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ABSTRACT Due to the recent challenges in access control, surveillance and security, there is an increased
need for efficient human authentication solutions. Ear recognition is an appealing choice where the data
acquisition procedure is contactless, non-intrusive, and covert. This article proposes a deep learning-based
solution for effective ear recognition. First, we explore multiple strategies to enhance learning using
alternative ear datasets with a wide range of ear poses. Second, we investigate the performance of the
proposed deep ear models in the presence of various image artifacts, which commonly occur in real-life
recognition applications, to identify the robustness of the proposed ear recognition models in controlled and
uncontrolled conditions (dataset dependent). Finally, we propose an efficient ear image quality assessment
tool designed to guide the proposed ear recognition system. By performing a set of experiments on extended
degraded ear datasets, we determine that the employment of the proposed ear image quality assessment tool
improves ear identification performance from 58.72% to 97.25% for the USTB degraded dataset and from
45.80% to 75.11% for the degraded FERET dataset.
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INDEX TERMS Biometrics, ear recognition, convolutional neural networks, image artifacts, quality assess-
ment.

I. INTRODUCTION15

The ongoing COVID-19 pandemic is changing the world16

and reshaping our society. The way people learn, work, and17

interact with each other has been affected in various ways.18

As a result, more sophisticated and flexible use of technology19

is designed, developed, and utilized to support online and20

distance interactions. Even for in-person activities in public21

spaces, advanced health-related safety measures are taken22

(such as wearing face masks and limiting contact with com-23

monly touched surfaces). These measures help to avoid the24

spread of the infection and protect the health of individuals25

and communities. Therefore, the need for secure, efficient,26

and convenient human authentication applications is critical27

for various daily activities, including but not limited to bank-28

ing, accessing medical records, border crossing, surveillance,29

and even personal access to mobile devices.30

The associate editor coordinating the review of this manuscript and

approving it for publication was Donato Impedovo .

Biometrics is considered one of the leading technolo- 31

gies used to identify and authenticate individuals under 32

various conditions. Biometric solutions offer a rapid and 33

reliable way of human authentication by using unique per- 34

sonal physiological (face, voice, iris, and fingerprints) and/or 35

behavioral (keystroke dynamics, signature, and gait) charac- 36

teristics. Although face and fingerprints are among the most 37

popular biometric modalities [1], there are several techno- 38

logical concerns (accuracy, efficiency, scalability, biomet- 39

ric attacks) as well as concerns with their usage, storage, 40

and sharing, including privacy. For example, one of the 41

technological-related concerns is using face masks, which 42

has presented a serious challenge to face recognition sys- 43

tems [2]. Also, contact-based fingerprint scanners are not 44

always preferable due to hygiene concerns. Thus, for some 45

recognition scenarios, ear biometrics can provide a suitable 46

alternative for human authentication. 47

Ear recognition has its advantages; it is passive, con- 48

tactless, non-intrusive, and expressionless [3], [4], [5], [6]. 49

In addition, it demonstrates high discriminative information 50
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across individuals and has shown to be an efficient human51

