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ABSTRACT Link prediction aims to predict the missing facts in knowledge graphs. Most previous work
focuses on the transductive link prediction, which cannot predict unknown entities. However, knowledge
graphs are evolving in practical scenarios and new entities are constantly added. A graph neural network
based on subgraph structure can effectively make predictions on a knowledge graph composed of unknown
entities. Based on this method, we propose a new inductive link prediction model MILP, which uses
meta-learning to predict unseen entities on few-shot data. Specifically, MILP divides the training data into
four tasks according to the relation types and constructs a subgraph structure of each triplet, and then trains
each task sequentially through the meta-learning framework which uses graph neural network to score the
triplets. Experiments are carried out on the benchmark inductive link prediction datasets, and the results
show that in most cases the proposed model achieves better results than the baseline models, proving the
effectiveness of MILP.
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INDEX TERMS Few-shot learning, graph neural network, knowledge graph completion, link prediction,
meta-learning.

I. INTRODUCTION14

Knowledge graphs (KGs) are knowledge bases composed15

of a large number of facts. Representing facts form reality16

in from of the triplet (head entity, relationship, tail entity)17

establishing the relationship between entities is the most18

typical representation method. In recent years, knowledge19

graphs already played an important role in supporting for20

information retrieval [1], intelligent question answering [2],21

[3] recommendation system [4], and other fields related to22

artificial intelligence [5], [6]. However, most constructed23

knowledge graphs are incomplete due to the limitations of24

existing knowledge and extraction algorithms. Actually, even25

the widely used large-scale knowledge graphs such as Free-26

base [7] and Wikidata [8] meet missing data. Therefore, how27

to improve the incompleteness of knowledge graphs is an28
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urgent problem to be solved. At present, a large number of 29

studies focus on link prediction, which completes knowledge 30

graphs by predicting the missing links. 31

The most widely used link prediction models based on 32

embedding method. This kind of models project entities and 33

relations into continuous low-dimensional vector spaces and 34

learn appropriate vector representations for them by formulat- 35

ing scoring functions and training mechanisms. For example, 36

TransE [9] projects entities and relations into the real-valued 37

vector space, then it lets the vector representation of the 38

head entity in the target triple equal to the vector sum of 39

the tail entity and their relation representation. TransH [10] 40

improves on the basis of TransE, and the projection based 41

on relationship is proposed. The same entity corresponding 42

to different relations is projected to different relationship 43

spaces in different triplets, so it has different vector represen- 44

tations. TransH obtains better prediction results on complex 45

relations. Similar works include DistMult [11], RotatE [12], 46
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FIGURE 1. Illustration of transductive and inductive link prediction in
knowledge graphs.

