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ABSTRACT This paper proposes risk-aware energy management for drive mode control in plug-in hybrid
electric vehicles (PHEVs) to reduce fuel consumption. This paper focuses on reducing fuel usage in scenarios
in which energy demands along a planned route are stochastically estimated using historical driving data.
In this scenario, the proposed method evaluates the risk of high energy consumption based on the conditional
value at risk (CVaR) and entropic value at risk (EVaR) derived from Chernoff’s inequality. The CVaR
quantifies the high fuel consumption expected in the tail of the probability distributions as a cost function.
In contrast, the EVaR bound constraint provides stochastic constraints of electricity capacity based on
the property of the cumulant-generating function. Each risk evaluation is formulated as a mixed-integer
exponential cone programming problem by expressing the drive modes of a PHEV as binary variables. The
proposed method was demonstrated using a detailed vehicle simulator with real-world driving cycles. The
designed controller achieved, on two selected routes, 8.60% and 16.09% improvements on average, and
10.75% and 12.85% reductions at the 75th percentile compared to a commercial method. The simulations
indicated that we can design the controller characteristics by adjusting the risk-awareness of energy loss.
The conservativeness of the risk evaluation is also discussed based on the simulation results.

INDEX TERMS Energy management, optimization-based control, plug-in hybrid electric vehicles, risk
measurement.

I. INTRODUCTION
Energy management strategies for plug-in hybrid electric
vehicles (PHEVs) have been studied extensively [1], [2], [3].
These strategies have also been discussed mathematically
as an energy allocation problem. For PHEVs, automobiles
generate driving power by consuming fuel or electricity
from energy resources. The characteristics of the resources
vary depending on the driving states of the mechanisms,
e.g., combustion engine, storage systems, gears, and wheels.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mauro Gaggero .

To achieve a desirable fuel economy under these char-
acteristics, researchers have proposed statistical data-base
power train control and energy allocation methods in recent
years [4], [5], [6], [7].

Commercial PHEVs adopt a rule-based method called
the charge-depleting and charge-sustaining (CDCS) method
because of its simplicity. The CDCS rule is as follows:
1) depleting stored electricity from a battery; 2) consum-
ing fuel to cruise the remaining course and sustain a state
of charge (SoC) of the battery. The CDCS method is not
optimal in terms of fuel economy when the battery capacity
is less than the required energy for the entire travel [8].
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This simple rule-based method has been used because of
the lack of computational resources.1 This computing envi-
ronment is improving, and management systems can now
utilize statistical information. In [4], [9], and [10] employing
dynamic programming as a model-based optimization, finite-
horizon prediction enabled online calculations. The finite-
horizon control method has a tradeoff between computational
burden and performance, i.e., the horizon length. In [11], [12],
and [13], dynamic programming-based energy management
approaches were developed by assessing measured cycle
data. These methods model the most representative trip based
onmeasured data and predict the power demands of a vehicle.
The representative trip model approximates the energy con-
sumption of long distances as deterministic values, facilitat-
ing long-sighted management. Driver-aware vehicle control
methods for hybrid electric vehicles have also been proposed.
Driver behaviors are modeled as aMarkov chain for scenario-
based stochastic model predictive control (MPC) [6] or a
multi-objective optimization framework [14]. The optimiza-
tion method provides a personalized controller for the driver
while considering driving conditions. In [15], [16], [17], and
[18], traffic data-driven predictive control frameworks were
developed, and the methods achieved near-optimal fuel con-
sumption. As more advanced strategies utilize traffic data,
some energy management systems can access real-time infor-
mation containing vehicle speed, terrain, and infrastructure
via vehicle-to-vehicle (V2V) and vehicle-to-cloud (V2C)
connection technology [19], [20]. The V2V- and V2C-based
methods model and observe traffic data and traffic light infor-
mation to infer the energy consumption in real time. Because
this method obtains a large amount of data, it is also highly
compatible with machine learning, which is constantly evolv-
ing. References [17], [21] used machine learning techniques
to avoid complex numerical optimization. Our previous stud-
ies [22], [23] presented a method for utilizing historical driv-
ing data and verified its effectiveness through experiments.
The experiments showed that the proposed approach achieves
a 15.9% improvement on average compared with the CDCS
method.

The above-mentioned approaches utilize statistical infor-
mation such as human behavior and environments. These
methods belong to the class of stochastic control methods.
More recently, because a large amount of data can be col-
lected, risk-aware methods have received considerable inter-
est [24], [25], [26], [27], [28], [29]. Risk-aware control and
management have been widely discussed and accepted in
finance and operations research [30], [31]. For quantifying
the risk measure, high-order moments and cumulants and the
conditional value at risk (CVaR) are considered in [24], [30],
[32], [33], and [34]. The studies [33], [34] analyzed cost-
cumulant control for continuous- and discrete-time linear-
quadratic problems. A stochastic optimal control problem
motivated by human behavior was studied in [25], and the

1Another reason is that fuel economy assessments on PHEVs in most
countries assume the CDCS method.

study validated the approach through an experiment using a
robot manipulator. The research [30] addressed an optimal
control problem involving the CVaR in a discrete-time and
discrete-state Markov decision process setting. As an appli-
cation of the CVaR cost control method, real-time scheduling
of residential appliances was presented by [35]. The analy-
sis in [28] examined CVaR safety using recently developed
control barrier functions. A risk-sensitive motion planning
method was provided in [29]. This method embraces the
entropic value at risk (EVaR), which is an upper bound on the
CVaR and value at risk (VaR). The CVaR and EVaR used in
these previous studies are closely related to convex optimiza-
tion and are compatible with optimization-based control.

