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ABSTRACT This work aims to classify malaria infected red blood cells from those uninfected using two
deep learning approaches. Plasmodium parasite transmitted by a female anopheles’s mosquitoes bite is
the main cause of malaria. Commonly, Microbiological analyses by a microscope allows detecting cells
infected from a blood sample, followed by a specialist interpretation of results to conclude the diagnosis
process. Taking advantage of efficient deep learning approaches applied in computer vision field, the present
framework proposes two deep learning architecture based on Convolutional-Recurrent neural Networks to
detect accurately malaria infected cells. The first one implements a Convolutional Long Short-Term Memory
while the second uses a Convolutional Bidirectional Long Short-Term Memory architecture. A malaria’s
public dataset consisting of parasitized and uninfected red blood cell images was used for training and testing
the proposed models. The methods developed in this work achieved an accuracy of 99.89 % in the detection

of malaria-infected red blood cells, without preprocessing data.

INDEX TERMS Bidirectional long short-term memory (BiLSTM), convolutional neural network (CNN),

long short-term memory (LSTM), malaria dataset.

I. INTRODUCTION
Malaria is caused by the bites of female Anopheles
mosquitoes infected with protozoan parasites. Malaria is
essentially a tropical disease since mosquitoes are produced
in large numbers in humid environments. Recent global statis-
tics illustrate some 229 million cases of malaria, with 1,700
deaths per day, of which 96% lived in Africa [1]. The most
affected by malaria are children under 5 years old, whom
represents an 80 % mortality rate in the region according
to [1].

Among other malaria pathogens, the Plasmodium falci-
parum and Plasmodium vivax attack human red blood cells
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(RBCs) causing high fever, cough, chills, headache, nausea,
and vomiting, muscle pain and fatigue, transpiration, abdom-
inal and chest pain, and the death [2], [3]. Untreated malaria
patients may develop long-term pneumonia, anemia, yellow
fever, respiratory or brain disorders (Cerebral Malaria) [4].
The World Health Organization (WHO) is deploying
strategies for the prevention, treatment, elimination, and
surveillance of Malaria to face this global pandemic [1], start-
ing with the diagnosis of the disease. Basically, microscopic
diagnosis method detecting Malaria consist in a microbiolog-
ical analysis using peripheral blood slides [5], [6]. Collection
of blood smears for manual microscopic analysis remains
an effective method in the diagnosis of malaria, compared
to other methods such as polymerase chain reaction (PCR)
and in-house tests [7]. Nevertheless, analyses by standard
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microscopes typically require a long time to obtain a com-
pelling diagnosis and related results are dependent on the
equipment quality, the luminous and practical conditions
of the laboratory, and finally, on the technician’s analysis
knowledge [8]. Standardly, the Malaria diagnosis evaluation
is based on the cost per test, the sensitivity and specificity of
the method, the time per test, and the qualified user skill [9].
A poorly elaborated diagnosis exposes patients to erroneous
treatment, with all the possible consequences of inappropriate
medication. To deal with these limitations, computer-aided
diagnostic (CAD) systems for malaria analysis are developed.

Recently, numerous Deep learning approaches based on
Atrtificial Neural Networks (ANN) have been used to make
fast and accurate malaria’s diagnoses employing public
datasets [10], [11]. These approaches for malaria blood smear
detection, segmentation, and classification use or modify the
conventional CNN to classify images of infected red blood
cells.

Lately, Akgiil et al. [11] used ResNet architectures to clas-
sify the malaria parasites achieving an accuracy of 94.09%
with the ResNet-50 v2 model while, Loddo et al. [10] per-
formed the four-class classification on the Plasmodium falci-
parum stages of life using the DenseNet-201 neural network
(99.40 %).

In [12], an automated Convolutional Neural Network
(CNN) was implemented for the diagnosis of malaria using
microscopic blood smear images. The developed approach
merges various techniques as distillation, data augmentation,
Autoencoder, CNN model, Support Vector Machine (SVM),
and K-Nearest Neighbors (KNN) to improve the model accu-
racy and inference performance, obtaining an accuracy of
99.23% with 4600 floating point operations in the detection of
malarial parasites. Web-based and mobile-based applications
were implemented performing the model inference under 1 s
per sample. Arunagiri et al. proposed a transfer learning
approach based on Visual Geometry Group (VGG) network
and Support Vector Machine (SVM) to identify infected
falciparum malaria parasite [13], achieving an accuracy
of 93.1 %.

