Sandrasegaran, and D.-T. Tran, ‘‘Highly accurate step counting at vari- 785

ous walking states using low-cost inertial measurement unit support indoor 786

positioning system,’’ Sensors, vol. 18, no. 10, p. 3186, 2018. 787

[32] A. C. Dirican and S. Aksoy, ‘‘Step counting using smartphone accelerome- 788

ter and fast Fourier transform,’’ Sigma J. Eng. Nat. Sci., vol. 8, pp. 175–182, 789

Oct. 2017. 790

[33] X. Kang, B. Huang, and G. Qi, ‘‘A novel walking detection and step 791

counting algorithm using unconstrained smartphones,’’ Sensors, vol. 18, 792

no. 1, p. 297, 2018. 793

[34] A. Poulose, B. Senouci, and D. S. Han, ‘‘Performance analysis of sensor 794

fusion techniques for heading estimation using smartphone sensors,’’ IEEE 795

Sensors J., vol. 19, no. 24, pp. 12369–12380, Dec. 2019. 796

[35] X. Yuan, S. Yu, S. Zhang, G. Wang, and S. Liu, ‘‘Quaternion-based 797

unscented Kalman filter for accurate indoor heading estimation using 798

wearable multi-sensor system,’’ Sensors, vol. 15, no. 5, pp. 10872–10890, 799

May 2015. 800

98242 VOLUME 10, 2022



K. Chikhaoui et al.: Automatic Hajj and Umrah Ritual Detection Using IMU Sensors

[36] V. Thio, K. B. Ånonsen, and J. K. Bekkeng, ‘‘Relative heading estimation801

for pedestrians based on the gravity vector,’’ IEEE Sensors J., vol. 21, no. 6,802

