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ABSTRACT This work aims to classify malaria infected red blood cells from those uninfected using two
deep learning approaches. Plasmodium parasite transmitted by a female anopheles’s mosquitoes bite is
the main cause of malaria. Commonly, Microbiological analyses by a microscope allows detecting cells
infected from a blood sample, followed by a specialist interpretation of results to conclude the diagnosis
process. Taking advantage of efficient deep learning approaches applied in computer vision field, the present
framework proposes two deep learning architecture based on Convolutional-Recurrent neural Networks to
detect accurately malaria infected cells. The first one implements a Convolutional Long Short-TermMemory
while the second uses a Convolutional Bidirectional Long Short-Term Memory architecture. A malaria’s
public dataset consisting of parasitized and uninfected red blood cell images was used for training and testing
the proposed models. The methods developed in this work achieved an accuracy of 99.89 % in the detection
of malaria-infected red blood cells, without preprocessing data.
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INDEX TERMS Bidirectional long short-term memory (BiLSTM), convolutional neural network (CNN),
long short-term memory (LSTM), malaria dataset.

I. INTRODUCTION14

Malaria is caused by the bites of female Anopheles15

mosquitoes infected with protozoan parasites. Malaria is16

essentially a tropical disease since mosquitoes are produced17

in large numbers in humid environments. Recent global statis-18

tics illustrate some 229 million cases of malaria, with 1,70019

deaths per day, of which 96% lived in Africa [1]. The most20

affected by malaria are children under 5 years old, whom21

represents an 80 % mortality rate in the region according22

to [1].23

Among other malaria pathogens, the Plasmodium falci-24

parum and Plasmodium vivax attack human red blood cells25

The associate editor coordinating the review of this manuscript and

approving it for publication was Fahmi Khalifa .

(RBCs) causing high fever, cough, chills, headache, nausea, 26

and vomiting, muscle pain and fatigue, transpiration, abdom- 27

inal and chest pain, and the death [2], [3]. Untreated malaria 28

patients may develop long-term pneumonia, anemia, yellow 29

fever, respiratory or brain disorders (Cerebral Malaria) [4]. 30

The World Health Organization (WHO) is deploying 31

strategies for the prevention, treatment, elimination, and 32

surveillance ofMalaria to face this global pandemic [1], start- 33

ing with the diagnosis of the disease. Basically, microscopic 34

diagnosis method detecting Malaria consist in a microbiolog- 35

ical analysis using peripheral blood slides [5], [6]. Collection 36

of blood smears for manual microscopic analysis remains 37

an effective method in the diagnosis of malaria, compared 38

to other methods such as polymerase chain reaction (PCR) 39

and in-house tests [7]. Nevertheless, analyses by standard 40
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microscopes typically require a long time to obtain a com-41

