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ABSTRACT Link prediction aims to predict the missing facts in knowledge graphs. Most previous work
focuses on the transductive link prediction, which cannot predict unknown entities. However, knowledge
graphs are evolving in practical scenarios and new entities are constantly added. A graph neural network
based on subgraph structure can effectively make predictions on a knowledge graph composed of unknown
entities. Based on this method, we propose a new inductive link prediction model MILP, which uses
meta-learning to predict unseen entities on few-shot data. Specifically, MILP divides the training data into
four tasks according to the relation types and constructs a subgraph structure of each triplet, and then trains
each task sequentially through the meta-learning framework which uses graph neural network to score the
triplets. Experiments are carried out on the benchmark inductive link prediction datasets, and the results
show that in most cases the proposed model achieves better results than the baseline models, proving the
effectiveness of MILP.

INDEX TERMS Few-shot learning, graph neural network, knowledge graph completion, link prediction,

meta-learning.

I. INTRODUCTION

Knowledge graphs (KGs) are knowledge bases composed
of a large number of facts. Representing facts form reality
in from of the triplet (head entity, relationship, tail entity)
establishing the relationship between entities is the most
typical representation method. In recent years, knowledge
graphs already played an important role in supporting for
information retrieval [1], intelligent question answering [2],
[3] recommendation system [4], and other fields related to
artificial intelligence [5], [6]. However, most constructed
knowledge graphs are incomplete due to the limitations of
existing knowledge and extraction algorithms. Actually, even
the widely used large-scale knowledge graphs such as Free-
base [7] and Wikidata [8] meet missing data. Therefore, how
to improve the incompleteness of knowledge graphs is an
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urgent problem to be solved. At present, a large number of
studies focus on link prediction, which completes knowledge
graphs by predicting the missing links.

The most widely used link prediction models based on
embedding method. This kind of models project entities and
relations into continuous low-dimensional vector spaces and
learn appropriate vector representations for them by formulat-
ing scoring functions and training mechanisms. For example,
TransE [9] projects entities and relations into the real-valued
vector space, then it lets the vector representation of the
head entity in the target triple equal to the vector sum of
the tail entity and their relation representation. TransH [10]
improves on the basis of TransE, and the projection based
on relationship is proposed. The same entity corresponding
to different relations is projected to different relationship
spaces in different triplets, so it has different vector represen-
tations. TransH obtains better prediction results on complex
relations. Similar works include DistMult [11], RotatE [12],
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FIGURE 1. lllustration of transductive and inductive link prediction in
knowledge graphs.

and DTransE [13], ect. Such models show good performance
when predicting seen entities. As shown in Fig. 1, the red
entities and relations represent those in target triplets, and the
yellow dotted lines represent link prediction on knowledge
graphs. The entities in Fig. 1(a) are all seen entities, and
the prediction in this scenario is also called transductive link
prediction. Relatively, Fig. 1(b) illustrates the inductive link
prediction which refers to making prediction on a knowledge
graph containing unseen entities, where the dotted nodes
represent unseen entities. The embedding-based model can
effectively learn the representations of seen entities only,
but not the unseen entities, so the unseen entity cannot be
predicted after training. However, the data in the real world
are constantly changing. For example, new members are
often added to social networks, and new products and new
users are constantly appearing in recommendation systems.
Using this kind of models to make prediction on new entities
requires retraining the updated knowledge graph, which is
expensive. Therefore, it is of great significance to establish
a model suitable for inductive link prediction for real-world
applications.

Currently, some research uses external resources to obtain
the embedding representations of unseen entities. For exam-
ple, DEAL [14] uses the attribute information of entities for
inductive link prediction. Fu ef al. [15] design two agents
using reinforcement learning. On the one hand, extracting
entity-related information from the corpus to enrich knowl-
edge graph, and on the other hand, performing dynamic
reasoning. Ali et al. [16] use pre-trained language model-
Sentence BERT [17] to obtain entity representation from
Wikipedia, and the authors also divide inductive link pre-
diction into semi-inductive and fully-inductive scenarios.
Although this method can effectively predict inductive links,
it spends additional time and resources to train external
resources, which are usually not easy to obtain.