Other deep learning approaches are based on feature
extraction before processing images. The case of contrast
enhancement methods proposed by Talha ef al. where the
DarkNet-53 and DenseNet-201 pretrained deep convolu-
tional neural networks performed the feature extraction of the
CIELAB color space images in the malaria blood smear clas-
sification [14]. For their part, Salamah et al. [15] proposed
a segmentation technique for malaria parasite detection of
microscopic images, obtaining an average precision, recall,
and F-measure of 86% .

Overall, numerous techniques based on morphological
operations [16], Local Composite Pattern (LBP) [17], Mov-
ing K-Means Clustering [18], deep learning [12] and transfer
learning models [19] are developed to improve malaria’s
infected cell detection. Therefore, the challenges of diagnos-
ing malaria red blood cells using deep and transfer learning
techniques remain the detection accuracy, the diagnostic time
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frame and the process computational cost. In this sense,
various recent works are focused on the data preprocessing
step to perform the malaria detection [20], [21].

To deal with the cell detection accuracy and the diag-
nostic time frame challenges, this work aims to classify
malaria red blood cells without a preprocessing step, using
two convolutional-recurrent neural networks and the public
malaria dataset from the National Library of Medicine [22].

The main contributions of this article are summarized as
follows,

1) Because of the implemented learning acceleration, the
developed models all converge with only 100 training
iterations.

2) Approaches based on CNN-LSTM and CNN-BiLSTM
network cascade to improve cells classification.

3) Comparative results of malaria red blood cells classi-
fication achieved using convolutional-recurrent neural
networks.

As novelty, this work investigates on recurrent neural net-
works contribution detecting malaria red blood cells, empha-
sizing on data splitting, and images sizing to evaluate the
processing time, since various related works are based on the
basic CNN or its variants.

The paper is organized as follows. Section II presents
the referred malaria dataset, artificial neural architectures
and methods developed in this framework while the results
encountered are reported and discussed in Section III. Finally,
Section IV gives the paper conclusion and projections for the
future works.

Il. METHODS

In making the binary-class classification of the parasitized
and uninfected cells in this paper, two neural network archi-
tectures are implemented: A cascade of Deep CNN-LSTM
and CNN-BiLSTM networks.

This work considers different input images size, that is,
image sizes of 96 x 96, 64 x 64, 32 x 32, and 28 x 28 pixels
to evaluate the processing time of each category. For its part,
the CNN component of the deep network block is config-
ured with the same parameters merging with the LSTM or
BiLSTM parts for each considered case. Dense layers are
composed of two neurons each one, activated by the Softmax
function evaluating the class probability for an output image.

A. OVERALL FLOWCHART
Figure 1 illustrates the step-by-step diagram of methods
implemented with the same public dataset in this paper. The
procedure’s main purpose is to evaluate results obtained with
different network architectures, classifying malaria unin-
fected and parasitized cells.

B. NLM—-MALARIA DATASET

The malaria dataset is provided by National Library of
Medicine, Lister Hill National Center for Biomedical Com-
munications. The study was approved by the Institutional
Review Board of Office of Human Subjects Research
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FIGURE 1. The general high level block diagram of the method. Two approaches are developed in this work to detect parasitized red blood cells from
those uninfected: The first is based on deep CNN-LSTM cascade and the second uses a Deep CNN-BiLSTM combination, all followed by dense layers.
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FIGURE 2. Example of cell images contained in the dataset: (a): parasitized cells and (b):

uninfected cells.

(OHSR) (protocol code 12972 and date of approval 25 June
2015). This dataset contains 27,560 color images of
96 x 96 pixels, Giemsa-stained blood samples obtained from
193 patients and distributed evenly between parasitized and
uninfected red blood cell images.

Figure 2 shows parasitized and uninfected RBCs as con-
tained in the referred dataset. Artificial neural networks
implemented classify images of infected cells and those of
uninfected cells. Therefore, the malaria dataset was split into
training and test subsets, as illustrated in Table 1.

