
Received 12 August 2022, accepted 24 August 2022, date of publication 12 September 2022, date of current version 20 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3203973

Parkinson’s Disease Detection Using Smartphone
Recorded Phonemes in Real World Conditions
MOHAMMOD ABDUL MOTIN 1,2, (Senior Member, IEEE),
NEMUEL DANIEL PAH 2,3, (Member, IEEE), SANJAY RAGHAV2,
AND DINESH KANT KUMAR 2, (Senior Member, IEEE)
1Department of Electrical and Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
2School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
3Electrical Engineering Department, Universitas Surabaya, Surabaya 60293, Indonesia

Corresponding author: Dinesh Kant Kumar (dinesh.kumar@rmit.edu.au)

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Ethics Committee of Monash Health, Melbourne, Australia, under Application No. LNR/16/MonH/319, and the RMIT
University Human Research Ethics Committee, Melbourne, Australia, under Application No. BSEHAPP22-15KUMAR.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

ABSTRACT Parkinson’s disease (PD) is a multi-symptom neurodegenerative disease. There are no
biomarkers; the diagnosis and monitoring of the disease progression require clinical and functional symptom
observation. Voice impairment is an early symptom of PD, and computerized analysis of voice has been
proposed for early detection and monitoring of the disease. However, there is poor reproducibility of many
studies, which is attributed to the experimental data having been collected under controlled conditions.
To overcome the limitations of earlier works, this study has investigated three sustained phonemes: /a/,
/o/, and /m/, which were recorded using an iOS-based smartphone from 72 participants (36 people with
PD and 36 healthy) in a typical clinical setting. A number of signal features were obtained, statistically
investigated, and ranked to identify the suitable feature sets. These were classified using machine learning
models. The results show that a combination of phonemes /a/+/o/+/m/ was most suited to differentiate the
voice of PD people from healthy control participants, with an average accuracy, sensitivity, and specificity
of 100%, 100%, 100%, respectively, using leave-one-out validation. The findings of this study could assist
in the clinical assessments and remote telehealth monitoring for people with parkinsonian dysarthria using
smartphones.

15 INDEX TERMS Dysarthria, Parkinson’s disease, smartphone, sustained phonemes, voice impairment.

I. INTRODUCTION16

Parkinson’s disease (PD) is the second most common neu-17

rodegenerative disorder [1], which is expected to increase18

with an ageing population. There are no biomarkers to diag-19

nose the disease, which requires the observation of the com-20

plex set of symptoms of the patients. Acoustic speech abnor-21

malities have been reported even in early-stage PD patients22

and even when there is no perceptible dysarthria [2]. Sev-23

eral investigators have found impaired speech parameters24

in early-stage PD using objective acoustic measures [3],25

[4]. Several studies have investigated the difference between26
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the voice of PD and healthy control (HC) using different 27

approaches [4], [5], [6], [7], [8], [9], [10], [11], [12]. 28

Human speech requires fine-motor control, cognitive abil- 29

ities, auditory feedback, and muscle strength. Parkinsonian 30

dysarthria can be characterized by reduced vocal tract loud- 31

ness, reduced speech prosody, imprecise articulation, signif- 32

icantly narrower pitch range, longer pauses, vocal tremor, 33

breathy vocal quality, harsh voice quality, and disfluency 34

[4]. The differences in the voice parameters of sustained 35

phonemes have been examined for detecting and monitor- 36

ing PD [4], [13], [14]. A number of works have consid- 37

ered the signal features previously used for speech stud- 38

ies, such as speaker recognition [15], [16]. The investi- 39

gation of sustained phoneme and text-dependent speech 40
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modalities for PD screening is reported in [13]. However,41