Another inductive link prediction method is to learn the
logical rules in knowledge graphs. The method first learns the
rules appearing in the knowledge graph during training, then
it applies the learned rules to prediction. However, the models
based on logical rules are inherently poor in expression and
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are difficult to be generalized. Teru et al. [ 18] regard relational
prediction task as a logical induction problem, they use graph
neural network (GNN) to predict the relations by modeling
the subgraph structures of target triplets and prove the method
can also learn logic rules contained in the knowledge graph.
In addition, the GNN models using subgraph structures are
independent of representations of nodes and has inductive
characteristics naturally.

The data in real-word knowledge graphs follow a long-
tailed distribution, i.e., most relations and entities have only
a few triplets. Taking Wikidata for example, there are around
10% relations have no more than 10 triplets [19], and about
82.6% entities have only one triplet [20]. Especially for the
setting of inductive link prediction, the newly added entity has
a smaller number of triplets. However, most of the current
work assumes that the entities and relations in knowledge
graphs have sufficient triplets, such as the GNN models
based on the subgraph structure [18], [21], most entities and
relations in the data occur more frequently than those in the
knowledge graphs from real world, which make the inductive
link prediction task easier and their function on few-shot data
are limited.

In this paper, we present a Meta-learning network based on
GNN for Inductive Link Perdiction (MILP), which can still
work effectively on few-shot data. The relations in knowledge
graphs can be divided into four types: one-to-one, one-to-
many, many-to-one, and many-to-many, and we group triplets
with the same relation type to the same task. Therefore, four
corresponding tasks are obtained: 71, 72, 73, and 74. Then
the GNN is used as the scorer, and meta-learning is used
to train each task in turn to improve the prediction ability
of the model, so that the model can obtain more expressive
relation representations and initialization parameters. Finally,
few-shot samples are extracted from three public datasets:
FB15k-237, WN18RR, and NELL-995, and the predictive
ability of the model is verified on these inductive link pre-
diction test sets.

The contributions of our work are summarized as follows:

1) We tackle arealistic problem of few-shot data and focus
on the link prediction in knowledge graphs, aiming to
perform link prediction among unseen entities, where
each entity has only few triplets.

2) A meta-learning inductive link prediction model MILP
learning subgraph features in knowledge graphs is pro-
posed, which can be generalized to unseen knowl-
edge graphs naturally, and it still validly on few-shot
data.

3) Our inductive link prediction experiments on the
benchmark datasets show that MILP achieves better
AUC, AUC-PR, and Hits @10 in most cases.

The remainder is structured as follows. In Section II,
we introduce the classical models related to our work and
compare them with ours. The detailed description of our
model is shown in Section III. Section IV presents the
experimental results. Section V is our conclusion about the

paper.
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Il. RELATED WORK

A. LOGIC RULES BASED

Inductive logic programming (ILP) is a machine learning
method for mining relational structure. Starting from specific
examples, it summarizes the general rules of these examples
and finally learns the first-order logic symbol rules that are
easy to understand by human beings. Therefore, the learning
process is also a process of rule generalization. But it assumes
a large potential space and is difficult to apply to large-scale
knowledge bases. The link prediction models based on log-
ical rules mainly learn the rules implied in the knowledge
bases. Zeng et al. [22] propose QuickFOIL to solve the
problem of large hypothetical space by formulating top-down
greedy search strategy and pruning candidate sets. Quick-
FOIL reduces the search space, but only learns rules with
high confidence. AMIE [23] proposes partial completeness
hypothesis to construct counterexamples, it formulates new
confidence measurement standards, and tests rule mining on
knowledge bases. RuleN [24] also redefines the calculation
method of confidence to learn the rules that help reasoning.
AMIE calculates confidence on the whole knowledge graph,
but RuleN approximates it by random sampling. RuleN can
mine longer path rules and has good effect in inductive link
prediction.

TensorLog [25] represents the reasoning of the first-order
logic in the form of matrix multiplication and establishes
the connection between logical reasoning and differential
operation. Yang et al. [26] propose an end-to-end differen-
tial logical reasoning model Neural-LP based on TensorLog,
Neural-LP makes it possible to learn logical rules using
gradient-based optimization, and has the ability to reason
independently of entity representations. DRUM [27] theo-
retically proves that the logic rules generated by Neural-LP
have limitations, and a bidirectional recurrent neural network
is proposed to enhance the information capture ability in the
process of rule learning, which shares the information when
reasoning.

However, the obvious disadvantage of the method based
on logical rules is that it cannot learn enough rules when the
knowledge graphs are sparse.