C. THE CNN-LSTM ARCHITECTURE

The first block is based on a Convolutional Neural Network,
recognized for its best performances processing images [23],
[24]. CNNs use convolution mathematical operations at the
hidden layers level to learn local data features. Therefore,
RGB color images are processed directly by the CNN without
any preprocessing step, performing the diagnostic delay as
much as possible. The second block is constituted by an
LSTM model. Initially, LSTM network was introduced to
deal with vanishing or exploding gradient problem processing
data long sequences with backpropagation algorithms [25].
An LSTM Network is constituted by memory blocks, com-
posed of memory units storing the network’s temporary
states. The flow of sequences is controlled by recurrent
connections into the network, depending essentially on the
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FIGURE 3. An LSTM memory unit structure. Memory units, also called
Constant Error Carousels (CECs) store the network’s temporary states.
The flow of sequences is controlled by recurrent connections into the
network.

number of memory unit blocks, the number of memory units
per block, and how the weights are initialized.

Figure 3 illustrates the LSTM memory unit structure, cen-
tered around the input, forget, and output gates.

At time ¢, the input gate upshot is

ir = o (Wi, + Whi_y + by), (1)
being W and Wih the weight matrices, h;—1 the previous

hidden state unit, b; the bias vector, and o (x) the sigmoid
activation function.
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TABLE 1. Dataset partition approaches for training and testing data.

Dataset Training data Testing data
split Percentage (%) Cell images Percentage (%) Cell images
Split-1 90 24,804 10 2,756
Split-2 80 22,048 20 5,512
Split-3 70 19,292 30 8,268
Split-4 60 16,536 40 11,024
Split-5 50 13,780 50 13,780
27,560 Input data  feature maps feature maps feature maps feature maps feature maps  feature maps Hidden units Hidden units
(3@96 x 96) (16@96 x 96) (16@48 x 48) (32@48 x 48) (32@24 x 24) (64@24 x24) (64@12x 12) 9216 2x9216
(3@64x64)  (16@64 x 64) (16@32 x 32) (32@32x32)  (32@16x 16) (64@16x16)  (64@8 x 8) 4096 2 x 4096
(3@32x32)  (16@32x32) (16@16 x 16) (32@16 x 16) (32@8 x 8) (64@8 x 8) (64@4 x 4) 1024 2x1024  Goyis 128 Hidden units Hidden units
(3@28 x 28) (16@28 x 28) (16@14 x 14) (32@14 x 14) (32@7x7) (64@7 x7) (64@3 x 3) 576 2x576 2

Dropout

TF ' [3
= A= : ¢>m:> > > =>

Max_Pooling_1 Conv2D_2
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Max_Pooling_2
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FIGURE 4. The implemented CNN-LSTM network. The model is based on three 2D-convolutional layers separated by max pooling of 2 x 2 kernel,
two dropouts, one flatten, an LSTM layer of 128 cells, and two fully connected layers.

Likewise, the forget gate produces the output f; using the
o (x) activation function as,

fi = oW+ W oy + by). @)

According to the input x;, the precedent state h;_1, and the
cell state c;_1, the output of the output gate is,

All the convolutional layers are activated by the Rec-
tifed Linear Activation Function (ReLU), offering gradients
between 0 and 1 and defined as,

f(x) = max(0, x) )

Table 2 outlines main parameters of the configured layers.

~ While the other layers operate with a similar number of
€ = tanh(W{ x; + W b1 + be), 3) parameters, only theyLSTNl; layer varies its numeral of model
¢ =10 O +fi ©c1, “) parameters according to the input data size.

or = o(W) X, + W) hi_1 + by), )

hy = 0; © tanh(c,), )  D. THE CNN-BiLSTM ARCHITECTURE

where © is the Hadamard product and W, W/ are the output
weight matrices.

Implementing a cascade of CNN-LSTM expects to per-
form the data classification, taking advantage of features
extraction by the CNN and their classification by the LSTM.
The CNN-LSTM network in Figure 4 alternately receives
96 x 96, 64 x 64,32 x 32, and 28 x 28 RGB color images as
input to make the output prediction between parasitized and
uninfected RBCs. The last dense layer constituted by 2 hidden
units makes the class prediction on the input data using the
SoftMax activation function given by

i

Zj lex

and x = (x1,x3, ...

ox), = Jfori=1,2,. @)

,n) e R?, ®)

where the denominator represents the normalization expres-
sion for the probability distribution and x; the feature map to
be classified in its respective class.
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The second approach developed in this work contemplates
processing data with a CNN-BiLSTM network, as illustrated
in Figure 5. A BiLSTM network is constituted by two LSTM
blocks working each one in the forward and backward direc-
tion [26]. Thus, the BiLSTM architecture results in faster
convergence and better classification accuracy than the basic
LSTM [27]. For a given data processing t” time, the BILSTM
unit considers the past and the future unit state, as shown in
Figure 6.