and DTransE [13], ect. Such models show good performance47

when predicting seen entities. As shown in Fig. 1, the red48

entities and relations represent those in target triplets, and the49

yellow dotted lines represent link prediction on knowledge50

graphs. The entities in Fig. 1(a) are all seen entities, and51

the prediction in this scenario is also called transductive link52

prediction. Relatively, Fig. 1(b) illustrates the inductive link53

prediction which refers to making prediction on a knowledge54

graph containing unseen entities, where the dotted nodes55

represent unseen entities. The embedding-based model can56

effectively learn the representations of seen entities only,57

but not the unseen entities, so the unseen entity cannot be58

predicted after training. However, the data in the real world59

are constantly changing. For example, new members are60

often added to social networks, and new products and new61

users are constantly appearing in recommendation systems.62

Using this kind of models to make prediction on new entities63

requires retraining the updated knowledge graph, which is64

expensive. Therefore, it is of great significance to establish65

a model suitable for inductive link prediction for real-world66

applications.67

Currently, some research uses external resources to obtain68

the embedding representations of unseen entities. For exam-69

ple, DEAL [14] uses the attribute information of entities for70

inductive link prediction. Fu et al. [15] design two agents71

using reinforcement learning. On the one hand, extracting72

entity-related information from the corpus to enrich knowl-73

edge graph, and on the other hand, performing dynamic74

reasoning. Ali et al. [16] use pre-trained language model-75

Sentence BERT [17] to obtain entity representation from76

Wikipedia, and the authors also divide inductive link pre-77

diction into semi-inductive and fully-inductive scenarios.78

Although this method can effectively predict inductive links,79

it spends additional time and resources to train external80

resources, which are usually not easy to obtain.81

Another inductive link prediction method is to learn the82

logical rules in knowledge graphs. The method first learns the83

rules appearing in the knowledge graph during training, then84

it applies the learned rules to prediction. However, the models85

based on logical rules are inherently poor in expression and86

are difficult to be generalized. Teru et al. [18] regard relational 87

prediction task as a logical induction problem, they use graph 88

neural network (GNN) to predict the relations by modeling 89

the subgraph structures of target triplets and prove the method 90

can also learn logic rules contained in the knowledge graph. 91

In addition, the GNN models using subgraph structures are 92

independent of representations of nodes and has inductive 93

characteristics naturally. 94

The data in real-word knowledge graphs follow a long- 95

tailed distribution, i.e., most relations and entities have only 96

a few triplets. Taking Wikidata for example, there are around 97

10% relations have no more than 10 triplets [19], and about 98

82.6% entities have only one triplet [20]. Especially for the 99

setting of inductive link prediction, the newly added entity has 100

a smaller number of triplets. However, most of the current 101

work assumes that the entities and relations in knowledge 102

graphs have sufficient triplets, such as the GNN models 103

based on the subgraph structure [18], [21], most entities and 104

relations in the data occur more frequently than those in the 105

knowledge graphs from real world, which make the inductive 106

link prediction task easier and their function on few-shot data 107

are limited. 108

In this paper, we present aMeta-learning network based on 109

GNN for Inductive Link Perdiction (MILP), which can still 110

work effectively on few-shot data. The relations in knowledge 111

graphs can be divided into four types: one-to-one, one-to- 112

many, many-to-one, andmany-to-many, and we group triplets 113

with the same relation type to the same task. Therefore, four 114

corresponding tasks are obtained: T1, T2, T3, and T4. Then 115

the GNN is used as the scorer, and meta-learning is used 116

to train each task in turn to improve the prediction ability 117

of the model, so that the model can obtain more expressive 118

relation representations and initialization parameters. Finally, 119

few-shot samples are extracted from three public datasets: 120

FB15k-237, WN18RR, and NELL-995, and the predictive 121

ability of the model is verified on these inductive link pre- 122

diction test sets. 123

The contributions of our work are summarized as follows: 124

1) We tackle a realistic problem of few-shot data and focus 125

on the link prediction in knowledge graphs, aiming to 126

perform link prediction among unseen entities, where 127

each entity has only few triplets. 128

2) A meta-learning inductive link prediction model MILP 129

learning subgraph features in knowledge graphs is pro- 130

posed, which can be generalized to unseen knowl- 131

edge graphs naturally, and it still validly on few-shot 132

data. 133

3) Our inductive link prediction experiments on the 134

benchmark datasets show that MILP achieves better 135

AUC, AUC-PR, and Hits@10 in most cases. 136

The remainder is structured as follows. In Section II, 137

we introduce the classical models related to our work and 138

compare them with ours. The detailed description of our 139

model is shown in Section III. Section IV presents the 140

experimental results. Section V is our conclusion about the 141

paper. 142
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II. RELATED WORK143