B. GRAPH NEURAL NETWORK BASED

Graph neural networks extend neural networks for process-
ing data represented in graphs [28], [29]. Gilmer et al. [30]
unify the neural network models on graphs as Message Pass-
ing Neural Network (MPNN) and point out the difference
between these models lies in defining the message function,
aggregation function, and readout function. It provides a new
way for the comparison and extension of graph neural net-
work models. RGCN [31] designs a relation-specific aggre-
gation function, which applies different parameter matrices to
neighbor nodes connected by different relations, first perform
feature aggregation respectively, and then perform informa-
tion fusion and update nodes. GraphSAGE [32] uses the
attribute information of entities to generate the embedding
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representation of unknown entities, thus achieving the pre-
diction of unknown entities. GralL [18] proposes a naturally
inductive graph neural network message passing paradigm
and improves RGCN [31]. The model aggregates the neigh-
bor information of the head entity and the tail entity of a
triplet, updating based on their common neighbor informa-
tion. It consists of three parts: 1) extracting subgraphs of target
triples; ii) labeling nodes in subgraphs; and iii) scoring triplets
through GNN. CoMPILE [21] strengthens the role of reations
in message passing and introduces the node-edge message
transmission mechanism to update the nodes and edges.
TACT [33] models the relational topological structures in
the knowledge graph, and then uses the relational correlation
module and graph structure module to train. The graph neural
network models GralLL. and CoMPILE based on subgraph
structure have strong inductive learning ability, so the similar
method is used to construct and update subgraph information
in this paper.

C. META-LEARNING BASED

Meta-learning also called learning to learn, i.e., using dif-
ferent tasks to learn universal experience. Meta-learning for
few-shot learning aims to obtain favorable generalization
ability through a small amount of training samples and
quickly apply to new tasks. There are two main research
directions: i) Method based on optimization, which usually
used to learn initialization parameters with strong generaliza-
tion. MAML [34] is a model-agnostic meta-learning model,
which can be used for classification, regression, and other
gradient-based models without introducing additional neural
network parameters. MAML calculates the gradient once
within the tasks whereas Reptile [35] updates the parame-
ters using a simpler method saved the computational cost.
ii) Method based on metric learning, it tends to extract the
features contained in the task samples to the greatest extent
and uses feature comparison to determine the types of test
samples. For example, Matching Nets [36] uses cosine sim-
ilarity to measure features in embedding space and achieves
classification by calculating the matching degree of the test
samples.

The application of meta-learning in link prediction
is mostly used to implement few-shot relation learning.
Xiong et al. [19] propose a one-shot relation learning frame-
work GMatching to address the problem of insufficient train-
ing samples for newly added relations. GMatching treats
each relation as a meta-learning task and uses a similar-
ity function to measure the similarity between known and
unknown triplets under the same relation. It requires that
each relation in a query set need to appear at least once in
the support set to learn appropriate similarity metric through
training, at the same time, it uses entities’ one-hop neighbor
information to better represent the entities. Wang ef al. [37]
note that rare entities in triples often appear with uncommon
relations and formulate it as a few-shot completion problem.
Then they collect the text description information of entities
and relations from Wikidata and DBpedia to enhance the
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FIGURE 2. Visual illustration of MILP. The yellow dotted lines represent the predictions on the target triplets.

representations of triplets. Meta-Graph [38] learns multiple
graphs using meta-learning framework, and then predicts
links on few-shot data. Lv et al. [39] use high frequency
relations to obtain the optimized model parameters and apply
them to the low frequency relations. GEN [40] improves
RGCN to learn the embedding representations of unknown
entities, adding neighbor relations in the process of neighbor
information aggregation and using the average aggregation
function to generate the representation of neighbor informa-
tion. GEN regards each entity as a task and uses support sets
as the input of the neural network to obtain the representation
of the entities, and then passes the learned representation to
the entities in the query sets. GEN and Gmatching are part of
the comparison models in this paper.

