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ABSTRACT Students in database courses often have difficulty learning entity—relationship (ER) modeling.
According to semantic network theory, learning to construct an ER diagram for a database problem requires
complex semantic transformations between the problem and the diagram. Such complex transformation
may require excessive mental effort by learners, jeopardizing their learning outcomes. A concept map is
a learning tool that incorporates elements of both learning theory and semantic network theory. In this study,
concept maps were used to describe the semantic transformation process to increase learner understanding
of ER modeling. An empirical experiment was conducted on two database courses (one concept-map-
based and one conventional course) to examine the effect of using concept maps on understanding ER
modeling according to cognitive load theory. The experimental results revealed that the concept-map-
based teaching method was superior to the conventional teaching method because it improved mental
efficiency by reducing extraneous load while increasing germane load. Moreover, concept maps can
be used as a medium to facilitate communication regarding ER modeling problems between learners
and instructors, thereby improving learning efficiency. The results can help educators and researchers
understand the effectiveness of concept maps for ER model learning, motivate them to resolve learn-
ing difficulties, and encourage them to develop improved teaching methods by using semantic network
theory.

INDEX TERMS Entity-relationship models, semantic network theory, concept maps, cognitive load theory,
learning.

I. INTRODUCTION

Students in database courses often find learning entity—
relationship (ER) modeling to be difficult [1], [2], [3], [4], [5]-
Unlike the transformation from an ER model to a relational
model, which can be conducted in accordance with mapping
rules, the transformation from a database problem to an ER
model is open-ended [6]. In ER modeling, a vast gap exists
between the problem space and the solution space [7]. The
vagueness of this transformation relationship increases the
difficulty of learning ER modeling [8]. A better method of
presenting this transformation relationship may help bridge
this gap and may further serve as a communication tool
between learners and instructors and thus increase learning
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efficiency. Studies have reported that concept maps are a
useful tool for graphically representing the cognitive structure
of an individual within a problem domain [9], [10], [11].
These considerations raise the question: Can concept maps
be used as a learning tool to enhance learner understanding
of ER modeling?

Many researchers have observed that learning how to
describe the data requirements of database problems with ER
models is not trivial [12], [13], [14] because the modeling
process itself is a complex activity [15], [16], [17], despite
the simplicity of the concepts foundational to ER models.
Numerous studies have investigated the learning difficulties
and the causes of errors committed by learners attempting ER
modeling tasks. Topi and Ramesh [18] noted that users, espe-
cially novices, frequently commit errors when constructing
ER diagrams for database problems. Hall and Gordon [17]
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indicated that novices find ER modeling tasks difficult and
their ER models often have systematic errors. For example,
novice designers often confuse entities with attributes [19],
seemingly refuting Weber’s [20] memory recall experiment
that demonstrated that humans view entities and attributes as
distinct constructs.

Batra et al. [12] noted that novices do not find modeling
entities to be challenging but nevertheless have considerable
difficulty modeling relationships. Learners often create
derived relationships that result in redundant relationship
errors [19], [21], eventually leading to unnormalized rela-
tional models [22]. Batra and Antony [16] reported that
learners typically encounter difficulties when modeling not
only unary and ternary relationships but even binary relation-
ships. The difficulty of modeling increases with the degree
of relationship [1]. Batra and Davis [23] examined the diffi-
culties encountered by novices by exploring the differences
between experts and novices. They observed that novices are
hindered by the amount of information used in ER modeling
tasks. Database experts can integrate multiple information
elements into a cognitive schema and treat them as a sin-
gle element to reduce intrinsic cognitive load by reducing
element interactivity. By contrast, novices cannot fully think
through the myriad elements in a textual description of a
database problem. Students have difficulty learning if the
received information load exceeds the inherent limitations of
human cognition [7]. Thus, novices are more susceptible to
information overload. A strategy for managing mental effort,
such as using concept maps, is required to reduce the load on
learner memory.

Numerous tools have been proposed for reducing the diffi-
culty of learning ER modeling, such as EER-Tutor [8], TOOL
[13], ERM-VLE [17], COLER [24], ER-Converter [25],
ADbC (Animated Database Courseware) [14], CODASYS
(COnceptual modeling tool for DAtabase SYStems) [21],
ACME (Adaptive Caching with Multiple Experts)-DB [26],
OpenMark [27], LabDER [4], LearnER [28], ADVICE [29],
and MonstER Park [5]. These tools improve learner under-
standing of ER modeling by leveraging various features,
including immediate feedback during the learning process
(e.g., ERM-VLE), student modules that record learning status
and provide personalized exercises (e.g., EER-Tutor), correc-
tion modules that grade learner answers (e.g., ACME-DB),
collaborative learning environments (e.g., COLER), or gami-
fication that motivates learners to engage in learning activities
(e.g., MonstER Park). In addition to these features, some
tools focus on analyzing the ER modeling process to develop
better tools for learning ER modeling (e.g., TOOL) instead
of directly evaluating the ER diagrams of or providing feed-
back to learners. Some tools focus on developing automatic
ER diagram generators that can be used in intelligent ER
model tutoring systems (e.g., ER-Converter). Some tools
force learners to construct the ideal solution for an ER mod-
eling task (e.g., ERM-VLE), whereas others allow learners to
submit alternative correct solutions with the same semantics
(e.g., EER-Tutor).
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A variety of techniques have been used to develop
these features, such as natural language processing (NLP)
techniques (e.g., TOOL), a heuristics-based approach
(e.g., ER-Converter), compiler theory (e.g., LabDER),
a knowledge-based approach (e.g., CODASYS), supervised
machine learning (e.g., LabDER), and a constraint-based
approach (e.g., EER-Tutor). To achieve the usefulness of
intelligent tutoring systems for ER modeling, it is necessary
to invest a significant amount of time and money in defining
heuristic rules, constraints, or knowledge. Artificial intelli-
gence techniques (e.g., data mining [30], [31]) can be used to
automatically generate this information.

These studies have promoted research regarding ER model
learning. However, learning ER modeling is still difficult
for students [1], [2], [3], [4], [5]. These difficulties must
be examined and resolved from a broader perspective, such
as with semantic network theory. From the perspective of
semantic network theory, ER modeling can be considered
to be the process of transforming the data semantics of a
database problem into an ER model [16], [20], [23]. A com-
plex cognitive process underlies this semantic transformation
[16]. For teaching methods for ER models, further empha-
sizing the semantic transformation process by integrating
materials that can represent the process may be necessary.
Graphical organizers [32] (e.g., concept maps) based on
Ausubel’s advance organizer [33] have been recognized as
effective for activating previous knowledge and illustrating
the semantic relationship between previous knowledge and
newly acquired knowledge. Concept maps are widely used
in science education [34]. Explicitly representing a semantic
transformation by using concept maps may assist learners in
diagnosing errors and thus aid them in developing a superior
understanding of ER modeling.