A. LOGIC RULES BASED144

Inductive logic programming (ILP) is a machine learning145

method for mining relational structure. Starting from specific146

examples, it summarizes the general rules of these examples147

and finally learns the first-order logic symbol rules that are148

easy to understand by human beings. Therefore, the learning149

process is also a process of rule generalization. But it assumes150

a large potential space and is difficult to apply to large-scale151

knowledge bases. The link prediction models based on log-152

ical rules mainly learn the rules implied in the knowledge153

bases. Zeng et al. [22] propose QuickFOIL to solve the154

problem of large hypothetical space by formulating top-down155

greedy search strategy and pruning candidate sets. Quick-156

FOIL reduces the search space, but only learns rules with157

high confidence. AMIE [23] proposes partial completeness158

hypothesis to construct counterexamples, it formulates new159

confidence measurement standards, and tests rule mining on160

knowledge bases. RuleN [24] also redefines the calculation161

method of confidence to learn the rules that help reasoning.162

AMIE calculates confidence on the whole knowledge graph,163

but RuleN approximates it by random sampling. RuleN can164

mine longer path rules and has good effect in inductive link165

prediction.166

TensorLog [25] represents the reasoning of the first-order167

logic in the form of matrix multiplication and establishes168

the connection between logical reasoning and differential169

operation. Yang et al. [26] propose an end-to-end differen-170

tial logical reasoning model Neural-LP based on TensorLog,171

Neural-LP makes it possible to learn logical rules using172

gradient-based optimization, and has the ability to reason173

independently of entity representations. DRUM [27] theo-174

retically proves that the logic rules generated by Neural-LP175

have limitations, and a bidirectional recurrent neural network176

is proposed to enhance the information capture ability in the177

process of rule learning, which shares the information when178

reasoning.179

However, the obvious disadvantage of the method based180

on logical rules is that it cannot learn enough rules when the181

knowledge graphs are sparse.182

B. GRAPH NEURAL NETWORK BASED183

Graph neural networks extend neural networks for process-184

ing data represented in graphs [28], [29]. Gilmer et al. [30]185

unify the neural network models on graphs as Message Pass-186

ing Neural Network (MPNN) and point out the difference187

between these models lies in defining the message function,188

aggregation function, and readout function. It provides a new189

way for the comparison and extension of graph neural net-190

work models. RGCN [31] designs a relation-specific aggre-191

gation function, which applies different parameter matrices to192

neighbor nodes connected by different relations, first perform193

feature aggregation respectively, and then perform informa-194

tion fusion and update nodes. GraphSAGE [32] uses the195

attribute information of entities to generate the embedding196

representation of unknown entities, thus achieving the pre- 197

diction of unknown entities. GraIL [18] proposes a naturally 198

inductive graph neural network message passing paradigm 199

and improves RGCN [31]. The model aggregates the neigh- 200

bor information of the head entity and the tail entity of a 201

triplet, updating based on their common neighbor informa- 202

tion. It consists of three parts: i) extracting subgraphs of target 203

triples; ii) labeling nodes in subgraphs; and iii) scoring triplets 204

through GNN. CoMPILE [21] strengthens the role of reations 205

in message passing and introduces the node-edge message 206

transmission mechanism to update the nodes and edges. 207

TACT [33] models the relational topological structures in 208

the knowledge graph, and then uses the relational correlation 209

module and graph structure module to train. The graph neural 210

network models GraIL and CoMPILE based on subgraph 211

structure have strong inductive learning ability, so the similar 212

method is used to construct and update subgraph information 213

in this paper. 214

C. META-LEARNING BASED 215

Meta-learning also called learning to learn, i.e., using dif- 216

ferent tasks to learn universal experience. Meta-learning for 217

few-shot learning aims to obtain favorable generalization 218

ability through a small amount of training samples and 219

quickly apply to new tasks. There are two main research 220

directions: i) Method based on optimization, which usually 221

used to learn initialization parameters with strong generaliza- 222

tion. MAML [34] is a model-agnostic meta-learning model, 223

which can be used for classification, regression, and other 224

gradient-based models without introducing additional neural 225

network parameters. MAML calculates the gradient once 226

within the tasks whereas Reptile [35] updates the parame- 227

ters using a simpler method saved the computational cost. 228

ii) Method based on metric learning, it tends to extract the 229

features contained in the task samples to the greatest extent 230

and uses feature comparison to determine the types of test 231

samples. For example, Matching Nets [36] uses cosine sim- 232

ilarity to measure features in embedding space and achieves 233

classification by calculating the matching degree of the test 234

samples. 235

The application of meta-learning in link prediction 236

is mostly used to implement few-shot relation learning. 237

Xiong et al. [19] propose a one-shot relation learning frame- 238

work GMatching to address the problem of insufficient train- 239

ing samples for newly added relations. GMatching treats 240

each relation as a meta-learning task and uses a similar- 241

ity function to measure the similarity between known and 242

unknown triplets under the same relation. It requires that 243

each relation in a query set need to appear at least once in 244

the support set to learn appropriate similarity metric through 245

training, at the same time, it uses entities’ one-hop neighbor 246

information to better represent the entities. Wang et al. [37] 247

note that rare entities in triples often appear with uncommon 248

relations and formulate it as a few-shot completion problem. 249

Then they collect the text description information of entities 250

and relations from Wikidata and DBpedia to enhance the 251

97372 VOLUME 10, 2022



R. Yang et al.: Few-Shot Inductive Link Prediction Model in Knowledge Graphs

FIGURE 2. Visual illustration of MILP. The yellow dotted lines represent the predictions on the target triplets.

