
Received 2 August 2022, accepted 4 September 2022, date of publication 12 September 2022, date of current version 15 September
2022.

Digital Object Identifier 10.1109/ACCESS.2022.3206041

Real-Life Implementation and Evaluation of
Coupled Congestion Control for WebRTC Media
and Data Flows
SAFIQUL ISLAM 1, (Member, IEEE), MICHAEL WELZL 2, (Member, IEEE),
AND TOBIAS FLADBY 2
1Department of Business and IT, University of South-Eastern Norway, 3800 Bø, Norway
2Department of Informatics, University of Oslo, 0315 Oslo, Norway

Corresponding author: Safiqul Islam (safiqul.islam@usn.no)

1

2

3

4

5

6

7

8

9

ABSTRACT WebRTC enables users to simultaneously transfer media (over the Real-Time Transport
Protocol (RTP)) and data (over the Stream Control Transmission Protocol (SCTP)) between web browsers,
multiplexed onto a single UDP port pair. This design choice of using two different transport protocols,
each with their own congestion control mechanism, can lead to competition between the flows, resulting
in undesirable spikes in queuing delay and packet loss. In this paper, we investigate solutions to the harmful
effects WebRTC flows cause on each other by having the different congestion controllers of the flows
collaborate. Using implementations in the Chromium browser, we show that our mechanism can combine
a set of heterogeneous congestion control mechanisms, fairly allocate the available bandwidth between the
flows, and reduce overall delay and losses.

10 INDEX TERMS FSE, RTP, SCTP, congestion control, WebRTC.

I. INTRODUCTION11

WebRTC enables interactive real-time communication12

between web browsers, supporting a range of applications13

such as video conferencing, telephony and interactive gam-14

ing. It allows a user to simultaneously transfer media (over15

the Real-Time Transport Protocol (RTP)) and data (over16

the Stream Control Transmission Protocol (SCTP)), multi-17

plexed onto a single UDP port pair. Since routers or other18

middle-boxes usually identify flows using the five-tuple of19

source and destination IP addresses, ports and the transport20

protocol, such multiplexed flows are normally regarded as a21

single flow and hence they are treated in the same way by22

network elements.23

The separate congestion control (CC) mechanisms within24

the two different transport protocols in WebRTC can lead25

to competition between the flows, resulting in undesirable26

spikes in queuing delay and packet loss. Such competition27

can be eliminated by using a coupled CC mechanism which28

The associate editor coordinating the review of this manuscript and

approving it for publication was Alba Amato .

combines the congestion control mechanisms of all the flows 29

sharing a common path. In [1] and [2], we have shown that 30

our coupling scheme called ‘‘Flow State Exchange’’ (FSE) 31

can significantly improve the overall performance of multiple 32

congestion-controlled RTP sessions in terms of delay and 33

packet loss, and that it allows to exert a precise allocation of 34

the available bandwidth. However, this mechanism only com- 35

bines a set of homogeneous congestion control mechanisms 36

and therefore cannot be readily applied to combine the data 37

and video flows in WebRTC, since they use two different CC 38

mechanisms: a delay-based CC mechanism for media and a 39

loss-based CC mechanism for arbitrary data. 40

Because loss-based CC mechanisms fill the queue until 41

packets are dropped, the competition between the flows 42

leads to undesirable spikes in queuing delay and packet 43

loss for the RTP flow. Combining a heterogeneous set of 44

CC mechanisms can therefore yield several performance 45

benefits, especially when one of the mechanisms reacts to 46

a congestion event earlier than the others. This has been 47

shown by Flohr et al. in [1], [3] with an extension of the 48

FSE called ‘‘FSE Next Generation’’ (FSE-NG). WebRTC’s 49

95046 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-4683-8792
https://orcid.org/0000-0001-8179-599X
https://orcid.org/0000-0002-2608-7402
https://orcid.org/0000-0002-5196-8148


