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ABSTRACT Students in database courses often have difficulty learning entity–relationship (ER) modeling.
According to semantic network theory, learning to construct an ER diagram for a database problem requires
complex semantic transformations between the problem and the diagram. Such complex transformation
may require excessive mental effort by learners, jeopardizing their learning outcomes. A concept map is
a learning tool that incorporates elements of both learning theory and semantic network theory. In this study,
concept maps were used to describe the semantic transformation process to increase learner understanding
of ER modeling. An empirical experiment was conducted on two database courses (one concept-map-
based and one conventional course) to examine the effect of using concept maps on understanding ER
modeling according to cognitive load theory. The experimental results revealed that the concept-map-
based teaching method was superior to the conventional teaching method because it improved mental
efficiency by reducing extraneous load while increasing germane load. Moreover, concept maps can
be used as a medium to facilitate communication regarding ER modeling problems between learners
and instructors, thereby improving learning efficiency. The results can help educators and researchers
understand the effectiveness of concept maps for ER model learning, motivate them to resolve learn-
ing difficulties, and encourage them to develop improved teaching methods by using semantic network
theory.
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INDEX TERMS Entity-relationship models, semantic network theory, concept maps, cognitive load theory,
learning.

I. INTRODUCTION19

Students in database courses often find learning entity–20

relationship (ER)modeling to be difficult [1], [2], [3], [4], [5].21

Unlike the transformation from an ER model to a relational22

model, which can be conducted in accordance with mapping23

rules, the transformation from a database problem to an ER24

model is open-ended [6]. In ER modeling, a vast gap exists25

between the problem space and the solution space [7]. The26

vagueness of this transformation relationship increases the27

difficulty of learning ER modeling [8]. A better method of28

presenting this transformation relationship may help bridge29

this gap and may further serve as a communication tool30

between learners and instructors and thus increase learning31

The associate editor coordinating the review of this manuscript and

approving it for publication was Meriel Huggard .

efficiency. Studies have reported that concept maps are a 32

useful tool for graphically representing the cognitive structure 33

of an individual within a problem domain [9], [10], [11]. 34

These considerations raise the question: Can concept maps 35

be used as a learning tool to enhance learner understanding 36

of ER modeling? 37

Many researchers have observed that learning how to 38

describe the data requirements of database problems with ER 39

models is not trivial [12], [13], [14] because the modeling 40

process itself is a complex activity [15], [16], [17], despite 41

the simplicity of the concepts foundational to ER models. 42

Numerous studies have investigated the learning difficulties 43

and the causes of errors committed by learners attempting ER 44

modeling tasks. Topi and Ramesh [18] noted that users, espe- 45

cially novices, frequently commit errors when constructing 46

ER diagrams for database problems. Hall and Gordon [17] 47
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indicated that novices find ER modeling tasks difficult and48