Therefore, the t* BiLSTM output merges forward and
backward outputs as,

—_— <
hy = [For; ® Back;], (10)

— P
where For, and Back; are the t" LSTM memory block out-
puts, and @ is the element-wise sum.

The implemented BiLSTM network uses two LSTM
blocks each one configured with 64 cell units, followed by
two fully-connected layers of 512 and 2 neurons, respec-
tively (see Figure 5). 4751872 and 98816 parameters are used
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TABLE 2. Configuration of the CNN-LSTM network parameters.
Type of Layer Number of parameters
(28 x 28)data (32 x 32)data (64 x 64)data (96 x 96) data
CNNI1 (Conv2D) 448 448 448 448
Max_pooling2D_1 0 0 0 0
CNN2 (Conv2D) 4640 4640 4640 4640
Max_pooling2D_2 0 0 0 0
Dropout_1 0 0 0 0
CNN3 (Conv2D). 18496 18496 18496 18496
Max_pooling2D_3 0 0 0 0
Flatten_1 0 0 0 0
Repeat_vector 0 0 0 0
LSTM 360960 590336 2163200 4784640
Dropout_2 0 0 0 0
Dense_1 66048 66048 66048 66048
Dense_2 1026 1026 1026 1026
oo (Ia@oe o0 (S5 s (Gamnis  (Heinsn (Giaminsy (sarxtn emen Moo
(3@64 x 64) (16@64 x 64) (16@32 x 32) (32@32 x 32) (32@16 x 16) (64@16x16)  (64@8 x 8) 4096 2 x 4096
(3@32x32) (16@32 x 32) (16@16 x 16) (32@16 x 16) (32@8 x 8) (64@8 x 8) (64@4 x 4) 1024 2x1024 Cells Hidden units Hidden units
(3@28 x 28) (16@28 x 28) (16@14 x 14) (32@14 x 14) (32@7x7) (64@7 x 7) (64@3 x 3) 576 2x576 2x64 512
=N & - | L
@% {E FFE JEJE s 2> o> o>
- : O : 0

Conv2D_1

3 x 3 kernel 2 x 2 kernel

2 x 2 kernel 2 x 2 kernel

2 x 2 kernel

2 x 2 kernel connected connected Outputs

FIGURE 5. Overview of the implemented CNN-BiLSTM architecture. The BiLSTM block performs data classification taking advantage of the feature

extraction fulfilled by the CNN block.

Outputs

Backward
LST™M

Forward
LST™M

Inputs
FIGURE 6. Unfolded structure of a BiLSTM network. Data are processing

from the past into the future by the forward LSTM, while the backward
LSTM processes data from the future into the past.

to configure the two BiLSTM cells while the remain layers

number of iterations per epoch, the minimum and maximum
CLR were fixed to 7 x 107> and 9 x 1073, respectively.

IIl. RESULTS AND DISCUSSION

Results obtained with the two approaches are evaluated using
the Precision, F1-score, Recall, and accuracy metrics. Assign-
ing class M features to another class is called False Negative
(FN) while True negatives (TN) are all features of other
classes than P not assigned to class P, False Positives (FP)
being all features erroneously assigned to class P. Therefore,
the following statistical metrics are defined for the classifica-
tion evaluation,

TP + TN

are implemented with the same parameters that the CNN- Accuracy = + , an
LSTM network. s ;—PTN +FP+EN

All the two architectures were trained on a Windows Recall = ——, (12)
10 desktop equipped with an NVIDIA GTX 1080 Ti GPU for P ;;F N
100 epochs using a batch size of 32, the Nesterov-accelerated Precision = ——, (13)
Adaptive Moment Estimation (Nadam) optimizer, and the TP+ FP ..

. . 2 x Precision x Recall

sparse categorical cross-entropy loss cost to estimate cell F1 — score = (14)

classification accuracy. In addition, the Cyclical Learning
Rate (CLR) algorithm [28] was implemented to break out
from local minima, accelerating the convergence of the train-
ing process. Thereby, setting the step size to 8 times the

97352

Precision + Recall

The following tables contain average results on five tests
made with each architecture model, resetting the weights
randomly.
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TABLE 3. CNN-LSTM architecture results splitting the dataset into training and testing data.

