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ABSTRACT Due to the recent challenges in access control, surveillance and security, there is an increased
need for efficient human authentication solutions. Ear recognition is an appealing choice where the data
acquisition procedure is contactless, non-intrusive, and covert. This article proposes a deep learning-based
solution for effective ear recognition. First, we explore multiple strategies to enhance learning using
alternative ear datasets with a wide range of ear poses. Second, we investigate the performance of the
proposed deep ear models in the presence of various image artifacts, which commonly occur in real-life
recognition applications, to identify the robustness of the proposed ear recognition models in controlled and
uncontrolled conditions (dataset dependent). Finally, we propose an efficient ear image quality assessment
tool designed to guide the proposed ear recognition system. By performing a set of experiments on extended
degraded ear datasets, we determine that the employment of the proposed ear image quality assessment tool
improves ear identification performance from 58.72% to 97.25% for the USTB degraded dataset and from
45.80% to 75.11% for the degraded FERET dataset.

INDEX TERMS Biometrics, ear recognition, convolutional neural networks, image artifacts, quality assess-

ment.

I. INTRODUCTION

The ongoing COVID-19 pandemic is changing the world
and reshaping our society. The way people learn, work, and
interact with each other has been affected in various ways.
As aresult, more sophisticated and flexible use of technology
is designed, developed, and utilized to support online and
distance interactions. Even for in-person activities in public
spaces, advanced health-related safety measures are taken
(such as wearing face masks and limiting contact with com-
monly touched surfaces). These measures help to avoid the
spread of the infection and protect the health of individuals
and communities. Therefore, the need for secure, efficient,
and convenient human authentication applications is critical
for various daily activities, including but not limited to bank-
ing, accessing medical records, border crossing, surveillance,
and even personal access to mobile devices.
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Biometrics is considered one of the leading technolo-
gies used to identify and authenticate individuals under
various conditions. Biometric solutions offer a rapid and
reliable way of human authentication by using unique per-
sonal physiological (face, voice, iris, and fingerprints) and/or
behavioral (keystroke dynamics, signature, and gait) charac-
teristics. Although face and fingerprints are among the most
popular biometric modalities [1], there are several techno-
logical concerns (accuracy, efficiency, scalability, biomet-
ric attacks) as well as concerns with their usage, storage,
and sharing, including privacy. For example, one of the
technological-related concerns is using face masks, which
has presented a serious challenge to face recognition sys-
tems [2]. Also, contact-based fingerprint scanners are not
always preferable due to hygiene concerns. Thus, for some
recognition scenarios, ear biometrics can provide a suitable
alternative for human authentication.

Ear recognition has its advantages; it is passive, con-
tactless, non-intrusive, and expressionless [3], [4], [5], [6].
In addition, it demonstrates high discriminative information
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across individuals and has shown to be an efficient human
authentication solution, even when used to distinguish iden-
tical twins [7]. An automatic ear recognition system is mainly
a pattern recognition system that consists of three modules.
First is the ear image pre-processing and detector module that
provides the bounding box(s) of the ear(s) to localize them in
images or videos. Second is the ear descriptor module that
encodes the identity information from the detected ear. Last
is the decision-making module that identifies or verifies the
subject that the query ear belongs to.

Although conventional-based ear recognition systems are
still being used and result in acceptable (dataset-dependent)
recognition performance, deep learning methods have the
potential to improve the current state-of-the-art further. Deep
learning methods have already dramatically improved the
efficiency of various computer vision systems and brought
breakthrough solutions in processing images, videos, speech,
and audio [9], [10], [11], [12], [13], [14], [15], [16]. Specif-
ically, in biometrics, there has been progress in using deep
learning-based models for different biometric applications
such as face, fingerprint, periocular, and gait recognition [17],
[18], [19], [20], [21]. Therefore, employing deep models for
ear description and feature extraction became an attractive
area of research.

This article is a follow-up to our previous work [22],
where we investigated multiple convolutional neural net-
works for ear recognition and the optimum learning pro-
cess setting. We propose deep ear recognition models and
evaluate their performance. We first establish a baseline
for the performance; then, we perform detailed experi-
ments to quantitatively evaluate the performance of the dif-
ferent ear recognition models in the presence of image
artifacts, which commonly occur in real-life recognition
applications, to identify their shortcomings and draw con-
clusions for enhancement. The experimental results show
that image artifacts significantly affect recognition per-
formance and can cause an efficiency loss in the bio-
metric system. Consequently, evaluating the quality of
ear images before processing can benefit ear recognition
systems.

There has been limited discussion on the quality assess-
ment of ear images for recognition applications. A quality
assessment algorithm evaluates an input sample to determine
if it is suitable for automated matching [23]. This is also
related to the recognition scenario (constrained vs. uncon-
strained), the biometric recognition system (COTS vs. aca-
demic) and cannot necessarily be aligned with the human
perspective of ear image quality assessment. In this work,
we develop a system for holistic ear image quality assess-
ment. The system serves as a guide for ear recognition sys-
tems to enhance recognition accuracy.