S. Islam et al.: Real-Life Implementation and Evaluation of Coupled CC for WebRTC Media and Data Flows

delay-based RTP CC mechanism reacts to the increasing50

delay as soon as the queue grows, allowing the FSE-NG51

mechanism to react to this signal and ensure that the queue52

does not grow even for the loss-based CC mechanism53

in SCTP.54

FSE and FSE-NG were implemented and evaluated in55

simulators only. Consequently, we consider it worthwhile to56

investigate if it is feasible to implement coupling mecha-57

nisms in the browser, and if we can replicate the promis-58

ing results in an actual browser implementation. With59

this paper, we take this important step towards practical60

use of these mechanisms. Specifically, our contributions61

are:62

1) We implement and test our FSE mechanism, as speci-63

fied in RFC 8699 [4], in the Chromium browser. The64

FSE only operates on media flows, and it serves as a65

basis for the subsequent solutions.66

2) We implement and evaluate the FSE-NG [5] mecha-67

nism in the Chromium browser. For this, we had to68

extend FSE-NG to work with Google Congestion Con-69

trol (GCC) [6], which is the only RTP CC mechanism70

that is available in Chromium. Our implementation in71

the browser couples GCC and SCTPflows.We evaluate72

its efficacy in a real test-bed.73

3) Based on the derived implications from FSE-NG,74

we propose, implement and evaluate an improved ver-75

sion of FSE-NG, called ‘‘Extended FSE-NG’’, which76

improves several aspects of the original FSE-NGmech-77

anism.78

4) Finally, we design, implement and evaluate a new79

mechanism called ‘‘Flow State Exchange v2’’, which80

is a re-design of the entire FSE idea to actively couple81

heterogeneous flow types. Using implementations in82

the Chromium browser, we show that our proposed83

mechanism works better than all prior works and does84

not exhibit problems that we encounter in FSE, FSE-85

NG and Extended FSE-NG.86

This paper is organised as follows: section II presents87

the background and related work. Section III introduces88

our testbed and shows a fairness problem between the89

media and data channel in Chromium, highlighting the need90

for a congestion control coupling solution. Then, in sec-91

tions IV to VII, we introduce the FSE and its deriva-92

tives in four steps: i) the original FSE, which operates on93

media flows only; ii) FSE-NG, which couples the media94

and data channels; iii) Extended FSE-NG, a novel algorithm95

which fixes some of the problems that we found with FSE-96

NG; iv) FSEv2, another novel algorithm, which is a com-97

plete re-design of the FSE idea such that it incorporates98

both the media and data channels. FSEv2 incorporates the99

lessons that we learned in the process of implementing and100

extending FSE-NG. We then evaluate FSE-NG, Extended101

FSE-NG and FSEv2 in section VIII using our imple-102

mentations in the Chromium browser. Finally, section IX103

concludes.104

II. BACKGROUND AND RELATED WORK 105

A. WebRTC 106

WebRTC [7] is a standard that comprises an extensive col- 107

lection of protocols and Application Programming Interfaces 108

(API), providing real-time peer-to-peer communication and 109

data transfer between web browsers. Historically, there was 110

a tendency for real-time communication software to rely 111

on proprietary protocols and third-party plugins. WebRTC 112

presents a break from this pattern, letting applications com- 113

municate unconstrained in the browser. 114

The WebRTC W3C Working Group1 is responsible for 115

defining theAPIs that applications can use to control the com- 116

munication via javascript. The IETF Working Group named 117

Communication in Web-Browsers (RTCWEB)2 is responsi- 118

ble for defining the protocols, data formats and other essential 119

facets needed to enable real-time peer-to-peer communica- 120

tion in the browser. 121

A handful of protocols and technologies are imposed by 122

what WebRTC needs to offer in terms of services and func- 123

tionality. WebRTC uses the Real-time Transport Protocol 124

(RTP) [8] for media transmission and the Stream Control 125

Transmission Protocol (SCTP) [9] to transmit arbitrary appli- 126

cation data. These protocols are multiplexed over a sin- 127