their ER models often have systematic errors. For example,49

novice designers often confuse entities with attributes [19],50

seemingly refuting Weber’s [20] memory recall experiment51

that demonstrated that humans view entities and attributes as52

distinct constructs.53

Batra et al. [12] noted that novices do not find modeling54

entities to be challenging but nevertheless have considerable55

difficulty modeling relationships. Learners often create56

derived relationships that result in redundant relationship57

errors [19], [21], eventually leading to unnormalized rela-58

tional models [22]. Batra and Antony [16] reported that59

learners typically encounter difficulties when modeling not60

only unary and ternary relationships but even binary relation-61

ships. The difficulty of modeling increases with the degree62

of relationship [1]. Batra and Davis [23] examined the diffi-63

culties encountered by novices by exploring the differences64

between experts and novices. They observed that novices are65

hindered by the amount of information used in ER modeling66

tasks. Database experts can integrate multiple information67

elements into a cognitive schema and treat them as a sin-68

gle element to reduce intrinsic cognitive load by reducing69

element interactivity. By contrast, novices cannot fully think70

through the myriad elements in a textual description of a71

database problem. Students have difficulty learning if the72

received information load exceeds the inherent limitations of73

human cognition [7]. Thus, novices are more susceptible to74

information overload. A strategy for managing mental effort,75

such as using concept maps, is required to reduce the load on76

learner memory.77

Numerous tools have been proposed for reducing the diffi-78

culty of learning ERmodeling, such as EER-Tutor [8], TOOL79

[13], ERM-VLE [17], COLER [24], ER-Converter [25],80

ADbC (Animated Database Courseware) [14], CODASYS81

(COnceptual modeling tool for DAtabase SYStems) [21],82

ACME (Adaptive Caching with Multiple Experts)-DB [26],83

OpenMark [27], LabDER [4], LearnER [28], ADVICE [29],84

and MonstER Park [5]. These tools improve learner under-85

standing of ER modeling by leveraging various features,86

including immediate feedback during the learning process87

(e.g., ERM-VLE), student modules that record learning status88

and provide personalized exercises (e.g., EER-Tutor), correc-89

tion modules that grade learner answers (e.g., ACME-DB),90

collaborative learning environments (e.g., COLER), or gami-91

fication that motivates learners to engage in learning activities92

(e.g., MonstER Park). In addition to these features, some93

tools focus on analyzing the ER modeling process to develop94

better tools for learning ER modeling (e.g., TOOL) instead95

of directly evaluating the ER diagrams of or providing feed-96

back to learners. Some tools focus on developing automatic97

ER diagram generators that can be used in intelligent ER98

model tutoring systems (e.g., ER-Converter). Some tools99

force learners to construct the ideal solution for an ER mod-100

eling task (e.g., ERM-VLE), whereas others allow learners to101

submit alternative correct solutions with the same semantics102

(e.g., EER-Tutor).103

A variety of techniques have been used to develop 104

these features, such as natural language processing (NLP) 105

techniques (e.g., TOOL), a heuristics-based approach 106

(e.g., ER-Converter), compiler theory (e.g., LabDER), 107

a knowledge-based approach (e.g., CODASYS), supervised 108

machine learning (e.g., LabDER), and a constraint-based 109

approach (e.g., EER-Tutor). To achieve the usefulness of 110

intelligent tutoring systems for ER modeling, it is necessary 111

to invest a significant amount of time and money in defining 112

heuristic rules, constraints, or knowledge. Artificial intelli- 113

gence techniques (e.g., data mining [30], [31]) can be used to 114

automatically generate this information. 115

These studies have promoted research regarding ERmodel 116

learning. However, learning ER modeling is still difficult 117

for students [1], [2], [3], [4], [5]. These difficulties must 118

be examined and resolved from a broader perspective, such 119

as with semantic network theory. From the perspective of 120

semantic network theory, ER modeling can be considered 121

to be the process of transforming the data semantics of a 122

database problem into an ER model [16], [20], [23]. A com- 123

plex cognitive process underlies this semantic transformation 124

[16]. For teaching methods for ER models, further empha- 125

sizing the semantic transformation process by integrating 126

materials that can represent the process may be necessary. 127

Graphical organizers [32] (e.g., concept maps) based on 128

Ausubel’s advance organizer [33] have been recognized as 129

effective for activating previous knowledge and illustrating 130

the semantic relationship between previous knowledge and 131

newly acquired knowledge. Concept maps are widely used 132

in science education [34]. Explicitly representing a semantic 133

transformation by using concept maps may assist learners in 134

diagnosing errors and thus aid them in developing a superior 135

understanding of ER modeling. 136

The difficulties of learning ER modeling, the lack of meth- 137

ods for expressing the semantic transformation from database 138

problems to ER models, and the characteristics of concept 139

map techniques were the motivating factors for the develop- 140

ment of a concept-map-based teaching method for learning 141

ERmodeling in this study. Two groups of students, one learn- 142

ing ERmodeling in a conventional database course and one in 143

a concept-map-based database course, were compared. At the 144

end of the courses, the learners were asked to perform an 145

ER modeling task. Their mental effort and problem-solving 146

ability were measured to assess the utility of concept maps 147

for increasing student understanding of ER modeling. The 148

factors affecting learner understanding of ER modeling were 149

then analyzed from the perspectives of semantic network 150

theory, cognitive load theory, and communication theory. 151

This paper is organized as follows. Section 2 presents 152

a brief overview of the difficulties in and tools for learn- 153

ing ER modeling. Section 3 presents relevant theories and 154

hypotheses. Section 4 describes the research methodology. 155

Section 5 reports the results of data analysis. Section 6 dis- 156

cusses the findings and their implications. Section 7 addresses 157

possible threats to validity. Section 8 presents the 158

conclusion. 159
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II. LITERATURE REVIEW OF ER MODEL LEARNING160