Dataset Image Training vs. Accuracy Precision Recall F1-Score
split size Testing (%)
28 x 28 90 vs. 10 99.63 99.43 99.85 99.64
split-1 32 x 32 90 vs. 10 99.67 99.64 99.57 99.61
64 x 64 90 vs. 10 99.78 99.57 99.85 99.71
96 x 96 90 vs. 10 99.86 99.71 99.85 99.78
28 x 28 80 vs. 20 99.27 98.96 99.31 99.14
Split-2 32 x 32 80 vs. 20 99.31 98.96 99.67 99.32
64 x 64 80 vs. 20 99.29 98.89 99.42 99.15
96 x 96 80 vs. 20 99.36 98.92 99.24 99.08
28 x 28 70 vs. 30 98.87 98.5 99.14 98.82
Split-3 32 x 32 70 vs. 30 98.97 98.55 99.07 98.81
64 x 64 70 vs. 30 98.89 98.62 98.88 98.75
96 x 96 70 vs. 30 98.98 98.67 99.16 98.91
28 x 28 60 vs. 40 98.34 97.67 98.70 98.18
Split-4 32 x 32 60 vs. 40 98.30 97.58 98.63 98.10
64 x 64 60 vs. 40 98.37 97.29 98.63 97.95
96 x 96 60 vs. 40 98.42 97.87 97.62 97.75
28 x 28 50 vs. 50 97.74 96.61 96.91 96.76
Split-5 32 x 32 50 vs. 50 97.79 98.15 97.5 96.82
64 x 64 50 vs. 50 97.93 96.16 97.92 96.87
96 x 96 50 vs. 50 98.00 97.32 97.24 97.28
TABLE 4. Results achieved with the proposed CNN-BiLSTM for all dataset splits.
Dataset Image Trainingvs. Accuracy Precision Recall F1-Score
Split size Testing (%)
28 x 28 90 vs. 10 99.74 99.71 99.78 99.75
split-1 32 x 32 90 vs. 10 99.81 99.78 99.85 99.82
64 x 64 90 vs. 10 99.85 99.71 99.71 99.71
96 x 96 90 vs. 10 99.89 99.73 99.89 99.76
28 x 28 80 vs. 20 99.29 99.06 99.24 99.15
Split-2 32 x 32 80 vs. 20 99.25 98.86 99.60 99.23
64 x 64 80 vs. 20 99.31 98.82 99.35 99.08
96 x 96 80 vs. 20 99.34 98.89 99.24 99.06
28 x 28 70 vs. 30 98.85 97.90 98.95 98.42
Split-3 32 x 32 70 vs. 30 98.80 98.40 98.57 98.48
64 x 64 70 vs. 30 98.85 98.51 99.21 98.86
96 x 96 70 vs. 30 98.89 98.64 98.61 98.63
28 x 28 60 vs. 40 98.30 96.52 97.81 97.65
Split-4 32 x 32 60 vs. 40 98.33 96.53 99.15 97.82
64 x 64 60 vs. 40 98.39 96.05 97.39 97.31
96 x 96 60 vs. 40 98.47 96.29 98.00 97.14
28 x 28 50 vs. 50 97.75 96.42 97.57 96.99
Split-5 32 x 32 50 vs. 50 97.66 96.40 97.89 97.14
64 x 64 50 vs. 50 97.86 96.86 98.42 97.63
96 x 96 50 vs. 50 97.93 96.17 96.42 96.29
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FIGURE 7. Confusion matrices (on the left column) and ROC curves (on the right column)
evaluating the classifier performances for split-1 data partition (90 vs. 10) using the CNN-LSTM

network.
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A. RESULTS ACHIEVED WITH THE CNN-LSTM

ARCHITECTURE

Table 3 presents the results achieved with the first approach
using the CNN-LSTM network. With the first partition data,
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FIGURE 8. Confusion matrices (on the left column) and ROC curves (on the right column) for
the split-1 data partition (90 vs. 10) using the proposed CNN-BiLSTM network.

considering 90 % for the model training and 10 % for the
model testing, accuracies of 99.63 %, 99.67 %, 99.78 %, and
99.86 % were achieved classifying malaria parasitized and
uninfected RBCs. Precision, Recall, and F1-Score metrics are
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reported next to each data size for this partition, respectively.
For the split-2, split-3, split-4 and split-5 data partition, the
best accuracies of 99.36 %, 98.98 %, 98.42 %, and 98.00 %
were obtained, all with 96 x 96 size images.