Hence, we propose a set of efficient deep ear recognition
models that offer high recognition accuracy under variable
conditions when supported by an ear image quality assess-
ment tool. The contributions of this work are summarized as
follows:
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« We provide a comparative evaluation of the performance
of four deep CNN models: SqueezeNet, GoogleNet,
MobileNet, and DenseNet, for ear identification and
verification tasks. For that purpose, we use an ear dataset
with a wide range of pose angles.

« We quantitatively assess the impact of the quality of
the ear image on the performance of deep ear mod-
els. In order to further explore the strengths and weak-
nesses of our proposed deep ear models, we evaluate
the recognition performance in the presence of multi-
ple ear image degradation factors, including blurriness,
brightness, and contrast variations, to obtain if the per-
formance of certain CNNs is more prone to degradation
in response to specific grades of artifacts.

« We propose an automatic ear image quality assessment
tool to act as a guide for improving ear recognition accu-
racy. Quality labels are obtained from scores yielded
by an ear recognition matcher. Using predicted qual-
ity labels improves ear recognition performance and
reduces error rates.

Il. BACKGROUND

What follows is a discussion and literature review on the
subject from the perspective of image quality assessment and
ear recognition technologies.

A. INTRODUCTION TO BIOMETRIC QUALITY

A quality of a biometric sample is an indicator of how suitable
it is for automated matching. The environmental image dis-
tortions such as noise, blur, and illumination variation are pri-
mary reasons for the deterioration in biometric identification
accuracy. Therefore, there is a need for a quality assessment
algorithm to produce a target quality that predicts the recog-
nition performance of the biometric system when employing
the sample regardless of human judgment. In some cases,
comparing two biometric samples of low quality can produce
high genuine similarity scores [24]; therefore, the biometric
sample’s quality needs to be evaluated without a reference or
comparison with a second sample.

The two modes of operation of a typical ear biometric
system are enrollment and recognition (verification or iden-
tification). In the enrollment mode of operation, a user’s ear
biometric is captured to generate the template(s) to be stored
in the system’s database. In the recognition mode of opera-
tion, an input ear sample is processed to identify a subject or
verify his/her identity. An ear image quality assessment can
be helpful for one or more but not limited to the following
scenarios:

o During enrollment, when the system determines that an
enrollment (input) sample is of low quality; it can guide
the user and recapture the sample.

o During verification, when genuine users are expected to
provide an input ear biometric sample of high quality for
recognition, ear image quality needs to be established as
good before verification. The quality examination can be
used to guide the recapture of the biometric sample or
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to prevent spoofing by the presentation of a deliberately
poor biometric sample from an imposter.

« In preprocessing of biometric samples, the evaluation
of a biometric sample’s quality can be used to initiate
certain preprocessing algorithms.

o In surveillance or video-based ear recognition appli-
cations, the quality assessment is useful for the frame
selection for the recognition operation.

« In the fusion of multiple images and/or biometric modal-
ities, quality assessment can provide a guide for sample
selection.

The target quality value can be a scaler prediction of the
genuine score, a bin indicating that an image is poor/fair/good
for matching, or a binary value of low-quality vs. high-
quality images [23]. In this work, we develop a holistic ear
image quality assessment without measuring individual fac-
tors. In most biometric applications, it is sufficient to detect
low-quality biometric samples to reject them and initiate the
proper action. The proposed system produces a binary value
indicating whether an image is good or bad for matching.

B. RELATED WORK

In this section, we provide a brief review of relative work on
ear recognition and the usage of image quality assessment in
biometric applications.

1) EAR RECOGNITION

The potential of the human ear for personal identification
was recognized by Alphonse Bertillon as early as 1890 [25].
In 1949, Alfred Iannarelli developed one of the first ear recog-
nition systems. He used twelve measurements from the ear
image to represent the ear [26]. Since then, multiple machine
learning methods and conventional matchers have been used
for ear recognition research studies. There have been multiple
detailed reviews of ear recognition history, techniques, and
their progress [32], [33], with a recent one [36].

