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ABSTRACT Accurate Evapotranspiration for saline soils (ETs) is important as well as challenging for
the reclamation of saline soils through an effective leaching process. Evapotranspiration (ET) by FAO-56
Penman-Monteith standard method is complex, especially for saline soils. Moreover, existing studies focus
on the use of the Internet of Things (IoT) and machine learning-enabled smart and precision irrigation water
recommendation systems along with the ET estimation by limited parameters. The ETs for saline soils are
also equally important for the reclamation of saline soils, which is ignored by the existing literature. The
study proposed IoT and machine leaching-based architecture of context-aware monthly ETs estimations for
saline soil reclamation with the effective leaching process. The IoT-enabled crop field contexts in terms
of crop field temperature, soil salinity, and irrigation water salinity are used as input features to the Long
Short-Term Memory (LSTM) and ensembled LSTM models for monthly ETs predictions. The performance
of the proposed solution is observed in terms of the accuracy of the machine learning models along with the
comparison against the FAO-56 PM-based standard method. The implementation of the proposed solution
reveals that the ensembled LSTM-based approach for ETs is more accurate as compared to the LSTMmodel
with accuracies of 92 and 90% for the training and validation datasets, respectively. The predictions made
by the ensembled LSTM are more in line with the FAO-56 PM-based method with a Pearson correlation of
0.916 as compared to LSTMmodels. The implementation of the proposed solution in real-time environments
reveals that the proposed solution is more effective in reducing the soil salinity as compared to the traditional
method.

INDEX TERMS Evapotranspiration (ET), evapotranspiration for saline soils (ETs), saline soil, long
short-term memory model (LSTM), ensembled LSTM, FAO-56 Penman-Monteith, leaching process.

I. INTRODUCTION
Evapotranspiration (ET) is an important part of any hydro-
logical cycle [1]. ET is the basis of precision agriculture
to support efficient irrigation water for the conservation of
irrigation water [2]. The application of extra irrigation water
to leach down the salts from the root zone of the plants is
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practiced in many parts of the world to deal with the issue of
human-induced soil salinity [3]. The leaching process usually
fails to achieve its objectives, resulting in a huge loss to
farmers. For an effective leaching process, the irrigationwater
needs to be applied according to context-aware Evapotranspi-
ration for saline soils (ETs). The irrigation water in saline soil
is not applied according to ET due to the complexity associ-
ated with the standard ET method in general and especially
for saline soil.
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FIGURE 1. Factors affecting evapotranspiration (ET).

The application of ET for saline soil reclamation is very
important for the effective leaching process. Effective leach-
ing process with conservation of irrigation water for saline
soils is challenging due to the involvement of many param-
eters associated with the determination of ETs as shown in
Fig. 1.

Soil salinity is a soil degradation process due to the accu-
mulation of high concentrations of salt in soils [4]. Soil salin-
ity is an environmental hazard for sustainable developments
in agriculture [5]. Soil salinity is present in more than one
hundred countries. The increasing sea levels due to global
climate changes, it is increasing at an alarming rate. Soil
salinity is a serious hazard that is associated with the destruc-
tion of human civilization for centuries like Mesopotamia
civilization [6]. Soil salinity is the major threat to productivity
in agriculture [7]. Soil salinity results in a reduction in the
quantity and quality of agricultural items [8]. Themajor threat
of soil salinity is the loss of precious land resources that
become unfit for agricultural purposes [9]. The soil salinity
distribution in the experiment area is shown in Fig. 2.

Soil salinity is the major issue in arid and semi-arid regions
with low rainfall and high temperature. The evaporation of
water leaves behind salt in soils. The low rainfall results in
poor leaching of salt in these areas. Poor agronomic activities
like imbalance use of fertilizers and poor irrigation water
quality are themajor reasons for secondary or human-induced
soil salinity. To deal with the issue of soil salinity, many
solutions were in practice including the leaching of the salt
into the lower layer for reclamation of soil salinity. For an
effective leaching process, the precise use of irrigation water
is important, but it is usually not followed. The failure of the
leaching process results in huge losses to farmers. Moreover,
irrigation water is a scarce resource that needs to be used
efficiently to support sustainable development in agriculture.

FIGURE 2. Salt affected soil in the experiment area.