pelling diagnosis and related results are dependent on the42

equipment quality, the luminous and practical conditions43

of the laboratory, and finally, on the technician’s analysis44

knowledge [8]. Standardly, the Malaria diagnosis evaluation45

is based on the cost per test, the sensitivity and specificity of46

the method, the time per test, and the qualified user skill [9].47

A poorly elaborated diagnosis exposes patients to erroneous48

treatment, with all the possible consequences of inappropriate49

medication. To deal with these limitations, computer-aided50

diagnostic (CAD) systems for malaria analysis are developed.51

Recently, numerous Deep learning approaches based on52

Artificial Neural Networks (ANN) have been used to make53

fast and accurate malaria’s diagnoses employing public54

datasets [10], [11]. These approaches for malaria blood smear55

detection, segmentation, and classification use or modify the56

conventional CNN to classify images of infected red blood57

cells.58

Lately, Akgül et al. [11] used ResNet architectures to clas-59

sify the malaria parasites achieving an accuracy of 94.09%60

with the ResNet-50 v2 model while, Loddo et al. [10] per-61

formed the four-class classification on the Plasmodium falci-62

parum stages of life using the DenseNet-201 neural network63

(99.40 %).64

In [12], an automated Convolutional Neural Network65

(CNN) was implemented for the diagnosis of malaria using66

microscopic blood smear images. The developed approach67

merges various techniques as distillation, data augmentation,68

Autoencoder, CNN model, Support Vector Machine (SVM),69

and K-Nearest Neighbors (KNN) to improve the model accu-70

racy and inference performance, obtaining an accuracy of71

99.23%with 4600 floating point operations in the detection of72

malarial parasites. Web-based and mobile-based applications73

were implemented performing the model inference under 1 s74

per sample. Arunagiri et al. proposed a transfer learning75

approach based on Visual Geometry Group (VGG) network76

and Support Vector Machine (SVM) to identify infected77

falciparum malaria parasite [13], achieving an accuracy78

of 93.1 %.79

Other deep learning approaches are based on feature80

extraction before processing images. The case of contrast81

enhancement methods proposed by Talha et al. where the82

DarkNet-53 and DenseNet-201 pretrained deep convolu-83

tional neural networks performed the feature extraction of the84

CIELAB color space images in the malaria blood smear clas-85

sification [14]. For their part, Salamah et al. [15] proposed86

a segmentation technique for malaria parasite detection of87

microscopic images, obtaining an average precision, recall,88

and F-measure of 86% .89

Overall, numerous techniques based on morphological90

operations [16], Local Composite Pattern (LBP) [17], Mov-91

ing K-Means Clustering [18], deep learning [12] and transfer92

learning models [19] are developed to improve malaria’s93

infected cell detection. Therefore, the challenges of diagnos-94

ing malaria red blood cells using deep and transfer learning95

techniques remain the detection accuracy, the diagnostic time96

frame and the process computational cost. In this sense, 97

various recent works are focused on the data preprocessing 98

step to perform the malaria detection [20], [21]. 99

To deal with the cell detection accuracy and the diag- 100

nostic time frame challenges, this work aims to classify 101

malaria red blood cells without a preprocessing step, using 102

two convolutional-recurrent neural networks and the public 103

malaria dataset from the National Library of Medicine [22]. 104

The main contributions of this article are summarized as 105

follows, 106

1) Because of the implemented learning acceleration, the 107

developed models all converge with only 100 training 108

iterations. 109

2) Approaches based on CNN-LSTM and CNN-BiLSTM 110

network cascade to improve cells classification. 111

3) Comparative results of malaria red blood cells classi- 112

fication achieved using convolutional-recurrent neural 113

networks. 114

As novelty, this work investigates on recurrent neural net- 115

works contribution detecting malaria red blood cells, empha- 116

sizing on data splitting, and images sizing to evaluate the 117

processing time, since various related works are based on the 118

basic CNN or its variants. 119

The paper is organized as follows. Section II presents 120

the referred malaria dataset, artificial neural architectures 121

and methods developed in this framework while the results 122

encountered are reported and discussed in Section III. Finally, 123

Section IV gives the paper conclusion and projections for the 124

future works. 125

II. METHODS 126

In making the binary-class classification of the parasitized 127

and uninfected cells in this paper, two neural network archi- 128

tectures are implemented: A cascade of Deep CNN-LSTM 129

and CNN-BiLSTM networks. 130

This work considers different input images size, that is, 131

image sizes of 96× 96, 64× 64, 32× 32, and 28× 28 pixels 132

to evaluate the processing time of each category. For its part, 133

the CNN component of the deep network block is config- 134

ured with the same parameters merging with the LSTM or 135

BiLSTM parts for each considered case. Dense layers are 136

composed of two neurons each one, activated by the Softmax 137

function evaluating the class probability for an output image. 138

A. OVERALL FLOWCHART 139

Figure 1 illustrates the step-by-step diagram of methods 140

implemented with the same public dataset in this paper. The 141

procedure’s main purpose is to evaluate results obtained with 142

different network architectures, classifying malaria unin- 143

fected and parasitized cells. 144

B. NLM—MALARIA DATASET 145

The malaria dataset is provided by National Library of 146

Medicine, Lister Hill National Center for Biomedical Com- 147

munications. The study was approved by the Institutional 148

Review Board of Office of Human Subjects Research 149
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FIGURE 1. The general high level block diagram of the method. Two approaches are developed in this work to detect parasitized red blood cells from
those uninfected: The first is based on deep CNN-LSTM cascade and the second uses a Deep CNN-BiLSTM combination, all followed by dense layers.