authentication solution, even when used to distinguish iden-52

tical twins [7]. An automatic ear recognition system is mainly53

a pattern recognition system that consists of three modules.54

First is the ear image pre-processing and detector module that55

provides the bounding box(s) of the ear(s) to localize them in56

images or videos. Second is the ear descriptor module that57

encodes the identity information from the detected ear. Last58

is the decision-making module that identifies or verifies the59

subject that the query ear belongs to.60

Although conventional-based ear recognition systems are61

still being used and result in acceptable (dataset-dependent)62

recognition performance, deep learning methods have the63

potential to improve the current state-of-the-art further. Deep64

learning methods have already dramatically improved the65

efficiency of various computer vision systems and brought66

breakthrough solutions in processing images, videos, speech,67

and audio [9], [10], [11], [12], [13], [14], [15], [16]. Specif-68

ically, in biometrics, there has been progress in using deep69

learning-based models for different biometric applications70

such as face, fingerprint, periocular, and gait recognition [17],71

[18], [19], [20], [21]. Therefore, employing deep models for72

ear description and feature extraction became an attractive73

area of research.74

This article is a follow-up to our previous work [22],75

where we investigated multiple convolutional neural net-76

works for ear recognition and the optimum learning pro-77

cess setting. We propose deep ear recognition models and78

evaluate their performance. We first establish a baseline79

for the performance; then, we perform detailed experi-80

ments to quantitatively evaluate the performance of the dif-81

ferent ear recognition models in the presence of image82

artifacts, which commonly occur in real-life recognition83

applications, to identify their shortcomings and draw con-84

clusions for enhancement. The experimental results show85

that image artifacts significantly affect recognition per-86

formance and can cause an efficiency loss in the bio-87

metric system. Consequently, evaluating the quality of88

ear images before processing can benefit ear recognition89

systems.90

There has been limited discussion on the quality assess-91

ment of ear images for recognition applications. A quality92

assessment algorithm evaluates an input sample to determine93

if it is suitable for automated matching [23]. This is also94

related to the recognition scenario (constrained vs. uncon-95

strained), the biometric recognition system (COTS vs. aca-96

demic) and cannot necessarily be aligned with the human97

perspective of ear image quality assessment. In this work,98

we develop a system for holistic ear image quality assess-99

ment. The system serves as a guide for ear recognition sys-100

tems to enhance recognition accuracy.101

Hence, we propose a set of efficient deep ear recognition102

models that offer high recognition accuracy under variable103

conditions when supported by an ear image quality assess-104

ment tool. The contributions of this work are summarized as105

follows:106

• We provide a comparative evaluation of the performance 107

of four deep CNN models: SqueezeNet, GoogLeNet, 108

MobileNet, and DenseNet, for ear identification and 109

verification tasks. For that purpose, we use an ear dataset 110

with a wide range of pose angles. 111

• We quantitatively assess the impact of the quality of 112

the ear image on the performance of deep ear mod- 113

els. In order to further explore the strengths and weak- 114

nesses of our proposed deep ear models, we evaluate 115

the recognition performance in the presence of multi- 116

ple ear image degradation factors, including blurriness, 117

brightness, and contrast variations, to obtain if the per- 118

formance of certain CNNs is more prone to degradation 119

in response to specific grades of artifacts. 120

• We propose an automatic ear image quality assessment 121

tool to act as a guide for improving ear recognition accu- 122

racy. Quality labels are obtained from scores yielded 123

by an ear recognition matcher. Using predicted qual- 124

ity labels improves ear recognition performance and 125

reduces error rates. 126

II. BACKGROUND 127

What follows is a discussion and literature review on the 128

subject from the perspective of image quality assessment and 129

ear recognition technologies. 130

A. INTRODUCTION TO BIOMETRIC QUALITY 131

Aquality of a biometric sample is an indicator of how suitable 132

it is for automated matching. The environmental image dis- 133

tortions such as noise, blur, and illumination variation are pri- 134

mary reasons for the deterioration in biometric identification 135

accuracy. Therefore, there is a need for a quality assessment 136

algorithm to produce a target quality that predicts the recog- 137

nition performance of the biometric system when employing 138

the sample regardless of human judgment. In some cases, 139

comparing two biometric samples of low quality can produce 140

high genuine similarity scores [24]; therefore, the biometric 141

sample’s quality needs to be evaluated without a reference or 142

comparison with a second sample. 143

The two modes of operation of a typical ear biometric 144

system are enrollment and recognition (verification or iden- 145

tification). In the enrollment mode of operation, a user’s ear 146

biometric is captured to generate the template(s) to be stored 147

in the system’s database. In the recognition mode of opera- 148

tion, an input ear sample is processed to identify a subject or 149

verify his/her identity. An ear image quality assessment can 150

be helpful for one or more but not limited to the following 151

scenarios: 152

• During enrollment, when the system determines that an 153

enrollment (input) sample is of low quality; it can guide 154

the user and recapture the sample. 155

• During verification, when genuine users are expected to 156

provide an input ear biometric sample of high quality for 157

recognition, ear image quality needs to be established as 158

good before verification. The quality examination can be 159

used to guide the recapture of the biometric sample or 160
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to prevent spoofing by the presentation of a deliberately161