The difficulties of learning ER modeling, the lack of meth-
ods for expressing the semantic transformation from database
problems to ER models, and the characteristics of concept
map techniques were the motivating factors for the develop-
ment of a concept-map-based teaching method for learning
ER modeling in this study. Two groups of students, one learn-
ing ER modeling in a conventional database course and one in
a concept-map-based database course, were compared. At the
end of the courses, the learners were asked to perform an
ER modeling task. Their mental effort and problem-solving
ability were measured to assess the utility of concept maps
for increasing student understanding of ER modeling. The
factors affecting learner understanding of ER modeling were
then analyzed from the perspectives of semantic network
theory, cognitive load theory, and communication theory.

This paper is organized as follows. Section 2 presents
a brief overview of the difficulties in and tools for learn-
ing ER modeling. Section 3 presents relevant theories and
hypotheses. Section 4 describes the research methodology.
Section 5 reports the results of data analysis. Section 6 dis-
cusses the findings and their implications. Section 7 addresses
possible threats to validity. Section 8 presents the
conclusion.
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II. LITERATURE REVIEW OF ER MODEL LEARNING
In this section, previous research on the difficulties of and
tools for learning ER modeling is reviewed.

A. DIFFICULTIES OF LEARNING ER MODELING

This section presents a survey of the difficulties in learning
ER modeling, errors that novice ER modelers frequently
commit, and the leading causes of the errors.

Numerous studies have reported that novices often commit
systematic errors in ER modeling tasks. These errors are
categorized as syntactical or semantic errors [35]. Syntactical
errors violate the notation rules for ER model construction
and can be detected and avoided with ER modeling tools. For
a semantic error, the ER model is syntactically correct but
it does not correctly represent the intended data semantics.
Topi and Ramesh [18] reported that the seemingly simple task
of modeling identifiers is difficult for novices. Weber [20]
conducted a memory recall experiment; the results revealed
that humans view entities and attributes as distinct constructs.
However, Fessakis et al. [19] reported that novice designers
often confuse entities and attributes.

Rashkovits and Lavy [1] discussed the difficulty of learn-
ing relationship types and indicated that the identification
of relationships between entities is a major challenge for
novice modelers. Herzberg [36] indicated that the most com-
mon semantic errors are related to cardinality constraints.
Fessakis et al. [19] reported that learners are prone to errors
in redundant relationships (relationships that can be derived
from other relationships). Batra and Antony [16] observed
novices have difficulty determining the degree of a relation-
ship (e.g., binary or ternary) and entity types (e.g., weak or
strong entity types) participating in a relationship. Further-
more, these difficulties increase as the degree of relationship
increases [16]. Topi and Ramesh [18] reported that identify-
ing and modeling ternary and unary relationships correctly
is difficult for novices. Batra and Antony [16] indicated that
novices have difficulty modeling not only unary and ternary
but also binary relationships. Batra and Davis [23] observed
that experts and novices exhibited modeling behavior that
was similar for entities, identifiers, descriptors, and binary
relationships; somewhat different for ternary relationships;
and quite different for modeling unary relationships and
categories.

Studies have investigated the underlying causes of novice
errors. Batra and Antony [16] demonstrated that the causes of
errors include the misapplication of heuristics, the complexity
of the modeling task, incomplete knowledge of database
design, and a lack of feedback about solutions. Rashkovits
and Lavy [1] indicated that reasons for errors include insuf-
ficient experience, failure to reflect on solutions, and a
lack of immediate feedback. Feedback is key for devel-
oping learning motivation and for improving learning out-
comes [37]. Batra and Sein [38] reported that feedback can
help ER model learners avoid errors when modeling ternary
relationships.
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Antony and Batra [21] indicated that the most common
error in ER modeling is literal translation, where novices
literally translate the textual description of a database prob-
lem into the ER model but do not reflect on the underlying
structure or attempt to propose alternative solutions [16]. The
misapplication of heuristics can cause these literal translation
errors. For example, a heuristic rule commonly used in ER
modeling is as follows: if two entities are related by a transi-
tive verb, then the verb can be transformed into a relationship
between the entities. However, indiscriminate use of this
heuristic rule can lead to errors. For example, for the require-
ment ‘“‘customers buy products,” the above heuristic rule
suggests that a relationship should be constructed between
the “customer” and ‘““product” entity types. However, the
correct solution entails creating an entity type “order” and
subsequently defining one relationship between the entity
types ‘“‘customer” and ‘‘order”’ and another between the
entity types ‘“‘order”” and “product.”

Cognitive complexity can lead to ER modeling errors [7].
Information overload is a major source of cognitive com-
plexity [7]. Studies have demonstrated that human cogni-
tion can process only seven plus or minus two chunks of
information at a time before cognitive overload occurs [39].
In the context of ER modeling, information load is related to
the number of entity types and attributes, the interrelations
between entity types, and the degree of relationship types.
If the information exceeds the limitations of student memory,
this information overload increases cognitive complexity and
jeopardizes learning outcomes. Cognitive load theory [40]
suggests that a material with high element interactivity have
a high intrinsic load that inhibits comprehension of the mate-
rial. Batra and Davis [23] examined the effect of cognitive
complexity on ER modeling by exploring the differences
between experts and novices engaged in ER modeling tasks.
They observed that experts can achieve a holistic understand-
ing of a database problem before developing the ER model.
By contrast, novices cannot integrate the information in the
problem description and map it into an ER knowledge struc-
ture before beginning to develop the ER model. As a result,
novices are more susceptible to cognitive complexity, and
errors appear in their solutions more frequently. Therefore,
this study proposes to reduce cognitive load through concept
maps to improve learner understanding of ER modeling.

B. ER MODEL LEARNING TOOLS

Researchers have developed a number of learning tools for
ER modeling that use various techniques to improve learner
understanding of ER models. This section summarizes 13 ER
model learning tools (Table 1). The summary table presents
the main features of these tools and their techniques and
theories.

These learning tools are superior to conventional pen-and-
paper instruction methods. However, learning ER models is
still challenging [1], [2], [3], [4], [5]. These learning tools
focused on improving ER model learning by developing
various features (e.g., immediate feedback, student modules,
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TABLE 1. A review of ER model learning tools.

Learning Tool

Main features, techniques, and theories

LearnER [28]

LearnER uses gamification and feedback to improve learning motivation.
Points are awarded for solving exercises but are deducted when feedback is requested.
Each exercise has a leaderboard showing student rankings.

TOOL [13]

A multimodal observation approach was developed to identify learning difficulties in ER modelling, commonalities among these
difficulties, and methods of overcoming them.
NLP techniques are used to implement process-oriented feedback.

