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ABSTRACT Long-tailed distribution generally exists in large-scale face datasets, which poses challenges
for learning discriminative feature in face recognition. Although a few works conduct preliminary research
on this problem, the value of the tail data is still underestimated. This paper addresses the long-tailed problem
from the perspective of maximally exploiting the tail data. We propose a Joint Alternating Training (JAT)
framework to learn discriminative feature from both the long-tailed data and the tail data by using alternating
training strategy. JAT consists of two branches: 1) the long-tailed data branch is adopted to learn the universal
discrimination information from the whole long-tailed data with instance-balanced sampling. 2) the tail data
branch is designed to exploit the discriminative information in the tail data with class-balanced sampling.
To compensate the insufficient samples and lack of intra-class variations, we apply data augmentation (DA)
to the tail data. We further propose margin-based mixup (MarginMix) for data augmentation, which can deal
with the nonlinearity of margin-based softmax loss and stabilize the training process in mixup. Furthermore,
we obtain the best combination of strategies (i.e., JAT+DA+ MarginMix) for long-tailed face recognition,
which can maximally exploit the discriminative information in the tail data while retaining the universal
discrimination learned from the long-tailed data. Extensive experiments on 8 face datasets demonstrate that
our proposed methods and combination of strategies can effectively address the long-tailed problem in face
recognition.
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INDEX TERMS Face recognition, convolutional neural network, long-tailed distribution, margin softmax
loss, data augmentation.

I. INTRODUCTION19

Deep face recognition has made significant development in20

recent years. Besides the evolution of network architecture21

and a variety of loss functions [5], [10], [11], the growing of22

face datasets has greatly promoted the development of face23

recognition. It has been proved that larger training dataset can24

enhance the performance of face model, because the model25

can learn more discriminate feature when more identities are26

provided [1], [3]. Therefore, much effort has been put into27

building large-scale face datasets recently [1], [2], [3].28

Most large-scale face datasets in real-world exhibit a long-29

tailed distribution, in which a small number of identities30

The associate editor coordinating the review of this manuscript and

approving it for publication was Zahid Akhtar .

account for most of the samples (the head data), while many 31

other identities only have relatively few face images (the tail 32

data). A common problem in training on long-tailed dataset 33

is that the head identities are properly trained, but the tail 34

identities are under-represented. Consequently, this will bring 35

difficulty in learning feature with good representation and 36

generalization ability for face recognition. According to [5], 37

the model trained on a part of the long-tailed dataset (remove 38

20% or 50% of the tail data) obtains higher accuracy than that 39

learned on the whole dataset. On the other hand, if too much 40

tail data (70% or more) is discarded, the model performance 41

will drop. This preliminary research reveals the fact that 42

the tail data is a double-edged sword, i.e., if used properly, 43

it can boost the performance of the trained model; otherwise, 44

it will bring negative effect in learning discriminative feature. 45
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FIGURE 1. Framework of the proposed JAT framework. It consists of two data branches: 1) the long-tailed data branch is used to
learn the universal information from the whole long-tailed dataset with instance-balanced sampling. 2) the tail data branch is
designed to maximally exploit the discriminative information in the tail data by using class-balanced sampling. The alternating
training strategy is adopted to learn more discriminative feature from the two data branches jointly.