poor biometric sample from an imposter.162

• In preprocessing of biometric samples, the evaluation163

of a biometric sample’s quality can be used to initiate164

certain preprocessing algorithms.165

• In surveillance or video-based ear recognition appli-166

cations, the quality assessment is useful for the frame167

selection for the recognition operation.168

• In the fusion of multiple images and/or biometric modal-169

ities, quality assessment can provide a guide for sample170

selection.171

The target quality value can be a scaler prediction of the172

genuine score, a bin indicating that an image is poor/fair/good173

for matching, or a binary value of low-quality vs. high-174

quality images [23]. In this work, we develop a holistic ear175

image quality assessment without measuring individual fac-176

tors. In most biometric applications, it is sufficient to detect177

low-quality biometric samples to reject them and initiate the178

proper action. The proposed system produces a binary value179

indicating whether an image is good or bad for matching.180

B. RELATED WORK181

In this section, we provide a brief review of relative work on182

ear recognition and the usage of image quality assessment in183

biometric applications.184

1) EAR RECOGNITION185

The potential of the human ear for personal identification186

was recognized by Alphonse Bertillon as early as 1890 [25].187

In 1949, Alfred Iannarelli developed one of the first ear recog-188

nition systems. He used twelve measurements from the ear189

image to represent the ear [26]. Since then, multiple machine190

learning methods and conventional matchers have been used191

for ear recognition research studies. There have beenmultiple192

detailed reviews of ear recognition history, techniques, and193

their progress [32], [33], with a recent one [36].194

After developing deep learning models and their improved195

performance for many machine vision applications, the ear196

recognition research shifted toward employing them for ear197

recognition systems. There have been multiple efficient sys-198

tems based on CNNs for ear detection [37], [38], [39], [40]199

and ear segmentation [41], which is an important step that200

can be used towards deep learning-based ear recognition201

approaches. For recognition, the limited ear training data202

was the main obstacle in utilizing convolutional neural net-203

works for ear recognition applications. Emeršič et al. [42]204

addressed this problem. They collected an uncontrolled ear205

dataset from the internet. The team presented the Uncon-206

strained Ear Recognition Challenge (UERC), which was held207

twice in 2017 [44] and 2019 [45] to evaluate the state of208

the ear recognition technology for unconstrained ear images.209

Eyiokur et al. [46] presented a detailed ear recognition study210

using the UERC 2019 dataset. Whereas Dodge et al. [47]211

used a hybrid deep and shallow learning approach for ear212

recognition.213

Zhang et al. [49] used three CNNs with different scales 214

of ear images to obtain multi-scale ear representations for 215

ear verification. They did their experiments on their new ear 216

database named USTB-Helloear. Khaldi et al. [50] proposed 217

a two-phase training method for the VGG16 architecture 218

for ear classification. They also used Generative Adversarial 219

Network to color the USTB II dataset images. The incep- 220

tionV3 deep learning model was used in [48] for recogni- 221

tion of the AMI ear database. They used the network as a 222

feature extractor and principal component analysis to reduce 223

the feature vector size. Alshazly et al. [51] achieved Rank-1 224

recognition accuracy of 93.45% for the EarVN1.0 dataset 225

using the ResNeXt CNN, and they used the t-SNE algorithm 226

to visualize the learned features. They also built ensembles 227

of ResNet models with various depths for feature extrac- 228

tion, followed by SVM classifiers [52]. Finally, Meng et al. 229

presented a study on distinctiveness and symmetry in Ear 230

Biometrics [53]. In their experiments, they recognized the 231

gender with a 90.9% success rate and confirmed the existence 232

of symmetry between a subject’s ears. Table 1 provides a 233

comparative summary of ear recognition techniques in terms 234

of Rank-1 (%) identification rate. 235

2) BIOMETRICS QUALITY 236

There has been plenty of studies that investigated the quality 237

of face images for biometric recognition and the perfor- 238

mance of face recognition algorithms concerning different 239

covariates, on the contrary, there has been minimal work that 240

analyzes the quality of ear images for recognition. 241

In the field of quality assessment for face recognition, 242

Abaza et al. [54] examined the influence of face images’ 243

quality factors, such as contrast, brightness, sharpness, focus, 244

and illumination, on recognition performance. They evalu- 245

ated quality measures for each factor and proposed a face 246

image quality index that combines multiple quality measures 247

which reflects the changes of input quality factors in corre- 248

lation with face recognition performance. In another work, 249

Best-Rowden et al. [24] proposed a model for the automatic 250

prediction of face image quality. They used two techniques 251

for face image quality assessments: human ratings of face 252

image quality and quality values computed from similar- 253

ity scores from face matchers. For matcher-dependent face 254

quality values, they used the normalized comparison of a 255

sample’s genuine score with its impostor distribution when 256

compared to a gallery of samples. For both techniques, each 257

face image was represented with a 320-dimensional feature 258

vector extracted from face images using the ConvNet for face 259

recognition. Using the face representations, they trained a 260

support vector regression (SVR) model with a radial basis 261

kernel function (RBF) to predict the normalized comparison 262

scores from the face matcher or the human quality rating. 263

In their experiments, they used the predicted face image 264

quality to reject low-quality face samples, which reduced 265

FRR at 1% FAR error rates by at least 13% for different face 266

matchers. 267
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TABLE 1. Comparative summary of 2D ear recognition performances in terms of identification rate at Rank-1 (in %).