Ill. METHODOLOGY

A. OVERVIEW

In a triplet (h, r, t), h represents the head entity, ¢ represents
the tail entity and r represents the relationship between them.
Giving the missing triplet (?,r,¢) or (h,r,?), our model
is used to predict the missing entity. The knowledge graph
used for training is expressed as Grrin = {(h,r,t)|h,t €
Virains ¥ € RTvain}, and the knowledge graph used for testing
is expressed as Grosr = {(h,r,t)|h,t € Ve, ¥ € Rppgt),
where R7y4in and Ry represent the relation set in the train-
ing knowledge graph and test knowledge graph, Ry, C
Rtrain- Vivain and Vrog represent the entity set in the train-
ing knowledge graph and test knowledge graph respectively.
In transductive link prediction, Vy,ss C V7yain, Whereas in the
inductive link prediction of our work, Vzuin N Vs = 0, ie.,
a fully-inductive scenario.

Raghu et al. [41] prove that MAML is effective due to the
reuse of features, i.e., the model parameters contain high
quality features, so it can effectively make predictions on
new data. Therefore, our model uses meta-learning to learn
representations of relations and better initialization param-
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eters to improve the accuracy of prediction results, at the
same time, it achieves inductive ability through GNN based
subgraph structure. Fig. 2 is the frame diagram of MILP, the
process consists of four steps: i) The relations in the train
graph are divided into four types by calculating the average
appearing counts of entities contained in the relations [42].
In terms of the division rule, we record the average degree of
the head entities and tail entities under any relation r as ry
and r;, respectively. If both r; and r; are less than 1.5, the
relation r is called a one-to-one relation, if only r; < 1.5,
the relation r is a one-to-many relation, if only r; < 1.5,
the relation r is a many-to-one relation, if neither r, nor r;
is less than 1.5, the relation r is a many-to-many relation.
Then regard triplets with the same type of relation as the
same task, resulting in 7y, 73, 73, and 7Ty tasks. ii) Extracting
subgraphs from the neighbor information for target triplets
in each task, and labeling the nodes in the subgraphs.
iii) The training of the meta-learning network, which will be
discussed in Section III-C. The triplets in each task 7; are
randomly divided into a support set D; and a query set Q;
in a ratio of approximately 4:1, which are disjoint. iv) After a
fixed training epochs, the model with best verification results
on the query set is saved for testing. About 15% of the triplets
are randomly selected from the test graphs as test triplets, and
other triplets are saved as background information for the test
triplets, denoted as G7,,,.

B. CONSTRUCTION OF SUBGRAPH STRUCTURES

For a target triplet (h, r, t), its directed closed subgraph is
obtained firstly by finding the common neighbors of 4 and #,
and then the nodes in the subgraph are initialized based on
their relative positions.

1) SUBGRAPH EXTRACTION
The neural message passing scheme assumes that the neigh-
bors of (h, r, t) contain the information about it [18].
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Therefore, the directed closed subgraphs of target triplets are
extracted firstly by following CoMPILE [21], which consist
of the nodes on the path from % to ¢ and the edges between
them. N Okm(h) and ./\fl],‘l (¢) are the set of k-hop outgoing neigh-
bors of h and the set of k-hop incoming neighbors of ¢,
respectively. Calculating N fm (h) ﬂ./\/i’;(t), then removing the
isolated nodes and nodes only located on the path length more
than k+1, we obtain the k-hop directed common neighbors
of the target triplet, as shown in Fig.2, the gray nodes are
discarded. The k-hop directed closed subgraph G 1) of the
target triplet is generated by adding relations between the
associated nodes.

2) NODES LABELING

When initializing the nodes in the directed closed subgraph,
we represent the nodes according to the relative position of
the nodes in the subgraph on the basis of the representation
rule in GralLL [18], which is unrelated to the characteris-
tics of the nodes themselves. For each neighbor node v; in
the directed closed subgraph, the shortest distance d(v;, h)
from v; to h and the shortest distance d(v;, t) from v; to t are
calculated. Then represent the initial value of v; as [one-
hot(d (v;, h)) @ one-hot(d(v;, t))], where @ is the connection
operation. & and ¢ are specially marked as (0, 1) and (1, 0) to
differentiate from the neighbors. As shown in Fig.2, the nodes
of the subgraph are labeled with (d(v;, 1), d(v;, t)).

C. THE NETWORK FRAMEWORK OF MILP

After obtaining the subgraph representations of target triplets,
the subgraph data are input into the meta-learning network
framework, which updates model parameters based on the
total loss on query set in each task.