After developing deep learning models and their improved
performance for many machine vision applications, the ear
recognition research shifted toward employing them for ear
recognition systems. There have been multiple efficient sys-
tems based on CNNs for ear detection [37], [38], [39], [40]
and ear segmentation [41], which is an important step that
can be used towards deep learning-based ear recognition
approaches. For recognition, the limited ear training data
was the main obstacle in utilizing convolutional neural net-
works for ear recognition applications. EmerSic er al. [42]
addressed this problem. They collected an uncontrolled ear
dataset from the internet. The team presented the Uncon-
strained Ear Recognition Challenge (UERC), which was held
twice in 2017 [44] and 2019 [45] to evaluate the state of
the ear recognition technology for unconstrained ear images.
Eyiokur et al. [46] presented a detailed ear recognition study
using the UERC 2019 dataset. Whereas Dodge et al. [47]
used a hybrid deep and shallow learning approach for ear
recognition.
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Zhang et al. [49] used three CNNs with different scales
of ear images to obtain multi-scale ear representations for
ear verification. They did their experiments on their new ear
database named USTB-Helloear. Khaldi ef al. [S0] proposed
a two-phase training method for the VGGI16 architecture
for ear classification. They also used Generative Adversarial
Network to color the USTB II dataset images. The incep-
tionV3 deep learning model was used in [48] for recogni-
tion of the AMI ear database. They used the network as a
feature extractor and principal component analysis to reduce
the feature vector size. Alshazly et al. [51] achieved Rank-1
recognition accuracy of 93.45% for the EarVN1.0 dataset
using the ResNeXt CNN, and they used the t-SNE algorithm
to visualize the learned features. They also built ensembles
of ResNet models with various depths for feature extrac-
tion, followed by SVM classifiers [52]. Finally, Meng et al.
presented a study on distinctiveness and symmetry in Ear
Biometrics [53]. In their experiments, they recognized the
gender with a 90.9% success rate and confirmed the existence
of symmetry between a subject’s ears. Table 1 provides a
comparative summary of ear recognition techniques in terms
of Rank-1 (%) identification rate.

2) BIOMETRICS QUALITY

There has been plenty of studies that investigated the quality
of face images for biometric recognition and the perfor-
mance of face recognition algorithms concerning different
covariates, on the contrary, there has been minimal work that
analyzes the quality of ear images for recognition.

In the field of quality assessment for face recognition,
Abaza et al. [54] examined the influence of face images’
quality factors, such as contrast, brightness, sharpness, focus,
and illumination, on recognition performance. They evalu-
ated quality measures for each factor and proposed a face
image quality index that combines multiple quality measures
which reflects the changes of input quality factors in corre-
lation with face recognition performance. In another work,
Best-Rowden et al. [24] proposed a model for the automatic
prediction of face image quality. They used two techniques
for face image quality assessments: human ratings of face
image quality and quality values computed from similar-
ity scores from face matchers. For matcher-dependent face
quality values, they used the normalized comparison of a
sample’s genuine score with its impostor distribution when
compared to a gallery of samples. For both techniques, each
face image was represented with a 320-dimensional feature
vector extracted from face images using the ConvNet for face
recognition. Using the face representations, they trained a
support vector regression (SVR) model with a radial basis
kernel function (RBF) to predict the normalized comparison
scores from the face matcher or the human quality rating.
In their experiments, they used the predicted face image
quality to reject low-quality face samples, which reduced
FRR at 1% FAR error rates by at least 13% for different face
matchers.
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TABLE 1. Comparative summary of 2D ear recognition performances in terms of identification rate at Rank-1 (in %).

Method Year Dataset Rank-1

LBP, LPQ, HOG, BSIF [29] 2014  UND-J2 97.22,98.73,97.85 , 98.67
SqueezeNet [42] 2017 AWE + CVLE 62.00

GoogLeNet [46] 2017  Multi-PIE 99.32

VGG-16 + GoogLeNet [46] 2017  UERC 67.53

PHOG + LDA [30] 2017  1OTD-I, ITD-II, UND-E 92.76, 95.77, 96.60

BSIF [34] 2017  USTB-I, ITD-I, IITD-IT 98.97,97.39, 97.63

SIFT, SURF, MLBP, LTP [31] 2018  FERET + WVU + UND + USTB 45.10, 52.60, 90.20, 85.37
Multiband PCA [27] 2018  USTB-IL IITD-II 51.95,93.21

VGG-M + SVM [35] 2018  USTB-I, USTB-IL IITD-I, ITD-II  99.40, 99.60, 99.90, 99.80
ResNet18 [47] 2018  USTB-Helloear 97.40

VGG-Face [49] 2018 AWE + CVLE 80.03

MLBP [28] 2019  USTB-I, OTD-I, IITD-II 98.33, 98.40, 98.64
inceptionV3 [48] 2020 AMI 98.1

VGG16, ResNet, SqueezeNet [43] 2020 AWEx(Male) 43.7,29.5,52.6

ResNeXt [51] 2020  EarVNI.0 93.45

VGG16 [50] 2021  AMI, USTB-II, AWE 98.33, 100.00, 51.25
ResNet + SVM [52] 2021  AMI, AMIC, WPUT, AWE 99.64, 98.57, 81.89, 67.25
Our proposed approach 2022 WVU, USTB-III 99.67, 99.35

Ortega et al. [55], [56] proposed the FaceQnet for face
image quality assessment for recognition purposes. The Face-
Qnet is based on the ResNet-50 architecture. The network
was trained to output a quality measure between 0 and
1 related to face recognition accuracy. The authors labeled a
subset from the VGGFace?2 face database with quality scores
for training. For each subject of the dataset, they used one
face image with the highest compliance with ICAO (standards
for machine-readable travel documents) as the perfect quality
face image. The comparison scores between the other sample
images of the subject with the high-quality face images were
used as quality values for these face images. The FaceQnet
was trained using the pairs of face images and their quality
values. To evaluate their proposed system, they obtained the
quality values for a test set of face images and performed
verification. Their experiments showed a correlation between
their quality measure and verification accuracy.