Ortega et al. [55], [56] proposed the FaceQnet for face268

image quality assessment for recognition purposes. The Face-269

Qnet is based on the ResNet-50 architecture. The network270

was trained to output a quality measure between 0 and271

1 related to face recognition accuracy. The authors labeled a272

subset from the VGGFace2 face database with quality scores273

for training. For each subject of the dataset, they used one274

face imagewith the highest compliancewith ICAO (standards275

for machine-readable travel documents) as the perfect quality276

face image. The comparison scores between the other sample277

images of the subject with the high-quality face images were278

used as quality values for these face images. The FaceQnet279

was trained using the pairs of face images and their quality280

values. To evaluate their proposed system, they obtained the281

quality values for a test set of face images and performed282

verification. Their experiments showed a correlation between283

their quality measure and verification accuracy.284

For the quality of ear images for ear recognition, in an285

earlier study, Pflug et al. [57] investigated the impact of286

signal degradation on ear recognition performance. Their287

experiments examined the effect of noise and blur on288

descriptor-based ear recognition, including LBP, LPQ, and289

HOG.More recently, Emeršič et al. [43] performed a detailed290

study of the effect of subject-related covariates, including eth-291

nicity, head rotation, gender and presence of occlusions, and292

accessories on the performance of ear recognition techniques.293

III. METHODOLOGY294

Our experiments examine multiple Convolutional Neural295

Network architectures to find the appropriate model for the296

ear recognition task. An overview of the models examined,297

the learning strategies implemented, and the ear image arti-298

facts explored follows.299

A. CONVOLUTIONAL NEURAL NETWORK MODELS300

LEARNING301

A Convolutional Neural Network is a deep learning algo-302

rithm that processes input data, such as an image, to learn303

their spatial hierarchies and determine a set of distin- 304

guishing characteristics. The CNN consists of multiple lay- 305

ers (convolutional, pooling & fully connected) to filter 306

images, extract their informative features, and classify them. 307

Although Convolutional neural networks were introduced 308

by LeCun et al. [61] in the 1980s, for the recognition of 309

handwritten zip code digits, they became popular after the 310

breakthrough they brought for image classification in 2014. 311

Since then, Convolutional neural networks have emerged 312

as a leading algorithm in computer vision. Advancements 313

in computer hardware and larger datasets supported that 314

advancement. In addition, there have been multiple studies to 315

improve CNNs’ architecture and enhance their performance 316

for multiple machine learning applications, including biomet- 317

rics. We examined multiple CNN models which represent 318

the various developments in general CNN architectures and 319

tuned them for ear recognition. Table 2 summarizes the main 320

properties for each network. 321

For the model learning to overcome the limited size of 322

the ear datasets available, we used multiple learning strate- 323

gies, including data augmentation and transfer learning. For 324

data augmentation, although we explored various data aug- 325

mentation techniques, we concluded that the following ones 326

resulted in improved accuracy of our models, namely rotation 327

at random angles up to 40◦ in both directions (clockwise and 328

counterclockwise) and translation horizontally or vertically 329

with a random number of pixels in the range (−30◦ to+30◦). 330

We also performed two phases of transfer learning: 331

1) ImageNet transfer learning: All CNN models used in 332

this work are pre-trained on the ImageNet dataset [66]. 333

2) Domain adaptation: The second phase of transfer learn- 334

ing, was domain adaptation where ear datasets were 335

used to fine-tune the CNNs. We fine-tuned our CNN 336

models using the training part of the AWE ear image 337

data set [33]. The(AWE) dataset is an annotated ear 338

dataset that was collected from web images of various 339

quality and spatial resolution. 340

Fig. 1 presents an overview of the training for the deep 341

learning models used for ear recognition. 342
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FIGURE 1. An overview of the deep learning-based ear recognition system. The proposed CNN is pre-trained on the ImageNet dataset and
then fine-tuned using an ear dataset [22].

TABLE 2. Comparison of convolutional neural networks used. Note that parameters are in millions.