1) SCORING NETWORK

The meta-learning framework can use different graph neural
network models to score, the CoMPILE [21] message passing
method is adopted which introduces edge attention mecha-
nism to aggregate the information of nodes and relations for
updating. Given the closed subgraph G, , ) of triplet (A, r, t),
the target relation r is taken as a learning parameter, and the
information of the triplet is expressed as:

T=h+r—t )

where h, r and ¢ represent embeddings of &, r and ¢, respec-
tively. In the k-th layer, the edge attention of edge i is:

df = fi(TF & THWE) )

where Ti.‘ represents the triplet of current edge i, T ]é rep-
resents the target triplet in the subgraph, W’; is a learnable
weight matrix, and fi is a two-layer nonlinear transformation.
In the k-th layer, the embedding of edge i is:

k k k k
E; =h; ©r; &t 3)
The edge i with attention is expressed as:
ka k ok
E = o' E} @)
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In layer k+1, the nodes are updated as:

Vil = Ak )
VI = fi(Vig +VOWHD ©)

where A™ is the adjacency matrix representing the connection
of tail entities and edges, E*« and Wﬁ“ are the parametric
matrices used to learn the embeddings of nodes, Vﬁ;;,l repre-
sents the aggregated neighbor information in layer k41, and
yk+l represents the updated nodes. The final score function

is defined as:

S =f(Tg) ™

where f> represents the nonlinear transformation to improve
the expressive ability of the model, [ represents the number of
layers, and T Ig represents the final representation of the target
triplet.

2) META-LEARNING REGIME

The purpose of meta-learning is to learn better parameters
for the model, so as to correctly predict missing entities.
We train each task 7; in turn. Firstly, the positive and negative
sampling triplets are input into the graph neural network, and
the corresponding scores are output. Then we use the hinge
loss function proposed by TransE [9] to calculate the loss.
As shown in (8), £ represents the training loss in a batch.
Among them, ¢ represents the batch size, p; and n; represent
the positive and negative samples, respectively, and y is a
hyperparameter representing the margin.

le]
L= max(0,S(n;) —Spi) +y) @®)

i=1
Then, the model parameters are updated by gradient
descent to make the model score the positive sampling triplets
higher than the negative sampling triplets. In task 7;, the sup-
port set D; is used firstly to calculate the updated parameters
through one or more gradient descent, and the parameters

updated by a batch are expressed as:

0’ =0 —a\/La(fo) ©)
0

where « represents the learning rate, and d; is a batch of sam-
ples randomly selected from D;. Then we use 8’ to calculate
the loss of the query set Q; and accumulate the loss of all
batches within a task, finally we update 6 according to the
total loss.

k
Acsum = ‘quf,:l (f(?‘) + Z ‘qu (fa/) (10)

=1

6 =0~ B\ Lam (11)
0

where B represents the meta-learning rate, k represents the
total number of batches, and ¢} represents a batch of samples
randomly selected from Q; at the t-th iteration. Different
from MAML, the parameters of neural network are updated
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TABLE 1. Statistics of inductive benchmark datasets.

FB15k-237 NELL-995 WN18RR
relations nodes links relations nodes links relations nodes links
vl train graph 85 1312 3221 10 1585 3834 9 4475 9604
test graph 85 902 1614 9 540 1590 9 2435 3427
v train graph 93 1923 3430 39 1135 3382 6 6092 10586
test graph 93 1233 1934 36 834 1549 6 2159 2971
V3 train graph 105 4191 9685 57 3141 6585 11 15871 35735
test graph 45 1427 2155 57 2246 6035 11 5779 7203
va train graph 62 2304 3649 25 1255 4314 6 4307 8313
test graph 54 1460 1946 25 1424 2027 6 8553 13914

after a task. The operation in Equations (8)-(11) for each
task is performed, and the final parameters are obtained
after fixed epochs of training. The specific process is shown
in Algorithm 1.

Algorithm 1 MILP Training
Input: GNN parameters 0, learning rate «, meata-learning
rate B, meta-training task set Tynera—rraining
Output: GNN parameters
1: while not done do
2: Get the tasks 7;neta—training from Tmeta—training

3 for 77 in 7;neta—training do

4 Shuffle the batchs in 7;

5 for iteration=1, 2, ...k do

6: Sample datapoints d; from D;

7 Calculate the batch loss Lg,(fp) via (8)
8 0 —0—aVyLa,(fy)

9: Sample datapoints ¢; from Q;

10: if iteration == 1 then
11: Calculate the batch loss Ly (fy) via (8)
12: end if
13: Calculate the batch loss Ly, (fe; ) via (8)
14: end for
15: Calculate the total loss of Ly, via (10)

16: 0 <—6— ,BVOLSWH
17:  end for
18: end while

IV. EXPERIMENTS

The experimental datasets in this paper are derived from three
benchmark datasets: FB15k-237, WN18RR, and NELL-995.
The purpose of our experiments is to verify the effectiveness
of the proposed model for inductive link prediction on few-
shot data.