For the quality of ear images for ear recognition, in an
earlier study, Pflug eral. [57] investigated the impact of
signal degradation on ear recognition performance. Their
experiments examined the effect of noise and blur on
descriptor-based ear recognition, including LBP, LPQ, and
HOG. More recently, Emersic et al. [43] performed a detailed
study of the effect of subject-related covariates, including eth-
nicity, head rotation, gender and presence of occlusions, and
accessories on the performance of ear recognition techniques.

lll. METHODOLOGY

Our experiments examine multiple Convolutional Neural
Network architectures to find the appropriate model for the
ear recognition task. An overview of the models examined,
the learning strategies implemented, and the ear image arti-
facts explored follows.

A. CONVOLUTIONAL NEURAL NETWORK MODELS
LEARNING

A Convolutional Neural Network is a deep learning algo-
rithm that processes input data, such as an image, to learn
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their spatial hierarchies and determine a set of distin-
guishing characteristics. The CNN consists of multiple lay-
ers (convolutional, pooling & fully connected) to filter
images, extract their informative features, and classify them.
Although Convolutional neural networks were introduced
by LeCun et al. [61] in the 1980s, for the recognition of
handwritten zip code digits, they became popular after the
breakthrough they brought for image classification in 2014.
Since then, Convolutional neural networks have emerged
as a leading algorithm in computer vision. Advancements
in computer hardware and larger datasets supported that
advancement. In addition, there have been multiple studies to
improve CNNs’ architecture and enhance their performance
for multiple machine learning applications, including biomet-
rics. We examined multiple CNN models which represent
the various developments in general CNN architectures and
tuned them for ear recognition. Table 2 summarizes the main
properties for each network.
For the model learning to overcome the limited size of
the ear datasets available, we used multiple learning strate-
gies, including data augmentation and transfer learning. For
data augmentation, although we explored various data aug-
mentation techniques, we concluded that the following ones
resulted in improved accuracy of our models, namely rotation
at random angles up to 40° in both directions (clockwise and
counterclockwise) and translation horizontally or vertically
with a random number of pixels in the range (—30° to +30°).
We also performed two phases of transfer learning:
1) ImageNet transfer learning: All CNN models used in
this work are pre-trained on the ImageNet dataset [66].

2) Domain adaptation: The second phase of transfer learn-
ing, was domain adaptation where ear datasets were
used to fine-tune the CNNs. We fine-tuned our CNN
models using the training part of the AWE ear image
data set [33]. The(AWE) dataset is an annotated ear
dataset that was collected from web images of various
quality and spatial resolution.

Fig. 1 presents an overview of the training for the deep
learning models used for ear recognition.
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FIGURE 1. An overview of the deep learning-based ear recognition system. The proposed CNN is pre-trained on the ImageNet dataset and

then fine-tuned using an ear dataset [22].

TABLE 2. Comparison of convolutional neural networks used. Note that parameters are in millions.

Network Depth  Parameters Size Image Input Size  Convolutional layers
SqeezeNet [62] 18 1.24 4.6 MB 227x227x3 2 conv.
and 8 fire
GoogLeNet [63] 22 7 27 MB 224 x224%3 2 conv.
and 9 inception
MobileNetV2 [64] 53 3.5 13 MB 224x224x3 1 conv.
and 19 bottleneck res.
DenseNet [65] 201 20.0 77 MB 224x224%3 4 conv
and 4 dense blocks

B. IMAGE DEGRADATIONS

The accuracy of Image-based biometric recognition systems
is highly dependent on the quality of the input biometric
images. Image degradation factors, such as out-of-focus,
noise, and light alteration, commonly occur in real-life recog-
nition applications and can affect the performance of biomet-
ric recognition systems. Therefore, assessing the conditions
that can result in biometric image degradation manifested
by the property of capture devices and conditions is help-
ful. In this work, we evaluate the impact of the variation
of a set of image degradation factors on the performance
of deep learning-based ear recognition systems. We system-
atically altered good quality ear probe images and, thus,
generated a set of synthetic lower quality ear datasets.
This was accomplished by adjusting the contrast, bright-
ness, and blurriness of good quality ear images at different
levels:
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o Contrast: To adjust the contrast of ear probe images,

we saturated ear images at low and high intensities in
a 10% intensity degradation step.