MonstER Park [5]

MonstER Park makes ER model learning entertaining by incorporating a theme park story. The full story comprises 33 levels and 19
tasks. Each level has a unique storyline.

LabDER [4]

LabDER can automatically grade learner answers to ER model exercises and provide instant feedback.
Supervised machine learning techniques are used to grade learner answers.
Feedback is provided by comparing learner ER diagrams with the correct solution by using compiler theory and software engineering

metrics.

EER-Tutor (i.e.
KERMIT) [8]

EER-Tutor analyzes student answers, highlights incorrect parts, provides error feedback, and collects student learning status during the
learning process.

Constraint-based techniques are used to intelligently evaluate learer solutions.

Semantic constraints are used to identify alternative solutions with the same semantics by searching for equivalent ER notation.

OpenMark [27]

OpenMark can automatically evaluate the correctness of ER diagrams drawn by students.

The marking tool uses NLP techniques to measure the similarity between learner solutions and the correct solution.

NLP techniques are used to identify the minimal meaningful units (MMUs) of learner ER diagrams and combines these MMUs into
useful meaningful units to interpret the meaning of the diagrams.

ADVICE [29]

ADVICE can automatically evaluate student answers and provide feedback.

A verification algorithm was developed to identify which entities or attributes are missing in student answers by comparing the following:
1) the number and name of entity types in an ER diagram; 2) the number, type, and name of attributes in an entity type; and 3) the
primary keys, foreign keys, and candidate keys in an entity type.

ADbC [14]

ADDBC uses animations and visualization techniques to support the learning of database concepts, including ER models, mapping ER

models to tables, normalization, and denormalization.

ACME-DB [26]

ACME-DB includes a correction module for assessing student answers and providing feedback.

The tool collects learning information and automatically creates a personalized workbook for each student.

ER-Converter [25]

ER-Converter uses syntactic and semantic heuristics to semi-automatically transform a database problem into an ER diagram.
Heuristics are used to parse the description of database problems, assign an appropriate part of speech to each word in the description, and

finally determine the applicable data modelling elements (such as entities or attributes)

CODASYS [21]

CODASYS uses procedural data modeling knowledge to prevent knowledge- and rule-based errors occurring in ER modelling by
utilizing question dialogues and warning messages.
The knowledge incorporated into CODASYS is based on textbooks, journal articles, and heuristics.

COLER [24]

COLER is a collaborative learning environment based on sociocognitive conflict theory.
Learners learn to build ER diagrams collaboratively through a chat window; an opinion panel displays teammates’ opinions on a problem.
A virtual personal coach is constructed for each student. The coach analyzes their interactions and recommends possible actions for

improving these interactions.

ERM-VLE [17]

Learners learn to build ER diagrams by interacting with rooms in a virtual world through text-based commands. ER diagrams are
automatically generated in accordance with the commands.
ERM-VLE provides a collaborative learning environment in which learners can share solutions with each other and ask questions using

an internet chat system.

Ill. THEORY AND HYPOTHESIS DEVELOPMENT

correction modules, collaborative learning environments, and
gamification). By contrast, this study focuses on the chal-
lenge of cognitive complexity in ER learning. Batra [7] stated
that mental aids and visual feedback are two key elements
that can reduce the complexity of ER modeling for learners.
This study employs concept maps as a mental aid for reduc-
ing cognitive complexity and as a visual feedback tool for
improving the efficiency of communication between instruc-
tors and learners.
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A. COGNITIVE LOAD THEORY

Cognitive load theory offers instructional designers a tool for
designing teaching methods. Cognitive load theory divides
the cognitive load imposed on learners into three types:
intrinsic, extraneous, and germane cognitive loads [40], [41],
[42]. Intrinsic load refers to the load placed on working
memory due to the complexity (element interactivity) of the
learning material [43]. If learning materials have high levels
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of element interactivity, a high intrinsic load is placed on
learners [44]. Furthermore, learner intrinsic load is affected
by their previous knowledge about the learning material.
Intrinsic load is lower for learners with more previous knowl-
edge about the material because these learners can integrate
multiple informational elements into a cognitive schema and
treat them as a single element. This reduction of the number
of elements in the learning material decreases element inter-
activity and intrinsic load.

Extraneous cognitive load is the load placed on working
memory due to the instructional design itself [45]. Teaching
methods that require learners to engage in activities irrele-
vant to schema acquisition have greater extraneous load, and
students have more difficulty understanding the material [9],
[46]. For example, learners use working memory to search for
the information required for learning. If the extraneous load
is reduced, learners can devote the freed cognitive capacity to
activities that can induce a germane load.

Germane load is the load caused by mental activities
relevant to schema acquisition, such as organizing learning
materials and relating them to previous knowledge [47]; thus,
this load facilitates learning. Instructors can increase ger-
mane load by directing students to devote mental resources
to learning-related activities [44]. Accordingly, extraneous
load and germane load are affected by teaching methods,
while intrinsic load is inherent to the learning material.
Teaching methods should be designed in accordance with
cognitive load theory; specifically, extraneous load should be
minimized and germane load should be maximized. In this
study, extraneous load and germane load were compared
between the groups in the conventional and concept-map-
based courses to determine whether concept maps facilitate
learning ER modeling.

B. CONCEPT MAPS FOR LEARNING ER MODELS

Semantic network theory proposes that cognitive structures
are stored in semantic memory in the form of networks [48].
A concept is stored independently in semantic memory as
a node. A semantic relationship between concepts is stored
as a link between the nodes [49]. From this perspective,
“meaningful learning” means that learners can create nodes
for newly learned concepts and connect them with known
concepts in semantic memory through links [49]. For exam-
ple, suppose a student is to meaningfully learn the follow-
ing ER modeling semantic relation: “A verb in the textual
description of database problems can be represented by using
a relationship type of ER models.” Learners must be able to
create a node for the “‘relationship type” (newly learned con-
cept) and connect it with the “verb” (known concept); thus,
the semantic relationship between these concepts is learned.
Therefore, from the perspective of semantic network theory,
the process of learning ER modeling involves a series of
semantic relation constructions. Learning ER modeling can
be considered a process of establishing semantic transforma-
tion relationships between database problems and ER models
in semantic memory. In this context, network representations
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(e.g., concept maps) are useful for displaying the semantic
transformation relationships.