A. EXPERIMENTAL SETUP

1) DATASETS

FB15k-237 [43], WNI18RR [44], and NELL-995 [45] are
three public datasets for knowledge graph reasoning, initially
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used for transductive link prediction. Teru et al. [18] extract
four datasets suitable for inductive link prediction from each
of them, the entities in training set and test set of each dataset
are disjoint. Referring to the division of Teru et al., we make
modifications on the basis of their datasets and further extract
few-shot inductive datasets. The extracted datasets have the
following characteristics: i) small amount of data, the propor-
tion of entities that contain only a few triplets is increased,
and the triplets for most entities do not exceed 30; ii) the
relations of each dataset includes four types: one-to-one, one-
to-many, many-to-one, and many-to-many, the relations have
the same relation types in the training set and test set; iii)
meeting the requirements of inductive link prediction, and we
include entities not present in background information in test
triplets. The specific information is shown in Table 1. All the
experiments in this paper are carried out on these inductive
datasets.

2) BASELINES

The baselines include: RuleN [24] based on statistical rules,
differentiable models Neural-LP [26] and DRUM [27] based
on logic rules, GralL [18] and CoMPILE [21] based on graph
neural network, and Gmatching [19] and GEN [40] based
meta-learning. To test the inductive ability of the models,
none of the models used embedding methods to obtain ini-
tial representations of entities and relations. It should be
point out that Gmatching aims to predict one-shot relations.
SPeCiﬁcally, Riyain N Riest = 9, Viest € Viygin- And in the
created datasets NELL-One and Wiki-One [19], Gmatching
uses triplets removed training data and test data as back-
ground information. This scenario is different from ours,
and we achieve very poor results with the same setting on
our datasets. In our experiments, Gy, and G’Tm are used
as the background information for Gmatching during train-
ing and test, respectively, which can provide more accurate
information for target triplets, thus the prediction results of
Gmatching are significantly improved. During the experi-
ments, the settings of baseline models are consistent with the
best settings pointed out by the authors in their papers and
codes, including hyperparameters, etc.
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TABLE 2. Inductive link prediction results of AUC.

FB15k-237 NELL-995 WNI18RR
vl v2 v3 v4 vl v2 v3 v4 vl v2 v3 v4
RuleN 64.70 53.58 45.11 4440 69.19 4460 5041 3898 2925 5141 4742 4044
Neural-LP 4437 31.88 29.82 26.55 34.00 3424 6132 5496 23.19 47.77 35.10 39.90
DRUM 4235 3247 41.89 2639 38.04 34.65 6393 5582 2355 4785 44.13 39.85
GralLL 88.18 80.58 6299 6376 70.89 6226 89.81 71.20 S1.11 58.13 7237 5441
CoMPILE 89.13 91.77 8427 69.87 8352 7530 9688 6500 53.77 5236 81.76 59.58
Gmatching 7529 6140 5295 5329 73.17 59.77 69.88 63.38 53.65 64.79 54.11 45.36
GEN 78.69 57.79 7326 6041 77.08 63.69 82.64 7408 4995 5129 73.66 58091
MILP 91.76 93.82 88.85 7131 9199 9259 9348 5645 5798 66.17 8296 65.87
TABLE 3. Inductive link prediction results of AUC-PR.
FB15k-237 NELL-995 WNI18RR
vl v2 v3 v4 vl v2 v3 v4 vl v2 v3 v4
RuleN 64.65 60.19 56.85 50.70 77.18 53.00 5041 38.98 49.23 55.02 61.78 49.03
Neural-LP 69.96 6292 56.77 5190 57.65 5455 6132 5496 49.61 5590 56.83 52.00
DRUM 67.59 63.16 5574 51.56 62.14 55.06 6393 5582 5022 56.03 6563 5199
GralL 90.96 85.68 69.64 6742 8242 67.05 89.81 7120 5158 5770 7556 54.82
CoMPILE 92.02 9273 88.57 77.18 76.76 7729 96.88 65.00 57.30 57.29 8349 61.44
Gmatching 7220 60.30 5324 5336 70.83 59.25 7248 60.00 57.33 6236 5597 50.51
GEN 78.53 5634 7288 5944 7595 62.62 82.87 7090 49.63 51.67 70.72 54.93
MILP 93.12 9474 9194 78.01 91.76 91.09 9320 6260 5833 7351 84.02 71.28