such analysis has confounding factors such as language42

skills, vision and hearing [17]. Tsanas et al. [18] have43

extended this to associate thesewith themotor disability score44

of PD patients.45

The use of non-linear and hybrid features such as the46

fractal dimension (FD), entropy [19], deep multivariate fea-47

tures [20], and linear predictive models [21], [22] has been48

proposed. Godino-Llorente et al. [12] proposed an articula-49

tory biomarker based on the kinetic envelope trace of voice50

that had an accuracy of 85%. In [6], 132 features were51

extracted from phonemes recorded in a sound-treated booth52

with a head-mounted microphone to train a support vector53

machine (SVM) and random forest classifier which achieved54

an accuracy of 97.7% and 90.2%, respectively to identify PD55

from HC.56

Signal features have often been selected based on the57

understanding of the disease [23], [24]. The difference58

between the voice of healthy people and those with PD has59

been observed in their pitch frequency, jitter, shimmer, and60

harmonics to noise ratio [25]. The pitch frequency or the61

fundamental frequency of the vocal cords, f0, is the number62

of cycles of the glottal vibration. Jitter, the perturbation of the63

glottal vibration period, is influenced by the motor control,64

rigidity, and tremor of the larynx. Shimmer, the amplitude65

perturbation, is related to the glottal resistance and increases66

with a lack of fine muscle control. Harmonics to noise ratio67

(HNR) or noise to harmonic ratio (NHR) indicates the relative68

harmonic strength are the ratios between the periodic (voiced)69

and non-periodic (noise) components of the speech. These70

reduce with diminished glottal vibration and low HNR is an71

indicator of dysarthria. However, some of these parameters72

may also be affected by other factors such as age, gender, and73

ethnicity.74

The above studies have shown that there are several75

signal features that show significant differences between76

the voice of PD and HC. However, most studies have77

not considered real-world conditions where there is back-78

ground noise, and there are differences between record-79

ing devices and conditions [26], [27], [28]. There are only80

a few studies that used data recorded in real-life clinical81

setup [19], [29], [30]. Therefore, further work is required82

to validate the use of this for real-life scenarios, especially83

for remote monitoring of the patients and other telehealth84

applications.85

The aim of this study was to identify the most suitable86

signal classification method that can differentiate between87

PD and HC when the recordings are made in real-world88

conditions.We investigated the phonatory parameters of three89

sustained phonemes and compared people with PD with HC.90

The data were recorded in a typical clinical setting to check91

for its real-world suitability using smartphones [31], [32].92

Besides the statistical analysis, the SVM classifier was used93

to classify the voice in two classes: PD and HC. The proposed94

model provides the following advantages over the existing95

alternatives:96

FIGURE 1. The block diagram of identifying PD from HC using sustained
phonemes. The model is trained and tested using 72 PD and HC
participants.

1. Data were recorded in a normal clinical setting and with 97

background noise conditions. 98

2. The recordings were made using commercially available 99

smartphone with default settings. 100

3. Only three phonemes were recorded and it was not depen- 101

dent on language skills. 102

4. The performance was perfect, with 100% sensitiv- 103

ity and specificity, outperforming the state-of-the-art 104

methods. 105

II. MATETRIALS AND METHODS 106

A. PARTICIPANTS 107

Seventy-two age-matched volunteers comprising 36 people 108

with PD and 36 healthy age-matched participants as the HC 109

group participated in this study. The data can be found in 110

our previously reported work [30]. All the people with PD 111

had been diagnosed with PD within the last ten years based 112

on procedures complying with the Queen Square Brain Bank 113

criteria for idiopathic PD [33]. The presence of any advanced 114

PD clinical symptoms such as visual hallucinations, frequent 115

falling, cognitive disability, or need for institutional care was 116

an exclusion criterion [34]. People with PD were recruited 117

from the movement disorder clinic at Monash medical cen- 118

ter and Dandenong neurological clinic while the HC group 119

participants were recruited from several retirement centers. 120

Table 1 presents participants’ demographics, cognitive stage, 121

and health history. The UPDRS-III scores [35] of all the par- 122

ticipants show a clear difference between the groups, while 123

the MoCA score confirms that both PD and HC did not have 124

cognitive impairment. 125

The study protocol was approved by the ethics 126

committee of Monash Health, Melbourne, Australia 127

(LNR/16/MonH/319) and RMITUniversity HumanResearch 128

Ethics Committee, Melbourne, Australia (BSEHAPP22- 129

15KUMAR). Before the experiments, written consent was 130

obtained from all the participants. 131

B. METHODS 132

Figure 1 illustrates the block diagram of the proposed method 133

of classifying PD from HC. As shown in Figure 1, three 134

phonemes were recorded from PD and HC participants using 135

a smartphone. Each phoneme was segmented before extract- 136

ing features from it. Machine learning based classification 137

was applied to identify PD from HC. The detail of each 138

section is described below: 139
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TABLE 1. Participants’ demographics and clinical characteristics.