representations of triplets. Meta-Graph [38] learns multiple252

graphs using meta-learning framework, and then predicts253

links on few-shot data. Lv et al. [39] use high frequency254

relations to obtain the optimized model parameters and apply255

them to the low frequency relations. GEN [40] improves256

RGCN to learn the embedding representations of unknown257

entities, adding neighbor relations in the process of neighbor258

information aggregation and using the average aggregation259

function to generate the representation of neighbor informa-260

tion. GEN regards each entity as a task and uses support sets261

as the input of the neural network to obtain the representation262

of the entities, and then passes the learned representation to263

the entities in the query sets. GEN and Gmatching are part of264

the comparison models in this paper.265

III. METHODOLOGY266

A. OVERVIEW267

In a triplet (h, r, t), h represents the head entity, t represents268

the tail entity and r represents the relationship between them.269

Giving the missing triplet (?, r, t) or (h, r, ?), our model270

is used to predict the missing entity. The knowledge graph271

used for training is expressed as GTrain = {(h, r, t)|h, t ∈272

VTrain, r ∈ RTrain}, and the knowledge graph used for testing273

is expressed as GTest = {(h, r, t)|h, t ∈ VTest , r ∈ RTest },274

where RTrain and RTest represent the relation set in the train-275

ing knowledge graph and test knowledge graph, RTest ⊂276

RTrain. VTrain and VTest represent the entity set in the train-277

ing knowledge graph and test knowledge graph respectively.278

In transductive link prediction, VTest ⊂ VTrain, whereas in the279

inductive link prediction of our work, VTrain ∩ VTest = ∅, i.e.,280

a fully-inductive scenario.281

Raghu et al. [41] prove that MAML is effective due to the282

reuse of features, i.e., the model parameters contain high283

quality features, so it can effectively make predictions on284

new data. Therefore, our model uses meta-learning to learn285

representations of relations and better initialization param-286

eters to improve the accuracy of prediction results, at the 287

same time, it achieves inductive ability through GNN based 288

subgraph structure. Fig. 2 is the frame diagram of MILP, the 289

process consists of four steps: i) The relations in the train 290

graph are divided into four types by calculating the average 291

appearing counts of entities contained in the relations [42]. 292

In terms of the division rule, we record the average degree of 293

the head entities and tail entities under any relation r as rh 294

and rt , respectively. If both rh and rt are less than 1.5, the 295

relation r is called a one-to-one relation, if only rh < 1.5, 296

the relation r is a one-to-many relation, if only rt < 1.5, 297

the relation r is a many-to-one relation, if neither rh nor rt 298

is less than 1.5, the relation r is a many-to-many relation. 299

Then regard triplets with the same type of relation as the 300

same task, resulting in T1, T2, T3, and T4 tasks. ii) Extracting 301

subgraphs from the neighbor information for target triplets 302

in each task, and labeling the nodes in the subgraphs. 303

iii) The training of the meta-learning network, which will be 304

discussed in Section III-C. The triplets in each task Ti are 305

randomly divided into a support set Di and a query set Qi 306

in a ratio of approximately 4:1, which are disjoint. iv) After a 307

fixed training epochs, the model with best verification results 308

on the query set is saved for testing. About 15% of the triplets 309

are randomly selected from the test graphs as test triplets, and 310

other triplets are saved as background information for the test 311

triplets, denoted as G′Test . 312

B. CONSTRUCTION OF SUBGRAPH STRUCTURES 313

For a target triplet (h, r , t), its directed closed subgraph is 314

obtained firstly by finding the common neighbors of h and t , 315

and then the nodes in the subgraph are initialized based on 316

their relative positions. 317

1) SUBGRAPH EXTRACTION 318

The neural message passing scheme assumes that the neigh- 319

bors of (h, r , t) contain the information about it [18]. 320
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Therefore, the directed closed subgraphs of target triplets are321