Therefore, how to make the best of the tail data is a key issue46

towards training better face recognition model.47

The long-tailed distribution is a common issue in many48

visual recognition tasks. Compared with other tasks, the long-49

tailed face recognition is featured in three aspects: (1) The50

long-tailed face dataset is much larger in scale, e.g., Web-51

Face260M [1] contains 4M identities in contrast to 1K classes52

in ImageNet-LT [12]. (2) The imbalance ratio (the ratio of53

image number between the largest class and the smallest54

class) of face datasets is much higher, e.g., the imbalance55

ratio is up to 1,500 in MegaFace Challenge 2 (MF2) [4]56

while it is only 256 in ImageNet-LT. (3) Face recognition is57

generally an open-set problem, so it is essentially a metric58

learning problem instead of a classification problem. Due to59

these characteristics, it is usually infeasible to directly apply60

the existing solutions in long-tailed visual recognition to face61

recognition.62

We address the long-tailed face recognition problem from63

the perspective of maximally exploiting the tail data in this64

paper. A Joint Alternating Training framework is proposed to65

learn more discriminative feature from both the long-tailed66

data and the tail data by using alternating training strategy.67

As shown in Fig. 1, there are two data branches in our JAT68

framework. The long-tailed data branch is responsible to learn69

the universal information from the whole long-tailed dataset.70

The tail data branch is designed to exploit the discriminative71

information in the tail data, which cannot be discovered72

in the regular training on the long-tailed data due to the73

domination of the head data. Moreover, different sampling74

strategies are adopted for different data branches. Specifi-75

cally, instance-balanced sampling (IBS), i.e., each training76

sample is selected once in one epoch with equal probability,77

is adopted for the long-tailed data branch. The class-balanced78

sampling (CBS), i.e., each class is selected with equal79

probability, is used for the tail data branch. By using the 80

alternating training strategy, JAT can effectively exploit the 81

discriminative information in the tail data while retaining 82

the universal discrimination learned from the whole long- 83

tailed dataset. 84

Due to the insufficient number of samples, the intra- 85

class variance in the tail data is usually limited, which 86

leads to unreasonable squeeze of the tail classes in feature 87

space. To alleviate this problem, we propose MarginMix for 88

data augmentation, which can deal with the nonlinearity of 89

margin-based softmax loss and stabilize the training process 90

in mixup. MarginMix applies different loss functions on dif- 91

ferent parts of the linearly mixed label for the mixed sample. 92

More specifically, MarginMix adopts margin-based softmax 93

loss for the label with larger mixing coefficient and traditional 94

softmax for the label with smaller coefficient. To further 95

enlarge the intra-class variance in the tail data, a larger mixing 96

coefficient is assigned to the sample with label in minority 97

class. Furthermore, the MarginMix is combined with other 98

data augmentation techniques to generate face images with 99

more intra-class variations. 100

The major contributions of this work are the followings: 101

1) We address the long-tailed problem in face recognition 102

from the perspective of maximally exploiting the tail data. 103

We are the first to explore how to maximally exploit the 104

long-tailed data and the tail data jointly in the deep face 105

recognition literature. 106

2) We propose a JAT framework to learn discriminative 107

feature from both the long-tailed data and the tail data jointly. 108

JAT aims to exploit the discriminative information in the 109

tail data while retaining the universal discrimination learned 110

from the whole long-tailed dataset, which is achieved by 111

alternating training on the long-tailed data branch and the tail 112

data branch. 113
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3) We propose MarginMix to deal with the nonlinear-114