pp. 8218–8225, 2021.803

[37] Position Sensors: Android Developers. Accessed: Apr. 20, 2021.804

[Online]. Available: https://developer.android.com/guide/topics/sensors/805

sensors_position806

[38] A. Abadleh, B. M. Al-Mahadeen, R. M. AlNaimat, and O. Lasassmeh,807

‘‘Noise segmentation for step detection and distance estimation using808

smartphone sensor data,’’ Wireless Netw., vol. 27, no. 4, pp. 2337–2346,809

2021.810

[39] V. Grygorenko, ‘‘Sensing—Magnetic compass with tilt compensation,’’811

Cypress, San Jose, CA, USA, Tech. Rep. AN2272, 2011.812

[40] A. Alamdari and V. Krovi, ‘‘Chapter two—A review of computational813

musculoskeletal analysis of human lower extremities,’’ in Human Mod-814

elling for Bio-Inspired Robotics, J. Ueda and Y. Kurita, Eds. New York,815

NY, USA: Academic, 2017, pp. 37–73. [Online]. Available: https://www.816

sciencedirect.com/science/article/pii/B9780128031377000033817

[41] L. M. Silva and N. Stergiou, ‘‘The basics of gait analysis,’’ in Biome-818

chanics and Gait Analysis, N. Stergiou, Ed. New York, NY, USA: Aca-819

demic, 2020, pp. 225–250. [Online]. Available: https://www.sciencedirect.820

com/science/article/pii/B9780128133729000075821

[42] W. Lu, F. Wu, H. Zhu, and Y. Zhang, ‘‘A step length estimation model822

of coefficient self-determined based on peak-valley detection,’’ J. Sensors,823

vol. 2020, pp. 1–14, Nov. 2020.824

[43] A. Spinillo, A. Bernuzzi, C. Cevini, R. Gulminetti, S. Luzi, A. Santolo,825

O. P. Jasuja, S. Harbhajan, and K. Anupama, ‘‘Estimation of stature from826

stride length while walking fast,’’ Forensic Sci. Int., vol. 86, pp. 181–186,827

May 1997.828

[44] M. Vezocnik, R. Kamnik, and M. B. Juric, ‘‘Inertial sensor-based829

step length estimation model by means of principal component anal-830

ysis,’’ Sensors, vol. 21, no. 10, p. 3527, 2021. [Online]. Available:831

https://www.mdpi.com/1424-8220/21/10/3527832

KHALIL CHIKHAOUI received the B.Sc. degree833

in electrical engineering from the King Fahd Uni-834

versity of Petroleum and Minerals (KFUPM),835

Dhahran, Saudi Arabia, in 2021, where he is cur-836

rently pursuing the master’s degree in electrical837

engineering. His research interests include image838

processing, computer vision, machine learning,839

and deep learning.840

MOHAMMED ELRASHIDY received the B.Sc.841

degree in electrical engineering from KFUPM,842

in 2021, where he is currently pursuing the M.Sc.843

degree with the Electrical Engineering Depart-844

ment. His research interests include graph signal845

processing, adaptive filtering, and deep learning.846

His current research is focusing on simultaneous847

information and power transmission in wireless848

networks.849

MOTAZ ALFARRAJ (Member, IEEE) received 850

the B.Sc. degree in electrical engineering from 851

KFUPM, in 2013, and theM.Sc. and Ph.D. degrees 852

in electrical and computer engineering from the 853

Georgia Institute of Technology, Atlanta, GA, 854

USA, in 2016 and 2019, respectively. He is cur- 855

rently an Assistant Professor with the Electrical 856

Engineering Department, KFUPM. He is also the 857

Director of the SDAIA-KFUPM Joint Research 858

Center for Artificial Intelligence (JRC-AI). His 859

research interests include machine learning, deep learning, computer vision, 860

and image processing. His research focuses on the integration of physics 861

in data-driven systems to enable effective learning from noisy data for 862

applications in oil and gas exploration and production. He is a member 863

of Society of Exploration Geophysicists (SEG), and Society of Petroleum 864

Engineers (SPE). 865

ALI H. MUQAIBEL (Senior Member, IEEE) 866

received the B.Sc. and M.Sc. degrees from the 867

King Fahd University of Petroleum and Minerals 868

(KFUPM), Dhahran, Saudi Arabia, in 1996 and 869

1999, respectively, and the dual Ph.D. degree from 870

the Virginia Polytechnic Institute and State Uni- 871

versity, Blacksburg, VA, USA, in 2003. During 872

his study with Virginia Tech, he was with the Time 873

Domain and RF Measurements Laboratory and 874

the Mobile and Portable Radio Research Group. 875

He was a Visiting Associate Professor with the Center of Advanced Com- 876

munications, Villanova University, Villanova, PA, USA, in 2013, a Visiting 877

Professor with the Georgia Institute of Technology, Atlanta, GA, USA, 878

in 2015, and a Visiting Scholar with the King Abdullah University for 879

Science and Technology, Thuwal, Saudi Arabia, from 2018 to 2019. He is 880

currently a Professor with the Electrical Engineering Department, KFUPM. 881

He is also the Director of the Center for Communication Systems and 882

Sensing. He has authored two book chapters and more than 130 articles. 883

His research interests include direction of arrival estimation, throughwall- 884

imaging, localization, channel characterization, and ultra-wideband signal 885

processing. He was a recipient of many awards in the excellence in teaching, 886

advising, and instructional technology. 887

RIDA SADAGAH received the B.Sc. degree in 888

electrical engineering from the King Fahd Uni- 889

versity of Petroleum and Minerals (KFUPM), 890

Dhahran, Saudi Arabia, and the Graduate degree 891

(Hons.) in communications systems. He is cur- 892

rently working as an Automation & Con- 893

trol Systems Engineer at Saudi Aramco. His 894

research interests include wireless communica- 895

tions, machine learning, and image processing. 896

ABDULLAH SHARQAWI received the B.Sc. 897

degree in electrical engineering from the King 898

Fahd University of Petroleum and Minerals 899

(KFUPM), Dhahran, KSA, in 2021. Also, he has 900

a concentration in communication systems with 901

KFUPM. His research interests include networks, 902

fiber-optic communication, wireless communica- 903

tion, and machine learning. 904

905

VOLUME 10, 2022 98243