Concept maps were developed by Novak [10] to represent
the human cognitive structure. A concept map is a semantic
network representation comprising nodes and links. Nodes
are labeled with descriptive text (a word or short phrase)
to represent the data semantics of concepts. Links are used
to specify semantic relationships between nodes, and labels
on links are used to describe the meaning of these semantic
relationships. Concepts can be linked to express a proposi-
tional statement about an object or event in a problem domain
(called a semantic unit) [50]. Concept maps comprise inter-
acting semantic units [11]. Research has demonstrated that
concept maps improve learning outcomes [34], [51], [52].
Concept maps offer a framework for interpreting information
and have been widely applied in different contexts, such as
aiding learning by explicitly integrating new and old knowl-
edge [34]; assessing understanding or diagnosing misunder-
standing [53]; representing and analyzing decision-making
processes [54], [55]; communicating complex ideas [49];
producing mental models of humans [56]; and supporting
knowledge elicitation, acquisition, and sharing [10], [57].

Accordingly, this study proposed to integrate concept maps
into ER model learning to facilitate learning the process
of semantic mapping from a database problem to an ER
model. Constructing an ER diagram for a database problem
comprises two steps: 1) Learners study the text description
of the database problem to form a mental model of the data
semantics, and 2) learners create a representation of the men-
tal model by using ER model syntax. Learners iterate between
these two steps until the ER diagram for the database problem
is completed. The following introduces the integration of
concept maps into the ER model learning process.

In Step 1, concept maps are used to represent learners’
mental models regarding data semantics. Learners identify
objects, associations between these objects, and their fea-
tures from the textual description of a database problem.
They then use concept maps to describe their mental mod-
els of the problem semantics. Objects and object features
are represented by nodes, whereas associations between
objects are represented by links. Features of associations
are also represented by nodes. Fig. 1 presents an exam-
ple of a database problem. To construct an ER diagram
(e.g., Fig. 2) for this database problem, the student uses a
concept map (e.g., Fig. 3) to represent their mental model
about the data semantics. For example, for the requirement
“Members can refund ordered products. Each refund must
include a unique refund number, a member, refund time
(mm/dd/yyyy hh:mm), the returned products, the returned
quantities, the order number to which the returned prod-
ucts belong, and the refund amount,” the concept map
reveals that the learner identifies the node ‘“Refund” and
its three features (‘“‘Refund_Number,” “Refund_Time,” and
“Refund_Amount’’) from the database problem. The feature
“Refund_Number” is conceptualized as a key feature, and
the feature ‘“Refund_Amount’ is the total refunded amount
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for the returned products. Two links (““must be submitted by
only one” and “‘can submit many”’) are identified to describe
the semantic relationship between the node “Member” and
the node “Refund.” In addition, the node “Item” is used
to describe the returned products and is related to the node
“Order” and the node “Product” through four links to record
the order number of the returned products. The concept map
represents the learner’s understanding of the data semantics
of the database problem.

In Step 2, concept maps are used to represent the semantic
mapping relationship from database problems to ER dia-
grams. Learners map the concept map constructed in Step
1 into an ER diagram. For example, a node of concept
maps can be mapped to an entity type or an attribute of
ER models. A link of concept maps can be mapped to a
relationship type of ER models, and use the (min, max)
notation to specify the structural constraints. These num-
bers mean that each instance of an entity type in a rela-
tionship type must participate in at least min and at most
max relationship instances in the relationship type. Min =
0 indicates partial participation, whereas min > 0 indicates
total participation. The semantic mapping can be expressed
by adding dotted lines marked as ‘“be mapped to” on the
concept map constructed in Step 1. For the concept map in
Fig. 3, suppose that Fig. 4 was constructed by a learner to
represent the semantic mapping from Fig. 3 to the ER diagram
(Fig. 2). Fig. 4 reveals that the learner uses the entity type
“Member” and its six attributes to represent the seven nodes
(“Member,” “SSN,” “Member_ID,” “Name,” ‘“Address,”
“Phone_Number,” and “Credit_Rating’’) of the concept
map, where the link ‘“‘has key feature” from the node ‘“Mem-
ber” to the node “SSN”’ is mapped to the key attribute (SSN)
of the entity type “Member.” The link “must place at least
one or many’’ from the node “Member” to the node “Order”
is mapped to the structural constraints (1, N) on the member
side of the relationship type ‘“Places’; thus, each member
must place at least one order but can place many orders.
Fig. 4 presents how a learner could map his/her understanding
of the database problem into ER model notation.

The presentation of learning material has a strong influence
on learner understanding of the material. Studies have indi-
cated that graphical organizers (such as concept maps) are
an effective technique for representing an individual’s cog-
nitive structure for a problem domain [10], [33], [58], [59].
Constructing and studying concept maps can help learners
correlate new concepts with their prior knowledge to retain
new knowledge [53]. Furthermore, concept maps are useful
for communicating complex concepts and diagnosing misun-
derstandings [49], [53]. Based on the literature review and
these arguments, concept maps may be an effective teaching
method for learning ER modeling. Therefore, the following
hypothesis was proposed in this study:

Hypothesis: Learners who receive concept-map-based
teaching gain a clearer understanding of ER models compared
with those who receive conventional teaching.
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Design an ER diagram to record the details of a product
sales system that tracks orders and refunds. After analyzing
user needs, the requirements for this database were
determined to be as follows:

Each member must be invited by another member to
place an order and become a member. Each member can
invite many people to become a member. Each member
has a unique Social Security number, member identifier,
name, phone number, address, and credit rating (coded as 1
for classic level, 2 for gold level, and 3 for platinum level).
Each member can place multiple orders with different
salespersons to purchase products, and each salesperson
can sell products to different members. Each salesperson
has a unique employee identifier, name, and gender. Each
salesperson can handle a number of orders. Each order has
a unique order number (coded as a three-digit serial
number 1, 2, 3, ... with the date of purchase—for example,
20200505-001), order time (mm/dd/yyyy hh:mm), credit
card information (coded as a combination of bank name,
card type, card number, and expiry date), and a number of
products. Each order is related to a single member who
placed the order and to a single salesperson who handled
the order. A product has a unique product number, name,
and category. Members can refund ordered products. Each
refund must include a unique refund number, a member,
refund time (mm/dd/yyyy hh:mm), the returned products,
the returned quantities, the order number to which the
returned products belong, and the refund amount.

FIGURE 1. Example of a database problem.

IV. RESEARCH METHODOLOGY
An empirical experiment was conducted to evaluate the effect
of concept maps on learner understanding of ER models.
Control and experimental groups participated in courses with
a conventional and a concept-map-based teaching method,
respectively. The two database courses lasted for 18 weeks,
including 1 week each for mid-term and final exams (total
2 weeks), with 3 h of class time per week. Both courses
began with an introduction to databases (1 week) and then
introduced ER models (2 weeks), relational models (1 week),
and ER-to-relational model mapping (1 week). Learners
then studied structured query language (4 weeks), relational
algebra (1 week), normalization (1 week), storage architec-
tures and indexing structure (1.5 weeks), query optimization
(2 weeks), and transaction control and database recovery
(1.5 weeks). The concepts taught for ER modeling included
entity types, single-valued attributes, multivalued attributes,
simple attributes, composite attributes, complex attributes,
derived attributes, key attributes, relationship types, recursive
relationship types, roles, participation constraints, cardinality
ratios, weak entity types, partial keys, relationship types with
degree higher than two, and naming conventions.