For an effective leaching process, the irrigation water
needs to be applied according to the crop field context-aware
ETs. The determination of ETs by a standard method like
the Penman-Monteith method is very complex. The opti-
mal use of irrigation water is the foundation of sustainable
developments in agriculture. Predicting the ET variations is
important for efficient irrigation water management. In saline
soils, accurate estimation of ETs is even more important for
an effective leaching process. Irrigation water is a scarce
resource that needs to be applied by the standard Penman-
Monteith recommended method. The precision irrigation
water needs to be applied according to ET for efficient irriga-
tion water with conservation of irrigation water. The dearth
of fresh irrigation water provokes the urgency of the efficient
use of irrigation water for the conservation of irrigation water
resources [10].
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FIGURE 3. Internet of things (IoT) applications in agriculture.

Internet of Things (IoT) is a paradigm that can effectively
be used to capture the context to adjust the services. IoT is
being successfully used in different areas like smart homes,
smart traffic, smart cities, and precision agriculture [11]. IoT
applications in different fields are shown in Fig. 3.

IoT has revolutionized the world by enabling customized
services according to the context. IoT applications in agri-
culture can transform the traditional cultivation process
agriculture. IoT has great prospects to deal with long-lasting
problems in agriculture. IoT is themost promising technology
for precision agriculture applications. IoT is also important
for ETs determination according to the crop field environ-
mental context. The IoT-enabled context will be useful for
accurate ETs prediction.

Moreover, the theory of Machine learning also got revo-
lutionary prospects in precision agriculture to support sus-
tainable development [12], [13]. The combination of IoT and
machine learning are very useful in agriculture to deal with
different issues in agriculture [14]. This combination is quite
effective to improve the quality and quantity of products with
the conservation of resources to meet the needs of the ever-
increasing human population [15], [16]. Machine learning
and IoTs have great potential for smart agriculture applica-
tions [17]. For effective ETs for saline soils, IoT and machine
learning are strong candidates to effectively deal with the
issue [18]. IoT provides the precise environmental and soil
context in terms of the level of soil salinity and environmental
conditions to accurately predict the ETs according to the
prevailing contextual information. Machine learning is useful
for the determination of the ET for saline soils using machine
learning with limited input parameters.

The study proposes IoT and machine learning-based archi-
tecture of context-aware ETs estimations for saline soil
reclamation with the effect leaching process. The proposed
solution is based on IoT-enabled directly sensed crop fields’
environmental conditions and the salinity levels of soil and
irrigation water. The crop field directly sensed context is fed
into the machine learning model to determine the ETs for the

reclamation of saline soils with limited available parameters.
The unique contribution of the proposed solution is that ETs
prediction is based on directly sensed crop field conditions to
accurately predict the prevailing ETs.

A. CONTRIBUTION OF THE STUDY
The main contributions and novelties of the study are sum-
marized as follows:

1. The study proposed smart ETs for the reclamation of
saline soils that were not previously targeted in terms
of an effective leaching process.

2. We have proposed the architecture of IoT-enabled
context-aware smart ETs for accurate ETs predictions
according to the prevailing crop field context.

3. The ETs are computed with the help of the proposed
methodology by using limited meteorological condi-
tions with the help of a machine learning approach.

4. A comparison is performed between the LSTM and
ensemble LSTM models in terms of predicting the
monthly ETs

5. The proposed solution is in line with the FAO-56 PM
standard method. Moreover, to show the effectiveness
of the proposed methodology, the proposed methodol-
ogy is implemented practically in a real environment.

B. ORGANIZATION OF THE STUDY
The rest of the paper is organized as follows: Section II
contains the literature review to explore recent advancements
in smart and precision agriculture along with the prediction of
ET rate with limited environmental conditions using modern
machine learning approaches. Section III describes the pro-
posed architecture along with the sensors used for the con-
figuration of machine learning models and the dataset. The
result and discussion section explore the accuracy of machine
learning models along with the accuracy of ETs predictions
with the help of the proposed methodology. The results are
discussed, and conclusions are drawn in Sections V and VI,
respectively.