FIGURE 2. Example of cell images contained in the dataset: (a): parasitized cells and (b):
uninfected cells.

(OHSR) (protocol code 12972 and date of approval 25 June150

2015). This dataset contains 27,560 color images of151

96× 96 pixels, Giemsa-stained blood samples obtained from152

193 patients and distributed evenly between parasitized and153

uninfected red blood cell images.154

Figure 2 shows parasitized and uninfected RBCs as con-155

tained in the referred dataset. Artificial neural networks156

implemented classify images of infected cells and those of157

uninfected cells. Therefore, the malaria dataset was split into158

training and test subsets, as illustrated in Table 1.159

C. THE CNN-LSTM ARCHITECTURE160

The first block is based on a Convolutional Neural Network,161

recognized for its best performances processing images [23],162

[24]. CNNs use convolution mathematical operations at the163

hidden layers level to learn local data features. Therefore,164

RGB color images are processed directly by the CNNwithout165

any preprocessing step, performing the diagnostic delay as166

much as possible. The second block is constituted by an167

LSTM model. Initially, LSTM network was introduced to168

deal with vanishing or exploding gradient problem processing169

data long sequences with backpropagation algorithms [25].170

An LSTM Network is constituted by memory blocks, com-171

posed of memory units storing the network’s temporary172

states. The flow of sequences is controlled by recurrent173

connections into the network, depending essentially on the174

FIGURE 3. An LSTM memory unit structure. Memory units, also called
Constant Error Carousels (CECs) store the network’s temporary states.
The flow of sequences is controlled by recurrent connections into the
network.

number of memory unit blocks, the number of memory units 175

per block, and how the weights are initialized. 176

Figure 3 illustrates the LSTM memory unit structure, cen- 177

tered around the input, forget, and output gates. 178

At time t , the input gate upshot is 179

it = σ (W x
i xt +W

h
i ht−1 + bi), (1) 180

being W x
i and W h

i the weight matrices, ht−1 the previous 181

hidden state unit, bi the bias vector, and σ (x) the sigmoid 182

activation function. 183
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TABLE 1. Dataset partition approaches for training and testing data.

FIGURE 4. The implemented CNN-LSTM network. The model is based on three 2D-convolutional layers separated by max pooling of 2 × 2 kernel,
two dropouts, one flatten, an LSTM layer of 128 cells, and two fully connected layers.