TABLE 2. Duration of the recordings.

1) VOICE RECORDING140

Three sustained phonemes /a/, /o/, and /m/ were recorded141

from each participant. The phonemes were selected to exam-142

ine a range of voice production models [36]. The vowel /a/,143

as in ‘‘car’’, is an open-back or low vowel, produced while144

the jaw is wide open, with the tongue that is inactive and145

low in the mouth. In this, the vibration of the vocal folds146

dominates the sound of the vowel. The vowel /o/, as in147

‘‘oh’’, is a closed-mid-back vowel. The back of the tongue148

is positioned mid-high towards the palate, and the lips are149

rounded. The phoneme /m/ is a nasal phoneme produced by150

the vibration of the vocal folds with the air flowing through151

the nasal cavity. Although all three phonemes require control152

of the respiratory and laryngeal vocal fold muscles, there are153

considerable differences in patterns of activation of the rostral154

muscles of articulation (of pharynx, tongue, jaw, and lips).155

The participants were asked to speak the phonemes for as156

long as it was comfortable, in their natural pitch and loudness.157

During the recording, they held the smartphone as if they158

were talking a phone call. The voice of 72 participants (36159

PD and 36 HC) was recorded using an iOS-based smartphone160

(iPhone 6S plus) with its built-in microphone and default set-161

tings, while the participants were located in typical Australian162

clinics or office settings. The recordings were saved into a163

single-channel uncompressed WAV format with a sampling164

frequency (fs) of 48.1 kHz and a 16-bit resolution. Each file165

contained one single sustained phonemewith varied duration,166

as shown in Table 2. In between each recording, there was167

minimum 15 seconds rest time.168

2) AUTOMATED SEGMENTATION AND FEATURE169

EXTRACTION170

All computations, including pre-processing, automated seg-171

mentation, and statistical analysis, were performed using172

Matlab2018b (MathWorks) and Python. All the recorded173

phonemes were segmented using an envelope detection and174

thresholding approach. The signal features were computed175

from each segment. Recordings with the voice of the instruc- 176

tor were removed. In the original recordings, the signal-to- 177

noise ratio was 16-24 dB (average 19.26 dB), similar to 178

typical Australian clinical conditions. The first step for fea- 179

ture extraction was to locate the time instances (ti) and the 180

amplitude (Ai) of the pulses in the recording representing the 181

glottal vibration. The instantaneous period of the glottal wave 182

(Ti) was calculated as the difference between subsequent 183

instances of the pulses, Ti = ti+1 − ti. 184

The first set of features were six jitter parameters: jitter 185

absolute (jitter abs), jitter relative (jitter rel), period pertur- 186