II. LITERATURE REVIEW
IoT and machine learning are extensively used for agriculture
applications. Many exciting solutions are proposed using
modern sensors and IoT technologies to deal with low pro-
ductivity in agriculture. IoT is used for monitoring and con-
text of the services. Machine learning is extensively used to
determine the irrigation water requirements in the form of ET
with minimal available parameters. In this section, the recent
emerging solutions of smart and precision agriculture appli-
cations and machine learning-assisted ET proposed solutions
are reviewed. Major bibliography indices are searched to
review the existing solutions.

Bwambale [19] review the smart irrigation water strate-
gies using the IoT for irrigation water scheduling. The study
explores soil, plant, and environment-based monitoring and
irrigation water scheduling with the conclusion that smart
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irrigation is effective for the conservation of irrigation water.
Akhter and Sofi [15] explore the challenges and effects of
the applications of data analytics, machine learning, and IoT
in agriculture. Sengupta et al. [20] propose a quadcopter
based IoT system named ‘‘FormFox’’ to monitor plant health
systems in terms of pH and turbidity.

Ponnusamy and Natarajan [21] explore the potential of
IoT, augmented reality, and machine learning in agricul-
ture. Garg et al. [22] propose IoT-based soil moisture
and nutrients monitoring for irrigation water and fertilizer
recommendation with a pre-trained Convolution Neural Net-
work (CNN). Sirisha and Sahitya [23] propose ET predic-
tion with IoT-assisted soil moisture monitoring with help
of Kernel Canonical Correlation Analysis (KCCA) by using
the Support Vector Machine (SVM) with kernel function
for smart irrigation water scheduling. Pincheira et al. [24]
propose energy-efficient IoT and blockchain-based smart irri-
gation water scheduling. Alfred et al. [17] propose an IoT
framework for smart paddy rice crops with the purpose of
smart irrigation, yield estimation, and paddy rice growth
monitoring.

Boursianis et al. [25] propose an IoT architecture named
AREThOU5A-IoT for intelligent irrigation systems with IoT
node operations and radiofrequency harvesting techniques
for IoT platforms in agriculture. Keswan et al. [26] propose
an IoT framework for monitoring soil moisture, soil tem-
perature, humidity, air temperature, daylight, and CO2 for
the estimation of irrigation water requirements by the neural
network model.

Torky et al. [27] review the emerging IoT and blockchain
technologies in smart applications for precision agricul-
ture. Yin et al. [28] explore the potential of different types
of soil sensors with the challenges associated with their
applications in precision agriculture. Babaeian et al. [2]
propose long short- and medium-term ET forecasts to ana-
lyze the impacts of climatic changes on energy and water
balance and to forecast the real-time demand of actual
Evapotranspiration (ETa). The proposed solution uses the
Long Short-Term Memory (LSTM) and Convolution LSTM
(Conv-LSTM) model to forecast the ETa from remote sens-
ing data for different climatic zones of the United States of
America (USA).

Bispo et al. [29] proposed remote sensing based on ETa
for the sugarcane crop with help of Remote Sensing Water
Balance (RSWB) and Two Source Energy Balance (TSEB)
models. The Pearson correlation coefficient for the ET
between the proposed solution and ground data for ET is
0.88. Aghelpour and Norooz [1] propose daily ET estimation
by stochastic machine learning models in the Mazandaran
province in Iran. The study compares the performance of
stochastic methods and different machine learning models
like Least Square Support VectorMachine (LSSSVM), Adap-
tive Neuro-Fuzzy Inference System (ANFIS), and General-
ized Regression Neural Network (GRNN) to forecast daily
ET. The result of the proposed solution reveals that stochastic
methods are more accurate as compared to machine learn-

ing in daily ET forecasts. The Autoregressive Moving Aver-
age (ARMA) model shows high accuracy with Root Mean
Squared Error (RMSE)0.623 mm day−1 and 86.22 % of
the coefficient of determination R2 in daily ET prediction.
Elgeltagi et al. [30] assess the ET models in the Nile delta in
Egyptian regions. The proposed solution is based on monthly
maximum and minimum temperature data for ET calculation.
The green water ET and blue water ET are determined with
099 and 0.76 coefficient of determination (R2).