The two courses were structured such that identical mate-
rial was taught at an identical pace by the same instructor.
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FIGURE 3. Example of a concept map describing the data semantics of the database problem of Fig. 1.

Management information system (MIS) undergraduate stu- same year at the same university. Before the courses began,
dents were recruited as participants; 40 students participated a pilot test was conducted to investigate the participants’ level
in the conventional course, and 45 students participated in of prior knowledge of ER models. The results revealed that

the concept-map-based course. The students were all in the the two groups were comparable; students in both groups
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FIGURE 4. A concept map with semantic mapping information.

had no ER modeling knowledge. At the end of both courses,
student understanding of ER modeling was measured in and
compared between the two groups to assess the effectiveness
of using concept maps for learning ER modeling.

A. CONCEPT-MAP-BASED AND CONVENTIONAL
TEACHING METHODS

Students in both courses learned the same material; the
courses only differed in the teaching method used to learn
ER models. The conventional and concept-map-based teach-
ing methods for ER modeling are briefly introduced as
follows.

Concept-map-based teaching method: The instructor first
taught concept maps and trained learners to use concept maps
to express their cognitive structure. After completing the
training, the instructor taught ER modeling by instructing
learners to construct concept maps for database problems
in three phases: 1) The instructor guided learners to ana-
lyze database problems and asked them to construct concept
maps to describe their understanding of the data semantics
of the database problems. The learners then represented the
semantic mapping of the database problems to ER diagrams
by adding dotted lines marked as ‘“be mapped to” on the
concept map. 2) The instructor guided learners to study the
instructor’s concept map to clarify their misconceptions about
ER modeling. 3) If learners had questions about the solutions,
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the instructor answered the questions by using the concept
maps constructed by the learners and instructor.

Conventional teaching method: Instructors verbally
explained ER models without using concept maps. For the
example database problem (Fig. 1), instructors first intro-
duced the problem and then used its ER diagram (Fig. 2) to
explain how each requirement was represented by using ER
model notations as follows:

To construct an ER model for this database prob-
lem, we must identify the required entity types, their
attributes, and the relationship types between the entity
types. The ER diagram of this database problem is
presented in Fig. 2.

For the data requirement that each member has a
unique Social Security number, member identifier,
name, phone number, address, and credit rating (coded
as 1 for classic level, 2 for gold level, and 3 for platinum
level), we can describe this requirement by using the
entity type “Member,” which contains six attributes:
SSN, MID, Name, PhoneNumber, Address, and Cred-
itRating; here, “SSN” is the key attribute.

Now, we attempt to determine the relationship types
between the entity types. The database problem indi-
cates that each salesperson can handle multiple orders.
Thus, the relationship type ‘“Handles™ is created and
marked (0, N) on the salesperson side, assuming that
salespeople are allowed to not handle any orders.
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The instructor used the same method to explain the other
entity types, attributes, and relationship types latent in the
database problem in Fig. 2.

B. MEASUREMENTS

Understanding is often used as a dependent variable in
research on learning ER modeling [12], [18]. A literature
review revealed that understanding is typically measured
with the following metrics: recall accuracy, response latency,
problem-solving ability, and mental efficiency [44], [45],
[60], [61]. Response latency is the time required for pro-
cessing information before answering a question [60]. Recall
accuracy is the percentage of desired information correctly
recalled from semantic memory [61]. Problem-solving abil-
ity is the ability to apply learned knowledge to solve rele-
vant problems in a new context [45]. Mental efficiency is
the efficiency of accessing the cognitive schemas required
for problem solving [44]. Recall accuracy and response
latency are suitable for measuring surface-level understand-
ing; by contrast, problem-solving ability and mental effi-
ciency are suitable for measuring understanding at a deep
level [44], [62].

The author’s long-term observations of ER model learning
have revealed that most learners can clearly understand the
meaning of each ER model notation; however, they find the
application of these notations to perform an ER modeling task
to be complex and difficult. Learners must gain a deep under-
standing of the semantic translations from database problems
to ER models rather than only a superficial understanding of
the meaning of ER model notation. Therefore, measures of
mental efficiency and problem-solving ability were used to
examine the hypothesis of this study.

Modeling correctness has frequently been used to mea-
sure problem-solving ability in research on ER model learn-
ing [12], [18]. In most studies, the correctness of a model is
defined as the degree to which the model corresponds to a
predefined ‘“‘correct” solution. Batra et al. [12] refined the
concept of correctness by measuring the correctness of vari-
ous facets or structural elements of ER models [e.g., entities,
identifiers, descriptors, categories, and types of relationships
(unary, binary, and ternary)]. The same facet structure was
used later by Lee and Choi [63] and by Liao and Palvia
[64]. Extending these studies, problem-solving ability was
measured in this study by using modeling correctness, which
was defined as the extent to which an ER diagram correctly
describes the data semantics of a database problem and was
expressed as a percentage. Any solution could be correct if it
expressed the correct semantics. Modeling correctness was
scored using the facet structure developed by Batra et al.
At the end of the two courses, the participants were asked
to perform an ER modeling test to measure their problem-
solving ability. The participants’ solutions were scored by an
MIS professor and a database expert through discussion and
review.

This study used Paas and van Merriénboer’s [65] computa-
tional method (equation 1) to measure mental efficiency; this
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method has been used in numerous education studies [65].
Problem-solving ability and the mental effort invested to
achieve the problem-solving ability are used to measure
mental efficiency; the scores for problem-solving ability and
mental effort were transformed into standardized z-scores
based on the grand mean across teaching methods. A posi-
tive efficiency score represents efficient learning because the
problem-solving ability is higher than the invested mental
effort. Conversely, a negative efficiency score indicates inef-
ficient learning. Mental effort was measured using a 7-point
Likert-type subjective rating scale developed by Paas and
van Merriénboer [65]; scores ranged from extremely low
mental effort (1) to extremely high mental effort (7). Studies
have indicated that subjective measures and the index of task
difficulty are highly correlated [67]. Furthermore, subjective
measures used to assess task difficulty are closely related to
objective measures [68]. Subjective measures are considered
reliable, valid, and sensitive to small differences in invested
mental effort [69].