Figure 7 presents the confusion matrix and receiver operat-
ing characteristic (ROC) curves evaluating the quality of the
classifier output using only the split-1 data partition that gave
best performances. On the confusion matrix, the predicted
labels competing to equalize to the true labels are represented
by the diagonal elements, while the mislabeled elements are
located on the matrix off-diagonal. For its part, the ROC
curve built from the true positive rate (TPR) against the false
positive rate (FPR) typically illustrates the trade-off between
the sensitivity and specificity metrics. Classifiers with better
performance present ROC curves closer to the graph’s top-left
corner. On the diagonal, the TPR is equal to the FPR, given
a random classifier. The area under the ROC curve (AUC),
directly linked to the accuracy metric, calculates the classi-
fier’s performance in discriminating between parasitized and
uninfected cells.

In the case of 28 x 28 image size, 99.72 % of cell
images were correctly detected as parasitized against 99.40 %
for uninfected cell images. 99.65 % of samples were accu-
rately diagnosed as parasitized in contrast to 99.78 %
for uninfected cells considering the 32 x 32 image size.
According to the Figure 7(e) where 64 x 64 samples were
used, parasitized and uninfected cells got close predic-
tions of 99.79 % and 99.78 % comparing with their true
labels. Finally, the CNN-LSTM classifier correctly predicted
99.86 % as parasitized and 99.63 % of 96 x 96 samples as
uninfected.

B. RESULTS OBTAINED WITH THE CNN-BIiLSTM
ARCHITECTURE
By replacing the LSTM block of the previous architecture
with two BiLSTM layers, results achieved are shown on
Table 4, where the best accuracy of 99.89 % was obtained
with the split-1 data partition, followed by accuracies of
99.34 %, 98,89 %, 98.47 % and 97.93 % for the split-2,
split-3, split-4, and split-5, in this order. These performances
were reached using 96 x 96 image size. The precision, Recall
and F1-score metrics follow the same decreasing trend while
the data partitions pass from split-1 to split-5.

Figure 8 shows the confusion matrices and ROC curves for
the CNN-BiLSTM model using the split-1 data partition.

Parasitized and uninfected RBC predictions varied depend-
ing on image pixel size and the database splitting. 99.99 % of
96 x 96 sized-images were correctly labeled as parasitized
against 99.7 % for uninfected cells. 0.3 % of uninfected cells
were mislabeled against 0.07 of parasitized.

C. DISCUSSION

By evaluating the architectural models proposed in this work,
three important parameters were observed, namely, the size
of images to be processed, the adjusted rate of the training
against the testing data and the processing time required by
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the classifier. Talking about the size of samples being pro-
cessed, the results in Tables 3 and 4 support the observation
that the large-sized images produced better performance in
their processing than the small-sized. This is understood by
the large quantity of pixels necessary for the features learning
by the CNN block. Splitting the database into training and
testing data on top carries out a significant role. The same
tables report performances for the split-1 which considers
90 % images for training and 10 % for testing than for the
other partitions. The split-5 partition produced the lowest
results of all splits (98 % and 97.93 %), despite the considered
image sizes.

Finally, the processing time that the classifier considers to
decide whether a selected sample is infected or not, should be
added to these observations. Large-sized images take longer
(despite < 1 s) than small-sized, as revealed in Table 5.
Therefore, comparing the two proposed architecture models
for the 96 x 96 image size, The CNN-BiLSTM model took
longer than the CNN-LSTM classifier to detect a data sample,
justifiable by the data twice-processing operated by the BiL-
STM. Obviously, the results presented in Table 5 correspond
to the used computer resources and can be improved using a
more powerful computer. Therefore, the reasonable compro-
mise should be negotiated amidst these three observations for
ausage application, give-and-take between the size of images
— data partition — processing time.

The literature is flourishing with scientific research relat-
ing to the detection of cells infected and uninfected by malaria
employing the NLM database and various deep learning
approaches. Among all these specific techniques efficiently
deployed, the present work contributes in meaningfully com-
paring results of two combined architectures of convolutional
and recurrent neural networks, without preprocessing data.
Table 6 presents the comparison between the results of recent
state-of-the-art works and those achieved in this framework.