bation quotient-3 (jitter ppq3), period perturbation quotient- 187

5 (jitter ppq5), period perturbation quotient-11 (jitter ppq11), 188

and frequency modulation (Jitter FM).Here, ppq3, ppq5, and 189

ppq11 are the perturbation of the difference between Ti and 190

the moving average of Ti with a window size of 3, 5, and 11, 191

respectively. The equations to calculate jitter parameters [32] 192

are shown in equations 1 to 6: 193

Jitter (abs) =
1

N − 1

∑N−1

i=1
|Ti+1 − Ti| (1) 194

Jitter (rel) =
1

N−1

∑N−1
i=1 |Ti+1 − Ti|
1
N

∑N
i=1 Ti

(2) 195

Jitter (ppq3) =

1
N−2

∑N−1
i=2

∣∣∣Ti − ( 1
3

∑i+1
n=i−1 Tn

)∣∣∣
1
N

∑N
i=1 Ti

(3) 196

Jitter (ppq5) =

1
N−4

∑N−2
i=3

∣∣∣Ti − ( 1
5

∑i+2
n=i−2 Tn

)∣∣∣
1
N

∑N
i=1 Ti

(4) 197

Jitter (ppq11) =

1
N−10

∑N−2
i=6

∣∣∣Ti − ( 1
11

∑i+5
n=i−5 Tn

)∣∣∣
1
N

∑N
i=1 Ti

(5) 198

Jitter (FM ) =
max(Ti)Ni=1 −min(Ti)Ni=1
max(Ti)Ni=1 +min(Ti)Ni=1

(6) 199

Six shimmer parameters that were extracted from the 200

segments are the absolute shimmer (shimmer abs in dB), 201

the relative shimmer (shimmer rel), amplitude perturbation 202

quotient-3 (apq3), amplitude perturbation quotient-5 (apq5), 203

amplitude perturbation quotient-11(apq11), and amplitude 204

modulation (Shimmer AM). Here, apq3, apq5, and apq11 205

represent the perturbation of the difference between Ai and 206

the moving average of Ai with a window size of 3, 5, and 11, 207

respectively. The calculations to compute shimmer parame- 208

ters are described in equations 7 to 12. 209

Shimmer (abs, dB) =
1

N − 1

∑N−1

i=1

∣∣∣∣20 ∗ log(Ai+1Ai

)∣∣∣∣ 210

(7) 211

Shimmer (rel) =
1

N−1

∑N−1
i=1 |Ai+1 − Ai|
1
N

∑N
i=1 Ai

(8) 212

Shimmer (apq3) =

1
N−2

∑N−1
i=2

∣∣∣Ai − ( 1
3

∑i+1
n=i−1 An

)∣∣∣
1
N

∑N
i=1 Ai

213

(9) 214
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Shimmer (apq5) =

1
N−4

∑N−2
i=3

∣∣∣Ai − ( 1
5

∑i+2
n=i−2 An

)∣∣∣
1
N

∑N
i=1 Ai

215

(10)216

Shimmer (apq11) =

1
N−10

∑N−5
i=6

∣∣∣Ai − ( 1
11

∑i+5
n=i−5 An

)∣∣∣
1
N

∑N
i=1 Ai

217

(11)218

Shimmer (AM ) =
max(Ai)Ni=1 −min(Ai)Ni=1
max(Ai)Ni=1 +min(Ai)Ni=1

(12)219

Teager-Kaiser energy operator (TKEO) measures the220

energy of a time varying signal. It detects the amplitude and221

frequency modulation of a signal by estimating the product222

of time varying amplitude and frequency. Mean, standard223

deviation, and percentile values of TKEO for the contour T0224

and A0 were computed.225

HNR and NHR quantifies noise in the speech signal, which226

is due to the incomplete closure of vocal folds. The standard227

deviation of pitch was computed from the instantaneous pitch228

frequency f0 = 1/T0. The HNR and NHR were calculated229

based on the normalized autocorrelation function of the seg-230

ment. Rxx[T0] is the peak at Rxx corresponding to the T0 of the231

recordings, the HNR and NHR were calculated as described232

in equations 13 and 14 [37], [38]:233

HNR = 10 ∗ log
Rxx[T0]