Brightness: The brightness of the probe ear images was
artificially adjusted via a brightness (gamma y) factor.
This factor specifies the shape of the curve, describing
the relationship between the values of the input and
output images after the brightness level is manually
adjusted. In case y < 1, the mapping is weighted
towards higher (brighter) output values, and if y > 1,
the mapping is weighted toward lower (darker) output
values. We used y values in the range [0.5, 1.4] with a
uniform step size of 0.1 to generate nine probe sets for
our brightness-related experiments.

Blurriness: To generate the blurriness in probe ear
images, we convolved them with a circular averaging
filter and border replication. The value of diameter is
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in the range [3, 19] pixels with a uniform step value of
2 pixels.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, first, we describe the data sets used in our
experiments. Second, we explain the setup and the training
procedure. Third, we present the performance of different
deep models for ear recognition, including identification and
verification. Afterward, we compare the ear recognition per-
formance in the presence of image distortions.

A. DATASETS

« WVU Ear Dataset: For our experiments, we used
the West Virginia University (WVU) Ear Dataset [58].
It was collected using a unique custom-made device.
It consists of a moving arm holding a camera that cap-
tures video sequences. Each video begins at the left
profile of a subject (0°) and terminates at the right pro-
file (180°) in about 2 minutes. The WVU ear database
consists of 460 video sequences for about 400 different
subjects and multi-sequence for 60 subjects with an
elapsed time period between them. We used the multiple
sequences for our experiments. We used left ear images
from one video sequence for each subject to generate the
gallery ear dataset and images from the second video
sequence as the probe ear dataset. For the gallery set,
we extracted 20 ear images from the profile faces at
different angles ranging from -10° passing by 0° (full
profile) to about 60° (where the face is visible enough
for face recognition). This process resulted in a training
set of 1200 images for 60 subjects. For the probe set,
we used five ear images per subject at about (—10°,
0°, 20°, 45° and 60°), which resulted in a testing set of
300 images.

o USTB Ear Dataset: The University of Science and
Technology Beijing (USTB) collected multiple ear
image datasets [59]. Dataset III contains ear images at
multiple angles. Each subject rotates his/her head from
0° to 60° toward the right side, and from 0° to 45° toward
the left side; two images were recorded at each angle.
For our experiments, we used the ten left ear images for
77 subjects. The ear images were at angles 0°, 5°, 10°,
15°, and 20°. For each subject, eight images were used
in the gallery set and two in the probe set.

« FERET Dataset: The FERET dataset [60] was part of
the Face Recognition Technology Evaluation (FERET)
program. For some individuals, images were collected
at the right and left profiles (labeled pr and pl). From
this dataset, we used left face profile(ear) images of
115 subjects to maintain two images per subject.

B. SETUP AND TRAINING FOR EAR RECOGNITION

We trained ear recognition CNN-based models using
Stochastic Gradient Descent with Momentum (SGDM),
learning rate 3 x 10™*, and 20 maximum epochs. To speed
up the network training and prevent it from overfitting to
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the new dataset, we froze the weights of the earlier layers
in the network by setting the learning rates in those layers
to zero. Specifically, we froze the weights for the first 5,
10, &17 layers of the network models. We trained the CNN
models for ear identification that each subject represents a
class. The final two layers were replaced with new layers
to adapt to the new dataset. In SqueezeNet, the last convo-
lutional layer was replaced with a new convolutional layer
with the number of filters equal to the number of classes. For
the other networks, the fully connected layers were replaced
with new fully connected layers with outputs equal to the
number of subjects in the dataset. When an unknown ear
image (probe) is introduced to the network, the output is the
subject (class) to which it is most likely the probe ear belongs,
according to the probability from the SoftMax function. This
was implemented for the WVU and the USTB datasets due to
the availability of multiple samples per subject for training.

For the FERET dataset and verification experiments,
we used the CNNs after domain adaptation to extract features
for each ear image and generate image descriptors.

y=f), ey

where x is the input image, f(.) represents the CNN, and
y is the image descriptor. The dimensionality of the image
descriptor varies from model to model and depends on the
design choices made during network construction.

C. EAR RECOGNITION PERFORMANCE

Our first experiment assesses the performance of the different
CNN architectures for ear identification and verification tasks
using the WVU and the USTB ear datasets. The Rank-1 iden-
tification scores for the four models examined are presented
in Table 3.

TABLE 3. Ear identification performance for multiple models using
Rank-1% scores.

Dataset | SqueezeNet | GoogleNet | MobileNet | DenseNet
WVU 92.67 93.33 96.33 99.00
USTB 73.38 79.22 89.61 99.35

As shown in Table 3, the DenseNet model has the best
identification performance for both the WVU & the USTB
datasets, whereas SqueezeNet has the least Rank-1 scores.