Likewise, the forget gate produces the output ft using the184

σ (x) activation function as,185

ft = σ (W x
f xt +W

h
f ht−1 + bf ). (2)186

According to the input xt , the precedent state ht−1, and the187

cell state ct−1, the output of the output gate is,188

c̃t = tanh(W x
c̃ xt +W

h
c̃ ht−1 + bc̃), (3)189

ct = it � c̃t + ft � ct−1, (4)190

ot = σ (W x
o xt +W

h
o ht−1 + bo), (5)191

ht = ot � tanh(ct ), (6)192

where� is the Hadamard product andW x
o ,W

h
o are the output193

weight matrices.194

Implementing a cascade of CNN-LSTM expects to per-195

form the data classification, taking advantage of features196

extraction by the CNN and their classification by the LSTM.197

The CNN-LSTM network in Figure 4 alternately receives198

96× 96, 64× 64, 32× 32, and 28× 28 RGB color images as199

input to make the output prediction between parasitized and200

uninfected RBCs. The last dense layer constituted by 2 hidden201

units makes the class prediction on the input data using the202

SoftMax activation function given by203

σ (x)i =
exi∑2
j=1 e

xj
, for i = 1, 2, . . . , n (7)204

and x = (x1, x2, . . . , n) ε R2, (8)205

where the denominator represents the normalization expres-206

sion for the probability distribution and xi the feature map to207

be classified in its respective class.208

All the convolutional layers are activated by the Rec- 209

tifed Linear Activation Function (ReLU), offering gradients 210

between 0 and 1 and defined as, 211

f (x) = max(0, x) (9) 212

Table 2 outlines main parameters of the configured layers. 213

While the other layers operate with a similar number of 214

parameters, only the LSTM layer varies its numeral of model 215

parameters according to the input data size. 216

D. THE CNN-BiLSTM ARCHITECTURE 217

The second approach developed in this work contemplates 218

processing data with a CNN-BiLSTM network, as illustrated 219

in Figure 5. A BiLSTM network is constituted by two LSTM 220

blocks working each one in the forward and backward direc- 221

tion [26]. Thus, the BiLSTM architecture results in faster 222

convergence and better classification accuracy than the basic 223

LSTM [27]. For a given data processing tth time, the BiLSTM 224

unit considers the past and the future unit state, as shown in 225

Figure 6. 226

Therefore, the tth BiLSTM output merges forward and 227

backward outputs as, 228

ht = [
−−→
Fort ⊕

←−−−
Backt ], (10) 229

where
−−→
Fort and

←−−−
Backt are the tth LSTM memory block out- 230

puts, and ⊕ is the element-wise sum. 231

The implemented BiLSTM network uses two LSTM 232

blocks each one configured with 64 cell units, followed by 233

two fully-connected layers of 512 and 2 neurons, respec- 234

tively (see Figure 5). 4751872 and 98816 parameters are used 235
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TABLE 2. Configuration of the CNN-LSTM network parameters.

FIGURE 5. Overview of the implemented CNN-BiLSTM architecture. The BiLSTM block performs data classification taking advantage of the feature
extraction fulfilled by the CNN block.

FIGURE 6. Unfolded structure of a BiLSTM network. Data are processing
from the past into the future by the forward LSTM, while the backward
LSTM processes data from the future into the past.

to configure the two BiLSTM cells while the remain layers236

are implemented with the same parameters that the CNN-237

LSTM network.238

All the two architectures were trained on a Windows239

10 desktop equipped with an NVIDIA GTX 1080 Ti GPU for240

100 epochs using a batch size of 32, the Nesterov-accelerated241

Adaptive Moment Estimation (Nadam) optimizer, and the242

sparse categorical cross-entropy loss cost to estimate cell243

classification accuracy. In addition, the Cyclical Learning244

Rate (CLR) algorithm [28] was implemented to break out245

from local minima, accelerating the convergence of the train-246

ing process. Thereby, setting the step size to 8 times the247

number of iterations per epoch, the minimum and maximum 248

CLR were fixed to 7× 10−5 and 9× 10−3, respectively. 249

III. RESULTS AND DISCUSSION 250

Results obtained with the two approaches are evaluated using 251

the Precision, F1-score, Recall, and accuracymetrics. Assign- 252

ing class M features to another class is called False Negative 253

(FN) while True negatives (TN) are all features of other 254

classes than P not assigned to class P, False Positives (FP) 255

being all features erroneously assigned to class P. Therefore, 256

the following statistical metrics are defined for the classifica- 257

tion evaluation, 258

Accuracy =
TP+ TN

TP+ TN + FP+ FN
, (11) 259

Recall =
TP

TP+ FN
, (12) 260

Precision =
TP

TP+ FP
, (13) 261

F1− score =
2× Precision× Recall
Precision+ Recall

. (14) 262

The following tables contain average results on five tests 263

made with each architecture model, resetting the weights 264

randomly. 265
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TABLE 3. CNN-LSTM architecture results splitting the dataset into training and testing data.

TABLE 4. Results achieved with the proposed CNN-BiLSTM for all dataset splits.
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FIGURE 7. Confusion matrices (on the left column) and ROC curves (on the right column)
evaluating the classifier performances for split-1 data partition (90 vs. 10) using the CNN-LSTM
network.
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FIGURE 8. Confusion matrices (on the left column) and ROC curves (on the right column) for
the split-1 data partition (90 vs. 10) using the proposed CNN-BiLSTM network.