This paper explores the risk measure characteristics of
statistical data and proposes risk-aware energy management
for drive mode switching in PHEVs. The proposed method
evaluates the risk of energy loss using CVaR cost and
EVaR-bound constraints that were not considered in our pre-
viousmethod [22], [23]. The CVaR quantifies heavy fuel con-
sumption events and can prevent the spread of the probability
distribution in the positive direction. The EVaR can numer-
ically provide a less conservative bound for the stochastic
constraint of the sum of random variables. This is because
the EVaR bound has high-order cumulants defined by the
cumulant-generating function. The CVaR-based cost function
and EVaR-based stochastic constraint enable us to formulate
a one-stage mixed-integer exponential cone programming
(MIECP) problem with a disciplined convex programming
framework. The decision variables are the drive mode inputs
for minimizing fuel consumption. The main contributions of
this study are as follows: 1) Deriving a stochastic constraint
formulation with the EVaR in terms of Chernoff’s inequality.
2) Formulate an MIECP problem to evaluate the energy loss
risk to determine optimal vehicle threshold values on which
the PHEVs select the drive mode. 3) Analysis of the prop-
erties of the proposed method through numerical simulations
using a detailed vehicle simulator called ADVISOR [36] with
real-world data.

The remainder of this paper is organized as follows:
Section II explains some preliminaries to provide the main
result for the proposed method. Section III provides driving-
route and vehicle modeling with updates from our previous
paper [22], [23]. Section IV defines the cost function and the
stochastic constraints and then proposes risk-aware energy
management for the drive mode switching. Section V demon-
strates the effectiveness of the proposed method and analyzes
the sensitivity of the design parameters. The conclusions are
discussed in Section VI.

II. PRELIMINARIES
This section provides some preliminaries to derive the main
results of risk-aware energy management for drive mode
switching. The preliminaries indicate the properties of the tail
distributions for a random variableX . These properties enable
us to assess the tail values of the probability distribution as
risk measures.
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FIGURE 1. Relation to the expected value, VaR, CVaR, and EVaR for a given
confidence level α ∈ [0,1): The graph denotes a probability density
function p(x). The filled area denotes the 1− α% of the area under p(x).

Notation:R is the set of real numbers. E [·] (E [·|·]) denotes
the (conditional) expected value operator. Pr [·] (Pr [· | ·])
denotes the (conditional) probability of interest. For a finite
set V , |V| denotes the number of elements of V .

A. CONDITIONAL VALUE AT RISK
This section introduces a risk measure to assess the tail values
of the probability distribution. Let X ∈ R be a random
variable.
Definition 1 (Conditional value at risk [37], [38]): For a

given confidence level α ∈ [0, 1), the CVaR of the loss
distribution associated with a random variable X is defined
as

CVaRα [X ] := E
[
X |X ≥ VaRα [X ]

]
, α ∈ [0, 1), (1)

where

VaRα [X ] := min {x ∈ R | Pr [X ≤ x] ≥ α} . (2)
(1) and (2) indicate that the CVaR is the mean value of the

(1 − α)-tail distribution of Pr [X ]. Fig. 1 shows the VaR and
CVaR for X with a probability distribution function p(x).
The CVaR cost can be computed by solving the following

linear programming problem [37].

minimize
γ,ξ∈R

γ +
1

1− α

∑
xi

Pr [X = xi] ξ (xi),

subject to xi − ξ (xi) ≤ γ, ξ (xi) ≥ 0.

Moreover, Rockafellar et al. [37], [38] show that the CVaR
cost is a coherent measure of risk defined by Artzner et al.
[39]. Form the properties of the coherent measure, the CVaR
satisfies the subadditivity property.

CVaRα [X1 + X2] ≤ CVaRα [X1]+ CVaRα [X2] .

B. CHERNOFF’s INEQUALITY AND ENTROPIC VALUE AT
RISK
The inequality shown below is known as Chernoff’s
inequality.

Lemma 1 (Chernoff’s Inequality [40]): For a given ran-
dom variable X, constant x0, and positive number λ > 0,
the following inequality holds:

Pr [X ≥ x0] ≤
E
[
exp λX

]
exp λx0

.

Chernoff’s inequality quantifies the tail probability
of X ≥ x0 using high-order moments. This is because
E
[
exp λX

]
is the definition of the moment-generating func-

tion that can be used to obtain themoments of the distribution.
In addition, we define the cumulant-generating function.
Definition 2 (Cumulant-Generating Function [41]): For

a given positive number λ > 0, the cumulant-generating
function of X is defined as

9X (λ) := log
(
E
[
exp λX

])
, λ > 0. (3)

The cumulants can evaluate the high-order centered
moments of X weighed by the parameter λ. The cumulant-
generating function holds the following linear property for
the independent random variables X1,X2.

9(X1+X2)(λ) = 9X1 (λ)+9X2 (λ). (4)

Chernoff’s inequality yields the following upper bound of
the VaR by solving exp−λx0E

[
exp λX

]
= α for x0.

x0(α, λ) :=
1
λ
log(

E
[
exp λX

]
1− α

). (5)

By tightening the upper bound, we introduce another coherent
risk measure.
Definition 3 (Entropic Value at Risk [42]): For a given

confidence level α ∈ [0, 1), the EVaR of the loss distribution
associated with a random variable X is defined as

EVaRα [X ] := inf
λ>0

1
λ
log(

E
[
exp λX

]
1− α

)

= inf
λ>0

1
λ
9X (λ)−

1
λ
log(1− α),

where 9X (·) is the cumulant-generating function defined
in (3).