3) EVALUATION METRICS

AUC, AUC-PR, Mean Reciprocal Rank (MRR), and Hits @k
(k =1, 3, 10) are used as the evaluation metrics. AUC and
AUC-PR are used during training, MRR and Hits @k are also
used during testing. AUC and AUC-PR, which respectively
represent the probability of positive samples have higher
scores than negative samples and precision-recall curve, gen-
erate a negative sample for each positive sample when they
are calculated. MRR is the mean reciprocal rank of positive
samples. Hits @k is the proportion of positive samples ranked
in top-k among all test triplets. When calculating MRR and
Hits@k, the evaluation of each target triplet includes two
groups of samples. The first group is the prediction of the
head entity, including one positive sample and 49 negative
samples obtained by randomly substituting the head entity
of the positive sample with other entities. The second group
predicts the tail entity, including one positive sample and
49 negatives samples obtained by randomly substituting the
tail entity of the positive sample with other entities.

4) IMPLEMENTATION

The model is implemented in PyTorch, equipment used is
Tesla P100 with 12GB RAM. In the experiments, the first
and second layers of fi, and f> are the ReLU, Tanh and the
Sigmoid activation function, respectively. 3-hop neighbors of
the directed closed subgraph are extracted, and the training
epochs are set to 50. The margin in loss function y = 10,
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and the number of GNN layers / = 3. In WN18RR-v2 and
WNI18RR-v4 we use fine-turning mechanism to improve
AUC and AUC-PR. More implementation details of MILP
and the baselines are shown in the supplementary materials.

B. RESULTS AND DISCUSSION

On the datasets created in this paper, the proposed model is
compared with baselines. Running 10 times on each test set,
we get relatively stable results.

1) MAIN RESULTS

The best results for all models of AUC, AUC-PR, and
Hits@10 are shown in Table 2, Table 3, and Table 4. Num-
bers in bold denote the best results on each dataset while
the underlined ones are the suboptimal results. It can be
seen that in most cases GNN based and meta-learning based
models achieve better results than logical rule based models.
MILP achieves the best results for the most part, in partic-
ular, on NELL-995-v2 outperforms the suboptimal models
on AUC and AUC-PR by 17.29% and 13.80% respectively,
and 22.99% higher than the suboptimal model about Hits@ 10
on WN18RR-v4. CoMPILE is the second-best model with
respect to AUC and AUC-PR, and GralL. and Gmatching
are the second-best models of Hits@ 10. MILP has the best
performance on all three metrics on the FB15k-237 and
WNI18RR datasets. On NELL-995-vl and NELL-995-v2,
Gmatching has better Hits@10 than MILP, it probably
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TABLE 4. Inductive link prediction results of Hits@10.

FB15k-237 NELL-995 WNI18RR
vl v2 v3 v4 vl v2 v3 v4 vl v2 v3 v4
RuleN 64.53 42,03 2250 1559 79.09 2243 4548 2643 0.88 10.05 29.53 4.66
Neural-LP 4825 3158 18.15 5.97 46.26 17.71 4434 1640 1.80 12.06 39.13 445
DRUM 48.99 3229 15.05 6.06 47.82 18.46 46.21 1633 1.80 1206 47.83 4.39
GralLL 77.03 5891 2750 19.64 67.82 2563 89.23 39.11 2.59 1256  36.99 5.08
CoMPILE 75.68 57.81 26,52 1397 5545 2605 90.85 40.71 3.03 10.05 3458 594
Gmatching  70.27 5030 33.84 3279 83.82 39.83 73.04 52.68 30.26 39.20 4356 13.61
GEN 4459 1594 3598 12.65 38.55 2421 51.62 3929 1.58 3.52 3646 7.14
MILP 81.08 6031 37.77 3391 8145 36.34 9212 5839 3386 42.11 52.77 36.60

because the one-hop neighbors of the target triplets pro-
vide more valuable information as Gmatching aggregates all
one-hop neighbor information. On NELL-995-v3 and NELL-
995-v4, the lower AUC and AUC-PR of MILP may be due to
the datasets contain noisy data, which reduce the ability of
MILP to distinguish positive samples from negative samples.