1− Rxx[T0]
(13)234

NHR = 1− Rxx[T0] (14)235

Glottal Quotient (GQ) measures the required time to open236

or close the glottis. The mean and standard deviation of237

the time when vocal folds were apart (glottis is open) or in238

collision (glottis is closed) were also computed. The voice239

analysis toolbox [7], [8], [39], which used DYPSA [40] algo-240

rithm, was used to compute GQ.241

Glottal to Noise Excitation ratio (GNE) measures the noise242

in the signal and the turbulent noise created due to incomplete243

closure of vocal fold could be captured by GNE features [41].244

GNE was computed using the following steps proposed by245

Michaelis et al. [42].246

• Down sampling the phonemes recordings to 10 kHz and247

inverse filtering to detect each glottal cycle.248

• Computing the Hilbert envelopes to each glottal cycle249

with a different frequency.250

• Obtaining the maximum value among the cross-251

correlation of pair-wise envelopes where the central fre-252

quencies of the bands are greater than half the band-253

width.254

Vocal fold excitation ratio (VFER) is a measure to detect255

dysphonia. Proper glottis cycle results in synchronous exci-256

tation on different frequency bands; however when this is257

impaired, there is turbulence and there is asynchronous and258

uncorrelated excitation on a different frequency and thus259

reduced VFER.260

The above-mentioned features aremainly targeted for char-261

acterizing vocal fold dynamics as it is affected in PD patients.262

Since the coordinators of articulator of vocal tract such as 263

tongue, jaw, lips are also affected by PD [43], we incorporated 264

those features that best characterize the vocal tract coordina- 265

tors such as mel-frequency cepstral coefficients (MFCCs). 266

MFCCs measures the energy of speech signal in each 267

frequency band (equation 15). Since the coordinators of artic- 268

ulators of the vocal tract such as the tongue, jaw, lips are also 269

affected by PD [43], it is hypothesized that MFCC will be 270

different for PD and HC. 271

MFCCn =
∑K

k=1
Ekcos[n(k − 0.5)

π

K
] (15) 272

where n = 0, . . . ..,L. L is the number of MFCC. Ek 273

is the mean energy of kth frequency band. In addition to 274

MFCCs, features from the first- and second- time derivative 275

of MFCC that are known as delta and delta-delta coeffi- 276

cients respectively were computed which have been used for 277

voice quality assessment [39], [44]. We computed 22 MFCC 278

features. 279

Spectral analysis is used to understand the oscillatory trend 280

of the signal but does not carry the temporal information. 281

Wavelet transform (WT) is a technique that is based on the use 282

of time limited waves, referred to as wavelets, and performs 283

multi-resolution, time-frequency analysis. In this context, 284

it converts the single dimension time domain signal to two- 285

dimensional time-frequency domain without losing the tem- 286

poral information. The discrete WT (DWT) decomposes the 287

signal into different frequency bands into approximation and 288

detail coefficients, with each scale corresponding to scaling 289

of the frequency by half. In this study, the recordings were 290

decomposed at level 10 which covers the entire audible range 291

of the recordings. Daubechies 10 (Db10) mother wavelet 292

was chosen as the vanishing moment. Energy, entropy, and 293

TEKO features were computed from each DWT decomposed 294

approximation and detail coefficients. 295

C. FEATURE SELECTION 296

A large number of features increases the risks of overfitting, 297

can lead to higher error, and increases the computational 298

complexity [45], [46]. That is why the exclusion of redundant 299

features is necessary [46]. During feature selection, the first 300

step was to identify those features that were tested to be 301

statistically different (p < 0.0001) for the two groups using 302

the Mann-Whitney U test. Next, feature selection algorithms 303

were applied to identify the best features. For the removal 304

of algorithm bias, four different feature selection algorithms 305

were compared: i) infinite latent feature selection (ILFS), ii) 306

least absolute shrinkage and selection operator (LASSO), iii) 307

Relief-F, and iv) unsupervised discriminative feature selec- 308

tion (UDFS). 309

D. MODEL TRAINING AND CLASSIFICATION 310

Support vector machine (SVM)-based machine learning clas- 311

sifier was deployed to label the selected features into two 312

classes: PD and HC. The details of the SVM classifier and 313

cross-validation are described below. 314

VOLUME 10, 2022 97603



M. A. Motin et al.: PD Detection Using Smartphone Recorded Phonemes in Real World Conditions

FIGURE 2. Performance evaluation of the proposed model. The dataset
consists of 72 PD and HC participants. The model performance is
evaluated using the leave one out cross validation.