Fig. 1 shows the EVaR and reveals the relationship
VaRα [X ] ≤ CVaRα [X ] ≤ EVaRα [X ]. This inequality gen-
erally holds [42]. This relationship indicates that the EVaR
is more conservative than the CVaR in evaluating the upper
bound of the VaR for a random variable. However, the EVaR
has a better property for the sum of independent random
variables because of the linearity of the cumulant-generating
function [42]. This property motivated us to use EVaR for the
main result.

III. PROBLEM STATEMENTS AND MODELING
The objective of this paper is to minimize fuel consump-
tion while enforcing a battery capacity constraint on the
driving route. To achieve this, the method optimizes the
drive mode switching depending on vehicle speeds based
on the driving route and vehicle modeling described in
Sections III-A and III-B.
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FIGURE 2. Driving-route modeling: θ(k) is the road grade (deterministic),
V (k) and A(k) are the random variables of the vehicle speed and
acceleration, respectively, and d is the distance of the driving sections.

Given the confidence level α, pc ∈ [0, 1) and a coefficient
β ∈ [0, 1], we examine the following risk-aware energy
management problem:

minimize
Ui

(1− β)E

[∑
i

wf(Xi,Ui)

]

+ β CVaRα
[∑

i

wf(Xi,Ui)

]
, (5a)

subject to: Pr

[∑
i

we(Xi,Ui) ≥ qr (k)

]
≤ 1− pc,

Xi ∈ X , Ui ∈ EV,HV. (5b)

This optimization is a discrete-type stochastic optimal drive
mode control problem. The index i represents the number of
discretized driving sections. wf(·, ·) and we(·, ·) denote fuel
and electricity demand functions, respectively. qr (k) is the
remaining energy of the battery.X is a set of factors affecting
a vehicle’s energy requirement and element Xi ∈ X can be
a random variable. Ui is the input that determines the PHEV
drive modes. The cost function (5a) is the weighted mean and
CVaR of fuel consumption. Risk awareness is adjusted by the
confidence levelα and theweight parameter β. The stochastic
constraint (5b) requires that the probability of depleting the
battery charge is less than or equal to (1 − pc). The con-
straint also evaluates the risk of electricity demand using the
confidence level pc. The remainder of this section presents
the modeling for constructing the optimization problem (5) in
detail. Furthermore, because (5) is an abstract form, a com-
putationally tractable form is discussed in Section IV as the
main result.

A. DRIVING-ROUTE MODELING
This paper introduces the finite and discretized driving route
model shown in Fig. 2. Each discretized section of the route
is assigned numbers 1, 2, . . . , ns, and the sampling distance
d is constant. In Fig. 2, θ (k) denotes the road grade, and
V (k) and A(k) denote discrete random variables of vehicle
speed and acceleration, respectively, in each driving section.
Suppose that the driving route is estimated in advance, e.g.,
a commuter driving and a driving route navigated by systems.
In addition, the following assumptions are made:
Assumption 1: The road grade θ (k) is a deterministic vari-

able. The discrete random variables V (k) and A(k) have

possible values of V :=
{
v1, v2, . . . , v|V |

}
and A :={

a1, a2, . . . , a|A|
}
, respectively.

The road grade can be obtained using network services,
such as the global positioning system and terrain maps.
Vehicle speed V (k) follows a discrete conditional probability
distribution with the Markov property:

Pr
[
V (k + 1) = v′ | V (k) = v

]
≥ 0, v, v′ ∈ V,∑

v′∈V
Pr
[
V (k + 1) = v′ | V (k) = v

]
= 1, (6)

and we define the transition probability matrices 5V (k),
whose

(
jv, j′v

)
-th entry is given by

[5V (k)]jv,j′v := Pr
[
V (k + 1) = vj′v | V (k) = vjv

]
,

jv, j′v ∈ {1, 2, . . . , |V|}. We assume that the initial probabil-
ity distribution Pr [V (1)] is known. In addition, the vehicle
acceleration A(k) follows the following discrete conditional
probability distribution:

Pr [A(k) = a | V (k) = v] ≥ 0, a ∈ A, v ∈ V,∑
a∈A

Pr [A(k) = a | V (k) = v] = 1. (7)

Assumption 2: At the current distance section k ∈

{1, 2, . . . , ns − 1}, the realization of the vehicle speed v(k) ∈
V and the value of the state of charge (SoC) of the battery
soc(k) ∈ [0, 1] are known.
The conditional probability distributions of the speed (6)

and acceleration (7) can be estimated from the driving cycle
data. This paper employs a simple estimation based on the
Nadaraya–Watson kernel regression [43], [44] and Gaussian
functions. Fig. 3 shows an estimated transition probability
matrix and probability distributions of vehicle speed through-
out a trip. The probability distributions in Fig. 3b can be
calculated using the estimated transition matrices5V as

Pr [V (i)] = Pr [V (i− 1)]5V (i), i ∈ {k + 1, . . . , ns},

where

Pr [V (i)] =
[
Pr [V (i) = v1] · · · Pr

[
V (i) = v|V |

] ]
,

Pr [V (k)] =
[
I [v(k) = v1] · · · I

[
v(i) = v|V |

] ]
,

and the Markov property is used. I [·] is the indicator function
of [·], i.e., I [·] = {1 : if [·] is true, 0 : otherwise}.
Fig. 4 depicts four example plots of vehicle speed

versus acceleration at each driving section. By using
collected data such as in Fig. 4, the conditional prob-
abilities of acceleration (7) are also estimated using
the Nadaraya–Watson method and speed probability
distributions.