In this section, previous research on the difficulties of and161

tools for learning ER modeling is reviewed.162

A. DIFFICULTIES OF LEARNING ER MODELING163

This section presents a survey of the difficulties in learning164

ER modeling, errors that novice ER modelers frequently165

commit, and the leading causes of the errors.166

Numerous studies have reported that novices often commit167

systematic errors in ER modeling tasks. These errors are168

categorized as syntactical or semantic errors [35]. Syntactical169

errors violate the notation rules for ER model construction170

and can be detected and avoided with ER modeling tools. For171

a semantic error, the ER model is syntactically correct but172

it does not correctly represent the intended data semantics.173

Topi and Ramesh [18] reported that the seemingly simple task174

of modeling identifiers is difficult for novices. Weber [20]175

conducted a memory recall experiment; the results revealed176

that humans view entities and attributes as distinct constructs.177

However, Fessakis et al. [19] reported that novice designers178

often confuse entities and attributes.179

Rashkovits and Lavy [1] discussed the difficulty of learn-180

ing relationship types and indicated that the identification181

of relationships between entities is a major challenge for182

novice modelers. Herzberg [36] indicated that the most com-183

mon semantic errors are related to cardinality constraints.184

Fessakis et al. [19] reported that learners are prone to errors185

in redundant relationships (relationships that can be derived186

from other relationships). Batra and Antony [16] observed187

novices have difficulty determining the degree of a relation-188

ship (e.g., binary or ternary) and entity types (e.g., weak or189

strong entity types) participating in a relationship. Further-190

more, these difficulties increase as the degree of relationship191

increases [16]. Topi and Ramesh [18] reported that identify-192

ing and modeling ternary and unary relationships correctly193

is difficult for novices. Batra and Antony [16] indicated that194

novices have difficulty modeling not only unary and ternary195

but also binary relationships. Batra and Davis [23] observed196

that experts and novices exhibited modeling behavior that197

was similar for entities, identifiers, descriptors, and binary198

relationships; somewhat different for ternary relationships;199

and quite different for modeling unary relationships and200

categories.201

Studies have investigated the underlying causes of novice202

errors. Batra and Antony [16] demonstrated that the causes of203

errors include themisapplication of heuristics, the complexity204

of the modeling task, incomplete knowledge of database205

design, and a lack of feedback about solutions. Rashkovits206

and Lavy [1] indicated that reasons for errors include insuf-207

ficient experience, failure to reflect on solutions, and a208

lack of immediate feedback. Feedback is key for devel-209

oping learning motivation and for improving learning out-210

comes [37]. Batra and Sein [38] reported that feedback can211

help ER model learners avoid errors when modeling ternary212

relationships.213

Antony and Batra [21] indicated that the most common 214

error in ER modeling is literal translation, where novices 215

literally translate the textual description of a database prob- 216

lem into the ER model but do not reflect on the underlying 217

structure or attempt to propose alternative solutions [16]. The 218

misapplication of heuristics can cause these literal translation 219

errors. For example, a heuristic rule commonly used in ER 220

modeling is as follows: if two entities are related by a transi- 221

tive verb, then the verb can be transformed into a relationship 222

between the entities. However, indiscriminate use of this 223

heuristic rule can lead to errors. For example, for the require- 224

ment ‘‘customers buy products,’’ the above heuristic rule 225

suggests that a relationship should be constructed between 226

the ‘‘customer’’ and ‘‘product’’ entity types. However, the 227

correct solution entails creating an entity type ‘‘order’’ and 228

subsequently defining one relationship between the entity 229

types ‘‘customer’’ and ‘‘order’’ and another between the 230

entity types ‘‘order’’ and ‘‘product.’’ 231

Cognitive complexity can lead to ER modeling errors [7]. 232

Information overload is a major source of cognitive com- 233

plexity [7]. Studies have demonstrated that human cogni- 234

tion can process only seven plus or minus two chunks of 235

information at a time before cognitive overload occurs [39]. 236

In the context of ER modeling, information load is related to 237

the number of entity types and attributes, the interrelations 238

between entity types, and the degree of relationship types. 239

If the information exceeds the limitations of student memory, 240

this information overload increases cognitive complexity and 241

jeopardizes learning outcomes. Cognitive load theory [40] 242

suggests that a material with high element interactivity have 243

a high intrinsic load that inhibits comprehension of the mate- 244

rial. Batra and Davis [23] examined the effect of cognitive 245

complexity on ER modeling by exploring the differences 246

between experts and novices engaged in ER modeling tasks. 247

They observed that experts can achieve a holistic understand- 248

ing of a database problem before developing the ER model. 249

By contrast, novices cannot integrate the information in the 250

problem description and map it into an ER knowledge struc- 251

ture before beginning to develop the ER model. As a result, 252

novices are more susceptible to cognitive complexity, and 253

errors appear in their solutions more frequently. Therefore, 254

this study proposes to reduce cognitive load through concept 255

maps to improve learner understanding of ER modeling. 256

B. ER MODEL LEARNING TOOLS 257

Researchers have developed a number of learning tools for 258

ER modeling that use various techniques to improve learner 259

understanding of ERmodels. This section summarizes 13 ER 260

model learning tools (Table 1). The summary table presents 261

the main features of these tools and their techniques and 262

theories. 263

These learning tools are superior to conventional pen-and- 264

paper instruction methods. However, learning ER models is 265

still challenging [1], [2], [3], [4], [5]. These learning tools 266

focused on improving ER model learning by developing 267

various features (e.g., immediate feedback, student modules, 268
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TABLE 1. A review of ER model learning tools.

correction modules, collaborative learning environments, and269

gamification). By contrast, this study focuses on the chal-270

lenge of cognitive complexity in ER learning. Batra [7] stated271

that mental aids and visual feedback are two key elements272

that can reduce the complexity of ER modeling for learners.273

This study employs concept maps as a mental aid for reduc-274

ing cognitive complexity and as a visual feedback tool for275

improving the efficiency of communication between instruc-276

tors and learners.277

III. THEORY AND HYPOTHESIS DEVELOPMENT 278

A. COGNITIVE LOAD THEORY 279

Cognitive load theory offers instructional designers a tool for 280

designing teaching methods. Cognitive load theory divides 281

the cognitive load imposed on learners into three types: 282

intrinsic, extraneous, and germane cognitive loads [40], [41], 283

[42]. Intrinsic load refers to the load placed on working 284

memory due to the complexity (element interactivity) of the 285

learning material [43]. If learning materials have high levels 286

VOLUME 10, 2022 94911
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of element interactivity, a high intrinsic load is placed on287