extracted firstly by following CoMPILE [21], which consist322

of the nodes on the path from h to t and the edges between323

them.N k
out (h) andN k

in(t) are the set of k-hop outgoing neigh-324

bors of h and the set of k-hop incoming neighbors of t ,325

respectively. CalculatingN k
out (h) ∩N k

in(t), then removing the326

isolated nodes and nodes only located on the path lengthmore327

than k+1, we obtain the k-hop directed common neighbors328

of the target triplet, as shown in Fig.2, the gray nodes are329

discarded. The k-hop directed closed subgraph G(h,r,t) of the330

target triplet is generated by adding relations between the331

associated nodes.332

2) NODES LABELING333

When initializing the nodes in the directed closed subgraph,334

we represent the nodes according to the relative position of335

the nodes in the subgraph on the basis of the representation336

rule in GraIL [18], which is unrelated to the characteris-337

tics of the nodes themselves. For each neighbor node vi in338

the directed closed subgraph, the shortest distance d(vi, h)339

from vi to h and the shortest distance d(vi, t) from vi to t are340

calculated. Then represent the initial value of vi as [one-341

hot(d(vi, h)) ⊕ one-hot(d(vi, t))], where ⊕ is the connection342

operation. h and t are specially marked as (0, 1) and (1, 0) to343

differentiate from the neighbors. As shown in Fig.2, the nodes344

of the subgraph are labeled with (d(vi, h), d(vi, t)).345

C. THE NETWORK FRAMEWORK OF MILP346

After obtaining the subgraph representations of target triplets,347

the subgraph data are input into the meta-learning network348

framework, which updates model parameters based on the349

total loss on query set in each task.350

1) SCORING NETWORK351

The meta-learning framework can use different graph neural352

networkmodels to score, the CoMPILE [21] message passing353

method is adopted which introduces edge attention mecha-354

nism to aggregate the information of nodes and relations for355

updating. Given the closed subgraph G(h,r,t) of triplet (h, r, t),356

the target relation r is taken as a learning parameter, and the357

information of the triplet is expressed as:358

T = h+ r− t (1)359

where h, r and t represent embeddings of h, r and t , respec-360

tively. In the k-th layer, the edge attention of edge i is:361

aki = f1((T ki ⊕ T kG)W
k
a) (2)362

where T ki represents the triplet of current edge i, T kG rep-363

resents the target triplet in the subgraph, W k
a is a learnable364

weight matrix, and f1 is a two-layer nonlinear transformation.365

In the k-th layer, the embedding of edge i is:366

Eki = hki ⊕ rki ⊕ tki (3)367

The edge i with attention is expressed as:368

Ekai = aki E
k
i (4)369

In layer k+1, the nodes are updated as: 370

V k+1
agg = AteEka (5) 371

V k+1
= f1((V k+1

agg + V
k )W k+1

n ) (6) 372

whereAte is the adjacencymatrix representing the connection 373

of tail entities and edges, Eka and W k+1
n are the parametric 374

matrices used to learn the embeddings of nodes, V k+1
agg repre- 375

sents the aggregated neighbor information in layer k+1, and 376

V k+1 represents the updated nodes. The final score function 377

is defined as: 378

S = f2(T lG) (7) 379

where f2 represents the nonlinear transformation to improve 380

the expressive ability of the model, l represents the number of 381

layers, and T lG represents the final representation of the target 382

triplet. 383

2) META-LEARNING REGIME 384

The purpose of meta-learning is to learn better parameters 385

for the model, so as to correctly predict missing entities. 386

We train each task Ti in turn. Firstly, the positive and negative 387

sampling triplets are input into the graph neural network, and 388

the corresponding scores are output. Then we use the hinge 389

loss function proposed by TransE [9] to calculate the loss. 390

As shown in (8), L represents the training loss in a batch. 391

Among them, ε represents the batch size, pi and ni represent 392

the positive and negative samples, respectively, and γ is a 393

hyperparameter representing the margin. 394

L =
|ε|∑
i=1

max(0,S(ni)− S(pi)+ γ ) (8) 395

Then, the model parameters are updated by gradient 396

descent to make the model score the positive sampling triplets 397

higher than the negative sampling triplets. In task Ti, the sup- 398

port set Di is used firstly to calculate the updated parameters 399

through one or more gradient descent, and the parameters 400

updated by a batch are expressed as: 401

θ ′ = θ − α
h

θ

Ld i (fθ ) (9) 402

where α represents the learning rate, and d i is a batch of sam- 403