gle User Datagram Protocol (UDP) [10] connection. While 128

WebRTC requires that all data be encrypted, vanilla RTP and 129

SCTP are not encrypted. Therefore,WebRTC uses SRTP [11] 130

(a secure version of RTP) and encrypts SCTP. Datagram 131

Transport Layer Security (DTLS) [12] is used for key 132

management. 133

B. CONGESTION CONTROL MECHANISMS IN WebRTC 134

1) DATA CHANNEL 135

SCTP’s CC is based on TCP’s CC [9], [13], and is always 136

applied to the entire SCTP association and not to individual 137

SCTP streams. The transmission rate is determined by the 138

receiver window (RWND) and congestion window (CWND), 139

of which the minimum is used. RWND is the amount of data 140

the destination side can receive. CWND is the amount of data 141

the SCTP sender can transmit into the network before receiv- 142

ing an acknowledgement (ACK). As in TCP, the four central 143

algorithms of SCTP’s CC mechanism, which determine the 144

value of CWND, are Slow Start, Congestion Avoidance, Fast 145

Retransmit, Fast Recovery. 146

2) VIDEO CHANNEL 147

RTP alone provides simple end-to-end delivery services for 148

multimedia. Therefore, WebRTC must also incorporate a CC 149

mechanism for RTP. Currently, three different congestion 150

control mechanisms are being considered for RTP flows in 151

WebRTC: Google Congestion Control (GCC) [6], Network- 152

Assisted Dynamic Adaption (NADA) [14] and Self-Clocked 153

Rate Adaptation for Multimedia (SCReAM) [15]. In this 154

paper, we only focus on GCC because it is used by two 155

1www.w3.org/groups/wg/webrtc
2https://datatracker.ietf.org/wg/rtcweb/about/

VOLUME 10, 2022 95047



S. Islam et al.: Real-Life Implementation and Evaluation of Coupled CC for WebRTC Media and Data Flows

prominent web browsers: Chrome (with its open-source156

counterpart Chromium) and Firefox.157

a: GOOGLE CONGESTION CONTROL (GCC)158

Google Congestion Control (GCC) specified in [6] is a159

CC algorithm proposed by Google and is currently used160

in Chromium’s implementation of WebRTC. It consists of161

two controllers, one loss-based and one delay-based. The162

loss-based controller located on the sender-side uses the163

fraction of packets lost, reported via RTCP REMB feedback164

messages [16] to compute a target sending bit-rate. The delay-165

based controller uses packet arrival information to compute a166

maximum bit rate. The delay-based controller can either be167

implemented on the receiver-side or sender-side. The delay-168

based estimate is passed to the loss-based controller, which169

compares it to its calculation and sets the actual send rate to170

the lowest of the two.171

The delay-based rate controller can be seen as a state172

machine with three states: Increase, Decrease and Hold.173

Initially, it starts in the Increase state, where it stays until174

over-use or under-use is detected. The increase rate is mul-175

tiplicative when estimated that convergence is far away and176

additive when it seems close to convergence. If the incoming177

bit rate is close to an average of incoming bit rates calculated178

the last time it was in the decrease state, it is assumed that the179

system is close to convergence. If there is no valid estimate180

of that average yet, the system remains in the multiplicative181

increase. When the over-use detector signals over-use, the182

system goes into the Decrease state. In the Decrease state,183

the bit-rate decreases with a certain factor multiplied by184

the currently incoming bit rate. If the detector then signals185

underuse, the system goes into the Hold state where the bit186

rate stays constant, allowing queues in the network to empty.187

The loss-based controller bases its decisions on RTT,188

packet loss and the bit-rate calculated by the delay-based189

controller. The controller is run every time an RTCP feedback190

message from the receiver-side is received. If more than191

10% of packets have been lost, the controller decreases the192

estimate. If less than 2%of packets are lost, it will increase the193

estimate under the presumption that there is more bandwidth194

to utilize; otherwise, the estimate stays the same. The actual195

bit rate used is the minimum of the delay-based and loss-196