A. RESULTS ACHIEVED WITH THE CNN-LSTM266

ARCHITECTURE267

Table 3 presents the results achieved with the first approach268

using the CNN-LSTM network. With the first partition data,269

considering 90 % for the model training and 10 % for the 270

model testing, accuracies of 99.63 %, 99.67 %, 99.78 %, and 271

99.86 % were achieved classifying malaria parasitized and 272

uninfected RBCs. Precision, Recall, and F1-Score metrics are 273
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reported next to each data size for this partition, respectively.274

For the split-2, split-3, split-4 and split-5 data partition, the275

best accuracies of 99.36 %, 98.98 %, 98.42 %, and 98.00 %276

were obtained, all with 96 × 96 size images.277

Figure 7 presents the confusion matrix and receiver operat-278

ing characteristic (ROC) curves evaluating the quality of the279

classifier output using only the split-1 data partition that gave280

best performances. On the confusion matrix, the predicted281

labels competing to equalize to the true labels are represented282

by the diagonal elements, while the mislabeled elements are283

located on the matrix off-diagonal. For its part, the ROC284

curve built from the true positive rate (TPR) against the false285

positive rate (FPR) typically illustrates the trade-off between286

the sensitivity and specificity metrics. Classifiers with better287

performance present ROC curves closer to the graph’s top-left288

corner. On the diagonal, the TPR is equal to the FPR, given289

a random classifier. The area under the ROC curve (AUC),290

directly linked to the accuracy metric, calculates the classi-291

fier’s performance in discriminating between parasitized and292

uninfected cells.293

In the case of 28 × 28 image size, 99.72 % of cell294

images were correctly detected as parasitized against 99.40%295

for uninfected cell images. 99.65 % of samples were accu-296

rately diagnosed as parasitized in contrast to 99.78 %297

for uninfected cells considering the 32 × 32 image size.298

According to the Figure 7(e) where 64 × 64 samples were299

used, parasitized and uninfected cells got close predic-300

tions of 99.79 % and 99.78 % comparing with their true301

labels. Finally, the CNN-LSTM classifier correctly predicted302

99.86 % as parasitized and 99.63 % of 96 × 96 samples as303

uninfected.304

B. RESULTS OBTAINED WITH THE CNN-BiLSTM305

ARCHITECTURE306

By replacing the LSTM block of the previous architecture307

with two BiLSTM layers, results achieved are shown on308

Table 4, where the best accuracy of 99.89 % was obtained309

with the split-1 data partition, followed by accuracies of310

99.34 %, 98,89 %, 98.47 % and 97.93 % for the split-2,311

split-3, split-4, and split-5, in this order. These performances312

were reached using 96× 96 image size. The precision, Recall313

and F1-score metrics follow the same decreasing trend while314

the data partitions pass from split-1 to split-5.315

Figure 8 shows the confusion matrices and ROC curves for316

the CNN-BiLSTM model using the split-1 data partition.317

Parasitized and uninfected RBC predictions varied depend-318

ing on image pixel size and the database splitting. 99.99 % of319

96 × 96 sized-images were correctly labeled as parasitized320

against 99.7 % for uninfected cells. 0.3 % of uninfected cells321

were mislabeled against 0.07 of parasitized.322

C. DISCUSSION323

By evaluating the architectural models proposed in this work,324

three important parameters were observed, namely, the size325

of images to be processed, the adjusted rate of the training326

against the testing data and the processing time required by327

the classifier. Talking about the size of samples being pro- 328

cessed, the results in Tables 3 and 4 support the observation 329

that the large-sized images produced better performance in 330

their processing than the small-sized. This is understood by 331

the large quantity of pixels necessary for the features learning 332

by the CNN block. Splitting the database into training and 333

testing data on top carries out a significant role. The same 334

tables report performances for the split-1 which considers 335

90 % images for training and 10 % for testing than for the 336

other partitions. The split-5 partition produced the lowest 337

results of all splits (98% and 97.93%), despite the considered 338

image sizes. 339

Finally, the processing time that the classifier considers to 340

decide whether a selected sample is infected or not, should be 341

added to these observations. Large-sized images take longer 342

(despite < 1 s) than small-sized, as revealed in Table 5. 343

Therefore, comparing the two proposed architecture models 344

for the 96 × 96 image size, The CNN-BiLSTM model took 345