learners [44]. Furthermore, learner intrinsic load is affected288

by their previous knowledge about the learning material.289

Intrinsic load is lower for learners with more previous knowl-290

edge about the material because these learners can integrate291

multiple informational elements into a cognitive schema and292

treat them as a single element. This reduction of the number293

of elements in the learning material decreases element inter-294

activity and intrinsic load.295

Extraneous cognitive load is the load placed on working296

memory due to the instructional design itself [45]. Teaching297

methods that require learners to engage in activities irrele-298

vant to schema acquisition have greater extraneous load, and299

students have more difficulty understanding the material [9],300

[46]. For example, learners use workingmemory to search for301

the information required for learning. If the extraneous load302

is reduced, learners can devote the freed cognitive capacity to303

activities that can induce a germane load.304

Germane load is the load caused by mental activities305

relevant to schema acquisition, such as organizing learning306

materials and relating them to previous knowledge [47]; thus,307

this load facilitates learning. Instructors can increase ger-308

mane load by directing students to devote mental resources309

to learning-related activities [44]. Accordingly, extraneous310

load and germane load are affected by teaching methods,311

while intrinsic load is inherent to the learning material.312

Teaching methods should be designed in accordance with313

cognitive load theory; specifically, extraneous load should be314

minimized and germane load should be maximized. In this315

study, extraneous load and germane load were compared316

between the groups in the conventional and concept-map-317

based courses to determine whether concept maps facilitate318

learning ER modeling.319

B. CONCEPT MAPS FOR LEARNING ER MODELS320

Semantic network theory proposes that cognitive structures321

are stored in semantic memory in the form of networks [48].322

A concept is stored independently in semantic memory as323

a node. A semantic relationship between concepts is stored324

as a link between the nodes [49]. From this perspective,325

‘‘meaningful learning’’ means that learners can create nodes326

for newly learned concepts and connect them with known327

concepts in semantic memory through links [49]. For exam-328

ple, suppose a student is to meaningfully learn the follow-329

ing ER modeling semantic relation: ‘‘A verb in the textual330

description of database problems can be represented by using331

a relationship type of ER models.’’ Learners must be able to332

create a node for the ‘‘relationship type’’ (newly learned con-333

cept) and connect it with the ‘‘verb’’ (known concept); thus,334

the semantic relationship between these concepts is learned.335

Therefore, from the perspective of semantic network theory,336

the process of learning ER modeling involves a series of337

semantic relation constructions. Learning ER modeling can338

be considered a process of establishing semantic transforma-339

tion relationships between database problems and ERmodels340

in semantic memory. In this context, network representations341

(e.g., concept maps) are useful for displaying the semantic 342

transformation relationships. 343

Concept maps were developed by Novak [10] to represent 344

the human cognitive structure. A concept map is a semantic 345

network representation comprising nodes and links. Nodes 346

are labeled with descriptive text (a word or short phrase) 347

to represent the data semantics of concepts. Links are used 348

to specify semantic relationships between nodes, and labels 349

on links are used to describe the meaning of these semantic 350

relationships. Concepts can be linked to express a proposi- 351

tional statement about an object or event in a problem domain 352

(called a semantic unit) [50]. Concept maps comprise inter- 353

acting semantic units [11]. Research has demonstrated that 354

concept maps improve learning outcomes [34], [51], [52]. 355

Concept maps offer a framework for interpreting information 356

and have been widely applied in different contexts, such as 357

aiding learning by explicitly integrating new and old knowl- 358

edge [34]; assessing understanding or diagnosing misunder- 359

standing [53]; representing and analyzing decision-making 360

processes [54], [55]; communicating complex ideas [49]; 361

producing mental models of humans [56]; and supporting 362

knowledge elicitation, acquisition, and sharing [10], [57]. 363

Accordingly, this study proposed to integrate concept maps 364

into ER model learning to facilitate learning the process 365

of semantic mapping from a database problem to an ER 366

model. Constructing an ER diagram for a database problem 367

comprises two steps: 1) Learners study the text description 368

of the database problem to form a mental model of the data 369

semantics, and 2) learners create a representation of the men- 370

tal model by using ERmodel syntax. Learners iterate between 371

these two steps until the ER diagram for the database problem 372

is completed. The following introduces the integration of 373

concept maps into the ER model learning process. 374

In Step 1, concept maps are used to represent learners’ 375

mental models regarding data semantics. Learners identify 376

objects, associations between these objects, and their fea- 377

tures from the textual description of a database problem. 378

They then use concept maps to describe their mental mod- 379

els of the problem semantics. Objects and object features 380

are represented by nodes, whereas associations between 381

objects are represented by links. Features of associations 382

are also represented by nodes. Fig. 1 presents an exam- 383

ple of a database problem. To construct an ER diagram 384

(e.g., Fig. 2) for this database problem, the student uses a 385

concept map (e.g., Fig. 3) to represent their mental model 386

about the data semantics. For example, for the requirement 387

‘‘Members can refund ordered products. Each refund must 388

include a unique refund number, a member, refund time 389

(mm/dd/yyyy hh:mm), the returned products, the returned 390

quantities, the order number to which the returned prod- 391

ucts belong, and the refund amount,’’ the concept map 392

reveals that the learner identifies the node ‘‘Refund’’ and 393

its three features (‘‘Refund_Number,’’ ‘‘Refund_Time,’’ and 394

‘‘Refund_Amount’’) from the database problem. The feature 395

‘‘Refund_Number’’ is conceptualized as a key feature, and 396

the feature ‘‘Refund_Amount’’ is the total refunded amount 397
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for the returned products. Two links (‘‘must be submitted by398

only one’’ and ‘‘can submit many’’) are identified to describe399

the semantic relationship between the node ‘‘Member’’ and400

the node ‘‘Refund.’’ In addition, the node ‘‘Item’’ is used401

to describe the returned products and is related to the node402

‘‘Order’’ and the node ‘‘Product’’ through four links to record403

the order number of the returned products. The concept map404

represents the learner’s understanding of the data semantics405

of the database problem.406

In Step 2, concept maps are used to represent the semantic407

mapping relationship from database problems to ER dia-408

grams. Learners map the concept map constructed in Step409

1 into an ER diagram. For example, a node of concept410

maps can be mapped to an entity type or an attribute of411

ER models. A link of concept maps can be mapped to a412

relationship type of ER models, and use the (min, max)413

notation to specify the structural constraints. These num-414

bers mean that each instance of an entity type in a rela-415

tionship type must participate in at least min and at most416

max relationship instances in the relationship type. Min =417

0 indicates partial participation, whereas min > 0 indicates418

total participation. The semantic mapping can be expressed419

by adding dotted lines marked as ‘‘be mapped to’’ on the420

concept map constructed in Step 1. For the concept map in421

Fig. 3, suppose that Fig. 4 was constructed by a learner to422

represent the semanticmapping fromFig. 3 to the ER diagram423

(Fig. 2). Fig. 4 reveals that the learner uses the entity type424

‘‘Member’’ and its six attributes to represent the seven nodes425

(‘‘Member,’’ ‘‘SSN,’’ ‘‘Member_ID,’’ ‘‘Name,’’ ‘‘Address,’’426

‘‘Phone_Number,’’ and ‘‘Credit_Rating’’) of the concept427

map, where the link ‘‘has key feature’’ from the node ‘‘Mem-428

ber’’ to the node ‘‘SSN’’ is mapped to the key attribute (SSN)429

of the entity type ‘‘Member.’’ The link ‘‘must place at least430

one or many’’ from the node ‘‘Member’’ to the node ‘‘Order’’431

is mapped to the structural constraints (1, N) on the member432

side of the relationship type ‘‘Places’’; thus, each member433

must place at least one order but can place many orders.434

Fig. 4 presents how a learner couldmap his/her understanding435

of the database problem into ER model notation.436

The presentation of learningmaterial has a strong influence437

on learner understanding of the material. Studies have indi-438

cated that graphical organizers (such as concept maps) are439

an effective technique for representing an individual’s cog-440

nitive structure for a problem domain [10], [33], [58], [59].441

Constructing and studying concept maps can help learners442

correlate new concepts with their prior knowledge to retain443

new knowledge [53]. Furthermore, concept maps are useful444

for communicating complex concepts and diagnosing misun-445

derstandings [49], [53]. Based on the literature review and446

these arguments, concept maps may be an effective teaching447

method for learning ER modeling. Therefore, the following448

hypothesis was proposed in this study:449

Hypothesis: Learners who receive concept-map-based450

teaching gain a clearer understanding of ERmodels compared451

with those who receive conventional teaching.452

FIGURE 1. Example of a database problem.

IV. RESEARCH METHODOLOGY 453

An empirical experiment was conducted to evaluate the effect 454

of concept maps on learner understanding of ER models. 455

Control and experimental groups participated in courses with 456

a conventional and a concept-map-based teaching method, 457

respectively. The two database courses lasted for 18 weeks, 458

including 1 week each for mid-term and final exams (total 459

2 weeks), with 3 h of class time per week. Both courses 460

began with an introduction to databases (1 week) and then 461

introduced ERmodels (2 weeks), relational models (1 week), 462

and ER-to-relational model mapping (1 week). Learners 463

then studied structured query language (4 weeks), relational 464

algebra (1 week), normalization (1 week), storage architec- 465

tures and indexing structure (1.5 weeks), query optimization 466

(2 weeks), and transaction control and database recovery 467

(1.5 weeks). The concepts taught for ER modeling included 468

entity types, single-valued attributes, multivalued attributes, 469

simple attributes, composite attributes, complex attributes, 470

derived attributes, key attributes, relationship types, recursive 471

relationship types, roles, participation constraints, cardinality 472

ratios, weak entity types, partial keys, relationship types with 473

degree higher than two, and naming conventions. 474

The two courses were structured such that identical mate- 475

rial was taught at an identical pace by the same instructor. 476
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FIGURE 2. ER diagram for the database problem in Fig. 1.

FIGURE 3. Example of a concept map describing the data semantics of the database problem of Fig. 1.