We observe that test results on different datasets show great
differences, mainly due to the different number of triplets
in the background information owned by the test entities in
different datasets, and the test entities refer to the entities
in the test triplets. In particular, the prediction results of
link prediction models on zero-shot and one-shot entities
are lower, so increasing the proportion of that entities will
lead to lower overall test results of the datasets. Zero-shot
entities are those that only appear in the test triplets, and
one-shot entities refer to entities that only appear once in
the background information. Fig.3 shows that the propor-
tion of test entities with different number of triplets on all
benchmark datasets. For example, compare and analyze the
content of Fig. 3 and the results of Hits@10 that have the
most obvious change. From FB15k-237-v1 to FB15k-237-v4,
the proportion of entities with 0 or 1 triplet is increasing,
but the results of Hits@10 are lower and lower. Entities
with 0 or 1 triplet in NELL-995-vl and NELL-995-v3 are
higher than those in NELL-995-v2 and NELL-995-v4, but
the results of Hits@10 shows the opposite characteristics.
Similarly, on WN18RR-v1, WN18RR-v2, and WN18RR-v4
the proportion of zero-shot and one-shot entities increases
significantly compared to WN18RR-v3, the Hits@ 10 results
decrease significantly. This also shows that there is still room
for improvement in the performance of the models in pre-
dicting zero-shot and one-shot entities, especially GEN and
models based on logical rules and graph neural networks,
whose performance drop significantly.

2) ZERO-SHOT AND ONE-SHOT ENTITY PREDICTION

Taking WM18RR-v3 and WNI18RR-v4 as examples, the
prediction results of the models based on GNN and
meta-learning on zero-shot entities and one-shot entities are
displayed in a finer granularity. As shown in Fig. 4, the
statistical metrics are Hits@1, Hits@3, and Hits@10, and
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FIGURE 3. Distribution of test entities with different triplets on all
benchmark datasets.

the missing models in the histogram indicate that the corre-
sponding results are zero. From the diagram, we can see that
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FIGURE 5. MRR results of different types of relations on WN18RR-v4.

MILP yields better results in all other cases except that it
performs poorer on Hits@1 and Hits@3 in the one-shot
entity prediction of WN18RR-v3, especially for zero-shot
MILP has obvious advantages. The results of Gmatching are
unstable because it relies too much on background infor-
mation. The model GEN, which predicts by obtaining the
embedding representations of entities, has not achieved good
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performance. GralL and CoMPILE are also significantly
more effective in handing one-shot than zero-shot. In addi-
tion, it is found that the results of GralLL. and GEN on zero-shot
are poor on all experimental datasets, and MILP has obvious
advantages on Hits@10.

3) EVALUATION ON DIFFERENT RELATION TYPES

Fig. 5 illustrates the MRR results of MILP, COMPILE, GralL,
Gmatching, and GEN on WN18RR-v4 with different relation
types. It can be seen that in addition to the result of one-to-
one relations on WN18RR-v4 is slightly lower than that of
GralL, the best results are obtained by MILP on one-to-many,
many-to-one, and many-to-many relations, explaining that it
has more advantages in dealing with complex relations.

V. CONCLUSION

We propose the model MILP using meta-learning and graph
neural network for inductive link prediction in knowledge
graph. Through meta-learning, four different relation types of
tasks are trained to learn better initialization parameters and
improve the prediction results of the model. In this article,
we extract new inductive link prediction datasets from public
knowledge graphs to set up scenarios for few-shot entity
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prediction, and MILP is compared with the baseline models
on these inductive datasets. The experimental results show
that MILP has better generalization ability than the baseline
models. In most datasets, MILP achieves the best prediction
results about AUC, AUC-PR, and Hits@ 10. Finally, a finer-
grained analysis indicates the effectiveness of MILP in pre-
dicting entities with only O or 1 triplet and different types of
relations.

In future work, we will continue to study inductive link
prediction, the directions we’re interested include: i) using
external resources to enhance the representation of entities
and relations; ii) enhancing the information capture capability
of GNN by data enhancement [46] and iii) exploring the
method to improve prediction accuracy of zero-shot entities.
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