ples randomly selected from Di. Then we use θ ′ to calculate 404

the loss of the query set Qi and accumulate the loss of all 405

batches within a task, finally we update θ according to the 406

total loss. 407

Lsum = Lqt=1i
(fθ )+

k∑
t=1

Lqti
(fθ ′ ) (10) 408

θ = θ − β
h

θ

Lsum (11) 409

where β represents the meta-learning rate, k represents the 410

total number of batches, and qti represents a batch of samples 411

randomly selected from Qi at the t-th iteration. Different 412

from MAML, the parameters of neural network are updated 413
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TABLE 1. Statistics of inductive benchmark datasets.

after a task. The operation in Equations (8)-(11) for each414

task is performed, and the final parameters are obtained415

after fixed epochs of training. The specific process is shown416

in Algorithm 1.417

Algorithm 1MILP Training
Input: GNN parameters θ , learning rate α, meata-learning

rate β, meta-training task set Tmeta−training
Output: GNN parameters θ

1: while not done do
2: Get the tasks Tmeta−training from Tmeta−training
3: for Ti in Tmeta−training do
4: Shuffle the batchs in Ti
5: for iteration = 1, 2, . . . k do
6: Sample datapoints d i from Di
7: Calculate the batch loss Ld i (fθ ) via (8)
8: θ

′

← θ − α
`

θLd i (fθ )
9: Sample datapoints qi from Qi

10: if iteration == 1 then
11: Calculate the batch loss Lqi (fθ ) via (8)
12: end if
13: Calculate the batch loss Lqi (f

′

θ ) via (8)
14: end for
15: Calculate the total loss of Lsum via (10)
16: θ ← θ − β

`
θLsum

17: end for
18: end while

IV. EXPERIMENTS418

The experimental datasets in this paper are derived from three419

benchmark datasets: FB15k-237, WN18RR, and NELL-995.420

The purpose of our experiments is to verify the effectiveness421

of the proposed model for inductive link prediction on few-422

shot data.423

A. EXPERIMENTAL SETUP424

1) DATASETS425

FB15k-237 [43], WN18RR [44], and NELL-995 [45] are426

three public datasets for knowledge graph reasoning, initially427

used for transductive link prediction. Teru et al. [18] extract 428

four datasets suitable for inductive link prediction from each 429

of them, the entities in training set and test set of each dataset 430

are disjoint. Referring to the division of Teru et al., we make 431

modifications on the basis of their datasets and further extract 432

few-shot inductive datasets. The extracted datasets have the 433

following characteristics: i) small amount of data, the propor- 434

tion of entities that contain only a few triplets is increased, 435

and the triplets for most entities do not exceed 30; ii) the 436

relations of each dataset includes four types: one-to-one, one- 437

to-many, many-to-one, and many-to-many, the relations have 438

the same relation types in the training set and test set; iii) 439

meeting the requirements of inductive link prediction, and we 440

include entities not present in background information in test 441

triplets. The specific information is shown in Table 1. All the 442

experiments in this paper are carried out on these inductive 443

datasets. 444

2) BASELINES 445

The baselines include: RuleN [24] based on statistical rules, 446

differentiable models Neural-LP [26] and DRUM [27] based 447

on logic rules, GraIL [18] and CoMPILE [21] based on graph 448

neural network, and Gmatching [19] and GEN [40] based 449

meta-learning. To test the inductive ability of the models, 450

none of the models used embedding methods to obtain ini- 451

tial representations of entities and relations. It should be 452

point out that Gmatching aims to predict one-shot relations. 453

Specifically, RTrain ∩ RTest = ∅, VTest ⊂ VTrain. And in the 454

created datasets NELL-One and Wiki-One [19], Gmatching 455

uses triplets removed training data and test data as back- 456

ground information. This scenario is different from ours, 457

and we achieve very poor results with the same setting on 458

our datasets. In our experiments, GTrain and G′Test are used 459

as the background information for Gmatching during train- 460

ing and test, respectively, which can provide more accurate 461

information for target triplets, thus the prediction results of 462

Gmatching are significantly improved. During the experi- 463

ments, the settings of baseline models are consistent with the 464

best settings pointed out by the authors in their papers and 465

codes, including hyperparameters, etc. 466
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TABLE 2. Inductive link prediction results of AUC.