B. IMAGE DEGRADATIONS343

The accuracy of Image-based biometric recognition systems344

is highly dependent on the quality of the input biometric345

images. Image degradation factors, such as out-of-focus,346

noise, and light alteration, commonly occur in real-life recog-347

nition applications and can affect the performance of biomet-348

ric recognition systems. Therefore, assessing the conditions349

that can result in biometric image degradation manifested350

by the property of capture devices and conditions is help-351

ful. In this work, we evaluate the impact of the variation352

of a set of image degradation factors on the performance353

of deep learning-based ear recognition systems. We system-354

atically altered good quality ear probe images and, thus,355

generated a set of synthetic lower quality ear datasets.356

This was accomplished by adjusting the contrast, bright-357

ness, and blurriness of good quality ear images at different358

levels:359

• Contrast: To adjust the contrast of ear probe images, 360

we saturated ear images at low and high intensities in 361

a 10% intensity degradation step. 362

• Brightness: The brightness of the probe ear images was 363

artificially adjusted via a brightness (gamma γ ) factor. 364

This factor specifies the shape of the curve, describing 365

the relationship between the values of the input and 366

output images after the brightness level is manually 367

adjusted. In case γ < 1, the mapping is weighted 368

towards higher (brighter) output values, and if γ > 1, 369

the mapping is weighted toward lower (darker) output 370

values. We used γ values in the range [0.5, 1.4] with a 371

uniform step size of 0.1 to generate nine probe sets for 372

our brightness-related experiments. 373

• Blurriness: To generate the blurriness in probe ear 374

images, we convolved them with a circular averaging 375

filter and border replication. The value of diameter is 376
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in the range [3, 19] pixels with a uniform step value of377