Management information system (MIS) undergraduate stu-477

dents were recruited as participants; 40 students participated478

in the conventional course, and 45 students participated in479

the concept-map-based course. The students were all in the480

same year at the same university. Before the courses began, 481

a pilot test was conducted to investigate the participants’ level 482

of prior knowledge of ER models. The results revealed that 483

the two groups were comparable; students in both groups 484

94914 VOLUME 10, 2022



S.-S. Shin: Teaching Method for Entity–Relationship Models Based on Semantic Network Theory

FIGURE 4. A concept map with semantic mapping information.

had no ER modeling knowledge. At the end of both courses,485

student understanding of ER modeling was measured in and486

compared between the two groups to assess the effectiveness487

of using concept maps for learning ER modeling.488

A. CONCEPT-MAP-BASED AND CONVENTIONAL489

TEACHING METHODS490

Students in both courses learned the same material; the491

courses only differed in the teaching method used to learn492

ER models. The conventional and concept-map-based teach-493

ing methods for ER modeling are briefly introduced as494

follows.495

Concept-map-based teaching method: The instructor first496

taught concept maps and trained learners to use concept maps497

to express their cognitive structure. After completing the498

training, the instructor taught ER modeling by instructing499

learners to construct concept maps for database problems500

in three phases: 1) The instructor guided learners to ana-501

lyze database problems and asked them to construct concept502

maps to describe their understanding of the data semantics503

of the database problems. The learners then represented the504

semantic mapping of the database problems to ER diagrams505

by adding dotted lines marked as ‘‘be mapped to’’ on the506

concept map. 2) The instructor guided learners to study the507

instructor’s concept map to clarify their misconceptions about508

ERmodeling. 3) If learners had questions about the solutions,509

the instructor answered the questions by using the concept 510

maps constructed by the learners and instructor. 511

Conventional teaching method: Instructors verbally 512

explained ER models without using concept maps. For the 513

example database problem (Fig. 1), instructors first intro- 514

duced the problem and then used its ER diagram (Fig. 2) to 515

explain how each requirement was represented by using ER 516

model notations as follows: 517

To construct an ER model for this database prob- 518

lem, we must identify the required entity types, their 519

attributes, and the relationship types between the entity 520

types. The ER diagram of this database problem is 521

presented in Fig. 2. 522

For the data requirement that each member has a 523

unique Social Security number, member identifier, 524

name, phone number, address, and credit rating (coded 525

as 1 for classic level, 2 for gold level, and 3 for platinum 526

level), we can describe this requirement by using the 527

entity type ‘‘Member,’’ which contains six attributes: 528

SSN, MID, Name, PhoneNumber, Address, and Cred- 529

itRating; here, ‘‘SSN’’ is the key attribute. 530

Now, we attempt to determine the relationship types 531

between the entity types. The database problem indi- 532

cates that each salesperson can handle multiple orders. 533

Thus, the relationship type ‘‘Handles’’ is created and 534

marked (0, N) on the salesperson side, assuming that 535

salespeople are allowed to not handle any orders. 536
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The instructor used the same method to explain the other537

entity types, attributes, and relationship types latent in the538

database problem in Fig. 2.539

B. MEASUREMENTS540

Understanding is often used as a dependent variable in541

research on learning ER modeling [12], [18]. A literature542

review revealed that understanding is typically measured543

with the following metrics: recall accuracy, response latency,544

problem-solving ability, and mental efficiency [44], [45],545

[60], [61]. Response latency is the time required for pro-546

cessing information before answering a question [60]. Recall547

accuracy is the percentage of desired information correctly548

recalled from semantic memory [61]. Problem-solving abil-549

ity is the ability to apply learned knowledge to solve rele-550

vant problems in a new context [45]. Mental efficiency is551

the efficiency of accessing the cognitive schemas required552

for problem solving [44]. Recall accuracy and response553

latency are suitable for measuring surface-level understand-554

ing; by contrast, problem-solving ability and mental effi-555

ciency are suitable for measuring understanding at a deep556

level [44], [62].557

The author’s long-term observations of ER model learning558

have revealed that most learners can clearly understand the559

meaning of each ER model notation; however, they find the560

application of these notations to perform an ERmodeling task561

to be complex and difficult. Learners must gain a deep under-562

standing of the semantic translations from database problems563

to ER models rather than only a superficial understanding of564

the meaning of ER model notation. Therefore, measures of565

mental efficiency and problem-solving ability were used to566

examine the hypothesis of this study.567

Modeling correctness has frequently been used to mea-568

sure problem-solving ability in research on ER model learn-569

ing [12], [18]. In most studies, the correctness of a model is570

defined as the degree to which the model corresponds to a571

predefined ‘‘correct’’ solution. Batra et al. [12] refined the572

concept of correctness by measuring the correctness of vari-573

ous facets or structural elements of ER models [e.g., entities,574

identifiers, descriptors, categories, and types of relationships575

(unary, binary, and ternary)]. The same facet structure was576

used later by Lee and Choi [63] and by Liao and Palvia577

[64]. Extending these studies, problem-solving ability was578

measured in this study by using modeling correctness, which579

was defined as the extent to which an ER diagram correctly580

describes the data semantics of a database problem and was581

expressed as a percentage. Any solution could be correct if it582

expressed the correct semantics. Modeling correctness was583

scored using the facet structure developed by Batra et al.584

At the end of the two courses, the participants were asked585

to perform an ER modeling test to measure their problem-586

solving ability. The participants’ solutions were scored by an587

MIS professor and a database expert through discussion and588

review.589

This study used Paas and vanMerriënboer’s [65] computa-590

tional method (equation 1) to measure mental efficiency; this591

method has been used in numerous education studies [65]. 592

Problem-solving ability and the mental effort invested to 593

achieve the problem-solving ability are used to measure 594

mental efficiency; the scores for problem-solving ability and 595

mental effort were transformed into standardized z-scores 596

based on the grand mean across teaching methods. A posi- 597

tive efficiency score represents efficient learning because the 598

problem-solving ability is higher than the invested mental 599

effort. Conversely, a negative efficiency score indicates inef- 600

ficient learning. Mental effort was measured using a 7-point 601

Likert-type subjective rating scale developed by Paas and 602

van Merriënboer [65]; scores ranged from extremely low 603

mental effort (1) to extremely high mental effort (7). Studies 604

have indicated that subjective measures and the index of task 605

difficulty are highly correlated [67]. Furthermore, subjective 606

measures used to assess task difficulty are closely related to 607

objective measures [68]. Subjective measures are considered 608

reliable, valid, and sensitive to small differences in invested 609

mental effort [69]. 610

Mental Efficiency Score 611

=
ZProblem−solving Performance − ZMental Effort

√
2

(1) 612

Themental effort of participants wasmeasured in the learn- 613

ing and testing stages of the courses. In the learning stage, 614

mental effort was measured after the participants had learned 615

ER models in the conventional course; for the concept-map- 616

based course, mental effort was measured twice, once after 617

the participants had built concept maps and once after they 618

had studied the instructor’s concept maps. In the test stage, 619

the measurement was performed after the test had been 620

completed. Finally, independent sample t tests on problem- 621

solving ability, mental effort, and mental efficiency were 622

performed to examine the hypothesis. 623

C. ER MODELING TASK 624

The ER modeling task is presented in Fig. 1. The partici- 625

pants performed the modeling task at the end of the courses. 626

Participants had 1 h to study the textual description of the 627

database problem and to construct an ER diagram with paper 628

and pencil. To validate the task and the test procedure, two 629

database experts and two MIS professors were recruited. 630

They suggested some modifications to the task material. Ten 631

undergraduates majoring in MIS and who had previously 632

completed the same database course taught by the same 633

instructor were recruited for a pilot test. They were asked to 634

construct an ER diagram for the database task and share their 635

opinions. The results of the pilot test indicated that the task 636

material and test procedure were appropriate for the goals of 637

the study. 638

V. DATA ANALYSIS AND RESULTS 639

Table 2 presents independent sample t test results for 640

problem-solving ability and mental effort. In the learn- 641

ing stage, the participants in the concept-map-based course 642

invested higher mental effort when constructing concept 643
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maps and lower mental effort when studying the instructor’s644