Mental Efficiency Score
_ Zthlem—solving Performance — ZMental Effort (1)
V2

The mental effort of participants was measured in the learn-
ing and testing stages of the courses. In the learning stage,
mental effort was measured after the participants had learned
ER models in the conventional course; for the concept-map-
based course, mental effort was measured twice, once after
the participants had built concept maps and once after they
had studied the instructor’s concept maps. In the test stage,
the measurement was performed after the test had been
completed. Finally, independent sample ¢ tests on problem-
solving ability, mental effort, and mental efficiency were
performed to examine the hypothesis.

C. ER MODELING TASK

The ER modeling task is presented in Fig. 1. The partici-
pants performed the modeling task at the end of the courses.
Participants had 1 h to study the textual description of the
database problem and to construct an ER diagram with paper
and pencil. To validate the task and the test procedure, two
database experts and two MIS professors were recruited.
They suggested some modifications to the task material. Ten
undergraduates majoring in MIS and who had previously
completed the same database course taught by the same
instructor were recruited for a pilot test. They were asked to
construct an ER diagram for the database task and share their
opinions. The results of the pilot test indicated that the task
material and test procedure were appropriate for the goals of
the study.

V. DATA ANALYSIS AND RESULTS

Table 2 presents independent sample ¢ test results for
problem-solving ability and mental effort. In the learn-
ing stage, the participants in the concept-map-based course
invested higher mental effort when constructing concept
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maps and lower mental effort when studying the instructor’s
concept maps than did participants in the conventional course
when learning ER modeling. Moreover, the participants in
the concept-map-based course had higher problem-solving
ability than those in the conventional course. The partici-
pants who received the concept-map-based teaching method
invested less mental effort in the test stage than those who
received the conventional teaching method.

The relative mental efficiency scores of the participants
were calculated by using the standardized values (z-scores) of
mental effort and problem-solving ability based on the grand
mean across teaching methods. Table 3 shows the exami-
nation results of the independent sample ¢ test for mental
efficiency. The participants in the concept-map-based course
had significantly higher mental efficiency than did those in
the conventional course; thus, learners receiving concept-
map-based teaching understood ER modeling better than did
learners receiving conventional teaching.

TABLE 2. Problem-solving ability and mental effort scores: Mean Scores
(Standard deviations) and independent sample t test (p).

Dependent Conventional ~Concept-Map-Based Independent
Variable Teaching Method Teaching Method Sample
(n=40) (n=45) t Test (p)
Problem-Solving 0.778 0.867 -5.114™
Ability (0.071) (0.089) (0.000)
Mental Effort Building Studying Building Studying
concept concept concept concept
maps maps maps maps
® Learning 5.225 5.822 3.222 -2.392" 7.907™
stage (1.143) (1.154)  (1.185)  (0.019) (0.000)
® Test stage 5.325 4.556 29"
(1.047) (1.391) (0.005)

w5 < 001

TABLE 3. Relative mental efficiency: mean scores (Standard deviations)
and independent sample ¢ test (p).

Conventional Teaching Concept-Map-Based Independent
Method (n = 40) Teaching Method (n = 45) Sample ¢ Test (p)

-0.584 0.519 ~19.503"
(0.277) (0.245) (0.000)

*xkp < 001

V1. DISCUSSION AND IMPLICATIONS

In the following section, the advantages of the concept-map-
based teaching method are analyzed in terms of cognitive load
theory, semantic network theory, and communication theory.

A. COGNITIVE LOAD THEORY

This section analyzes the advantages of concept maps for
ER model learning in terms of two aspects: learning by
constructing concept maps and learning by studying concept
maps created by an instructor.

1) LEARNING BY CONSTRUCTING CONCEPT MAPS

Cognitive load theory suggests that teaching methods that
motivate learners to engage in learning activities can increase
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germane cognitive load, thereby facilitating learning. In this
study, constructing concept maps compels learners to exter-
nalize the cognitive process of the semantic transformation
from a database problem to an ER model. This motivates
learners to participate in ER modeling learning activities and
thereby induces a germane load. This argument is consistent
with the result in Table 2 that during the learning stage, stu-
dents exerted more mental effort when building concept maps
than did students in the conventional course when learning
ER modeling.

Mental effort represents total cognitive load. Changes
in intrinsic, extraneous, and germane load can be deter-
mined by keeping intrinsic load constant and examining the
relationship between mental effort and problem-solving per-
formance [44], [70]. When learners have the same level of
previous knowledge about a material, the material imposes
the same level of intrinsic load on the learners [44]. The
pretest revealed that all participants had the same level of
prior knowledge of ER models; thus, they had the same intrin-
sic load. Therefore, changes in the germane and extrinsic
loads of these participants could be determined by examining
the relationship between their mental effort and problem-
solving ability. Accordingly, the increased mental effort
used to construct concept maps should be classified as ger-
mane load because the participants in the concept-map-based
course performed better on the test task than did those in
the conventional course; by contrast, if this mental effort
was extraneous load it would have reduced the learners’
test performance. That is to say, compared with the con-
ventional teaching method, the concept-map-based teaching
method significantly induced a higher germane load and thus
enhanced learner understanding of ER models.

For example, suppose that the concept map in Fig 4. was
constructed by a learner for learning to construct an ER
diagram of the database problem (Fig. 1). This concept map
externalizes the learner’s cognitive process. The learner iden-
tifies a semantic unit that connects the concept “Member”’
and the concept “Order” and maps this semantic unit into
the relationship type “Places” with structural constraints
(1, N) and (1, 1). While constructing the concept map, the
learner must actively seek relevant information to describe
the semantic transformation of the semantic unit to the
relationship type “Places.” Kao et al. [71] reported that learn-
ing by externalizing knowledge structures can prompt learn-
ers to reflect on their knowledge and learning experiences.
Concept maps have been recognized as being an effective
tool for externalizing learner knowledge structures [72], [73].
Accordingly, the concept-map-based teaching method may
trigger higher ER model learning motivation and increase
learner willingness to learn ER modeling, thereby improving
learning outcomes.

2) LEARNING BY STUDYING INSTRUCTOR CONCEPT MAPS

Semantic transformations from database problems to ER
models were verbally presented in the conventional course,
whereas this information was presented diagrammatically in
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the concept-map-based course. Studies have reported that
information that is processed sequentially can be relayed
verbally, whereas diagrams are more suitable for displaying
information that is processed in parallel [82]. Considering
that ER modeling often needs to consider multiple detailed
semantic elements simultaneously, sequential reasoning is
not useful in ER model learning because sequentially indexed
verbal representations require an additional extraneous cog-
nitive load to retain multiple data semantic constraints in
working memory. The limited cognitive capacity of learners
may be consumed by processes that are not directly relevant
to the learning material [83].