Dimitriadou and Nikolakopoulos [31] evaluate the perfor-
mance of the Artificial Neural Network (ANN) for the Pelo-
ponnese Peninsula inGreece. The dataset comprising ofmean
temperature (Tmean), sunshine (N), solar radiation (Rs), net
radiation (Rn), vapor pressure deficit (es-ea), wind speed
(u2), and altitude (Z) from the year 2016 to 2019 for sixty-two
weather stations. The performances of nineteen Multi-layer
Perceptron (MLP) and Radial Basis Function (RBF) models
are compared against the FAO-56 PM method. The results
reveal that theMLP1 7-2model with all the variables as inputs
outperformed the rest of the models (RMSE = 0.290 mm
d−1, R2 = 98%).
El-Kenawy et al. [32] evaluate the performance of the

hybrid ensemble model in the prediction of daily ET. Sriv-
ivosa Peddinti et al. [33] assess the impacts of salinity on soil
moisture by using sensors for precision agriculture applica-
tions. Ramchandran et al. [34] propose automated irrigation
water solutions using IoT, and cloud computing to conserve
irrigation water. Gentilucci et al. [35] determine the ET
using temperature data only, and ET0 is calculated with the
Hargreaves–Samani (HS) formula by using the Hargreaves
coefficient.

Kisi et al. [36] compare the performance of different
machine learning and deep learning models in the deter-
mination of pan-evaporation. The results reveal that LSTM
with grey wolf optimizer outperforms other models in the
determination of Epan. Balducci et al. [37] propose a
smart farm framework from harvest forecasting to sensory
data reconstruction. The study proposes a machine learning
approach for the establishment of directions for smart farm
developments.

Liao et al. [38] propose nocturnal evapotranspiration
(ETN) estimation of Qinghai Lake Basin in alpine regions
to observe the ET variations during the day and night-
time. Masseroni et al. [39] in a special issue explore
different approaches to the smart irrigation water system
for sustainable agriculture. Niaghi et al. [40] compare the
machine learning approaches with seventeen-year data from
six weather stations in the red river valley. Campos et al. [41]
propose a smart irrigation system with IoT by sensing soil
moisture. The framework includes monitoring, preprocess-
ing, fusion, synchronization, storage, and irrigation manage-
ment. Salazar et al. [42] propose remote sensing-based ET
predictions with MODIS ET data. Munir et al. [43] propose
an intelligent IoT-basedmethod for efficient irrigation of crop
plants based on the level of soil moisture, humidity, crop type,
and time.
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FIGURE 4. The architecture of the proposed solution.

Keshtegar et al. [44] propose regression modeling for daily
ET for efficient irrigation water scheduling. The authors pro-
pose a hybrid approach for radial-based function and the M5
model tree. The proposed solution outperforms the response
surface method (RSM), and neural networks (multi-layer
perceptron neural networks, MLPNN & radial basis func-
tion neural network, RBFNN) for several statistical indices.
Shafi et al. [45] propose crop health monitoring using IoT.
Pan et al. [46] propose remote sensing and machine learning-
based approaches for analyzing the variations in global
terrestrial ET. Aggrwal and Kumar [47] propose IoT-based
monitoring to determine irrigation water requirements using
the ANN and automatic control of valves for irrigation water
applications. Ahmadi et al. [48] explore the drivingmetrolog-
ical forces in Et determinations using the Pearson correlation,
mutual information, and random forest.

Many solutions were proposed using the IoT and machine
learning approach with the purpose of smart irrigation water.
Moreover, machine learning is widely used for ET determi-
nation with a limited dataset. However, the ET for saline soil
is also important for an effective leaching process that was
not previously targeted in the corpus of the existing research.
Also, the IoT-based context-aware ETs are proposed to fill
the gap and for the reclamation of saline soils.

III. MATERIALS AND METHODS
This section describes the proposed architecture, implemen-
tation of the proposed solution, the configuration of the
machine learning model, sensors and the used prototypes
used, the dataset, and the salinity mapping model.

A. ARCHITECTURE OF THE PROPOSED SOLUTION
The proposed solution of Evapotranspiration for Saline Soil
(ETs) predictions is based on sensing crop field air temper-

FIGURE 5. Salinity mapping sensors A) MEC-10 Soil EC sensor B) TDS
sensor C) pH sensor.

ature, soil salinity in terms of Electric Conductivity (EC),
and irrigation water quality in terms of Total Dissolved Salts
(TDS) and pH. The ETs are predicted by using a machine
learning model. The architecture of the proposed solution is
shown in Fig. 4. The sensed data from the crop field is trans-
ferred to the server through the cloud. The data at the server
is converted into mean monthly environment conditions for
monthly ETs predictions. The server processes the data using
the machine learning model. The information from the server
is accessed by the end user with Internet access.