ity of margin-based softmax loss and stabilize the training115

process in mixup. Combined with other data augmentation116

techniques, MarginMix can generate face images with much117

more intra-class variations for the tail data.118

4) We further combine different strategies together to119

obtain the best combination for long-tailed face recognition.120

The experimental results validate the effectiveness of our121

proposed methods and combination of strategies in dealing122

with the long-tailed problem in face recognition.123

II. RELATED WORKS124

A. LONG-TAILED FACE RECOGNITION125

Most methods in face recognition focus on designing various126

loss functions or building larger and larger training datasets,127

whereas few works pay attention to the long-tailed problem.128

By reducing the intra-class variations and enlarging the inter-129

class discrepancy simultaneously, Range loss [5] can relieve130

the long-tail effect in face recognition. To balance the distri-131

butions of different identities in the feature space, a feature132

transfer framework is proposed to generate samples in fea-133

ture level for the tail identities by transferring the intra-class134

variance from head identities [6]. Fair Loss [8] and Adaptive-135

Face [7] are designed to learn adaptive margins for different136

classes according to their number of samples. By enhancing137

the intra-class compactness of tail data, they can improve138

the generalization capability of the learned deep features.139

An unequal training strategy is proposed to deal with the head140

data and the tail data separately, in order to learn the intra-141

class variations and inter-class discriminative information142

from the head classes and the tail classes respectively [9]. This143

strategy focuses on the difference of the head and tail data144

but ignores the universal information in the whole dataset.145

Although these methods can obtain performance improve-146

ment for long-tailed face recognition, they often suffer from147

high complexity or sensitivity to hyper-parameters in the148

training process. Furthermore, the discriminative information149

in the tail data is not fully exploited in the existing methods.150

B. LONG-TAILED VISUAL RECOGNITION151

Visual recognition on the challenging long-tailed dataset has152

been comprehensively studied in the literature. Traditional153

approaches employ the class re-balancing strategies, such154

as data re-sampling (e.g., over-sampling for the tail classes,155

under-sampling for the head classes) and cost-sensitive re-156

weighting (e.g., assign variant weights to different classes157

or samples) [17], [19]. Recent methods explore other learn-158

ing paradigms for long-tailed recognition, such as transfer159

learning [6], meta-learning [13], metric learning [7], [8], two-160

stage training [14], [15] and self-supervised learning [16],161

etc. In addition to these learning methods, data augmentation162

approaches are also widely used to deal with the long-tailed163

recognition problem. As a representative data augmentation164

technique, mixup [20] shows its ability to improve the gener-165

alization and robustness of the trained model for long-tailed166

visual recognition. Although these approaches can achieve 167

accuracy improvements on public long-tailed visual datasets, 168

e.g., CIFAR-10-LT [17], CIFAR-100-LT [17], iNaturalist 169

2018 [18] and ImageNet-LT [12], etc., their feasibilities in 170

face recognition have not been well studied. In this paper, 171

wemake preliminary attempt to apply simple tricks (e.g., data 172

re-sampling, mixup), which are commonly used and hyper- 173

parameters insensitive, to long-tailed face recognition. 174

III. METHODLOGY 175

We first describe our proposed JAT framework in detail, and 176

then we introduce MarginMix for data augmentation. 177

A. JOINT ALTERNATING TRAINING 178

We propose JAT framework to learn discriminative feature 179

from both the long-tailed data and the tail data jointly. 180

When training model on long-tailed dataset, the head classes 181

are properly trained, but the tail classes are inadequately 182

trained due to the limited number of samples. Therefore, 183

we design an additional branch to exploit the hidden dis- 184

criminative information in the tail data in our framework. 185

JAT follows the training paradigm of multi-task learning, 186

where the long-tailed data branch and the tail data branch 187

are designed to learn feature representation from the long- 188

tailed data and the tail data with alternating training strategy. 189

As shown in Fig. 1, two branches share the same base model 190

and weights for deep feature learning. The base model is 191

followed by a fully connected layer (i.e., classifier) in each 192

branch, which maps the deep feature into respective label 193

space. The classification loss for each branch is calculated 194

respectively in the training process. We describe the two data 195

branches and the alternating training process in detail. 196

1) LONG-TAILED DATA BRANCH 197

this branch is introduced to learn the universal infor- 198

mation from the whole long-tailed dataset. According 199

to [14], [15], the model trained on the original long-tailed 200

dataset with instance-balanced sampling can learn more dis- 201

criminative and generalizable feature compared with other 202

data re-sampling strategies, so the instance-balanced sam- 203

pling strategy is employed in this branch. By maintaining the 204

characteristics of original distributions, the universal discrim- 205

inative information is well learned and retained in the long- 206

tailed data branch. 207

2) TAIL DATA BRANCH 208

This branch is designed to discover and exploit the hidden 209

discriminative information in tail data. The tail data is defined 210

as the samples in the tail identities, which have limited num- 211

ber of samples but account for a significant portion in the 212

whole dataset. After removing the head data, the distribution 213

of the tail data becomes much more balanced than that of 214

the long-tailed data, so class-balanced sampling strategy is 215

used in this branch. To compensate the insufficient training 216

samples and lack of intra-class variance of the tail data, 217

face data augmentation is further applied. Equipped with 218
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class-balanced sampling and data augmentation, the discrimi-219

native information in the tail data can bemaximally exploited.220

Algorithm 1 Joint alternating training algorithm
Input: the long-tailed data Dl, the tail data Dt
Output: the parameters of base model θ , the classifiers’
weights of the long-tailed data branch Wl and the tail data
branchWt
Require:instance-balanced sampling IBS(), class-balanced
sampling CBS(·), the step ratio between the long-tailed data
branch and the tail data branch S1: S2, the maximum training
epochs Emax , the classification loss function CL(·)
Alternating Training:
for epoch=1 to Emax :