based estimates.197

C. RELATED WORK198

One of the oldest and best known mechanisms for coupling199

is ‘‘The Congestion Manager’’ (CM) [17]. CM couples CCs200

by offering a single shared congestion controller for all the201

flows. The downside is that it is considered complicated to202

implement because it requires an extra congestion controller203

and strips away all per-connection CC functionality, which is204

a drastic change. Research has also been done on coupling205

TCP CC mechanisms [18], [19], [20], [21], [22]; however,206

these solutions are only relevant for TCP.207

Our prior solution for RTP flows called ‘‘Flow State208

Exchange’’ (FSE) [4] combines congestion controls sharing209

the same bottleneck while at the same time being easier to 210

implement than the CM. As opposed to CM, the FSE utilizes 211

the flows’ congestion controllers by having them share infor- 212

mation amongst each other instead of removing them. The 213

mechanism has already shown promise in [1] and [2] when 214

implemented with homogeneous CC mechanisms but so far 215

has not been tested on heterogeneous CC mechanisms. 216

Two other mechanisms stem from the original FSE imple- 217

mentation that try to couple NADA and SCTP flows. 218

‘‘Reduction of Self Inflicted Queuing Delay in WebRTC’’ 219

(ROSIEEE) [3] is a mechanism that limits queuing delay in 220

WebRTC by coupling NADA and the SCTP congestion con- 221

trol. As opposed to other mechanisms like [4] and [17] that 222

control the congestion window explicitly, the authors of [3] 223

propose to only calculate a maximum congestion window 224

CWNDmax for SCTP based on the rate calculated by NADA. 225

The algorithm itself uses the change in send rate 1Ri and 226

RTTi—which is the RTT received from NADA every time 227

an RTCP message i is received—to gradually converge to a 228

maximum allowed SCTP sending rate that is later converted 229

to CWNDmax . 230

While this mechanism does, in fact, couple the WebRTC 231

congestion controllers, it does not provide the possibility to 232

prioritize the different flows, which is an essential require- 233

ment for WebRTC. Accordingly, FSE-NG [5] combines the 234

active FSE from [4] with the ROSIEEE algorithm to support 235

the prioritization of flows while still being able to couple and 236

manage both loss-based and delay-based flows. As with the 237

original FSE, FSE-NG also calculates a sum of rates S_CR 238

and assigns it based on the priority of the flows in the FG. 239

The mechanism does not use information from the loss-based 240

flows when calculating S_CR. To calculate the upper limits 241

for the SCTP flows, it shares S_CR and splits it amongst the 242

SCTP flows in the FG. 243

III. A FAIRNESS ISSUE IN CHROMIUM’s WebRTC 244

IMPLEMENTATION 245

In this section, we introduce our testbed in section III-A 246

which we use in all our tests, and then present a GCC vs. 247

SCTP fairness issue by exploring how these two mechanisms 248

compete under different network settings in section III-B. 249

This problem further motivates the use of a coupled con- 250

gestion control mechanism, on top of the earlier mentioned 251

benefits attainable with congestion control coupling (lower 252

delay and packet loss, and precise control over the per-flow 253

rate share). 254

A. TESTBED 255

Figure 1 shows the topology used in our experiments. It con- 256

sists of three physical machines: aWebRTC sender, a receiver 257

and a router. The sender and receiver are both connected to 258

the router with Ethernet cables. The three nodes are equipped 259

with Linux version 5.11.0 (router), 5.13.0 (sender) and 260

5.15.18 (receiver). Two of the nodes are running one session 261

each of the Chromium browser (Linux 64-bit 100.0.4896.12) 262

with an instance of a WebRTC test application, acting as 263

95048 VOLUME 10, 2022



S. Islam et al.: Real-Life Implementation and Evaluation of Coupled CC for WebRTC Media and Data Flows

FIGURE 1. The testbed topology. Three nodes—one router performing
traffic shaping and two nodes running Chromium—are connected through
Ethernet cables. The sender node sends commands to the traffic shaper
via ssh and hosts the signalling server, connecting sender and receiver
applications.