B. IMPLEMENTATION OF THE PROPOSED SOLUTION
1) SENSOR AND PROTOTYPE
For soil salinity, the Mec-10 soil EC sensor is used with
the ability to observe the temperature of the sample. The
irrigation water salinity is observed with TDS and pH sensors
shown in Fig. 5.
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FIGURE 6. Environment monitoring node.

FIGURE 7. Soil and Irrigation water salinity monitoring node.

To sense different environmental conditions of crop fields,
the IoT prototype is used and implemented in the soil salinity-
affected areas of Pakistan. The existing levels of soil salinity,
irrigation water salinity, and air temperature are captured
from the field with help of the prototype shown in Fig. 6 and
Fig. 7.

2) CONFIGURATION OF MACHINE LEARNING MODEL
A machine learning model is used to define a function to
determine the ETs from the intended features set expressed
by Eq. 1.

F (X)→ ETs (1)

where X is the input feature matrix comprised of input feature
vectors ‘xi’ for the month ‘m’ expressed by Eq. 2.

X =
{
xm1 , xm2 , . . . xmn

}
(2)

Each input vector xmi is based on mean monthly temperature
(Tmean), average soil salinity (SSavg), and irrigation water
salinity (SW). Each input vector ‘i’ comprised of the year (Y),
month (m), Tmean for the month ‘m’, SS for the month ‘m’,

FIGURE 8. The architecture of ensembled LSTM.

and irrigation water salinity (SW) expressed by Eq. 3.

Xmi =
{
Yi,mi,Tmeanmi ,SSmi,SW i

}
(3)

The objective of the machine learning model is to minimize
the difference between the ETs predicted by themodel against
the actual ETs by the FAO-56 PM method. The study intends
to use the Long Short-Term Memory Model (LSTM) and
ensembled LSTM model for ETs.

Long Short-Term Memory Model is the extension of the
Recurrent Neural Network (RNN) to overcome the deficiency
of short-termmemory in the RNNmodel. LSTM is capable of
learning long terms trends using memory cells and associated
logic functions. The study also applies the ensembled LSTM
model to improve the accuracy of ETs. The architecture of
the proposed ensemble LSTM model is shown in Fig. 8. The
ensembled LSTM model is based on a bagged ensembled
approach with two LSTM models. The study also aims to
compare the performance of the ensembled LSTM model
against the individual LSTM model for ETs predictions with
the intended data.

The models in the ensembled approach are ensembled by
Algorithm 1, input feature set X, output ETs, and the number
of models is the inputs, and the ensembled function is the
output of the model.

The ETs are predicted by the ensembled LSTM with the
combination of multiple models with ∅ the weights of differ-
ent models in ensembled LSTM models. The predicted ÊT s
from the ensembled model is expressed by Eq. 4.

ÊT s = ∅
N∑
i=1

Fi(Xi,ETsi) (4)

The algorithm for ÊT s predictions by ensembled LSTM
models are made by algorithm 2. The weights of the models,
ensembledmodels, and set of environmental conditions of the
month are inputs to the model. The prediction of ETs for the
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Algorithm 1
1. Input: X, ETs, N
2. Initialize: n←1
3. while (n <= N) do
4. (Xn,← ETsn)F (X,ETs) // Use random replacement
function to create (Xn,ETsn) the subset of (X, ET s)
5. Fn(Xn)→ ETsn// training of the ‘n’ model in
ensembled models
6. n←n+1
7. End while
8. Output: F1(X1) → ETs1,F2(X2) → ETs2 . . .Fn(Xn) →
ETsn

Algorithm 2
1. Input: ∅, xm,F1(X1)→ ETs1,F2(X2)→ ETs2 . . .Fn(Xn)
→ ETsn

2. Initialize: ŷm← 0, n← 2
3. while n≤ N do

4. ÊTsm+1← ÊTsm + ∅
N∑
i=1

Fi(xm,ETsi)

5. n=n+1
6. End while
7. Output: ŷt+1

TABLE 1. Configuration of machine learning models.

month ‘m’ is made based on the same month from previous
years.