B. VEHICLE MODELING WITH ENERGY MAPS
This section outlines the vehicle modeling used to calculate
the energy consumption and provides two energy maps. First,
we define the control input u (k,V (k)) as the drive mode
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FIGURE 3. Stochastic modeling of vehicle speed on one driving route: The
sampling distance intervals range from 0 to 32.1 km in increments of
0.1 km.

FIGURE 4. Relationship between speed and acceleration at some
sections on a driving route: The measured data is used to estimate the
conditional probability of the acceleration (7).

of a function of vehicle speed V (k) at each driving section
k ∈ {1, 2, . . . , ns}. Drive modes are classified into two types:
electric-vehicle (EV) and hybrid-vehicle (HV) modes. The
control input is expressed as a vector with respect to the
discrete random variable of the vehicle speedV (k) as follows:

u (k,V (k)) =
[
u (k, v1) , u (k, v2) , . . . , u

(
k, v|V |

)]ᵀ
,

u
(
k, vjv

)
∈ {0, 1} .

The modeling assumptions for the drive mode operation
are as follows. These assumptions are based on the allocation
strategy of the powertrain system implemented in the Prius
PHV (2012 model). In the EVmode (u

(
k, vjv

)
= 1), the elec-

tric motor provides all the power required by the driver, and
the engine is turned off. In the HV mode (u

(
k, vjv

)
= 0), the

engine and electric machines supply the driving force while
maintaining a constant SoC of the battery; the engine mainly
generates the required power. In addition, the regenerated
energy sourced from the brakes is consumed to re-accelerate
the vehicle.

Let us assume that the lateral dynamics of a vehicle are
sufficiently small for energy management. The longitudinal
force freq of the vehicle is obtained from Newton’s second

TABLE 1. Battery Specifications of the Prius PHV (2012 model) [45].

law of motion as

freq =
1
2
cDρahav2 + µrrvmg cos θ + µmg sin θ + ma, (8)

where m is the vehicle mass, g is the acceleration of gravity,
cD is the aerodynamic drag resistance, ρa is the air density,
ha is the vehicle’s frontal area, µrr is the rolling resistance
coefficient, and µ is the coefficient of friction. θ , v, and a
are provided along the driving route model. Let us now recall
the assumptions of the driving modes. The torque demand for
each condition (θ, v, a) can be divided into the engine and
electric motor cases. Hence, to achieve the required force freq
at speed v, the PHEV must generate the following power for
each drive mode.

wf(θ, v, a) = ηf
(
freq, v

)
· freqv, (9)

we(θ, v, a) = ηe
(
freq, v

)
· freqv, (10)

where ηf and ηe denote the energy conversion efficiency
of fuel in the HV mode and electricity in the EV mode,
respectively.

To simplify the calculation of the required
power (9) and (10), this study directly built two energy
consumption maps wf(θ, v, a),we(θ, v, a) depending on the
discretization of the driving-route model. Fig. 5 depicts the
identified energy consumption maps of fuel wf(θ, v, 0) and
electricity we(θ, v, 0) for a = 0 m/s2. In Fig. 5, these maps
are discretized at road grades of −6,−5, . . . , 6 %, vehicle
speeds of 5, 10, . . . , 100 km/h, and vehicle accelerations of
−4.00,−3.95, . . . , 4.00m/s2. The values of the maps are the
average required power for the engine and battery under each
discretized condition. The vehicle parameters in (8) are the
same as those for the Toyota Prius model in ADVISOR [36]
except for battery specifications. The battery specifications
are adjusted to those of the actual Toyota Prius PHV (2012
model) [45] as shown in Table 1. The other structures and
parameters remain at the default settings of the simulator.
In other words, the detailed PHEV model of this study can
be reproduced by reflecting only the values in Table 1. Note
that the energy consumption maps are computed using the
simulation results of ADVISOR. In practical cases, we can
obtain a static map using pre-experimental data and vehicle
specifications.

IV. RISK-AWARE ENERGY MANAGEMENT FOR DRIVE
MODE SWITCHING
This section proposes risk-aware energy management for
drivemode switching based on (5). The optimization problem
in (5) is not computationally tractable from nonlinearity
owing to the CVaR evaluation and stochastic constraint.
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FIGURE 5. Vehicle modeling of a PHEV as two energy consumption maps
wf(θ, v,a),we(θ, v,a) based on the required force (8) and vehicle
speed v : These maps were obtained from a detailed numerical simulator
in this study.

We redefine the problem (5) as an MIECP problem in
tractable form by exploiting the risk measure (CVaR and
EVaR) properties. The solution to the MIECP problem sub-
sequently determines the threshold value of the vehicle speed
for switching the EV and HV modes on each driving section.

A. COST FUNCTION
Let k ∈ {1, 2, . . . , ns} be the current number of driving
sections on the driving route. We consider the following cost
function combined with the mean value and CVaR of fuel
consumption on the route.