TABLE 3. Inductive link prediction results of AUC-PR.

3) EVALUATION METRICS467

AUC, AUC-PR, Mean Reciprocal Rank (MRR), and Hits@k468

(k = 1, 3, 10) are used as the evaluation metrics. AUC and469

AUC-PR are used during training, MRR and Hits@k are also470

used during testing. AUC and AUC-PR, which respectively471

represent the probability of positive samples have higher472

scores than negative samples and precision-recall curve, gen-473

erate a negative sample for each positive sample when they474

are calculated. MRR is the mean reciprocal rank of positive475

samples. Hits@k is the proportion of positive samples ranked476

in top-k among all test triplets. When calculating MRR and477

Hits@k, the evaluation of each target triplet includes two478

groups of samples. The first group is the prediction of the479

head entity, including one positive sample and 49 negative480

samples obtained by randomly substituting the head entity481

of the positive sample with other entities. The second group482

predicts the tail entity, including one positive sample and483

49 negatives samples obtained by randomly substituting the484

tail entity of the positive sample with other entities.485

4) IMPLEMENTATION486

The model is implemented in PyTorch, equipment used is487

Tesla P100 with 12GB RAM. In the experiments, the first488

and second layers of f1, and f2 are the ReLU, Tanh and the489

Sigmoid activation function, respectively. 3-hop neighbors of490

the directed closed subgraph are extracted, and the training491

epochs are set to 50. The margin in loss function γ = 10,492

and the number of GNN layers l = 3. In WN18RR-v2 and 493

WN18RR-v4 we use fine-turning mechanism to improve 494

AUC and AUC-PR. More implementation details of MILP 495

and the baselines are shown in the supplementary materials. 496

B. RESULTS AND DISCUSSION 497

On the datasets created in this paper, the proposed model is 498

compared with baselines. Running 10 times on each test set, 499

we get relatively stable results. 500

1) MAIN RESULTS 501

The best results for all models of AUC, AUC-PR, and 502

Hits@10 are shown in Table 2, Table 3, and Table 4. Num- 503

bers in bold denote the best results on each dataset while 504

the underlined ones are the suboptimal results. It can be 505

seen that in most cases GNN based and meta-learning based 506

models achieve better results than logical rule based models. 507

MILP achieves the best results for the most part, in partic- 508

ular, on NELL-995-v2 outperforms the suboptimal models 509

on AUC and AUC-PR by 17.29% and 13.80% respectively, 510

and 22.99% higher than the suboptimal model about Hits@10 511

on WN18RR-v4. CoMPILE is the second-best model with 512

respect to AUC and AUC-PR, and GraIL and Gmatching 513

are the second-best models of Hits@10. MILP has the best 514

performance on all three metrics on the FB15k-237 and 515

WN18RR datasets. On NELL-995-v1 and NELL-995-v2, 516

Gmatching has better Hits@10 than MILP, it probably 517
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TABLE 4. Inductive link prediction results of Hits@10.