1) SUPPORT VECTOR MACHINE315

Support vector machine (SVM) is a widely used supervised316

machine learning technique for classification. The decision317

boundaries or hyperplanes are developed based on the support318

vectors during training.319

Let, vector x denotes the feature to be classified and its320

label is denoted by y where yε(+1,−1). Now, for a given321

set of training data, {(xi, yi) , i = 1, 2, . . . ., n}, the separat-322

ing hyperplanes can be obtained by maximizing the margin,323

which is the minimization of the following function.324

J (w, β) =
1
2
wTw+ C

∑
βi325

With the following constrain function326

yi(wT x + b)� 1− βi where βi ≥ 0327

Here, w is the weight vector, b is a constant, C is a positive328

regularization parameter, and βi is the slack variable. Apply-329

ing the Lagrange multipliers αi, for vector x, the solution of330

the decision function can be expressed as:331

w =
∑

αiyixi332

f (x) =
∑

αiyixTi x + b333

For the nonlinear SVM, a nonlinear mapping function ϕ(x)334

is used to map the input feature into a higher dimensional335

feature space, thus making the samples more separable:336

f (x) =
∑

αjyjK
(
xj, x

)
+ b337

where, xj are the support vectors and K
(
xj, x

)
is the kernel338

function, for the polynomial kernel K
(
xj, x

)
= (x j.x + 1)d339

and radial basis function (RBF) kernel K
(
xj, x

)
=340

exp
(
−γ

∥∥xj − x∥∥2). SVM details can be found in [47].341

In this study, SVM with linear, polynomial and RBF kernels342

were used.343

FIGURE 3. The classification accuracy using Relief-F based feature
selection techniques for phoneme /a/, /m/, /o/, and /a/+/m/+/o/
respectively. These results were computed using leave one subject out
cross validation techniques.

TABLE 3. The performance of the model is assessed on both individual
and combination of phonemes.

2) CROSS VALIDATION 344

We evaluated the model performance using leave one out 345

cross validation (LOOCV) techniques [48]. The LOOCV 346

method uses N-1 subjects for model training, 1 for testing, 347

and is repeated N times, so that each subject gets a chance 348

to be tested. The final result is the mean of the individual 349

evaluations. The detail of the model training and testing 350

using LOOCV is illustrated in Figure 2. Accuracy, sensitiv- 351

ity, specificity, and F1-score were computed as performance 352

metrics. 353

III. RESULTS 354

A. STATISTICAL ANALYSIS AND PD CLASSIFICATION 355

Anderson-Darling test confirmed that the voice parameters of 356

three different sustained phonemes for two groups were not 357

normally distributed and thus unsuitable for the parametric 358

test. So, the group differences and significance of each feature 359

for PD vs. HC were computed using Mann-Whitney U test 360

[49]. Features having p-value ≤ 0.0001 were the input to 361

the Relief-F feature selection algorithms to sort the most 362

significant features from the pool of feature sets. The model 363

performance with the variation of the sorted features of each 364

phoneme using SVM classifier is shown in Fig 3. For all 365

phonemes, the accuracy of the model increases with the 366
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FIGURE 4. Confusion matrix for PD vs. HC classification. The confusion
matrix for individual and combination of phonemes are shown in the top
and bottom of the figure respectively.

increasing number of features till 15. The model performance367

remained almost unchanged between feature number 15 to368

40 and the performance decayed after any inclusion of fea-369

ture beyond 40. Since, the non-significant features have a370

very low separable capability, the inclusion of large num-371

ber of insignificant features may mislead the classifier and372

decreases the classification accuracy. As is observed from373

Fig. 3, inclusion of features above 40 reduces the model374

performance.375

The accuracy of the proposed model with top 15 sorted376

features extracted from individual phoneme /a/, /m/, and o/377

using SVMwith RBF kernel is 97.22%, 95.83%, and 98.66%378

respectively. Based on the combined features extracted from379

two phonemes, PD classification was 97.22%, 98.66%, and380

100% for /a/+/m/, /m/+/o/, and /a/+/o/, respectively. The381

proposed model accuracy became 100% when the features382

obtained from the three phonemes /a/+/m/+/o/ were com-383

bined. The detailed performance of the proposed model using384

the different combinations of phonemes is shown in Table 3.385

It is found that features extracted from phoneme /o/ identi-386

fied PD from HC with higher accuracy compared to other387

phonemes and the inclusion of features from phonemes /a/388

and /m/ improved the performance. It showed the highest389

performance when features from all three phonemes were390

combined to train the model. The confusion matrix is shown391

in Fig. 4. The confusion matrix summarises the predicted392

and actual classes, providing an accurate assessment of the393

performance by providing true positives, true negatives, false394

positives, and false negatives.395

B. COMPUTING THE EFFECT SIZE AND SPEARMAN396

CORRELATION OF EACH SIGNIFICANT FEATURE397

The statistically significant features of each phoneme were398

sorted and ranked by the ReliefF-based feature selection tech-399

nique. The effect size computed by Cohen’s d and the Spear-400

man correlation coefficient of each selected phonemes are401

shown in Table 4. Based on the Mann-Whitney U test, each402

feature was assessed for statistical significance, and the cor-403

responding p-value is listed in Table 4. The two-dimensional404

FIGURE 5. Selected pair of smartphone-recorded phonemes features
plotted in two-dimensional space with optimal decision boundary (black
line) between PD and HC for phoneme /a/ (left), /m/ (middle), and /o/
(right).