ϕα,β = (1− β)EV

 ns∑
i=k+1

w̃f(θ (i),V (i))u(i,V (i))


+β CVaRαV

 ns∑
i=k+1

w̃f(θ (i),V (i))u(i,V (i))

 , (11)

where u(i,V (i)) := 1 − u(i,V (i)), β ∈ [0, 1] is a design
parameter, and

w̃f(θ (i),V (i))

=
EA(i) [wf(θ (i),V (i),A(i))|V (i)]

V (i)
d

=
d
V (i)

∑
aja∈A

Pr
[
A(i) = aja | V (i)

]
wf(θ (i),V (i), aja ).

(12)

EV [·] and CVaRαV [·] denote the expected value and CVaR
cost operators, respectively, for the random variables of
the vehicle speed V (i), i ∈ {k + 1, k + 2, . . . , ns}. From
the structure of the cost function (11), the weight β can
design the risk awareness of control performance. The
weighting factor β increases and a risk-aware optimal solu-
tion reduces the spread of the fuel usage distribution mea-
sured by the CVaR.

The cost function (11) is derived directly from (5a) by
employing the fuel consumption map wf(θ, v, a). Note that

the form of (11) is not a linear cost function because the CVaR
of the sum of random variables is involved. We then consider
a linear function that provides an upper bound on the cost
function (11).

Using the linearity of the expectation and subadditivity of
the CVaR cost, we can transform the first and second terms
of (11) as follows:

EV

 ns∑
i=k+1

w̃f(θ (i),V (i))u(i,V (i))


=

ns∑
i=k+1

EV (i) [w̃f(θ (i),V (i))u(i,V (i))], (13)

CVaRαV

 ns∑
i=k+1

w̃f(θ (i),V (i))u(i,V (i))


≤

ns∑
i=k+1

CVaRαV (i) [w̃f(θ (i),V (i))u(i,V (i))] . (14)

From (13) and (14), the transformed cost function is defined
as

ϕ̌α,β = (1− β)
ns∑

i=k+1

EV (i) [w̃f(θ (i),V (i))u(i,V (i))]

+β

ns∑
i=k+1

CVaRαV (i) [w̃f(θ (i),V (i))u(i,V (i))] .

(15)

The transformed cost function ϕ̌α,β is the upper bound
of ϕα,β . Thus, the proposed method aims to deter-
mine near-optimal inputs by minimizing the upper bound
of (11).

B. STOCHASTIC CONSTRAINTS
The proposed method imposes the following stochastic con-
straints on the SoC of the battery:

Pr

 ns∑
i=k+1

w̃e(θ (i),V (i))u(i,V (i)) ≥ qr (k)

 ≤ 1− pc,

(16)

where w̃e(θ (i),V (i)) is defined in the same manner as (12), pc
is a given confidence level parameter, qr (k) := qfull(soc(k)−
socmin), and qfull is the total capacity of the battery. Note
that (16) does not limit the maximum battery charge. To pre-
vent overcharging, we can similarly construct a stochastic
constraint.

The parameter pc is determined by the designer according
to the requirements for the desired fuel economy and battery
constraints. For instance, if the designer sets the parameter
pc = 0.5, the controller subject to (16) depletes the SoC of
the battery with a probability of less than 0.5. The design pro-
cess also influences the fuel loss. An intuitive understanding
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of this parameter was verified in the numerical simulations
(Section V-B).

The remainder of this section introduces an approximated
form of (16) that enables convex optimization. The stochas-
tic constraint (16) cannot be straightforwardly supported by
numerical optimization solvers. To overcome this difficulty,
we convert the stochastic condition (16) into a deterministic
form using Chernoff’s inequality [40]. Therefore, this section
presents theorems to derive sufficient conditions for the deter-
ministic form.
Proposition 1: If (17) holds for the independent random

variables W̃e(i) := w̃e(θ (i),V (i))u (i,V (i)), then the stochas-
tic constraint (17) is satisfied.

ns∑
i=k+1

9W̃e(i)(λ)− log(1− pc) ≤ λqr (k), (17)

where λ > 0 is a design parameter.
Proof: The proof is provided in Appendix A. �

The cumulant-generating function in (17) involves high-
order statistics, e.g., the second- and third-order centered
moments. Hence, the deterministic constraint evaluates the
risk of the SoC depletion.

The designer can tune the sensitivity to risk using the
parameter λ. However, we cannot recognize the conserva-
tiveness of (17) until the optimization problem is solved. The
next section presents a framework that optimizes λ by min-
imizing the left-hand side of (17). This approach adapts the
method of determining the EVaR introduced in Definition 3.
The framework is subsequently combined with the fuel-usage
minimization problem.

C. CONSTRAINT REDESIGN WITH A DISCIPLINED CONVEX
PROGRAMMING FRAMEWORK
In this section, the constraint (17) is redesigned with a dis-
ciplined convex programming framework based on [46]. The
framework optimizes parameter λ and tightens the bound of
the sufficient condition on (16). The redesigned constraint
and risk-aware fuel evaluation (15) are formulated as themain
optimization problem.