sender and receiver. The receiver is only there to passively264

receive any streams coming from the sender and is running265

a release build of Chromium. The sender runs a build of266

the modified Chromium code, with an implementation of a267

coupled CC mechanism unless stated otherwise. The sender268

node is also hosting the Web server instance which performs269

the signalling and serves the WebRTC application. The web270

application is already loaded on the receiver side when an271

experiment begins. The sender node also acts as a testbed272

controller by using ssh to 1) set the link capacity, delay and273

the bottleneck queue size on the router node; and 2) start the274

sender application with a certain configuration, i.e. howmany275

flows, which types of flows and when to start and stop them.276

A video sequence with a resolution of 1280 × 720 and277

recorded in 60 frames per second is used for all video streams;278

this replaces the use of an ordinary webcam to achieve279

controllable conditions. Chromium allows us to replace the280

webcam source with the video being played in a loop. Sound281

is disabled for the media streams. We also set the video codec282

to be VP8 [23], which yields a maximum possible bitrate of283

2.5 Mbps for the media streams.284

B. RTP VS. SCTP FAIRNESS EVALUATION285

Figure 2 shows three different experiments across a 10 Mbps286

capacity bottleneck with 50ms RTT and a queue length287

configured to the Bandwidth×Delay Product (BDP), using288

different starting times for RTP and SCTP. In fig. 2a, with289

GCC and SCTP starting at the same time, GCC quickly290

can reach 2 Mbps and stay there for the duration of the291

experiment. In fig. 2b, GCC starts 10 seconds before SCTP292

and hardly seems affected, only experiencing a small dip293

in throughput when SCTP starts. Finally, fig. 2c shows a294

somewhat slow convergence before RTP reaches 2 Mbps;295

however, it does eventually adapt and stay at around 2 Mbps.296

We can see that, in general, GCC achieves a reasonably297

high throughput of around 2Mbps regardless of which flow 298

starts first, while the SCTP flow utilizes the rest of the link’s 299

capacity. 300

On the other hand, when limiting the bottleneck capacity 301

to 5 Mbps, GCC is not able to compete with SCTP at all 302

and is starved, as the plots in Figure 3 show. While most 303

users from countries in the western world usually will have 304

a much higher bandwidth than 5 Mbps and may therefore 305

rarely notice this behaviour, it may be problematic for users 306

in countries with poor internet service. 307

Recent performance evaluations of GCC [24], [25] show 308

that GCC can aggressively compete against TCP-like con- 309

gestion controls, which implies it should also be able to 310

compete with SCTP. However, we could not replicate the 311

same behavior in our testbed. As a sanity check, we tried to 312

use the same topology and settings as described in [25], but 313

GCCwas still starved when competing with long-lived SCTP 314

or TCP flows over the same bottleneck. 315

This problem motivates us to investigate if a coupled CC 316

mechanism can fairly allocate the rates between SCTP and 317

RTP on low capacity links. 318

IV. COUPLING, PART 1: THE FLOW STATE 319

EXCHANGE (FSE) 320

We started our endeavor with an implementation and evalu- 321

ation of the FSE in the Chromium browser. Being restrained 322

to media flows, the direct benefits that can be attained with 323

this first algorithm only apply to rather limited use cases, 324

e.g. when simultaneously transferring video from a mobile 325

phone’s front and back camera. Use cases will become more 326

realistic (e.g., screen/data and video sharing) when we come 327

to the extensions of FSE that couple the media and data 328

channels. 329

A. ALGORITHM 330

We briefly introduce the FSE algorithm since it serves as the 331

basis for other coupling solutions in this paper. The FSE can 332

be described as a manager that receives information from the 333

different flows and calculates a new send rate for each flow 334

based on all the information. When a flow starts, it registers 335

itself with the FSE and a Shared Bottleneck Detection (SBD) 336

element (in our case, simply the use of the same 5-tuple), 337

and when it stops, it deregisters from the FSE. When a flow 338

registers itself, the SBD will assign it to a Flow Group (FG) 339

by giving it a Flow Group Identifier (FGI). A flow group is 340

defined as a set of flows that share the same bottleneck and 341

thus should exchange information with each other. Whenever 342

a flow’s congestion controller calculates a new rate, the flow 343

executes an UPDATE call to the FSE with the newly calcu- 344

lated rate as a parameter. 345

Generally, the FSE keeps a list of all flows that are regis- 346

tered in it. For each flow, the FSE stores: 347

• A unique number f to identify the flow. 348

• The Flow Group Identifier (FGI). 349

• The priority value P(f). 350

VOLUME 10, 2022 95049



S. Islam et al.: Real-Life Implementation and Evaluation of Coupled CC for WebRTC Media and Data Flows

FIGURE 2. Throughput of SCTP and RTP (GCC) flows competing across a bottleneck with 10 Mbps capacity and 50 ms RTT with different starting times.