For example, when learning the relationship type “Invites”
in the ER diagram in Fig. 2, in the conventional teaching
method, learners received the instructor’s oral explanations
and sequentially related them to the elements of the ER
diagram and the sentences of the database problem descrip-
tion (Fig. 1). Learners first identified the relationship type
“Invites” from the ER diagram, brought the information into
working memory, and invested mental resources to maintain
the cognitive elements in working memory. They then iden-
tified the sentences that described this requirement from the
database problem and brought them into working memory.
Finally, they mentally established a semantic relationship
between the relationship type “Invites” and the description
of the requirement in working memory and transferred the
newly learned semantic relation to semantic memory for
storage. The sequential presentation of information in the
conventional teaching method required that learners devote
additional memory resources to keep the received informa-
tion in working memory and wait for subsequent information
to develop the understanding of ER modeling. In this con-
text, their attention shifts with sequential processing, which
distracts them and causes excessive extraneous load [45].

On the contrary, the concept-map-based teaching method
taught the relationship type “Invites” by guiding learners to
study the instructor’s concept map. Suppose that the con-
cept map in Fig 4. was constructed by the instructor for
the database problem in Fig. 1. The map simultaneously
displays the data requirement ‘“Each member must be invited
by another member to place an order and become a member,”
the relationship type “Invites,” and the semantic relation
between them. The concept map represents the instructor’s
cognitive process of semantic transformation in an integrated
manner. Learners do not need to keep track of this infor-
mation in working memory, thereby reducing their extra-
neous load [83]. This is supported by the data in Table 1,
which reveals that, compared with the conventional teaching
method, the concept-map-based teaching method required
less mental effort when learners studied the instructor’s con-
cept maps. Their reduced mental effort was due to a reduction
in extraneous load, not germane load, as evidenced by the
superior test performance of the students in the concept-map-
based course. Therefore, learning ER modeling by studying
instructor concept maps can reduce extraneous load. Fur-
thermore, freed student memory resources could be further
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invested in germane load to improve their understanding of
ER modeling. This logic is consistent with cognitive load the-
ory, which holds that reducing extraneous load can improve
student learning performance.

B. SEMANTIC NETWORK THEORY

From the perspective of semantic network theory, the term
“meaningful learning” is the assimilation of knowledge into
semantic memory during learning [49]. The concept-map-
based teaching method accords with semantic network theory
because it emphasizes the relationship between ER modeling
and a learner’s existing knowledge to facilitate meaning-
ful learning. A learner constructing an ER diagram for the
database problem (Fig. 1) who first constructs the concept
map in Fig. 4 must make decisions about the semantic rela-
tionships that are latent in ER modeling. For example, the
learner must identify the semantic relation from the seven
concepts ‘“Member,” “SSN,” “Member_ID,” ‘“Name,”
“Address,” “Phone_Number,” and ‘“Credit_Rating” to the
entity type ‘“Member” and its six attributes. In this process,
the learner is compelled to relate the newly learned con-
cepts (entity type “Member” and its six attributes) and the
already-known concepts (the seven concepts). This process
helps learners clarify contradictions or misconceptions in
their knowledge structure; correcting misconceptions leads to
better understanding [51].

Studies have found that learning through concept maps
can facilitate meaningful learning [49], [74], [75] because
the network representation of concept maps helps reveal
and integrate the semantic relationships between old and
new knowledge [76]. Furthermore, concept maps can trigger
memory and focus learner attention on the semantic rela-
tionship between known and new knowledge [51]. Hence,
from the perspective of semantic network theory, the concept-
map-based teaching method may assist learners in assimi-
lating novel ER model knowledge into existing knowledge
structures and form so-called meaningful learning, thereby
enhancing learners’ understanding of ER models.

C. COMMUNICATION THEORY

After an instructor presents the answer to a database ques-
tion, some learners may still be confused as to why their
ER diagram is wrong or think that their ER diagram may
also be correct. In this case, further explanation is required.
In general, instructors first identify learner errors and then
determine why the errors occurred; finally, they explain how
to correctly construct an ER diagram. However, long-term
observation of teaching ER modeling has revealed that this
communication is difficult and often results in information
overload for learners.

Successful learning is directly related to effective commu-
nication between learners and instructors [77]. Mayer [45]
indicated that modeling can facilitate communication
between instructors and learners because key information is
highlighted. Communication theory indicates that a model
can be conceptualized as a message that is processed
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cognitively by readers to develop an understanding of the
material [78]. The concept-map-based teaching method uses
conceptual models, namely concept maps, to present the
ER modeling process. According to communication theory,
concept maps can be used as a communication medium
between learners and instructors to improve communication
efficiency.

For example, the ER diagram in Fig. 5 was constructed by
a learner for the database problem (Fig. 1). This ER diagram
violates the data requirement that each order can only be
related to one member who placed the order. In the concept-
map-based teaching method, the concept map (Fig. 6) con-
structed by the learner can serve as a communication medium
to explain this error. The instructor can explain the cause of
the error by guiding the learner to examine the two semantic
units of the concept map: 1) “Order” and ‘““Salesperson”
(an order must be handled by only one salesperson) and
2) “Salesperson” and ‘“Member” (a salesperson can sell
to many members). The combination of these two semantic
units produces a new semantic unit that violates the data
requirement: an order can be related to many members. Con-
cept maps can help instructors explain why learner errors
occurred and help learners understand the cause of their
errors through their own concept maps. After examining the
learner’s concept map, the instructor’s concept map can be
used to explain how the instructor constructs a correct ER
diagram. By contrast, in the conventional teaching method,
communication is based on the ER diagrams of instruc-
tors and learners. Instructors must invest additional mental
resources to imagine the cognitive processes that caused
learners to commit errors. This communication process is
expected to impose additional cognitive load on both learners
and instructors.

inviter
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(1D

(0,N)
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. N
{ Amount
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Another advantage of the concept-map-based teaching
method is that instructors can explain learner errors in data
semantics and ER model syntax separately without interfer-
ence because the data semantics of database problems and
their mapping relations to ER model syntax are presented
separately in concept maps. For example, the instructor may
explain the semantic error in Fig. 5 by using Fig. 6 without
requiring the use of ER model syntax. Avoiding the use of
ER model syntax may reduce learner information load and
increase communication efficiency.

By contrast, in the conventional teaching method, the
instructor explains the error by examining the learner’s ER
diagram and referring to the instructor’s correct ER diagram.
The instructor will inevitably use ER model notation to
explain the semantic error; however, the notation is unrelated
to this semantic error. Cognitive load theory indicates that
investing mental resources in activities unrelated to learning
reduces learning outcomes. Thus, the conventional teaching
method may impose a higher extraneous load and increase the
difficulty of understanding this semantic error. The results in
Table 3 support this finding; participants in the conventional
course had significantly lower mental efficiency than did
those in the concept-map-based course, suggesting that the
concept-map-based teaching method facilitates the under-
standing of ER models more than the conventional teaching
method does. Table 4 summarizes the advantages of concept
maps for learning ER modeling.