for s1 =1 to S1:
Batchl(xl , yl)← IBS(Dl)
Feature extraction: fl ← Fcnn(Batchl(xl), θ )
Compute loss: Ll ←CL(softmax(WT

l fl), yl)
Update model parameters ( θ ,Wl)

end for
for st =1 to S2:
Batcht(xt , yt )← CBS(Dt)
Feature extraction: ft ← Fcnn(Batcht(xt ), θ )
Compute loss: Lt ←CL(softmax(WT

t ft ), yt )
Update model parameters ( θ ,Wt)

end for
end for

3) JOINT ALTERNATING TRAINING221

this strategy is designed to control the training process on two222

data branches. The overview of the joint alternating training223

procedure is described in Algorithm 1. For each data branch,224

a batch of training samples is constructed respectively by225

using the instance-balanced sampling in the long-tailed data226

and the class-balanced sampling in the tail data. Batch of227

samples from different data branches are alternately feed to228

the base model to acquire their feature vectors, which then229

pass through the corresponding classifier to calculate the230

classification loss. The parameters of the base model and cor-231

responding classifier are updated according to the gradients232

of the loss. Specifically, the parameters of the base model are233

updated by both of the two branches, but the weights of each234

classifier are only updated in its own data branch.235

Since the scale of the long-tailed data is larger than that of236

the tail data, we set a step ratio to balance the training process237

(i.e., update frequency of the parameters) of the two branches,238

and thus the two data branches are trained alternately by239

predefined step ratio. We set a larger step for the long-tailed240

data branch and a smaller step for the tail data branch in241

implementation, so that the number of training epochs in two242

branches are almost synchronous. By setting different step243

ratio, we can adjust the emphasis of the two data branches in244

training the base model. JAT can learn more discriminative245

feature by enhancing the model’s learning ability towards the246

tail data while retaining the universal discrimination learned 247

from the whole long-tailed dataset. 248

B. MARGIN-BASED MIXUP 249

As mentioned above, insufficient training samples will lead 250

to small intra-class variance in the tail data. To alleviate this 251

problem, data augmentation techniques, including mixup and 252

generic data augmentation methods are adopted to generate 253

samples with more variations for the tail data. 254

Let (x, y) denote a sample and its label in the training 255

dataset. Based on the assumption that linear interpolations of 256

samples should be labelled by the linear interpolations of their 257

associated labels, a mixed sample (x̃,ỹ) is generated by 258

x̃ = λxi + (1− λ) xj (1) 259

ỹ = λyi + (1− λ) yj (2) 260

where λ ∈ [0, 1] is the mixing coefficient. The pair of sam- 261

ples (xi, yi) and
(
xj, yj

)
are drawn from the training dataset. 262

Accordingly, the loss of the mixed sample is calculated by the 263

linear weighted summation of two losses on label yi and yj, 264

i.e., Lyi and Lyj 265

Lỹ = λLyi + (1− λ)Lyj (3) 266

However, this linear assumption does not hold good in 267

the nonlinear margin-based softmax loss function. In margin- 268

based softmax (e.g., ArcFace [10]), margin penalty is added 269

on the target label to learn more discriminative feature by 270

enforcing the intra-class compactness and the inter-class 271

discrepancy. Therefore, the linearly generated label ỹ does 272

not accurately describe the probability of classes that the 273

mixed image x̃ belongs to. Furthermore, margins are added 274

on both the label of yi and yj in mixup training, and thus 275

the marginal softmax loss for the mixed sample will be 276

much larger, especially for the label with smaller mix- 277

ing coefficient. This will cause an unstable training of the 278

neural network and bring difficulty in the convergence of 279

model. 280

We propose MarginMix to deal with the nonlinearity of 281

margin-based softmax loss and stabilize the training process. 282

The key idea inMarginMix is to apply different loss functions 283

on different parts of the linearly mixed label. Specifically, the 284

margin-based softmax loss is adopt for the label with larger 285

mixing coefficient and the traditional softmax is used for the 286

label with smaller coefficient. Take ArcFace for example, the 287

loss in MarginMix can be formulated as: 288

Lyi =
1
N

∑N

i=1
log

es(cos(θyi+m))