2 pixels.378

IV. EXPERIMENTAL SETUP AND RESULTS379

In this section, first, we describe the data sets used in our380

experiments. Second, we explain the setup and the training381

procedure. Third, we present the performance of different382

deep models for ear recognition, including identification and383

verification. Afterward, we compare the ear recognition per-384

formance in the presence of image distortions.385

A. DATASETS386

• WVU Ear Dataset: For our experiments, we used387

the West Virginia University (WVU) Ear Dataset [58].388

It was collected using a unique custom-made device.389

It consists of a moving arm holding a camera that cap-390

tures video sequences. Each video begins at the left391

profile of a subject (0◦) and terminates at the right pro-392

file (180◦) in about 2 minutes. The WVU ear database393

consists of 460 video sequences for about 400 different394

subjects and multi-sequence for 60 subjects with an395

elapsed time period between them.We used the multiple396

sequences for our experiments. We used left ear images397

from one video sequence for each subject to generate the398

gallery ear dataset and images from the second video399

sequence as the probe ear dataset. For the gallery set,400

we extracted 20 ear images from the profile faces at401

different angles ranging from -10◦ passing by 0◦ (full402

profile) to about 60◦ (where the face is visible enough403

for face recognition). This process resulted in a training404

set of 1200 images for 60 subjects. For the probe set,405

we used five ear images per subject at about (−10◦,406

0◦, 20◦, 45◦ and 60◦), which resulted in a testing set of407

300 images.408

• USTB Ear Dataset: The University of Science and409

Technology Beijing (USTB) collected multiple ear410

image datasets [59]. Dataset III contains ear images at411

multiple angles. Each subject rotates his/her head from412

0◦ to 60◦ toward the right side, and from 0◦ to 45◦ toward413

the left side; two images were recorded at each angle.414

For our experiments, we used the ten left ear images for415

77 subjects. The ear images were at angles 0◦, 5◦, 10◦,416

15◦, and 20◦. For each subject, eight images were used417

in the gallery set and two in the probe set.418

• FERET Dataset: The FERET dataset [60] was part of419

the Face Recognition Technology Evaluation (FERET)420

program. For some individuals, images were collected421

at the right and left profiles (labeled pr and pl). From422

this dataset, we used left face profile(ear) images of423

115 subjects to maintain two images per subject.424

B. SETUP AND TRAINING FOR EAR RECOGNITION425

We trained ear recognition CNN-based models using426

Stochastic Gradient Descent with Momentum (SGDM),427

learning rate 3 × 10−4, and 20 maximum epochs. To speed428

up the network training and prevent it from overfitting to429

the new dataset, we froze the weights of the earlier layers 430

in the network by setting the learning rates in those layers 431

to zero. Specifically, we froze the weights for the first 5, 432

10, &17 layers of the network models. We trained the CNN 433

models for ear identification that each subject represents a 434

class. The final two layers were replaced with new layers 435

to adapt to the new dataset. In SqueezeNet, the last convo- 436

lutional layer was replaced with a new convolutional layer 437

with the number of filters equal to the number of classes. For 438

the other networks, the fully connected layers were replaced 439

with new fully connected layers with outputs equal to the 440

number of subjects in the dataset. When an unknown ear 441

image (probe) is introduced to the network, the output is the 442

subject (class) to which it is most likely the probe ear belongs, 443

according to the probability from the SoftMax function. This 444

was implemented for theWVU and the USTB datasets due to 445

the availability of multiple samples per subject for training. 446

For the FERET dataset and verification experiments, 447

we used the CNNs after domain adaptation to extract features 448

for each ear image and generate image descriptors. 449

y = f (x), (1) 450

where x is the input image, f(.) represents the CNN, and 451

y is the image descriptor. The dimensionality of the image 452

descriptor varies from model to model and depends on the 453

design choices made during network construction. 454

C. EAR RECOGNITION PERFORMANCE 455

Our first experiment assesses the performance of the different 456

CNN architectures for ear identification and verification tasks 457

using theWVU and the USTB ear datasets. The Rank-1 iden- 458

tification scores for the four models examined are presented 459

in Table 3. 460

TABLE 3. Ear identification performance for multiple models using
Rank-1% scores.

As shown in Table 3, the DenseNet model has the best 461

identification performance for both the WVU & the USTB 462

datasets, whereas SqueezeNet has the least Rank-1 scores. 463

For verification, each ear probe image descriptor is com- 464

pared against each of the gallery images descriptors’ using 465

cosine similaritymatch scores. Thematch scores can be either 466

genuine scores or imposter scores. Genuine scores are the 467

scores when the gallery and probe ear images belong to the 468

same subject, whereas imposter scores are when the gallery 469

and probe ear images belong to different subjects. Match 470

scores are compared against a numerical threshold. If the 471

match score exceeds the threshold, it is classified as a match. 472

Each input is either: True Positive (TP), True Negative (TN), 473

False Positive (FP) or False Negative (FN). To analyze the 474

verification performance, the False Accept Rate (FAR) and 475

False Reject Rate (FRR) results are used, where: 476
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• False Accept Rate (FAR): denotes the percentage of477

imposter ear images falsely recognized (FP) over the478

dataset’s total number of ear images.479

• False Reject Rate (FRR): denotes the percentage of480

genuine ear images (FN) falsely rejected over the total481

number of ear images in the dataset.482

The Receiver Operating Characteristic (ROC) curves [8]483

relates the FAR to FRR at different thresholds to measure the484

verification performance of a biometric recognition system.485

Fig. 2 shows the ROC curves for the different ear recog-486

nition models. The MobileNet model has the best verifica-487

tion performance, followed by DenseNet. GoogLeNet and488

SqueezeNet has comparable verification performance.489

FIGURE 2. ROC comparison of four models SqeezeNet, GoogLeNet,
MobileNet, and DenseNet for the WVU ear dataset.

D. EAR RECOGNITION WITH IMAGE DEGRADATIONS490

For each of the datasets used for the recognition and quality491

experiments (WVU, USTB, and FERET), we kept the gallery492

part of the original ear images of the dataset. We applied493

image degradations to the ear images in the probe part of494

the datasets. That increased the probe part of the dataset,495

consisting of the combination of the original and degraded496

ear images. Table 4 shows the number of ear images in the497

original dataset and after adding the degraded images to the498

probe part of the dataset.

TABLE 4. Ear recognition datasets.

499

In our experiments, we explore the impact of the degra-500

dation of the ear probe images on the Rank-1 identification501

accuracy of the different models examined in the previous502

section. First, we examine the effect of contrast alteration503

on ear recognition performance; the Rank-1 identification504

results are shown in Table 5. Fig. 3 shows sample images505

FIGURE 3. Contrast changes, where the percentage of the ear image
intensity values are saturated.

TABLE 5. Ear recognition performance (Rank-1 %) using images where
contrast was changed.

generated with different levels of contrast alteration. The 506

results show that contrast increments affect the performance 507

of all deep models. The DenseNet model performs the best, 508

the performance with the 10% contrast increase gets better, 509

and then accuracy decreases but remains acceptable with up 510

to 30% of the contrast increase. However, the performance of 511

all models falls fast after the 50% contrast increment, which 512

can result from the clipping in pixel values, leading to image 513

information loss. 514

TABLE 6. Ear recognition performance (Rank-1 %) using images where
brightness was changed.

Second, we examine the impact of brightness variation 515

of the ear images. Fig. 4 shows sample images generated 516

with different levels of brightness alteration. As the iden- 517

tification results in Table 6 show, the performance of the 518

DenseNet is relatively robust, as well as the performance of 519
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FIGURE 4. Brightness changes, where ear image intensity values are
mapped to new values in the output image.

FIGURE 5. Blurring of the input ear images using a circular averaging
filter with various diameters.