longer than the CNN-LSTM classifier to detect a data sample, 346

justifiable by the data twice-processing operated by the BiL- 347

STM. Obviously, the results presented in Table 5 correspond 348

to the used computer resources and can be improved using a 349

more powerful computer. Therefore, the reasonable compro- 350

mise should be negotiated amidst these three observations for 351

a usage application, give-and-take between the size of images 352

— data partition — processing time. 353

The literature is flourishing with scientific research relat- 354

ing to the detection of cells infected and uninfected bymalaria 355

employing the NLM database and various deep learning 356

approaches. Among all these specific techniques efficiently 357

deployed, the present work contributes in meaningfully com- 358

paring results of two combined architectures of convolutional 359

and recurrent neural networks, without preprocessing data. 360

Table 6 presents the comparison between the results of recent 361

state-of-the-art works and those achieved in this framework. 362

Recently, [29] implemented a customized CNN to detect 363

peripheral malarial parasites in blood Smears, achiev- 364

ing an accuracy of 98 % with 27500 images resized at 365

128 × 128 pixel size. Next, their used morphological filters 366

and a a fine-tuned pretrained CNN model to classify par- 367

asitized and uninfected malaria cells, obtaining an average 368

accuracy of 98.34 ± 0.51%. 369

Likewise, [20] proposed a model based on Barnacles Mat- 370

ing Optimizer with Deep Transfer Learning (BMODTL) to 371

detect and classify malaria parasite. Concretely, they pre- 372

processed data using the Gaussian filter (GF) and Graph 373

cuts (GC) segmentation technique to locate the contami- 374

nated areas in the blood smear images, before classifying 375

malaria parasites. An accuracy of 99.04 % was achieved 376

with their model. In another work, the malaria detection 377

based on offline andWeb application was implemented using 378

various approaches contemplating distillation, morphology, 379

Autoencoder, CNN - Support Vector Machine (SVM) or 380

K-Nearest Neighbors (KNN) [12]. They reported an accu- 381

racy of 99.23 processing malaria RBC images of 28 × 28, 382

32 × 32, and 64 × 64 pixel size. Splitting data in 80 % 383
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TABLE 5. Classifier running time to detect a sample of malaria cell.

TABLE 6. Comparison of the results with the state of the art.

for training and 20 % for testing, [31] obtained an accu-384

racy of 98.82 % with their model based on an impera-385

tive dynamic routing mechanism with fully trained capsule386

networks, classifying malaria RBCs.387

This work, in addition to exploring various database split-388

tings for the model training and testing, offers competi-389

tive results comparing with those of the state-of-the-art.390

Approaches developed combining convolutional and recur-391

rent neural networks to accurately detect parasitized and392

uninfectedmalaria cells, manfully helped to achieve this goal.393

IV. CONCLUSION394

This work aimed to classify parasitized and uninfected395

malaria cells using two deep learning architectures without396

any preprocessing stage. The proposed networks combined397

the basic convolutional neural network and two specific398

recurrent neural network, the Long Term - Short Memory399

(LSTM) to solve the vanishing gradient problem and the400

Bidirectional LSTM to perform the classification, processing401

data twice. The accuracy, precision, recall, F1-score and402

confusion matrix metrics were used to evaluate the model403

performances, considering the images size, data splitting for404

model training and testing, and the processing time per data405

sample. The proposed models achieved competitive results406

in comparison with those of the state-of-the-art, offering new407

alternatives for further works. Samples of 96 × 96 pixel size 408

gave the best results splitting 90 % of data for the training 409

and 10 % for the testing. Accuracies of 99.86 and 99.89 % 410

were achieved with the CNN-LSTM and CNN-BiLSTM, 411

training these models with 100 epochs at least. Implementa- 412

tions of the developed architectures on FPGAs are projected 413

as future works to accelerate image processing, with the 414

real-time detection purpose. To anticipate this specific projec- 415

tion, this work considered image processing of various sizes 416

to analyze a practical trade-off between processing delay and 417

cell detection accuracy. The code sources for theses experi- 418

ments are released on the github https://github.com/ 419

adanantonio07A/malaria_classification. 420
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