VII. THREATS TO VALIDITY

In this section, possible sources of bias and threats to the
validity of this study are explored. Conclusion, internal, con-
struct, and external validity are discussed [79].

SALESPERSON

@
| (1, 1) CardType
ORDER CreditCard

(1,N)
N) ExpiryDate

FIGURE 5. ER diagram constructed by a learner for the database problem in Fig. 1.
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Conclusion validity aims to ensure the relationship
between the treatment and experimental results [79]. The
following possible influences on conclusion validity were
addressed: Reliability of measures, sample size, and the ran-
dom heterogeneity of subjects. During the development of
the measurements, the reliability of measures was addressed
by adopting widely used measures to evaluate learner under-
standing of ER modeling. Modeling correctness has been
used in numerous studies on ER model learning [80], [81] to
measure problem-solving ability. Relative mental efficiency
was measured using the computational approach of Paas and
van Merriénboer, which has been widely used to measure the
efficiency of instructional conditions [65]. Mental effort was
measured by using Paas and van Merriénboer’s [65] rating
scale; mental effort is often measured using rating scales
and psychophysiological techniques [66]. Although a limited
number of subjects participated in the experiment, the sample
size was sufficient to achieve conclusion validity in an inde-
pendent sample ¢ test. Random heterogeneity of the subjects
was addressed when recruiting participants. To ensure that all
participants had the same prior level of knowledge about ER
modeling, they took a pretest before the course; the results
revealed that they did not have expertise in ER modeling,
confirming that random heterogeneity was not a problem.

must be
invited
by only one

Employee ID
K

Internal validity is the reliability of the results within a
given setting [79]. The following internal validity threats
were addressed: history, testing, and mortality. If different
treatments are applied to a participant at different times, this
treatment history may affect the experimental results. Only
one treatment was applied in this study; thus, history was
not a concern. Second, if tests in an experiment are repeated,
unintended learning may occur because the participants learn
the study procedures. Because only one query-writing test
was conducted at the end of the course, the testing threat
was avoided. Finally, participants leaving a study is referred
to as mortality and may affect internal validity. None of the
participants left the experiment; thus, mortality did not affect
the results.

Construct validity aims to ensure that the experimental
setting accurately reflects the constructs to be studied [79].
For better reflecting ER model learning outcomes, mental
efficiency and problem-solving ability were used in this study
to measure learner understanding of ER models instead of
recall accuracy and response latency because learners must
develop a deep understanding of the semantic transformations
involved in ER models, and mental efficiency and problem-
solving ability are suitable for measuring the deep under-
standing of materials [44], [62]. Two other threats: interaction
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FIGURE 6. Concept map constructed by a learner for the database problem in Fig. 1.
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TABLE 4. Advantages of concept maps for learning ER modeling.

Cognitive Load Theory

- Learning by constructing concept maps compels learners to externalize
the cognitive process of the semantic transformation, which engages the
learners in learning activities related to ER modeling, thus inducing a
germane load.

- Learning by studying the instructor’s concept maps can reduce the
extraneous load required to hold learning information in the working
memory.

Semantic Network Theory

- Concept maps explicitly present the semantic relationship between ER
model notation and learner knowledge and can thus focus learners’
attention on the semantic relationship, thereby helping them assimilate ER
model knowledge into their existing knowledge structures, resulting in so-
called meaningful learning.

Communication Theory

- Concept maps can be used as a communication medium between learners
and instructors for improving communication efficiency.

- Learner concept maps can be used by instructors to explain why learners
made errors and to help learners understand the cause of their errors with
their own concept maps.

- The instructor’s concept map can be used to explain how the instructor
constructs a correct ER diagram.

- Learner errors in data semantics and ER model syntax can be explained
separately without interfering each other, which can reduce the
information load placed on learners and increase communication
efficiency.

of different treatments, and experimenter expectancies. Inter-
action of different treatments is to ensure that the results of an
experiment may be affected by other experimental treatments.
The participants did not participate in other studies; hence,
treatment interactions did not affect the validity. Moreover,
experimenter expectancy was avoided because the partici-
pants were not aware of the experimental hypothesis.

External validity is the generalizability of the results of
a study outside the experimental setting [79]. A study is
generalizable if its subjects and settings are representative of
other settings and populations; both the generalizability of
the setting and participants were considered. For the setting,
this experiment was conducted in a database course at a
university. The instructor was a database professional. Thus,
the results of this study are likely valid for learners studying
ER modeling at universities. Whether the results are valid for
other environments in which ER models are studied could be
investigated in a future study. With respect to the participants,
MIS undergraduate students were enrolled as participants to
clarify the difficulties associated with learning ER models.
Because the ability to design databases using ER models is
a core competency for MIS undergraduate students, the par-
ticipants were representative of ER model learners. Thus, the
results of this study were determined to have good external
validity.

VIil. CONCLUSION

Learners in database courses frequently have difficulty learn-
ing ER modeling. From the perspective of semantic network
theory, the complex semantic transformation from database
problems to ER diagrams and the large amount of data
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semantic information result in an excessive cognitive load
for learners and consequently jeopardizes their learning out-
come. To mitigate their cognitive load, the concept-map-
based teaching method was proposed. The method integrates
concept mapping into conventional ER model education by
representing the ER modeling process using concept maps.
The results revealed that the concept-map-based teaching
method is superior to the conventional teaching method.
In the test stage, learners who received the concept-map-
based teaching method achieved higher problem-solving abil-
ity with less mental effort for the test task. In the learning
stage, constructing concept maps for learning ER modeling
forced learners to engage in learning activities related to
ER modeling. Learners were required to relate what they
were learning about ER models to their existing knowledge
structures to represent the semantic transformation process,
thereby promoting meaningful learning. Studying instructor
concept maps enables learners to understand the cognitive
structures that instructors use for ER modeling; thus, learn-
ers can more easily perceive the semantic transformations
because the information that must be mentally integrated to
understand ER modeling is integrated and highlighted in the
concept maps. Furthermore, these concept maps can be used
as a communication medium for answering learner questions,
thus improving learning efficiency.

This research provides empirical insight into the effect
of concept maps on learner understanding of ER model-
ing. However, this research is only an initial step in fully
understanding the cognitive process of ER model learners.
More in-depth follow-up research from the perspective of
semantic network theory is needed concerning topics such
as the semantic distance between database problems and ER
models. Insight into the influence of semantic distance on
learner understanding of ER modeling may help researchers
identify the root causes of the difficulties in learning ER
modeling, and other teaching methods could be developed
accordingly.
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