TABLE 7. Ear recognition performance (Rank-1 %) using images where
blurriness intensity was changed.

the MobileNet. On the other hand, the SqueezeNet suffers the520

most deterioration with the alteration of the brightness levels.521

Third, the effect of image blurring was explored.522

Fig. 5 shows sample images generated with different levels523

of image blurring. As presented in Table 7, the performance524

is relatively robust with minor blurring, especially for the525

DenseNet model. With the increase in the radius of the blur-526

riness, the performance of all four CNN models degrades.527

MobileNet & GoogLeNet performances decline rapidly with528

the blurring increase of the ear probe images.529

V. EAR IMAGE QUALITY 530

A quality metric in biometrics is a function that takes a 531

biometric sample as its input and returns an estimation of its 532

quality level. Biometric quality measurement should be an 533

indicator of recognition performance. A sample should be of 534

good quality if it is suitable for automated matching. Auto- 535

matic prediction of biometric quality (prior to matching and 536

recognition) can be useful for several practical applications. 537

A system with the ability to detect poor-quality images can 538

subsequently process them accordingly, as explained in II-A. 539

In this work, we develop an ear image quality assessment. 540

The target quality value is a binary value indicating that an 541

image is good or bad for matching. The process of building a 542

model for automated biometric quality evaluation consists of 543

two main steps: 544

1) The generation of ear quality ground truth labels for an 545

ear dataset to train the model. 546

2) Train the model using pairs of images and quality 547

labels to predict the quality of new unseen ear images 548

automatically. 549

A. GROUND TRUTH LABELS 550

A quality model’s role is to estimate new images’ quality. 551

The first step is the generation of quality ground truth labels 552

for the images of the training dataset to serve as a reference 553

for the model. A quality measure should be an indicator of 554

the automated biometric matching performance for an input 555

sample, which can be distinct from the human conception of 556

quality. 557

The recognition operation is based mainly on comparing 558

the gallery and the probe images. As mentioned in [56], 559

image feature vectors contain quality information as well 560

as identity information. Hence, when the gallery image is 561

of good quality, the gallery/probe comparison outcome can 562

be utilized to generate ground-truth quality labels for probe 563

images. Since the comparison of two bad images can pro- 564

duce high genuine similarity scores, it is essential that the 565

gallery images are of good quality to ensure that low genuine 566

scores are not produced because of the low quality of gallery 567

images [24]. 568

For training, we generated the ground truth labels for the 569

images of theWVU ear dataset. The gallery set consists of the 570

original ear images of the dataset, and the probe set consists 571

of the combination of the original and degraded images. 572

The original dataset was collected with standard high-quality 573

elements for biometric datasets. Also, the ear identification 574

rate for the WVU is 99.00%, as shown in Table 3. Accord- 575

ingly, we consider the original gallery images as good quality 576

images. The last layer of a CNN is an activation function 577

that gives us a discrete probability distribution over all the 578

classes. We used these values to determine the ground truth 579

quality labels for the training dataset.We used the output from 580

the MobileNet model. The ear images correctly classified to 581

their subject have a high probability value to the correct class. 582

The probe dataset is binned into (good/bad) according to the 583

probability of the input image being classified as its subject 584
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FIGURE 6. An overview of the tool for ear image quality evaluation. We used the scores from the MobileNetV2 model to generate
the quality ground truth labels. The dataset is composed of a combination of the original and the degraded images of the WVU ear
dataset. Using the training set containing ear images and their respective ground truth quality labels, we trained a
classifier(AlexNet) to predict the quality label (good/bad) for an input ear image.