concept maps than did participants in the conventional course645

when learning ER modeling. Moreover, the participants in646

the concept-map-based course had higher problem-solving647

ability than those in the conventional course. The partici-648

pants who received the concept-map-based teaching method649

invested less mental effort in the test stage than those who650

received the conventional teaching method.651

The relative mental efficiency scores of the participants652

were calculated by using the standardized values (z-scores) of653

mental effort and problem-solving ability based on the grand654

mean across teaching methods. Table 3 shows the exami-655

nation results of the independent sample t test for mental656

efficiency. The participants in the concept-map-based course657

had significantly higher mental efficiency than did those in658

the conventional course; thus, learners receiving concept-659

map-based teaching understood ER modeling better than did660

learners receiving conventional teaching.661

TABLE 2. Problem-solving ability and mental effort scores: Mean Scores
(Standard deviations) and independent sample t test (p).

TABLE 3. Relative mental efficiency: mean scores (Standard deviations)
and independent sample t test (p).

VI. DISCUSSION AND IMPLICATIONS662

In the following section, the advantages of the concept-map-663

based teachingmethod are analyzed in terms of cognitive load664

theory, semantic network theory, and communication theory.665

A. COGNITIVE LOAD THEORY666

This section analyzes the advantages of concept maps for667

ER model learning in terms of two aspects: learning by668

constructing concept maps and learning by studying concept669

maps created by an instructor.670

1) LEARNING BY CONSTRUCTING CONCEPT MAPS671

Cognitive load theory suggests that teaching methods that672

motivate learners to engage in learning activities can increase673

germane cognitive load, thereby facilitating learning. In this 674

study, constructing concept maps compels learners to exter- 675

nalize the cognitive process of the semantic transformation 676

from a database problem to an ER model. This motivates 677

learners to participate in ER modeling learning activities and 678

thereby induces a germane load. This argument is consistent 679

with the result in Table 2 that during the learning stage, stu- 680

dents exerted more mental effort when building concept maps 681

than did students in the conventional course when learning 682

ER modeling. 683

Mental effort represents total cognitive load. Changes 684

in intrinsic, extraneous, and germane load can be deter- 685

mined by keeping intrinsic load constant and examining the 686

relationship between mental effort and problem-solving per- 687

formance [44], [70]. When learners have the same level of 688

previous knowledge about a material, the material imposes 689

the same level of intrinsic load on the learners [44]. The 690

pretest revealed that all participants had the same level of 691

prior knowledge of ERmodels; thus, they had the same intrin- 692

sic load. Therefore, changes in the germane and extrinsic 693

loads of these participants could be determined by examining 694

the relationship between their mental effort and problem- 695

solving ability. Accordingly, the increased mental effort 696

used to construct concept maps should be classified as ger- 697

mane load because the participants in the concept-map-based 698

course performed better on the test task than did those in 699

the conventional course; by contrast, if this mental effort 700

was extraneous load it would have reduced the learners’ 701

test performance. That is to say, compared with the con- 702

ventional teaching method, the concept-map-based teaching 703

method significantly induced a higher germane load and thus 704

enhanced learner understanding of ER models. 705

For example, suppose that the concept map in Fig 4. was 706

constructed by a learner for learning to construct an ER 707

diagram of the database problem (Fig. 1). This concept map 708

externalizes the learner’s cognitive process. The learner iden- 709

tifies a semantic unit that connects the concept ‘‘Member’’ 710

and the concept ‘‘Order’’ and maps this semantic unit into 711

the relationship type ‘‘Places’’ with structural constraints 712

(1, N) and (1, 1). While constructing the concept map, the 713

learner must actively seek relevant information to describe 714

the semantic transformation of the semantic unit to the 715

relationship type ‘‘Places.’’ Kao et al. [71] reported that learn- 716

ing by externalizing knowledge structures can prompt learn- 717

ers to reflect on their knowledge and learning experiences. 718

Concept maps have been recognized as being an effective 719

tool for externalizing learner knowledge structures [72], [73]. 720

Accordingly, the concept-map-based teaching method may 721

trigger higher ER model learning motivation and increase 722

learner willingness to learn ER modeling, thereby improving 723

learning outcomes. 724

2) LEARNING BY STUDYING INSTRUCTOR CONCEPT MAPS 725

Semantic transformations from database problems to ER 726

models were verbally presented in the conventional course, 727

whereas this information was presented diagrammatically in 728
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the concept-map-based course. Studies have reported that729