We first introduce an exponential cone [47], which is a
convex set. The exponential cone is used to model various
constraints involving exponentials and logarithms.
Definition 4 (Exponential Cone [47]): The (three-dimen-

sional) exponential cone is defined as

Kexp = (a, b, c) | b > 0, c ≥ b exp(
a
b
)

∪(a, b, c) | a ≤ 0, b = 0, c ≥ 0.
We then explain a lemma to demonstrate the proposed

MIECP formulation. The problem of minimizing the left-
hand side of (17) with λ is formulated as follows:
Lemma 2: Consider the constraint given by (17) with con-

fidence level pc ∈ [0, 1). Let z = 1
λ
; subsequently, the

minimization of the left-hand side of (17) by the parameter

z is equivalent to

minimize
ui,z,ri,ζi

ns∑
i=k+1

ri − z log pc,

subject to: z ≥
|V |∑
jv=1

Pr
[
V (i) = vjv

]
ζi(vjv ),(

w̃e(θ (i), vjv )u(i, vjv )− ri, z, ζi(vjv )
)
∈ Kexp,

u(i, vjv ) ∈ 0, 1,

∀vjv ∈ V, i ∈ {k + 1, . . . , ns}, (18a)

where ri and ζi are the additional decision variables.
Proof: The proof is provided in Appendix B. �

Remark 1: Note that the cost function (18a) is

min
ui,z,ri,ζi

ns∑
i=k+1

ri − z log pc = EVaRpcV (i)

[
ns∑

i=k+1
W̃e(i)

]
,

because z = 1
λ
is optimized for all i ∈ k+1, . . . , ns. The EVaR

of the sum of W̃e(i) can be obtained exactly using the property
of the cumulant-generating function. This is an advantage
compared with the CVaR case because computing its CVaR
is complicated.

Because the left-hand side of (17) can be tightened by min-
imizing (18a), we rewrite the risk-aware energy management
problem as a one-stage optimization problem.
Theorem 1: If Assumptions 1 and 2 hold, the following

optimization problem satisfies the stochastic constraint (16).

minimize
ui,z,ri,ζi

(15). (19a)

subject to:
ns∑

i=k+1

ri − z log pc ≤ qr (k),

z ≥
|V |∑
jv=1

Pr
[
V (i) = vjv

]
ζi(vjv ),(

w̃e(θ (i), vjv )u(i, vjv )− ri, z, ζi(vjv )
)
∈ Kexp,

u(i, vjv ) ∈ 0, 1,

∀vjv ∈ V, i ∈ {k + 1, . . . , ns}. (19b)
Proof: The proof is derived from Proposition 1 and

Lemma 2. �
Because the cost function (15) only evaluates the fuel

usage, a solver makes the left-hand side of (19b) as small as
possible. This tightening process corresponds to Lemma 2;
thus, the optimal solution of (19) satisfies

EVaRpcV (i)

 ns∑
i=k+1

W̃e(i)

 ≤ qr (k). (19b∗)

From this perspective, the proposed method simultaneously
solves the two optimization problems as a one-stage opti-
mization problem.
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Remark 2: Recall the inequalityCVaRα [X ] ≤ EVaRα [X ]
for a random variable X and confidence level α ∈ [0, 1).
It may be better to evaluate the CVaR to reduce the con-
servativeness of the sufficient condition on (16). However,
CVaRα

[∑
i X (i)

]
cannot be computed directly in a convex

optimization manner, such as the EVaR in (19).
The optimization problem (19) is solved for every driving

section by updating the vehicle speed v(k) and SoC soc(k),
similar to the MPC approach. Here, the optimization has the
following property:
Corollary 1: The optimization problem (19) is recursively

feasible in any driving section k ∈ {0, . . . , ns − 1}.
Proof: The proof is to show that the worst case

u(i, vjv ) = 0, ∀i, ∀vjv ∈ V for the cost function (15) is
a feasible solution to the constraints of (19). For example,
because the exponential cone Kexp and qr ≥ 0 contains a set
(a, b, c) | a ≤ 0, b = 0, c ≥ 0, the case z = ri = ζi =

0, ∀i ∈ k + 1, . . . , ns is feasible for the worst solution. �
Remark 3: This feasibility is one of the motivations for

using a disciplined convex programming framework. If (17)
is directly adopted as a constraint, such an optimization
problem can be infeasible.

V. NUMERICAL SIMULATIONS WITH REAL-WORLD DATA
Numerical validations were demonstrated using ADVISOR
[36] with real-world driving cycles. This study employed
MOSEK [48] as the MIECP problem solver. The simulations
were executed on a standard computer with an AMDRyzen 9
3900X CPU @ 3.80 GHz and 32 GB of RAM using Ubuntu
desktop OS.

This study demonstrated the proposed mode-switching
method using commuter and research driving data. The com-
muting route labeled Route-A was a real-world suburban
route with a total 32.1 km trip and a road grade profile in
Fig. 6. The driving data for research labeled Route-B were
measured in the experiments of [49]. The road grade of
Route-B is shown in Fig. 7, which was obtained using the
method in [50]. The transition probability matrices (V =
5, 10, . . . , 100, i.e., |V| = 20) on Route-A and Route-B
were estimated with 60 and 20 cycle profiles, respectively.
To validate the proposed method, we studied 100 (Route-A)
and 10 (Route-B) real cycle profiles. The studied profiles did
not include profiles for predicting transition probabilities.2

In this simulation, we considered adding a heuristic con-
straint to conduct a study for practical use, as follows:

u
(
i, vjv

)
≥ u

(
i, vj′v

)
where vjv < vj′v , vjv , vj′v ∈ V. (20)

This heuristic constraint (20) transforms the drive mode-
switching problem for each vehicle speed v ∈ V into a prob-
lem at a vehicle speed threshold vth ∈ V . The transformation
reduces computational costs and controls the data packets
sent to the PHEV. Note that constraint (20) does not affect
Theorem 1.

2Informed consent is obtained for the driving cycle data, and this study is
approved by the relevant research ethics committee.

FIGURE 6. Driving information for Route-A (commuter driving).