es(cos(θyi+m)) +
∑n

k=1,k 6=yi e
scosθk

(4) 289

Lyj =
1
N

∑N

j=1
log

escosθyj∑n
k=1 e

scosθk
(5) 290

Lall = λLyi + (1− λ)Lyj (6) 291

where λ ≥ 0.5 is the mixing coefficient. The coefficient λ 292

is usually sampled from a beta distribution in practice. In the 293
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TABLE 1. The detailed information of the training datasets. The imbalance ratio is the ratio of sample number between the largest class and the smallest
class. The percentages of identities and images in tail data are given in parentheses.

case that λ is smaller than 0.5, we simply use 1−λ to replace λ294

to ensure λ ≥ 0.5, which is formulated as:295

λ =

{
λ if λ ≥ 0.5
1− λ if λ < 0.5

(7)296

To further enlarge the intra-class variations of the tail data,297

we always assign the larger mixing coefficient λ to the298

sample in minority class, i.e., sample (xi, yi) comes from a299

relatively minority class compared with
(
xj, yj

)
. This strat-300

egy is consistent with the observation in AdaptiveFace [7]301

and Fair Loss [8] that a minority class generally requires a302

larger margin to enhance its intra-class compactness, so as to303

improve the generalization of the trained model. Moreover,304

MarginMix can be combined with other data augmentation305

techniques to generate face images with larger intra-class306

variations for the tail class.307

IV. EXPERIMENTS308

A. DATASETS AND SETTING309

1) TRAINING DATASETS310

We employ Glint360K [2] as our training dataset. Glint360K311

contains more than 17M images from 360K subjects with an312

imbalance ratio of 443, so it is a typical large-scale long-313

tailed dataset which is suitable for our research. To validate314

the effectiveness of the proposed methods, we construct315

a long-tailed training dataset ID30K from a subset of316

Glint360K. ID30K consists of 2M images of 30K identities317

with an imbalance ratio of 665.318

In JAT training, we need to split the tail data out of the319

whole long-tailed dataset. In our implementation, the tail320

identities are defined as those whose number of samples are321

less than the average number of samples in the whole dataset.322

Under this definition, the ratios of tail identities and tail323

images in ID30K are 76% and 21% respectively, while these324

two ratios in Glint360K are 74% and 25% respectively. The325

detailed information of the two long-tailed training datasets326

is listed in Table 1.327

2) TESTING DATASETS328

We evaluate the face verification accuracy on five face329

datasets, e.g., LFW [21], CALFW [22], CPLFW [23], AgeDB330

[24] and CFP-FP [25]. LFW is widely used for performance331

evaluation on unconstrained scenario. CPLFW and CFP-FP332

contain large-pose variance, while CALFW and AgeDB con-333

tain cross-age variance. Ten-fold verification sets are used to334

test the face verification accuracy on these five datasets.335

In addition, the model performance is also evaluated on 336

three large-scale benchmark datasets, i.e., MegaFace [26], 337

IJB-B [27] and IJB-C [28]. The MegaFace [26] contains two 338

testing protocols, i.e., face verification and face identification 339

with 1M distractors. The IJB-B and IJB-C benchmarks evalu- 340

ate face verification on mixed-media, i.e., still image vs video 341

template. 342

We adopt the refined version of MegaFace [10] for fair 343

comparison, which adopts FaceScrub as the probe set. It con- 344

tains 1M photos of 690K subjects in the gallery set and 345

100K images of 530 unique subjects in the probe 346

set. 347

The IJB-B [27] dataset includes 1,845 identities with 348

55K video frames and 22K still images, which provides 10K 349

genuine and 8M impostor matches. The IJB-C dataset [28] 350

consists of 3,531 individuals with 118K video frames and 351

31K still images, including 20K genuine matches and 352

16M impostor matches. 353

3) DATA AUGMENTATION 354

As introduced previously, several generic data augmenta- 355

tion techniques are adopted for face image augmentation, 356

i.e., color jittering, occlusion, blur, horizontally flip, and 357

grey level transformation. These augmentation techniques 358

are selected with a probability of 0.25 successively, so a 359

combination of different techniques may be applied on a 360

single sample. The max number of augmentations applied on 361

a single image is limited to 3 in our experiments to avoid 362

the augmented image drifting far from the original image. 363

MarginMix is applied with a probability of 0.5, and the 364

mixing coefficient λ is drawn from a beta distribution with 365

α = β= 0.2 in all our experiment. We further use (7) to 366

ensure λ≥ 0.5. All of these data augmentation methods are 367

only applied in the tail data. 368

4) IMPLEMENTATION 369

We adopt ResNet50 and ResNet100 as our backbone network 370

and use the ArcFace [10] as our loss function. We set the 371

angular margin m at 0.5 and the feature scale s at 64 for 372

ArcFace. The Stochastic Gradient Descent optimizer is 373

employed, and the learning rate starts from 0.1 with fixed 374

momentum of 0.9 and weight decay of 5e-4. On ID30K, 375

we divide the learning rate by 10 at 10, 16, 22 epochs and 376

finish the training process at 25 epochs. On Glint360K, the 377

learning rate is divided at 8, 12, 16, 20 epochs and the training 378

process is finished at 22 epochs. 379
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TABLE 2. Face verification accuracy (%) with different training strategy on ID30K.

TABLE 3. Performance comparisons of different combinations of training strategies on various benchmarks. 1:1 verification accuracy (%) is reported on
the LFW, CFP-FP, AgeDB, CPLFW, CALFW datasets. Identification and verification evaluation on MegaFace dataset. ‘‘Id.’’ refers to the rank-1 face
identification accuracy (%) with 1M distractors, and ‘‘Ver.’’ refers to the face verification (%) TAR@FAR=1e-6.