TABLE 4. Effect size, Spearman correlation and p-value of top five
features from each phoneme /a/, /m/, and /o/ using ReliefF based
feature selection algorithm.

representation of the top two features of each phoneme is 405

demonstrated in Fig. 5. 406

C. ROBUSTNESS OF THE MODEL 407

A larger sample size is necessary for the training to repre- 408

sent modelled phenomena. However, with limited labelled 409

data samples, which is often the case with medical data, the 410

resultant model needs to be tested for robustness. Hence, the 411

system performance as a function of the minimum number 412

of data points (participants) was conducted and is presented 413

in Fig. 6. The performance was obtained by increasing the 414

number of participants from 8 to 50 at an increment of 6. 415

For this purpose, the complete dataset was subdivided into 416

two groups to construct the training set and they were ran- 417

domly subdivided to get the training set by stratified random 418

sampling. This ensured that class balance was maintained 419

for the training set. Each step was iterated ten times and the 420
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TABLE 5. The comparison of the proposed model with the existing studies in literature for two class (sleep-wake) classification problem.

FIGURE 6. Evaluation of model performance with different number of
training subjects. The boxplot represents the distribution of accuracy of
the model for a different number of training subjects varies from 8 to 50.
The box represents the 1st, median, and 3rd quartile of the accuracy using
a varying number of subjects from the training pool randomly for ten
iterations. The average accuracy of ten iterations is shown as a circle in
each box.

results were averaged. The average system performance as a421

function of the minimum number of data points (participants)422

is shown in Fig. 6. The figure shows that accuracy improved423

with the increasing number of training subjects and plateaued424

with 14 subjects with classification accuracy reaching above425

95.00%.426

IV. DISCUSSION427

People with PD often have dysarthria or speech impairment428

which may appear in phonatory, articulatory, prosodic, and429

linguistic aspects. The change is complex and character-430

ized by reduced loudness, reduced speech prosody, impre-431

cise articulation, significantly narrower pitch range, longer432

pauses, vocal tremors, breathy vocal quality, harsh voice 433

quality, and dysfluency [4]. Speech disorders are related to 434

several factors such as inability to perform habitual tasks, loss 435

of fine control, weakness, tremor, and rigidity of the speech 436

production muscles. 437

This study has investigated the use of the utterance of 438

phonemes /a/, /o/, and /m/ for differentiating the voice of 439

people with PD from HC. The classification results confirm 440

that identifying the voice of HC from PD improves when the 441

combination of phonemes /a/+/m/+/o/ are used. The results 442

also indicate that among the single phonemes, /o/ is more 443

effective in differentiating the two groups than phoneme /a/ 444

and /m/. The phoneme /a/ is produced while the tongue is 445

pressed towards the jaw and the lips are wide open. Similarly, 446

the production of the phoneme /m/ does not require voice 447

box muscles because the lips are closed, and the air is passed 448

through the nasal cavity. On the other hand, the production 449

of phoneme /o/ requires precise positioning of the tongue 450

at a mid-height position and the small-rounded position of 451

the lips [50] than /a/ and /m/. Since the production of the 452

phoneme /a/ and /m/ does not require the precise control of 453

the tongue and lips, the tremor or weakness in the tongue or 454

lips positioning should be more prominent in the production 455

of /o/ than /a/ and /m/. This supports our finding that PD and 456

HC are better distinguished with /o/ compared to /a/ and /m/. 457

However, these are only logical deductions at this stage, and 458

further research needs to be conducted to confirm these. 459

It was also found that the MFCC and the features from the 460

first and second derivatives of MFCC of phonemes /a/, /m/, 461

and /o/ were significantly different between PD and HC. The 462

cepstral analysis identifies the changes to the source and vocal 463

cord factors, and this observation confirms that Parkinsonian 464

dysarthria is associated with these changes. The average log 465
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energy of phoneme /a/ was found to be significantly different466