FIGURE 7. Driving information for Route-B (driving study data [49], [50]).

The average computation time required to solve (19) was
a few minutes. With this computation time, the optimization
of each driving section could not be completed in real time.
Several relaxations of binary optimization can be used to
reduce the complexity of practical implementations. This
study focused on the properties of the optimization-based
controller (19), and computational burden reduction is a topic
for future research.

A. NUMERICAL ANALYSIS OF FUEL ECONOMY FOR
RISK-AWARE DRIVE MODE SWITCHING
We investigated the control performance of the proposed
method for the parameter β related to the CVaR value for the
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FIGURE 8. Example of simulation results for Route-A.

cost function (15). The confidence level parameters were set
as α = 0.5 and pc = 0.5. Fig. 8 shows an example of simula-
tion results for Route-A. These graphs depict the accumulated
fuel usage and SoC value history for each β = 0.0, 0.5, 1.0.
This parametrization is to investigate if a risk-aware con-
troller prevents unnecessary fuel consumption incidents by
increasing the weight β. Fig. 9 summarizes the histograms of
fuel usage for the CDCS and proposed methods.

The weight β of the CVaR cost increased, and the optimal
solution was conservative. As a result, as shown in Fig. 8a,
the proposed method with β = 1.0 sustained the SoC
of the battery better than the other methods. As shown in
Fig. 9, as the weight β increased, the distribution of fuel
consumption shifted toward lower values. Similar results
were obtained for Route-B. Tables 2 and 3 summarizes the
average and 75th percentile fuel consumption improvement
of the proposed method for β = 0.0, 0.5, 1.0 with the
CDCS method. The results showed that the CVaR cost can
quantify and control the tail of the fuel usage distribution.
Furthermore, the parameter design regarding the CVaR cost
can also affect the average fuel economy improvement from
Table 2. For Route-B in Table 3, the case β = 0.5 was the
maximum improvement at 16.55%, and the result must be
verified with more driving data. Note that the design method
for α, β must be further discussed, because the average fuel
efficiency may decline depending on the driving conditions
by increasing β.

B. NUMERICAL ANALYSIS OF STOCHASTIC CONSTRAINTS
BASED ON THE ENTROPIC VALUE AT RISK
The less conservative bound satisfying (16) indirectly
decreases the cost function (15). This section numerically

FIGURE 9. Fuel economy improvement at the 75th percentile of the
proposed method for β = 0.0,0.5,1.0 on CDCS.

TABLE 2. Average fuel economy improvement of the proposed method
for β = 0.0,0.5,1.0 on CDCS.

verifies the conservativeness of the SoC constraints with the
EVaR bound (19b).

Note that the VaR, CVaR, and EVaR bounds for the sum
of the random variables

∑ns
i=k+1 W̃e(i) have the following

properties:

• A necessary and sufficient condition for the stochastic
constraint (16) is that VaRpcV

[∑ns
i=k+1 W̃e(i)

]
≤ qr (k) is

satisfied.
• VaRpcV

[∑ns
i=k+1 W̃e(i)

]
and CVaRpcV

[∑ns
i=k+1 W̃e(i)

]
cannot be computed with a convex optimization problem
straightforwardly.

• A tractable bound
∑ns

i=k+1 CVaR
pc
V

[
W̃e(i)

]
can be used

as an upper bound of CVaRpcV
[∑ns

i=k+1 W̃e(i)
]
due to the

subadditivity.
• EVaRpcV

[∑ns
i=k+1 W̃e(i)

]
is calculated with the disci-

plined optimization framework without approximation.
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TABLE 3. Fuel economy improvement at the 75th percentile of the
proposed method for β = 0.0,0.5,1.0 on CDCS.

Based on the above discussion, we introduce and compare
the following values as conservativeness indices:

• CVaR bound:

ns∑
i=k+1

CVaRpcV
[
W̃e(i)

]
− VaRpcV

 ns∑
i=k+1

W̃e(i)


qfull

, (21a)

• EVaR bound:

EVaRpcV

 ns∑
i=k+1

W̃e(i)

− VaRpcV

 ns∑
i=k+1

W̃e(i)


qfull

, (21b)

where we estimated VaRpcV
[∑ns

i=k+1 W̃e(i)
]
with random

samples using the optimized drive-mode inputs. The
index (21) represents the excess of virtual SoC values when
the proposed controller determines the drive modes with the
optimization (19). The smaller the index is, the better the con-
troller can select an input that reduces the cost function (15).

Fig. 10 depicts the conservativeness index (21) for pc =
0.2, 0.5, 0.8 at each driving section k ∈ 0, . . . , ns − 1. First,
the EVaR bounds were smaller than the CVaR bounds for all
pc = 0.2, 0.5, 0.8 and k ≤ 300. Second, for the CVaR and
EVaR with pc = 0.8, at least 0.05 difference existed through
the driving sections from 1 to 180. Note that while each
conservativeness index reached almost the same value for
the driving sections for k ≥ 300, conservative optimization
at k = 1, . . . , 180 caused unnecessary fuel consumption.
In other words, the CVaR upper bounds degrade controller
performance if we employ the value for the battery constraint.

In the problem setting of this study, we numerically con-
firmed that the proposed method maintains a conservative-
ness index below 0.01when pc ≥ 0.5. This result is beneficial
because the designed confidence level pc exceeds 0.5 in
many applications. We conclude that the proposed method is
useful because these numerical results were achieved through
verification using real-world driving data. Note that, similar
to the results for Route-A shown in Fig. 10, similar results for
Route-B were observed, and we omit the details.