Recently, [29] implemented a customized CNN to detect
peripheral malarial parasites in blood Smears, achiev-
ing an accuracy of 98 % with 27500 images resized at
128 x 128 pixel size. Next, their used morphological filters
and a a fine-tuned pretrained CNN model to classify par-
asitized and uninfected malaria cells, obtaining an average
accuracy of 98.34 + 0.51%.

Likewise, [20] proposed a model based on Barnacles Mat-
ing Optimizer with Deep Transfer Learning (BMODTL) to
detect and classify malaria parasite. Concretely, they pre-
processed data using the Gaussian filter (GF) and Graph
cuts (GC) segmentation technique to locate the contami-
nated areas in the blood smear images, before classifying
malaria parasites. An accuracy of 99.04 % was achieved
with their model. In another work, the malaria detection
based on offline and Web application was implemented using
various approaches contemplating distillation, morphology,
Autoencoder, CNN - Support Vector Machine (SVM) or
K-Nearest Neighbors (KNN) [12]. They reported an accu-
racy of 99.23 processing malaria RBC images of 28 x 28,
32 x 32, and 64 x 64 pixel size. Splitting data in 80 %
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TABLE 5. Classifier running time to detect a sample of malaria cell.

Dataset Model Running time for sample (second)
split 28 x28 32x32 64x64 96 x96
Split-1 CNN-LSTM 0.111 0.133 0.261 0.446
pit- CNN-BiLSTM 0.142 0.173 0.346 0.581
Split-2 CNN-LSTM 0.082 0.103 0.221 0.439
P CNN-BiLSTM 0.098 0.113 0.269 0.462
Split-3 CNN-LSTM 0.042 0.052 0.228 0.389
P CNN-BiLSTM 0.054 0.055 0.184 0.401
Split-4 CNN-LSTM 0.028 0.040 0.147 0.311
pit- CNN-BiLSTM 0.074 0.093 0.190 0.317
Split-5 CNN-LSTM 0.025 0.031 0.125 0.252
P CNN-BiLSTM 0.027 0.039 0.130 0.276
TABLE 6. Comparison of the results with the state of the art.

Author Method Accuracy Precision Recall Fl-score
Alharbi [29] Customized CNN 98.0 - 98.5 98.7
Alharbi [30] CNN/VGG-19 97.04 97.04 97.00 97.00

Dutta [20] BMODTL-BMPC 99.04 99.05 99.05 99.04
Fuhad [12] Autoencoder 99.23 98.92 99.52 99.22
Madhu [31] CapsNet 98.82 98.82 98.36 99.12
Proposed model 1 CNN-LSTM 99.86 99.71 99.85 99.78
Proposed model 2 CNN-BiLSTM 99.89 99.73 99.89 99.76

for training and 20 % for testing, [31] obtained an accu-
racy of 98.82 % with their model based on an impera-
tive dynamic routing mechanism with fully trained capsule
networks, classifying malaria RBCs.

This work, in addition to exploring various database split-
tings for the model training and testing, offers competi-
tive results comparing with those of the state-of-the-art.
Approaches developed combining convolutional and recur-
rent neural networks to accurately detect parasitized and
uninfected malaria cells, manfully helped to achieve this goal.

IV. CONCLUSION

This work aimed to classify parasitized and uninfected
malaria cells using two deep learning architectures without
any preprocessing stage. The proposed networks combined
the basic convolutional neural network and two specific
recurrent neural network, the Long Term - Short Memory
(LSTM) to solve the vanishing gradient problem and the
Bidirectional LSTM to perform the classification, processing
data twice. The accuracy, precision, recall, Fl-score and
confusion matrix metrics were used to evaluate the model
performances, considering the images size, data splitting for
model training and testing, and the processing time per data
sample. The proposed models achieved competitive results
in comparison with those of the state-of-the-art, offering new
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alternatives for further works. Samples of 96 x 96 pixel size
gave the best results splitting 90 % of data for the training
and 10 % for the testing. Accuracies of 99.86 and 99.89 %
were achieved with the CNN-LSTM and CNN-BiLSTM,
training these models with 100 epochs at least. Implementa-
tions of the developed architectures on FPGAs are projected
as future works to accelerate image processing, with the
real-time detection purpose. To anticipate this specific projec-
tion, this work considered image processing of various sizes
to analyze a practical trade-off between processing delay and
cell detection accuracy. The code sources for theses experi-
ments are released on the github https://github.com/
adanantonioO7A/malaria_classification.
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