information that is processed sequentially can be relayed730

verbally, whereas diagrams are more suitable for displaying731

information that is processed in parallel [82]. Considering732

that ER modeling often needs to consider multiple detailed733

semantic elements simultaneously, sequential reasoning is734

not useful in ERmodel learning because sequentially indexed735

verbal representations require an additional extraneous cog-736

nitive load to retain multiple data semantic constraints in737

working memory. The limited cognitive capacity of learners738

may be consumed by processes that are not directly relevant739

to the learning material [83].740

For example, when learning the relationship type ‘‘Invites’’741

in the ER diagram in Fig. 2, in the conventional teaching742

method, learners received the instructor’s oral explanations743

and sequentially related them to the elements of the ER744

diagram and the sentences of the database problem descrip-745

tion (Fig. 1). Learners first identified the relationship type746

‘‘Invites’’ from the ER diagram, brought the information into747

working memory, and invested mental resources to maintain748

the cognitive elements in working memory. They then iden-749

tified the sentences that described this requirement from the750

database problem and brought them into working memory.751

Finally, they mentally established a semantic relationship752

between the relationship type ‘‘Invites’’ and the description753

of the requirement in working memory and transferred the754

newly learned semantic relation to semantic memory for755

storage. The sequential presentation of information in the756

conventional teaching method required that learners devote757

additional memory resources to keep the received informa-758

tion in working memory and wait for subsequent information759

to develop the understanding of ER modeling. In this con-760

text, their attention shifts with sequential processing, which761

distracts them and causes excessive extraneous load [45].762

On the contrary, the concept-map-based teaching method763

taught the relationship type ‘‘Invites’’ by guiding learners to764

study the instructor’s concept map. Suppose that the con-765

cept map in Fig 4. was constructed by the instructor for766

the database problem in Fig. 1. The map simultaneously767

displays the data requirement ‘‘Each member must be invited768

by another member to place an order and become a member,’’769

the relationship type ‘‘Invites,’’ and the semantic relation770

between them. The concept map represents the instructor’s771

cognitive process of semantic transformation in an integrated772

manner. Learners do not need to keep track of this infor-773

mation in working memory, thereby reducing their extra-774

neous load [83]. This is supported by the data in Table 1,775

which reveals that, compared with the conventional teaching776

method, the concept-map-based teaching method required777

less mental effort when learners studied the instructor’s con-778

cept maps. Their reduced mental effort was due to a reduction779

in extraneous load, not germane load, as evidenced by the780

superior test performance of the students in the concept-map-781

based course. Therefore, learning ER modeling by studying782

instructor concept maps can reduce extraneous load. Fur-783

thermore, freed student memory resources could be further784

invested in germane load to improve their understanding of 785

ERmodeling. This logic is consistent with cognitive load the- 786

ory, which holds that reducing extraneous load can improve 787

student learning performance. 788

B. SEMANTIC NETWORK THEORY 789

From the perspective of semantic network theory, the term 790

‘‘meaningful learning’’ is the assimilation of knowledge into 791

semantic memory during learning [49]. The concept-map- 792

based teaching method accords with semantic network theory 793

because it emphasizes the relationship between ER modeling 794

and a learner’s existing knowledge to facilitate meaning- 795

ful learning. A learner constructing an ER diagram for the 796

database problem (Fig. 1) who first constructs the concept 797

map in Fig. 4 must make decisions about the semantic rela- 798

tionships that are latent in ER modeling. For example, the 799

learner must identify the semantic relation from the seven 800

concepts ‘‘Member,’’ ‘‘SSN,’’ ‘‘Member_ID,’’ ‘‘Name,’’ 801

‘‘Address,’’ ‘‘Phone_Number,’’ and ‘‘Credit_Rating’’ to the 802

entity type ‘‘Member’’ and its six attributes. In this process, 803

the learner is compelled to relate the newly learned con- 804

cepts (entity type ‘‘Member’’ and its six attributes) and the 805

already-known concepts (the seven concepts). This process 806

helps learners clarify contradictions or misconceptions in 807

their knowledge structure; correcting misconceptions leads to 808

better understanding [51]. 809

Studies have found that learning through concept maps 810

can facilitate meaningful learning [49], [74], [75] because 811

the network representation of concept maps helps reveal 812

and integrate the semantic relationships between old and 813

new knowledge [76]. Furthermore, concept maps can trigger 814

memory and focus learner attention on the semantic rela- 815

tionship between known and new knowledge [51]. Hence, 816

from the perspective of semantic network theory, the concept- 817

map-based teaching method may assist learners in assimi- 818

lating novel ER model knowledge into existing knowledge 819

structures and form so-called meaningful learning, thereby 820

enhancing learners’ understanding of ER models. 821

C. COMMUNICATION THEORY 822

After an instructor presents the answer to a database ques- 823

tion, some learners may still be confused as to why their 824

ER diagram is wrong or think that their ER diagram may 825

also be correct. In this case, further explanation is required. 826

In general, instructors first identify learner errors and then 827

determine why the errors occurred; finally, they explain how 828

to correctly construct an ER diagram. However, long-term 829

observation of teaching ER modeling has revealed that this 830

communication is difficult and often results in information 831

overload for learners. 832

Successful learning is directly related to effective commu- 833

nication between learners and instructors [77]. Mayer [45] 834

indicated that modeling can facilitate communication 835

between instructors and learners because key information is 836

highlighted. Communication theory indicates that a model 837

can be conceptualized as a message that is processed 838
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cognitively by readers to develop an understanding of the839