For verification, each ear probe image descriptor is com-
pared against each of the gallery images descriptors’ using
cosine similarity match scores. The match scores can be either
genuine scores or imposter scores. Genuine scores are the
scores when the gallery and probe ear images belong to the
same subject, whereas imposter scores are when the gallery
and probe ear images belong to different subjects. Match
scores are compared against a numerical threshold. If the
match score exceeds the threshold, it is classified as a match.
Each input is either: True Positive (TP), True Negative (TN),
False Positive (FP) or False Negative (FN). To analyze the
verification performance, the False Accept Rate (FAR) and
False Reject Rate (FRR) results are used, where:
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o False Accept Rate (FAR): denotes the percentage of
imposter ear images falsely recognized (FP) over the
dataset’s total number of ear images.

o False Reject Rate (FRR): denotes the percentage of
genuine ear images (FN) falsely rejected over the total
number of ear images in the dataset.

The Receiver Operating Characteristic (ROC) curves [8]
relates the FAR to FRR at different thresholds to measure the
verification performance of a biometric recognition system.
Fig. 2 shows the ROC curves for the different ear recog-
nition models. The MobileNet model has the best verifica-
tion performance, followed by DenseNet. GoogLeNet and
SqueezeNet has comparable verification performance.

100
—+—SqueezeNet
—&— GoogLeNet
= 80% MobileNetV2| 1
= £ —*—DenseNet
% 3
¥ 60%
46 H
.2,
= .
o 40
@
0
.
20+

0 20 40 60 80 100
False Accept Rate(%)

FIGURE 2. ROC comparison of four models SqeezeNet, GoogLeNet,
MobileNet, and DenseNet for the WVU ear dataset.

D. EAR RECOGNITION WITH IMAGE DEGRADATIONS

For each of the datasets used for the recognition and quality
experiments (WVU, USTB, and FERET), we kept the gallery
part of the original ear images of the dataset. We applied
image degradations to the ear images in the probe part of
the datasets. That increased the probe part of the dataset,
consisting of the combination of the original and degraded
ear images. Table 4 shows the number of ear images in the
original dataset and after adding the degraded images to the
probe part of the dataset.

TABLE 4. Ear recognition datasets.

Dataset Gallery Probe Probe with degradations
WVU | 60 x 20=1200 | 60 x 5=300 60 x 150 = 9000
USTB 77 x 8=616 77 x 2=154 77 x 60 = 4620
FERET 115 115 115 x 30 = 3450

In our experiments, we explore the impact of the degra-
dation of the ear probe images on the Rank-1 identification
accuracy of the different models examined in the previous
section. First, we examine the effect of contrast alteration
on ear recognition performance; the Rank-1 identification
results are shown in Table 5. Fig. 3 shows sample images
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FIGURE 3. Contrast changes, where the percentage of the ear image
intensity values are saturated.

TABLE 5. Ear recognition performance (Rank-1 %) using images where
contrast was changed.

SqueezeNet  GoogLeNet  MobileNet  DenseNet201
Normal 93.00 93.67 96.00 99.00
10% (0.05-0.95) 91.67 90.67 95.33 99.33
20% (0.1-0.9) 73.00 80.00 93.00 97.00
30% (0.15-0.85)  53.00 65.33 79.67 89.00
40% (0.2-0.8) 34.67 43.67 56.67 70.67
50% (0.25-0.75)  22.33 28.33 32.67 46.00
60% (0.3-0.7) 14.67 13.33 18.33 28.00
70% (0.35-0.65)  9.67 6.00 8.67 18.66
80% (0.4-0.6) 7.33 3.33 5.00 12.33
90% (0.45-0.55)  6.00 2.33 3.00 10.33

generated with different levels of contrast alteration. The
results show that contrast increments affect the performance
of all deep models. The DenseNet model performs the best,
the performance with the 10% contrast increase gets better,
and then accuracy decreases but remains acceptable with up
to 30% of the contrast increase. However, the performance of
all models falls fast after the 50% contrast increment, which
can result from the clipping in pixel values, leading to image
information loss.

TABLE 6. Ear recognition performance (Rank-1 %) using images where
brightness was changed.

SqueezeNet  GoogLeNet  MobileNet  DenseNet
¥=05 17.67 33.33 71.67 62.67
v=0.6 29.67 58.67 88.67 83.67
v=0.7 52.33 78.33 94.33 97.33
v=0.8 74.67 88.67 95.67 99.33
v=09 89.00 93.00 96.67 99.33
Normal 93.00 93.67 96.00 99.00
y=11 90.33 91.33 95.00 98.67
y=12 77.00 88.67 92.67 99.00
v=13 59.00 82.67 88.67 98.00
y=14 45.00 77.67 83.00 93.67

Second, we examine the impact of brightness variation
of the ear images. Fig. 4 shows sample images generated
with different levels of brightness alteration. As the iden-
tification results in Table 6 show, the performance of the
DenseNet is relatively robust, as well as the performance of
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FIGURE 4. Brightness changes, where ear image intensity values are
mapped to new values in the output image.
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FIGURE 5. Blurring of the input ear images using a circular averaging
filter with various diameters.