because the one-hop neighbors of the target triplets pro-518

vide more valuable information as Gmatching aggregates all519

one-hop neighbor information. On NELL-995-v3 and NELL-520

995-v4, the lower AUC and AUC-PR of MILP may be due to521

the datasets contain noisy data, which reduce the ability of522

MILP to distinguish positive samples from negative samples.523

We observe that test results on different datasets show great524

differences, mainly due to the different number of triplets525

in the background information owned by the test entities in526

different datasets, and the test entities refer to the entities527

in the test triplets. In particular, the prediction results of528

link prediction models on zero-shot and one-shot entities529

are lower, so increasing the proportion of that entities will530

lead to lower overall test results of the datasets. Zero-shot531

entities are those that only appear in the test triplets, and532

one-shot entities refer to entities that only appear once in533

the background information. Fig.3 shows that the propor-534

tion of test entities with different number of triplets on all535

benchmark datasets. For example, compare and analyze the536

content of Fig. 3 and the results of Hits@10 that have the537

most obvious change. From FB15k-237-v1 to FB15k-237-v4,538

the proportion of entities with 0 or 1 triplet is increasing,539

but the results of Hits@10 are lower and lower. Entities540

with 0 or 1 triplet in NELL-995-v1 and NELL-995-v3 are541

higher than those in NELL-995-v2 and NELL-995-v4, but542

the results of Hits@10 shows the opposite characteristics.543

Similarly, on WN18RR-v1, WN18RR-v2, and WN18RR-v4544

the proportion of zero-shot and one-shot entities increases545

significantly compared to WN18RR-v3, the Hits@10 results546

decrease significantly. This also shows that there is still room547

for improvement in the performance of the models in pre-548

dicting zero-shot and one-shot entities, especially GEN and549

models based on logical rules and graph neural networks,550

whose performance drop significantly.551

2) ZERO-SHOT AND ONE-SHOT ENTITY PREDICTION552

Taking WM18RR-v3 and WN18RR-v4 as examples, the553

prediction results of the models based on GNN and554

meta-learning on zero-shot entities and one-shot entities are555

displayed in a finer granularity. As shown in Fig. 4, the556

statistical metrics are Hits@1, Hits@3, and Hits@10, and557

FIGURE 3. Distribution of test entities with different triplets on all
benchmark datasets.

the missing models in the histogram indicate that the corre- 558

sponding results are zero. From the diagram, we can see that 559
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FIGURE 4. Zero-shot and one-shot entity prediction results on WN18RR-v3 and WN18RR-v4.

FIGURE 5. MRR results of different types of relations on WN18RR-v4.

MILP yields better results in all other cases except that it560

performs poorer on Hits@1 and Hits@3 in the one-shot561

entity prediction of WN18RR-v3, especially for zero-shot562

MILP has obvious advantages. The results of Gmatching are563

unstable because it relies too much on background infor-564

mation. The model GEN, which predicts by obtaining the565

embedding representations of entities, has not achieved good566

performance. GraIL and CoMPILE are also significantly 567

more effective in handing one-shot than zero-shot. In addi- 568

tion, it is found that the results of GraIL andGENon zero-shot 569

are poor on all experimental datasets, and MILP has obvious 570

advantages on Hits@10. 571

3) EVALUATION ON DIFFERENT RELATION TYPES 572

Fig. 5 illustrates theMRR results ofMILP, CoMPILE, GraIL, 573

Gmatching, and GEN onWN18RR-v4 with different relation 574

types. It can be seen that in addition to the result of one-to- 575

one relations on WN18RR-v4 is slightly lower than that of 576

GraIL, the best results are obtained byMILP on one-to-many, 577

many-to-one, and many-to-many relations, explaining that it 578

has more advantages in dealing with complex relations. 579

V. CONCLUSION 580

We propose the model MILP using meta-learning and graph 581

neural network for inductive link prediction in knowledge 582

graph. Through meta-learning, four different relation types of 583

tasks are trained to learn better initialization parameters and 584

improve the prediction results of the model. In this article, 585

we extract new inductive link prediction datasets from public 586

knowledge graphs to set up scenarios for few-shot entity 587
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prediction, and MILP is compared with the baseline models588

on these inductive datasets. The experimental results show589

that MILP has better generalization ability than the baseline590

models. In most datasets, MILP achieves the best prediction591

results about AUC, AUC-PR, and Hits@10. Finally, a finer-592

grained analysis indicates the effectiveness of MILP in pre-593

dicting entities with only 0 or 1 triplet and different types of594

relations.595

In future work, we will continue to study inductive link596

prediction, the directions we’re interested include: i) using597

external resources to enhance the representation of entities598

and relations; ii) enhancing the information capture capability599

of GNN by data enhancement [46] and iii) exploring the600

method to improve prediction accuracy of zero-shot entities.601
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