B. ABLATION STUDY ON ID30K380

In this section, all the models are trained using ResNet50381

network and ArcFace loss function. The face verification382

accuracy is tested on the five datasets with ten-fold verifi-383

cation sets. Furthermore, face identification and verification384

evaluations are performed on MegaFace with 1M distractors.385

1) EFFECTIVE STRATEGY386

We apply three different strategies independently in the train-387

ing process, i.e., data augmentation (DA), JAT and Margin-388

Mix. We firstly train a model on the original long-tailed389

ID30K dataset as a baseline, which is trained without using390

any strategy. In DA strategy, we only apply generic data aug-391

mentation on the tail data with instance-balanced sampling.392

The face verification accuracies of these strategies are shown393

in Table 2.394

Compared with the baseline, we can see that: (1) Apply395

DA on the tail data alone cannot gain effective performance396

improvement in most of the test sets. This can be attributed397

to the instance-balanced sampling strategy, in which the398

tail classes are still inadequately trained even by using data399

augmentation. (2) JAT can achieve higher accuracy on all400

the five benchmarks than the baseline, which proves that401

JAT can learn more discriminative feature from both the402

long-tailed data and the tail data together. (3) Except for403

CPLFW, MarginMix performs better than the baseline, and404

it can obtain comparable improvement with JAT. (4) The405

accuracy improvement is not so significant by applying sin-406

gle strategy alone, e.g., JAT only brings 0.1-0.5% accuracy407

increase on these test sets.408

2) EFFECTIVE STRATEGY COMBINATION409

Based on the JAT framework, we further combine the other410

two strategies to search the best solution for long-tailed face411

recognition. In this section, three different combinations, i.e., 412

JAT+DA, JAT+MarginMix and JAT+DA+MarginMix, are 413

applied in the training of face models. The performance 414

comparisons on various benchmarks are shown in Table 3. 415

From the results, we can see that all the three combina- 416

tions outperform the baseline and the model using single 417

JAT strategy. The combination of JAT+DA+ MarginMix 418

(JDM) achieves the highest accuracy on all the benchmarks, 419

which demonstrates its effectiveness in dealing with the long- 420

tailed problem in face recognition. More importantly, the 421

accuracy improvement in JDM is not trivial anymore. For 422

instance, the verification accuracy increases by about 1% on 423

CFP-FP and CALFW, and the identification and verification 424

accuracy on MegaFace increases by about 1.5%. When JAT, 425

DA and MarginMix is incrementally applied, the accuracies 426

are steadily improved on all the test sets, i.e., JAT+DA is 427

better than JAT and JAT+DA+ MarginMix is even better, 428

which demonstrates that there is negligible conflict between 429

the three strategies. 430

Another informative observation is that data augmentation 431

does steadily improve model performance when combined 432

with the JAT framework, and this observation holds for both 433

generic DA and MarginMix. This is because the tail data is 434

particularly enhanced in both sample number and intra-class 435

variance in the framework of JAT, which helps to exploit more 436

discriminative information. 437

We randomly select a tail identity in ID30K for illustra- 438

tion, which only contains two face images. We show these 439

two images with their augmented variants in both image 440

space and feature space in Fig. 2. In Fig. 2(a), we can see 441

that data augmentation can effectively enlarge the intra-class 442

variance for the tail class. We visualize the image features 443