TABLE 7. Ear recognition performance (Rank-1 %) using images where
blurriness intensity was changed.

SqueezeNet  GoogleNet  MobileNet  DenseNet201
Normal 95.67 94.67 98.00 99.00
Disk =3 95.33 93.00 97.33 99.33
Disk =5 89.33 84.67 92.67 99.33
Disk =7 79.00 66.67 77.67 93.67
Disk =9 54.67 45.67 51.00 86.00
Disk =11  40.67 27.33 30.00 72.33
Disk=13 26.33 21.33 18.67 58.00
Disk=15 21.33 18.00 12.00 42.67
Disk =17 16.33 13.67 8.00 31.67
Disk=19 13.33 11.67 7.00 25.33

the MobileNet. On the other hand, the SqueezeNet suffers the
most deterioration with the alteration of the brightness levels.

Third, the effect of image blurring was explored.
Fig. 5 shows sample images generated with different levels
of image blurring. As presented in Table 7, the performance
is relatively robust with minor blurring, especially for the
DenseNet model. With the increase in the radius of the blur-
riness, the performance of all four CNN models degrades.
MobileNet & GoogleNet performances decline rapidly with
the blurring increase of the ear probe images.
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V. EAR IMAGE QUALITY
A quality metric in biometrics is a function that takes a
biometric sample as its input and returns an estimation of its
quality level. Biometric quality measurement should be an
indicator of recognition performance. A sample should be of
good quality if it is suitable for automated matching. Auto-
matic prediction of biometric quality (prior to matching and
recognition) can be useful for several practical applications.
A system with the ability to detect poor-quality images can
subsequently process them accordingly, as explained in II-A.
In this work, we develop an ear image quality assessment.
The target quality value is a binary value indicating that an
image is good or bad for matching. The process of building a
model for automated biometric quality evaluation consists of
two main steps:
1) The generation of ear quality ground truth labels for an
ear dataset to train the model.
2) Train the model using pairs of images and quality
labels to predict the quality of new unseen ear images
automatically.

A. GROUND TRUTH LABELS

A quality model’s role is to estimate new images’ quality.
The first step is the generation of quality ground truth labels
for the images of the training dataset to serve as a reference
for the model. A quality measure should be an indicator of
the automated biometric matching performance for an input
sample, which can be distinct from the human conception of
quality.

The recognition operation is based mainly on comparing
the gallery and the probe images. As mentioned in [56],
image feature vectors contain quality information as well
as identity information. Hence, when the gallery image is
of good quality, the gallery/probe comparison outcome can
be utilized to generate ground-truth quality labels for probe
images. Since the comparison of two bad images can pro-
duce high genuine similarity scores, it is essential that the
gallery images are of good quality to ensure that low genuine
scores are not produced because of the low quality of gallery
images [24].

For training, we generated the ground truth labels for the
images of the WVU ear dataset. The gallery set consists of the
original ear images of the dataset, and the probe set consists
of the combination of the original and degraded images.
The original dataset was collected with standard high-quality
elements for biometric datasets. Also, the ear identification
rate for the WVU is 99.00%, as shown in Table 3. Accord-
ingly, we consider the original gallery images as good quality
images. The last layer of a CNN is an activation function
that gives us a discrete probability distribution over all the
classes. We used these values to determine the ground truth
quality labels for the training dataset. We used the output from
the MobileNet model. The ear images correctly classified to
their subject have a high probability value to the correct class.
The probe dataset is binned into (good/bad) according to the
probability of the input image being classified as its subject
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FIGURE 6. An overview of the tool for ear image quality evaluation. We used the scores from the MobileNetV2 model to generate
the quality ground truth labels. The dataset is composed of a combination of the original and the degraded images of the WVU ear
dataset. Using the training set containing ear images and their respective ground truth quality labels, we trained a
classifier(AlexNet) to predict the quality label (good/bad) for an input ear image.

using multiple thresholds. A high threshold is most likely to
decrease the recognition errors but will increase the number
of samples classified as bad, which may be challenging or
inconvenient for some applications. Conversely, decreasing
the threshold reduces the number of samples classified as bad
but may increase the recognition errors, which may comprise
the security. Therefore, according to the application, the user
should balance the system’s errors and the amount of rejected
samples. In our experiments, we examined multiple thresh-
olds (0.8, 0.85, 0.9, and 0.95) to find a suitable threshold for
rejecting low-quality samples. That gave us the ground truth
labels for the probe set of the dataset that contains original
and degraded ear images.