which also indicates the reduced source strength of PD.467

The significant difference between PD andHC ofHNR and468

GNER of phoneme /o/ indicates the weakened vocal cords,469

due to which the relative voiced noise compared to resonatory470

sound is higher in the voice of PD. The classification results471

show that the inclusion of these features improves the model472

performance. The classification accuracy was 100% when473

using these features from the three phonemes, /a/, /m/, and /o/.474

Since, PD is a multi-symptom disease with complex display475

of the symptoms, and while the analysis of each phoneme476

captures some of the symptoms, it is the combination of477

all the three that appears to be capturing all the symptoms478

of the disease. The study has also investigated the effect of479

sampling frequency in differentiating between PD and HC.480

For sampling frequencies, fs = 48.1 kHz and 8 kHz, the481

model shows exactly similar results. This indicates that the482

relevant frequency of interest is less than 4kHz.483

Further, this work explored the performance of the four fea-484

ture selection algorithms for phoneme-based PD classifica-485

tion. Though ReliefF and ILFS slightly performed better than486

LASSO and UDFS, similar performance was noticed for the487

higher number of features. It was also observed that any top488

twenty features selected by any of the four-feature selection489

algorithms showed above 95% classification accuracy.490

The performance comparison of our approach with the491

existing state-of-art techniques in the literature is summarized492

in Table 5. As shown in Table, the model performance for493

phonemes recorded in noise-free soundproof environment494

with a microphone varies from 89.5% to 97.7%. On the other495

hand, the model performance varies from 81% to 93.1% for496

phonemes recorded in a normal clinical setting. While the497

ambient noise resulted in a fall of performance of the models498

in literature by 5.6% to 8.4%, our proposed model was less499

prone to the ambient noise and capable of identifying PD500

from HC with 100% accuracy.501

There are four major achievements of this study. Firstly,502

it has been found that people with PD and healthy503

age-matched have the most significant difference in the pro-504

duction of the phoneme /o/ which is differentiable even with505

background noise and recorded using handheld smartphone.506

The statistical analysis and classification results confirm that507

the voice features of phoneme /o/ can discriminate people508

with PD from HC participants more accurately than /a/ and509

/m / but the combination of phonemes /a/, /m/ and /o/ is510

the most accurate. Secondly, it has shown that computerized511

assessment of the voice of people with PD is suitable for512

real-world, regular clinical settings with background noise513

and using low sampling rate smartphone. Thirdly, this model514

requires only phonemes and thus, it is language independent.515

Finally, the model is trained and tested without favoring516

hyperparameters that are tailored to a specific gender, so this517

is a gender independent model.518

The limitation of this study is that we did not consider519

factors such as accents because all participants were of sub-520

urban Melbourne only. There is also the need to test the521

individual multiple times to check for the repeatability of the 522

results and to use multiple devices while this study used one 523

phone only. Another weakness of this study was that people 524

with PD were more than two years post-diagnosis and not in 525

the very early stage of the disease. 526

V. CONCLUSION 527

This study has investigated the use of sustained phonemes 528

for computerized diagnosis of PD based on the utterance of 529

three phonemes /a/, /o/, and /m/ recorded using a handheld 530

smartphone in real-world clinical conditions with ambient 531

noise conditions of about 20 dB. It has been found that there 532

were number of features with significant differences between 533

PD and HC. After feature selection from the three phonemes, 534

/a/+/m/+/o/, the classifier differentiated between HC and PD 535

with 100% accuracy. Two prominent differences between PD 536

and HC based on the selected features are a decrease in voice 537

energy and increase in relative voice-noise. The novelty of 538

this study is the selection of the acoustic features that are 539

suitable for differentiating between PD and HC while using a 540

handheld smartphone and is not sensitive to clinical ambient 541

noise conditions. This study shows the potential of using 542

phoneme based computerised diagnosis of PD that can be 543

performed remotely using a smartphone. It has applications 544

for assisting in the clinic or for telehealth. 545
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