using multiple thresholds. A high threshold is most likely to585

decrease the recognition errors but will increase the number586

of samples classified as bad, which may be challenging or587

inconvenient for some applications. Conversely, decreasing588

the threshold reduces the number of samples classified as bad589

but may increase the recognition errors, which may comprise590

the security. Therefore, according to the application, the user591

should balance the system’s errors and the amount of rejected592

samples. In our experiments, we examined multiple thresh-593

olds (0.8, 0.85, 0.9, and 0.95) to find a suitable threshold for594

rejecting low-quality samples. That gave us the ground truth595

labels for the probe set of the dataset that contains original596

and degraded ear images.597

B. QUALITY ESTIMATION AND ASSESSMENT598

To develop a quality assessment tool for ear images, we used599

pairs of ear images with their ground truth quality class600

(good/bad)) generated in V-A. We tuned the pre-trained601

AlexNet classifier [67] to predict the quality labels for the602

images in the test dataset. We replaced the last three layers603

of the pre-trained network (the last fully connected layer,604

the SoftMax layer, and the final classification layer) to adapt605

the neural network for the ear image quality prediction606

task. Since we examined multiple thresholds for binning the607

matching scores for the training dataset, that gave us four sets608

of labeled ear images for classifier training. We trained the609

classifier using pairs of ear images with their quality class.610

We had four classifiers; each classifier was trained with one611

of the sets. A higher threshold is expected to keep ear images 612

of high quality but may reject additional input ear images. 613

Fig. 6 presents an overview of the tool for ear image quality 614

evaluation. 615

To evaluate the efficiency of our ear quality system, 616

we used it to predict the quality of the ear images from the 617

USTB and the FERET ear datasets, which were not used dur- 618

ing the training phase. We performed the image degradations 619

to both datasets to expand them that the test dataset consists 620

of a combination of the original standard quality ear images 621

and the degraded quality ear images. 622

The evaluation methodology for the performance of the ear 623

quality system proposed included two main sets of results: 624

1) The Receiver Operating Characteristic (ROC) curves. 625

2) The recognition accuracy for the dataset with and 626

without using the quality labels before performing the 627

recognition. 628

We used our ear quality evaluation model to assess each 629

image of the test dataset and generate a quality label for it. 630

According to the quality labels of the test samples, we divided 631

the test dataset into three groups: The good quality ear images 632

test set, the bad quality ear images test set, and the total ear 633

images test set, which is the combination of the two other 634

groups. Fig. 7 shows the ROCs curves of the DenseNet for 635

the three test groups. The verification performance improves 636

when using the group of good quality ear images and the cor- 637

relation between the quality estimation and the verification 638

performance is apparent. 639
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FIGURE 7. ROC curves obtained with the DenseNet for the quality subsets of data (Bad, Good, and All) of the USTB & the FERET ear
datasets.

For the second set of results, we used the recognition640

accuracy for the dataset with and without using the quality641

labels before performing the recognition. Table 8 shows the642

recognition accuracy for the USTB & FERET ear datasets643

for the whole probe set (original + degraded), and after644

rejecting the bad probe images according to the quality labels645

generated using each of the four classifiers with the fraction646

of probes removed. As mentioned in Table 4, the degraded647

ear images form 96.67% of the probe test set. The recognition648

accuracy is close for the multiple classifiers but the accuracy649

overall increased by 38.53 % and 29.31 % for the USTB650

and the FERET datasets, respectively. This shows that the651

quality assessment tool is beneficial, and the quality labels652

are correlated with the recognition performance.653

TABLE 8. Recognition accuracy for the USTB & FERET ear datasets for the
whole probe set (original + degraded), and after rejecting the bad probe
images using target quality labels generated using each of the four
classifiers with the fraction of probes removed.

VI. CONCLUSION654

In this article, first, we presented the baseline ear recogni-655

tion (identification/verification) performance using four deep656

CNN models: SqueezeNet, GoogLeNet, MobileNetV2, and657

DenseNet. To overcome the limited training data, we used658

data augmentation, transfer learning, and domain adaptation659

for the learning process. The DenseNet yielded the highest660

identification rate of 99.00% and 99.35% for the WVU and661

the USTB datasets, respectively.662

Second, we evaluated the performance of deep ear recog-663

nition models in case of image artifacts such as blurriness664

or degradation in contrast and brightness. The performance 665

of the studied models was affected by image quality to dif- 666

ferent degrees. The DenseNet model was the most robust, 667

followed by the MobileNetV2 model, then GoogLeNet and 668

SqueezeNet models. The limited brightness, contrast, and 669

blur alteration resulted in slight degradation, but the perfor- 670

mance declined with significant artifacts. 671

Finally, we provided a tool for automatically detecting 672

low-quality ear images. Detection of low-quality ear images 673

has advantages. It prevents spoofing, recommends re-capture, 674

or initiates sample preprocessing. The proposed approach 675

uses a CNN classifier model to automatically predict ear 676

quality before matching. We performed several experiments 677

on extended degraded ear datasets. The results show that the 678

proposed tool can predict low-quality ear images and improve 679

ear recognition performance. It increased the recognition 680

performance by 38.53 % and 29.31 % for the USTB and the 681

FERET degraded datasets, respectively. 682

As for future work, we plan to study other quality fac- 683

tors that affect ear recognition performance (such as image 684

compression and spatial resolution) on synthetic and real- 685

world data. Further, we plan to examine different qualitymea- 686

sures and use them to alternate the ear recognition models, 687

i.e., changing the ear recognition model based on the detected 688

artifact. 689
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