The ensemble LSTMmodel is based on two LSTMmodels
ensembled in a bagged manner. The configuration of both
LSTM models in the ensemble approach is the same; there-
fore, the description of the ensembled model is similar for
both LSTM models in the ensembled approach. The best
performance is achieved with a maximum of 100 epochs for
both LSTM and the ensembled LSTM model. Other con-
figurations with the best performance for both LSTM and
ensembled LSTM are given in Table 1.

3) DATASET
The proposed solution is implemented in Pakistan. Pakistan
is situated in the South Asia continent. Pakistan is an agri-
cultural country with arid and semi-arid climatic conditions.

FIGURE 9. The geographical location of Pakistan.

The high temperature and low rainfall in agriculture-intensive
areas are favorable for the development of salinity hazards.
Furthermore, the use of low-quality irrigation water is also
a major reason for the development of salinity hazards. The
geographical location of Pakistan in the world is shown in
Fig. 9. The environmental dataset from the year 2011 to
2020 is collected for the Pakistan region.

The dataset for the model training is collected from NASA
[49]. The environmental dataset is used to determine the
prevailing ET and ETs by the FAO-56 Penman-Monteith
method (FAO-56 PM). The irrigation water requirements of
saline soil are determined based on Evapotranspiration (ET),
prevailing soil salinity, and level of irrigation water salinity
and expressed by Eq. 5.

ETs =
ET

1− LF
(5)

where LF is the leaching fraction, and ET is the Evapotran-
spiration rate. The Leaching Fraction (LF) of the irrigation
water is the fraction of total irrigation water that would be
used for the leaching process. The LF of irrigation water is
determined based on existing soil salinity (ECe) and irrigation
water salinity ECw expressed by Eq. 6.

LF =
ECw

5 (ECe)− ECw
(6)

The ET for Eq. 5 is determined by the FAO-56 PM method.
The FAO-56 PM is the Food and Agriculture Organization
(FAO) recommended standard method of ET determination
according to the prevailing environmental conditions. The
FAO-56 PM method for ET is expressed in Eq. 7.

ET 0 =
0.4081(Rn− G)+ γ 900

T+273 (es − ea)

1+γ (1+ 0.34u2)
(7)

where ET0 is reference evapotranspiration in mm per day, Rn
is the net radiation in megajoules per square meter per day
(MJ m−2 day−1),G is the soil heat flux density in megajoules
per square meter per day (MJm−2 day−1), T is the air temper-
ature in degree centigrade (◦C), U2 is the windspeed in miles
per second, es is the saturated vapor pressure in kilopascals
(kPa), ea is the actual vapor pressure in kilopascals (kPa),
es-ea is the saturated vapor pressure deficit in kilopascals
(kPa), 1 is the slope vapor pressure curve in kilopascals
(kPa) per degree centigrade (◦C), and γ is the psychrometric
constant kPa per degree centigrade (◦C).
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C. SALINITY MAPPING MODEL
Soil and irrigation water salinity is observed in terms of
the Electric Conductivity (EC) model [50]. The EC model
of salinity enables the use of sensing technology for direct
sensing of soil salinity. The EC model measures the salinity
in terms of the total concentration of salt. The salt in water and
soil solution enables the passage of current that is measured
in terms of EC. The ability to conduct electricity is used
as a measure of the concentration of salt. The EC unit is
desi-Siemens per meter (dSm−1). Salinity in terms of EC
observed at different temperatures is standardized at 25 ◦C by
Eq. 8.

EC25 =
Observed EC value

1+ (0.02× (Temperature(◦C)− 25)
(8)

The salinity of the irrigation water is observed using the Total
Dissolved Salts (TDS) sensor and PH sensor. TDS is the
measure of total salts inwater and PH is themeasure of acidity
and alkalinity of the irrigation water. The TDS value from the
sensors is converted to the EC value by Eq. 9, where ‘k’ is the
constant rate.

TDS = k EC at 25◦C (9)

IV. RESULTS
The proposed solution is evaluated in terms of the accuracy
of the machine learning model, and the accuracy of ETs pre-
diction by the proposed solution as compared to the FAO-56
PM-based standard method and through field observations.