The risk evaluation results, such as Fig. 10, can also be
numerically derived for numerous simple cases.3 A math-
ematically rigorous analysis of the conservativeness of the
EVaR bound (EVaRpcV

[∑ns
i=k+1 W̃e(i)

]
) is a future research

direction.

3Assuming the random variables W̃e(i), i = 1, 2, . . . , ns are independent
and identically distributed random variables, we can numerically obtain
many scenarios supporting the results shown in Fig. 10.

FIGURE 10. Conservativeness index values of the CVaR and EVaR bound
defined in (21) for pc = 0.2,0.5,0.8.

VI. CONCLUSION
This paper addresses the risk-aware energy management of
the drive mode of PHEVs. The CVaR cost and EVaR bound
constraint are introduced to quantify the risk of energy con-
sumption. These measurements result in the formulation of
an MIECP problem that determines the vehicle speed thresh-
old value in the drive mode. Numerical simulations with
real-world data investigated the effects of the design param-
eters for fuel economy and conservativeness on the opti-
mization problem. The numerical simulations revealed that
the high-weighted CVaR cost can prevent the spread of the
fuel loss distribution in the positive direction. The designed
controller achieved 8.60% and 16.09% improvements on
average and 10.75% and 12.85% reductions at the 75th per-
centile compared with the CDCS method on two selected
real-world routes. In addition, this validation indicated that
the EVaR bound is computationally affordable and pro-
vides less conservative characteristics for the sum of random
variables.

The proposedmethodwas evaluated for two driving routes:
commuter driving (Route-A) and research experiment driving
(Route-B). Although each route had different characteris-
tics in terms of energy consumption, this method improved
the fuel economy. Addressing additional verification with a
larger class of driving routes is essential because the simula-
tion can clarify the driving route conditions that are applicable
to the proposed method. Additional verification is required in
future research. Section V presents the control performance
characteristics by the weight parameters via the simulations
with real-world data, but comprehensive design methodolo-
gies remain to be investigated.

APPENDIX A PROOF OF PROPOSITION 1
Proof: From Lemma 1, we obtain the following

inequality:

Pr

 ns∑
i=k+1

W̃e(i) ≥ qr (k)

 ≤ EV
[
exp λ

∑ns
i=k+1We(i)

]
exp λqr (k)

,
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(22)

where W̃e(i) := w̃e(θ (i),V (i))u (i,V (i)) is defined to simplify
notation. Let the right-hand side of (22) be pc, that is,

pc =
EV

[
exp λ

∑ns
i=k+1 W̃e(i)

]
exp λqr (k)

. (23)

Substituting (23) into (22), we obtain

Pr

 ns∑
i=k+1

W̃e(i) ≥
1
λ

ns∑
i=k+1

9W̃e(i)(λ)−
1
λ
log pc

 ≤ pc,
where the mutual independence of W̃e(i) is used. The above
result indicates that if the following condition

1
λ

ns∑
i=k+1

9W̃e(i)(λ)−
1
λ
log pc ≤ qr (k)

is satisfied, the stochastic constraint (16) is fulfilled. �

APPENDIX B PROOF OF LEMMA 2
Proof: Let λ = 1

z , z > 0. Thus, 1
λ
9X (λ) = z9X ( 1z ).

From Definition 3 and the properties of the cumulant-
generating function (4),

EVaRpcV

 ns∑
i=k+1

W̃e(i)


= min

z>0
z9∑ns

i=k+1 W̃e(i)(
1
z
)−z log pc

= min
z>0

z
ns∑

i=k+1

9W̃e(i)(
1
z
)−z log pc.

Considering z9W̃e(i)(
1
z ) for i ∈ k+1, . . . , ns, we can express

the perspective of the log-sum-exp function [51] as

ri ≥ z9W̃e(i)(
1
z
),

0 ≥ 9W̃e(i)(
1
z
)− log(exp(

ri
z
)),

1 ≥ EV

[
exp(

W̃e(i)− ri
z

)
]
,

z ≥ EV

[
z exp(

W̃e(i)− ri
z

)
]
,

where ri is the new decision variable. By introducing the addi-
tional decision variables ζi(vjv ), vjv ∈ V , we can formulate

z ≥
|V |∑
jv=1

Pr
[
V (i) = vjv

]
ζi(vjv ), (24)

ζi(vjv ) ≥ z exp(
w̃e(θ (i), vjv )u(i, vjv )− ri

z
). (25)

The inequality (25) is an exponential cone [47]

ζi(vjv ) ≥ z exp(
w̃e(θ (i), vjv )u(i, vjv )− ri

z
), z > 0

⇐⇒
(
w̃e(θ (i), vjv )u(i, vjv )− ri, z, ζi(vjv )

)
∈ Kexp.

(26)

The minimization of the perspective of the log-sum-exp func-
tion for each i ∈ k + 1, . . . , ns is

minimize
ui,z,ri,ζi

ri

subject to: (24) and (26).

From the above considerations, we can express the
disciplined convex programming framework [52] of
EVaRpc

[∑ns
i=k+1 W̃e(i)

]
as follows:

EVaRpcV

 ns∑
i=k+1

W̃e(i)


=

minimizeu,z,r,ζ
ns∑

i=k+1
ri − z log pc

subject to: (24) and (26), i ∈ {k + 1, . . . , ns}.

This completes the proof of Lemma 2. �
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