material [78]. The concept-map-based teaching method uses840

conceptual models, namely concept maps, to present the841

ER modeling process. According to communication theory,842

concept maps can be used as a communication medium843

between learners and instructors to improve communication844

efficiency.845

For example, the ER diagram in Fig. 5 was constructed by846

a learner for the database problem (Fig. 1). This ER diagram847

violates the data requirement that each order can only be848

related to one member who placed the order. In the concept-849

map-based teaching method, the concept map (Fig. 6) con-850

structed by the learner can serve as a communication medium851

to explain this error. The instructor can explain the cause of852

the error by guiding the learner to examine the two semantic853

units of the concept map: 1) ‘‘Order’’ and ‘‘Salesperson’’854

(an order must be handled by only one salesperson) and855

2) ‘‘Salesperson’’ and ‘‘Member’’ (a salesperson can sell856

to many members). The combination of these two semantic857

units produces a new semantic unit that violates the data858

requirement: an order can be related to many members. Con-859

cept maps can help instructors explain why learner errors860

occurred and help learners understand the cause of their861

errors through their own concept maps. After examining the862

learner’s concept map, the instructor’s concept map can be863

used to explain how the instructor constructs a correct ER864

diagram. By contrast, in the conventional teaching method,865

communication is based on the ER diagrams of instruc-866

tors and learners. Instructors must invest additional mental867

resources to imagine the cognitive processes that caused868

learners to commit errors. This communication process is869

expected to impose additional cognitive load on both learners870

and instructors.871

Another advantage of the concept-map-based teaching 872

method is that instructors can explain learner errors in data 873

semantics and ER model syntax separately without interfer- 874

ence because the data semantics of database problems and 875

their mapping relations to ER model syntax are presented 876

separately in concept maps. For example, the instructor may 877

explain the semantic error in Fig. 5 by using Fig. 6 without 878

requiring the use of ER model syntax. Avoiding the use of 879

ER model syntax may reduce learner information load and 880

increase communication efficiency. 881

By contrast, in the conventional teaching method, the 882

instructor explains the error by examining the learner’s ER 883

diagram and referring to the instructor’s correct ER diagram. 884

The instructor will inevitably use ER model notation to 885

explain the semantic error; however, the notation is unrelated 886

to this semantic error. Cognitive load theory indicates that 887

investing mental resources in activities unrelated to learning 888

reduces learning outcomes. Thus, the conventional teaching 889

methodmay impose a higher extraneous load and increase the 890

difficulty of understanding this semantic error. The results in 891

Table 3 support this finding; participants in the conventional 892

course had significantly lower mental efficiency than did 893

those in the concept-map-based course, suggesting that the 894

concept-map-based teaching method facilitates the under- 895

standing of ER models more than the conventional teaching 896

method does. Table 4 summarizes the advantages of concept 897

maps for learning ER modeling. 898

VII. THREATS TO VALIDITY 899

In this section, possible sources of bias and threats to the 900

validity of this study are explored. Conclusion, internal, con- 901

struct, and external validity are discussed [79]. 902

FIGURE 5. ER diagram constructed by a learner for the database problem in Fig. 1.
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Conclusion validity aims to ensure the relationship903

between the treatment and experimental results [79]. The904

following possible influences on conclusion validity were905

addressed: Reliability of measures, sample size, and the ran-906

dom heterogeneity of subjects. During the development of907

the measurements, the reliability of measures was addressed908

by adopting widely used measures to evaluate learner under-909

standing of ER modeling. Modeling correctness has been910

used in numerous studies on ER model learning [80], [81] to911

measure problem-solving ability. Relative mental efficiency912

was measured using the computational approach of Paas and913

van Merriënboer, which has been widely used to measure the914

efficiency of instructional conditions [65]. Mental effort was915

measured by using Paas and van Merriënboer’s [65] rating916

scale; mental effort is often measured using rating scales917

and psychophysiological techniques [66]. Although a limited918

number of subjects participated in the experiment, the sample919

size was sufficient to achieve conclusion validity in an inde-920

pendent sample t test. Random heterogeneity of the subjects921

was addressed when recruiting participants. To ensure that all922

participants had the same prior level of knowledge about ER923

modeling, they took a pretest before the course; the results924

revealed that they did not have expertise in ER modeling,925

confirming that random heterogeneity was not a problem.926

Internal validity is the reliability of the results within a 927

given setting [79]. The following internal validity threats 928

were addressed: history, testing, and mortality. If different 929

treatments are applied to a participant at different times, this 930

treatment history may affect the experimental results. Only 931

one treatment was applied in this study; thus, history was 932

not a concern. Second, if tests in an experiment are repeated, 933

unintended learning may occur because the participants learn 934

the study procedures. Because only one query-writing test 935

was conducted at the end of the course, the testing threat 936

was avoided. Finally, participants leaving a study is referred 937

to as mortality and may affect internal validity. None of the 938

participants left the experiment; thus, mortality did not affect 939

the results. 940

Construct validity aims to ensure that the experimental 941

setting accurately reflects the constructs to be studied [79]. 942

For better reflecting ER model learning outcomes, mental 943

efficiency and problem-solving ability were used in this study 944

to measure learner understanding of ER models instead of 945

recall accuracy and response latency because learners must 946

develop a deep understanding of the semantic transformations 947

involved in ER models, and mental efficiency and problem- 948

solving ability are suitable for measuring the deep under- 949

standing of materials [44], [62]. Two other threats: interaction 950

FIGURE 6. Concept map constructed by a learner for the database problem in Fig. 1.
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TABLE 4. Advantages of concept maps for learning ER modeling.

of different treatments, and experimenter expectancies. Inter-951

action of different treatments is to ensure that the results of an952

experimentmay be affected by other experimental treatments.953

The participants did not participate in other studies; hence,954

treatment interactions did not affect the validity. Moreover,955

experimenter expectancy was avoided because the partici-956

pants were not aware of the experimental hypothesis.957

External validity is the generalizability of the results of958

a study outside the experimental setting [79]. A study is959

generalizable if its subjects and settings are representative of960

other settings and populations; both the generalizability of961

the setting and participants were considered. For the setting,962

this experiment was conducted in a database course at a963

university. The instructor was a database professional. Thus,964

the results of this study are likely valid for learners studying965

ER modeling at universities. Whether the results are valid for966

other environments in which ER models are studied could be967

investigated in a future study.With respect to the participants,968

MIS undergraduate students were enrolled as participants to969

clarify the difficulties associated with learning ER models.970

Because the ability to design databases using ER models is971

a core competency for MIS undergraduate students, the par-972

ticipants were representative of ER model learners. Thus, the973

results of this study were determined to have good external974

validity.975

VIII. CONCLUSION976

Learners in database courses frequently have difficulty learn-977

ing ER modeling. From the perspective of semantic network978

theory, the complex semantic transformation from database979

problems to ER diagrams and the large amount of data980

semantic information result in an excessive cognitive load 981

for learners and consequently jeopardizes their learning out- 982

come. To mitigate their cognitive load, the concept-map- 983

based teaching method was proposed. The method integrates 984

concept mapping into conventional ER model education by 985

representing the ER modeling process using concept maps. 986

The results revealed that the concept-map-based teaching 987

method is superior to the conventional teaching method. 988

In the test stage, learners who received the concept-map- 989

based teachingmethod achieved higher problem-solving abil- 990

ity with less mental effort for the test task. In the learning 991

stage, constructing concept maps for learning ER modeling 992

forced learners to engage in learning activities related to 993

ER modeling. Learners were required to relate what they 994

were learning about ER models to their existing knowledge 995

structures to represent the semantic transformation process, 996

thereby promoting meaningful learning. Studying instructor 997

concept maps enables learners to understand the cognitive 998

structures that instructors use for ER modeling; thus, learn- 999

ers can more easily perceive the semantic transformations 1000

because the information that must be mentally integrated to 1001

understand ER modeling is integrated and highlighted in the 1002

concept maps. Furthermore, these concept maps can be used 1003

as a communication medium for answering learner questions, 1004

thus improving learning efficiency. 1005

This research provides empirical insight into the effect 1006

of concept maps on learner understanding of ER model- 1007

ing. However, this research is only an initial step in fully 1008

understanding the cognitive process of ER model learners. 1009

More in-depth follow-up research from the perspective of 1010

semantic network theory is needed concerning topics such 1011

as the semantic distance between database problems and ER 1012

models. Insight into the influence of semantic distance on 1013

learner understanding of ER modeling may help researchers 1014

identify the root causes of the difficulties in learning ER 1015

modeling, and other teaching methods could be developed 1016

accordingly. 1017
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