B. QUALITY ESTIMATION AND ASSESSMENT

To develop a quality assessment tool for ear images, we used
pairs of ear images with their ground truth quality class
(good/bad)) generated in V-A. We tuned the pre-trained
AlexNet classifier [67] to predict the quality labels for the
images in the test dataset. We replaced the last three layers
of the pre-trained network (the last fully connected layer,
the SoftMax layer, and the final classification layer) to adapt
the neural network for the ear image quality prediction
task. Since we examined multiple thresholds for binning the
matching scores for the training dataset, that gave us four sets
of labeled ear images for classifier training. We trained the
classifier using pairs of ear images with their quality class.
We had four classifiers; each classifier was trained with one
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of the sets. A higher threshold is expected to keep ear images
of high quality but may reject additional input ear images.
Fig. 6 presents an overview of the tool for ear image quality
evaluation.

To evaluate the efficiency of our ear quality system,
we used it to predict the quality of the ear images from the
USTB and the FERET ear datasets, which were not used dur-
ing the training phase. We performed the image degradations
to both datasets to expand them that the test dataset consists
of a combination of the original standard quality ear images
and the degraded quality ear images.

The evaluation methodology for the performance of the ear
quality system proposed included two main sets of results:

1) The Receiver Operating Characteristic (ROC) curves.

2) The recognition accuracy for the dataset with and
without using the quality labels before performing the
recognition.

We used our ear quality evaluation model to assess each
image of the test dataset and generate a quality label for it.
According to the quality labels of the test samples, we divided
the test dataset into three groups: The good quality ear images
test set, the bad quality ear images test set, and the total ear
images test set, which is the combination of the two other
groups. Fig. 7 shows the ROCs curves of the DenseNet for
the three test groups. The verification performance improves
when using the group of good quality ear images and the cor-
relation between the quality estimation and the verification
performance is apparent.
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FIGURE 7. ROC curves obtained with the DenseNet for the quality subsets of data (Bad, Good, and All) of the USTB & the FERET ear

datasets.

For the second set of results, we used the recognition
accuracy for the dataset with and without using the quality
labels before performing the recognition. Table 8 shows the
recognition accuracy for the USTB & FERET ear datasets
for the whole probe set (original + degraded), and after
rejecting the bad probe images according to the quality labels
generated using each of the four classifiers with the fraction
of probes removed. As mentioned in Table 4, the degraded
ear images form 96.67% of the probe test set. The recognition
accuracy is close for the multiple classifiers but the accuracy
overall increased by 38.53 % and 29.31 % for the USTB
and the FERET datasets, respectively. This shows that the
quality assessment tool is beneficial, and the quality labels
are correlated with the recognition performance.

TABLE 8. Recognition accuracy for the USTB & FERET ear datasets for the
whole probe set (original + degraded), and after rejecting the bad probe
images using target quality labels generated using each of the four
classifiers with the fraction of probes removed.

USTB FERET
Accuracy  Rejected % || Accuracy  Rejected %
All 58.72% 45.80%
Classifierl 94.75% 48.85% 73.47% 52.57%
Classifier2 94.70% 48.52% 75.60% 52.00%
Classifier3 96.01% 52.27% 74.44% 52.21%
Classifier4 97.25% 59.09% 75.11% 54.57%

VI. CONCLUSION
In this article, first, we presented the baseline ear recogni-
tion (identification/verification) performance using four deep
CNN models: SqueezeNet, GoogLeNet, MobileNetV2, and
DenseNet. To overcome the limited training data, we used
data augmentation, transfer learning, and domain adaptation
for the learning process. The DenseNet yielded the highest
identification rate of 99.00% and 99.35% for the WVU and
the USTB datasets, respectively.

Second, we evaluated the performance of deep ear recog-
nition models in case of image artifacts such as blurriness
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or degradation in contrast and brightness. The performance
of the studied models was affected by image quality to dif-
ferent degrees. The DenseNet model was the most robust,
followed by the MobileNetV2 model, then GoogLeNet and
SqueezeNet models. The limited brightness, contrast, and
blur alteration resulted in slight degradation, but the perfor-
mance declined with significant artifacts.

Finally, we provided a tool for automatically detecting
low-quality ear images. Detection of low-quality ear images
has advantages. It prevents spoofing, recommends re-capture,
or initiates sample preprocessing. The proposed approach
uses a CNN classifier model to automatically predict ear
quality before matching. We performed several experiments
on extended degraded ear datasets. The results show that the
proposed tool can predict low-quality ear images and improve
ear recognition performance. It increased the recognition
performance by 38.53 % and 29.31 % for the USTB and the
FERET degraded datasets, respectively.

As for future work, we plan to study other quality fac-
tors that affect ear recognition performance (such as image
compression and spatial resolution) on synthetic and real-
world data. Further, we plan to examine different quality mea-
sures and use them to alternate the ear recognition models,
i.e., changing the ear recognition model based on the detected
artifact.
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