A. PERFORMANCE OF THE MACHINE LEARNING MODEL
The performance of the machine learning model is observed
in terms of accuracy and loss by machine learning models.

1) ACCURACY OF THE MACHINE LEARNING MODEL
The accuracy is the fraction of correct ETs predictions to the
total ETs predictions expressed by Eq. 10.

Accuracy =
Correct ETs predictions
Total ETs predictions

(10)

The accuracy of LSTM from the training and validation
data over 100 epochs is shown in Fig. 10. The maximum
training and validation accuracy of LSTM is 0.90 and 0.87
respectively.

The accuracy of LSTM from the training and validation
data over 100 epochs is shown in Fig. 11. Themaximum accu-
racy of the ensembled LSTMmodel is 0.92 and 0.90 from the
training and validation dataset. The accuracy of the ensem-
bled LSTM model is high as compared to the LSTM model
from both the training and validation dataset. The accuracy
of both models is compared in Table 2.

2) LOSSES COMPARISON OF THE MACHINE LEARNING
MODEL
Loss is the difference between the predicted ETs by the
machine learning model as compared to the actual ETs value

FIGURE 10. Training and validation accuracy of the LSTM model.

FIGURE 11. Training and validation accuracy of ensembled LSTM.

TABLE 2. Accuracy comparison of models.

expressed by Eq. 11.

loss = abs
(
ÊT si − ETsi

)
(11)

The minimum loss from the LSTM is 0.28 and 0.30 with
the training and validation dataset as shown in Fig. 12. The
minimum loss from the ensembled LSTM is 0.21 and 0.22
with the training and validation dataset as shown in Fig. 13.
The ensembled LSTM is more efficient in reducing the losses
as compared to the LSTM model.

B. COMPARISON AGAINST THE FAO-56 PENMAN
MONTIETH-BASED STANDARD METHOD
The performance of the proposed solution is also compared
against the FAO-56 PM-based standard method. The ETs
predictions by the proposed solutions are compared against
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FIGURE 12. Training and validation losses of the LSTM model.

FIGURE 13. Training and validation loss of ensembled LSTM.

the FAO-56 PM-based standard methods to prove the accu-
racy and validity of the proposed solutions. The ETs by the
FAO-56 PM-based standard method, ensembled LSTM, and
LSTM are shown in Fig. 14. The ETs prediction distribution
by the ensembled LSTM is more similar to the FAO-56 PM-
based standard method. The difference in ETs by LSTM and
ensembled LSTM against the standard method is shown in
Fig. 15. The differences in ETs predictions against the FAO-
56 PM-based standardmethod are low in the case of ensemble
LSTM as compared to predictions by the LSTM model.

The correlation between the ETs predicted by the ensem-
bled LSTM and the standard method is 0.916 as shown in
Fig. 16. The correlation between the ETs predicted by the
ensembled LSTM and the standard method is 0.916 shown
in Fig. 17. The difference in ETs predictions by ensembled
LSTM against the standard method is less as compared to the
LSTM.

The difference in predictions of mean monthly ETs by
LSTM and ensemble LSTM is shown in Fig. 18. The dif-
ference between ETs predictions by the ensemble LSTM

FIGURE 14. ETs predictions by different methods.

FIGURE 15. The difference in ETs prediction by LSTM and ensembled
LSTM against the standard method.

against the FAO-56 PM method is lower as compared to the
difference by LSTM. The predictions made by the ensembled
model are more accurate and in line with the FAO-56 PM-
based standard method.

C. REAL-TIME FIELD EVALUATIONS
The proposed solutions are also implemented in a real-time
environment to observe the effectiveness of the proposed
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FIGURE 16. Correlation between ETs by LSTM and standard method.

FIGURE 17. Correlation between ETs by ensembled-LSTM and standard
method.

solutions as compared to the traditional method. For field
evaluation, two adjacent areas of one acre each, with similar
salinity distribution are selected. The salinity is observed
before and after the application of irrigation water. In the
control area, the irrigation water is applied according to the

FIGURE 18. Difference of mean monthly ETs by LSTM and ensembled
LSTM against the standard method.