by projecting them onto 2D space using t-SNE [29] in 444

Figure 2(b). The features of the original images in the left 445

are extracted from the baseline model, and the features in the 446
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FIGURE 2. Example of images and their augmented variants from a
randomly selected tail identity. The original and augmented face images
in image space (a) and feature space (b).

TABLE 4. Face identification and verification evaluation on MegaFace.
‘‘Id.’’ refers to the rank-1 face identification accuracy with 1M distractors,
and ‘‘Ver.’’ refers to the face verification TAR@FAR=1e-6.

right are extracted from our JAT+DA+ MarginMix model.447

The distance between the red circle and blue circle becomess-448

maller in the right of Fig 2(b), therefore, our model can learn449

more compact feature representations for the tail class. This450

observation is consistent with the conclusions in [6], [7],451

and [8] that enhancing the intra-class compactness of tail452

classes can lean more discriminative feature and improve the453

generalization ability of the model.454

C. EXPERIMENTS ON GLINT360K455

To further validate the effectiveness of the combination of456

strategies in JDM on larger scale training dataset, we conduct457

experiments on Glint360K using ResNet100 as backbone458

architecture. The models are tested on three large-scale test459

datasets, i.e., MegaFace [26], IJB-B [27] and IJB-C [28].460

Firstly, we train a face model on Glint360K dataset as a461

baseline, and further compare our method with the state-of-462

the-art methods in [2].463

1) RESULTS ON MegaFace464

As shown in Table 4, our method achieves the best465

performance under both verification and identification466

TABLE 5. Face verification TAR (@FAR=1e-5 and 1e-4) on the IJB-B and
IJB-C benchmarks.

protocols, achieving the accuracy of 99.19% and 99.10% 467

respectively. The result demonstrates that the combination of 468

JDM can effectively address the long-tailed problem in face 469

recognition on highly imbalanced and large-scale training 470

dataset. 471

2) RESULTS ON IJB 472

Following the testing protocol in [10], we adopt the feature 473

norm and the face detection score to reweight the face within 474

each template. We show the TAR@FAR=1e-5 and 1e-4 of 475

different methods in Table 5. We can find that our method 476

outperforms the other methods on both IJB-B and IJB-C 477

benchmarks. Compared with the baseline trained with Arc- 478

face, the combination of JDM gains accuracy improvement 479

of 1.05%, 0.27% on IJB-B and 0.58%, 0.25% on IJB-C at 480

TAR@FAR=1e-5, 1e-4 respectively. 481

V. CONCLUSION 482

In this paper, we address the long-tailed face recognition 483

problem from the perspective of maximally exploiting the tail 484

data in long-tailed dataset. We propose a JAT framework to 485

learn more discriminative feature by alternating training on 486

the long-tailed data and the tail data with different sampling 487

strategies. We further propose MarginMix to deal with the 488

nonlinearity of margin-based softmax loss in mixup train- 489

ing, which is further combined with other DA techniques to 490

generate face images with more variations for the tail data. 491

Furthermore, we obtain the best combination of strategies, 492

i.e., JAT+DA+MarginMix, for long-tailed face recognition, 493

which can maximally exploit the discriminative information 494

in the tail data while retaining the universal discrimination 495

learned from the long-tailed dataset. Extensive experiments 496

demonstrate that our proposed methods and combination of 497

strategies can learn more discriminative deep feature on long- 498

tailed face datasets. 499
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