TABLE 3. Comparison of loss.

TABLE 4. Salinity in comparison to control and experiment.

traditional irrigation water application without considering
the environmental and salinity context. In the experiment
area, the irrigation water is applied according to the pro-
posed solution. The effectiveness of the leaching process is
observed in terms of average salinity and the number of sam-
ple points with salinity above the threshold value of 5 dSm−1.
The salinity distribution before and after the application of
irrigation water by the proposed solution and by the tradi-
tional method is shown in Fig. 19.

The traditional method of irrigation water reduces average
salinity in control areas from 10.78 dSm−1 to 8.28 dSm−1.
The proposed method in the experiment area reduces salinity
from 11.01 to 6.95 dSm−1. The proposedmethod of salinity is
more effective in reducing the salinity at more sample points
as compared to the traditional method. The effectiveness of
both methods in reducing soil salinity is given in Table 4. The
proposed smart ETs solution for saline is more effective in
reducing the soil salinity in the experiment area as compared
to the traditional area.

V. DISCUSSION
The proposed solution for ETs directly sensed crop field
environmental conditions, and it is implemented using the
proposed IoT and machine learning-based architecture. The
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FIGURE 19. Effectiveness of proposed solution in reducing salinity as compared to the traditional process a) Salinity
distribution in control area before leaching process by traditional method b) Salinity distribution in experiment area
before ETs application c) Salinity distribution in control area after leaching process by traditional method d) Salinity
distribution in experiment area after ETs application.

performance of the LSTM and ensembled LSTM model is
also compared for ETs predictions. The performance of the
ensemble LSTM model is better than the LSTM model in
terms of accuracy and loss. The maximum accuracy of the
ensembled LSTM model is 92 % as compared to 90% of
the LSTM model from the training dataset. With the training
dataset, the ensembled LSTM is 2.22% more accurate than
the LSTM in terms of ETs predictions.

The maximum accuracy of the ensembled LSTM model
is 90 % as compared to 87% of the LSTM model from
the validation dataset. The ensembled LSTM is 3.4%%
more accurate than the LSTM model in terms of pre-
dicting ETs from mean monthly temperature (Tmean),
existing soil salinity, and the level of irrigation water
salinity.

The Pearson Correlation between the ETs predictions by
ensemble LSTM and FAO-56 PM based method is 0.91 as
compared to 0.82 computed between the ETs predictions by
LSTM and FAO-56 PM based standard method. The predic-

tions by the ensemble LSTM model are more in line with
the FAO-56 PM-based standard method as compared to the
LSTM model.

The proposed solution is also implemented in real-time
environments to observe the impacts of proposed solution
recommendations on the leaching process. The results are
compared against the traditional methods by observing the
sail salinity at sixty-four sample points in each experiment
and control area. The average salinity in the experiment
area gets reduced from 11.01 dSm−1 to 6.95 dSm−1, while
the average salinity gets reduced from 10.78 dSm−1 to
8.28 dSm−1 in the control area. The proposed solution ismore
successful in reducing the soil salinity below the threshold
level of 5 dSm−1 at 50 sample points in the experiment area.
The salinity in the control area gets reduced at 32 sample
points with the traditional method. Therefore, the proposed
solution is more successful in reducing the soil salinity in
terms of average salinity and threshold level of salinity at
different sample points.
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VI. CONCLUSION
The study proposed Evapotranspiration for saline soils (ETs)
as an effective leaching process to reclaim saline soil. Internet
of Things (IoT) based crop field environmental and salinity
context is used to determine ETs with machine learning mod-
els. The mean monthly temperature (Tmean), Year, Month,
the existing level of soil salinity, and salinity of irrigation
water are used as input features to the machine learning
model. The Long Short Term Memory Model (LSTM) and
ensembled LSTM model are used to predict the monthly
ETs for the effective leaching process in saline soils. The
ensembled LSTM model is more accurate in the prediction
of ETs from training and validation datasets with accuracies
of 92 and 90%, respectively. The ETs predictions by the
ensemble LSTM are more in line with the standard approach
as compared to the LSTM model with a 0.916 Pearson
correlation. The implementation of the proposed solution in
the experiment areas reveals that the proposed solution is
more effective in reducing soil salinity as compared to the
traditional method.
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