FIGURE 3. Throughput of SCTP and RTP (GCC) flows competing across a bottleneck with 5 Mbps capacity and 50 ms RTT with different starting times.

• The rate used by the flowwhich is calculated by the FSE351

in bits per second FSE_R(f).352

• The desired rate of the flow, DR(f).353

The priority value is used to calculate the flow’s rate via the354

priority portion of the sum of all priority values in the same355

FG (e.g., if flows a, b and c have priorities 1, 3, 1, respectively,356

then the rate assigned to flow b is 3/5 of the total and the others357

get 1/5). The desired rate might be lower than the calculated358

rate, e.g. because the application wants to limit the flow or359

simply does not have enough data to send. If the flow gives360

no desired rate value, it should just be set to the sending rate361

provided by the flows congestion controller. For each FG, the362

FSE keeps a few static variables:363

• The sum S_CR of calculated rates for all flows in the364

FG.365

• The sum S_P of all priorities in the FG.366

• The total leftover rate TLO. This is the sum of leftover367

rates by flows that are limited by the desired rate.368

• Aggregate rate AR given to flows that are not limited by369

the desired rate.370

Whenever a flow’s congestion control normally updates the371

flow’s rate, they carry out an UPDATE call to FSE instead.372

Through this call, they provide their newly calculated rate373

and optionally a desired rate. Then the FSE immediately374

calculates rate updates for all the flows and sends them back.375

When a flow f starts, FSE_R is initialized with the initial376

rate determined by f’s congestion controller. After the SBD377

assigns the flow to an FG, it adds its FSE_R to S_CR.378

TABLE 1. Variables used in the FSE algorithm from [4].

In Table 1, the variables used in both algorithms are out- 379

lined. The pseudo-code for the update algorithm is shown in 380

Algorithm 1. 381

B. EVALUATION 382

In this section, we first show results of coupling two RTP 383

flows with the same priorities, then the results of two RTP 384

flows with different priorities. Finally, we show the efficacy 385

of the FSE solution when one of the RTP flow is rate-limited. 386

These test cases have been designed by the IETF RMCAT 387

Working Group3 and are outlined in [26]. 388

3https://datatracker.ietf.org/wg/rmcat/documents/

95050 VOLUME 10, 2022



S. Islam et al.: Real-Life Implementation and Evaluation of Coupled CC for WebRTC Media and Data Flows

Algorithm 1 FSE Update Algorithm
1: function Update(flow,CC_R)
2: S_CR← S_CR+ CC_R− FSE_R(flow)
3: S_P← 0
4: for f in FG do
5: S_P← S_P+ P(f )
6: FSE_R(f ) = 0
7: end for
8: TLO← S_CR
9: AR← 0
10: while TLO−AR > 0 and S_P > 0 do
11: AR← 0
12: for f in FG do
13: if FSE_R(f ) < DR(f ) then
14: if TLO×P(f )S_P ≥ DR(f ) then
15: TLO← TLO− DR(f )
16: FSE_R(f )← DR(f )
17: S_P← S_P− P(f )
18: else
19: FSE_R(f )← TLO×P(f )

S_P
20: AR← AR+ TLO×P(f )

S_P
21: end if
22: end if
23: end for
24: end while
25: for f in FG do
26: Update_CC(FSE_R(f ))f
27: end for
28: S_CR← 0
29: for f in FG do
30: S_CR← S_CR+ FSE_R(f )
31: end for
32: end function

FIGURE 4. Sending rates of 2 RTP (GCC) flows across a 2 Mbps
bottleneck, 100 ms RTT and 300 ms queue.

1) COUPLING TWO RTP FLOWS WITH THE SAME PRIORITIES389

Figure 4 shows the sending rates of two RTP flows with and390

without the FSE. Priorities of both flows are set to 1 and391

flow 2 starts five seconds after flow 1. Without FSE, band-392

width usage is more sporadically divided between the flows.393

The FSE eliminates this problem by fairly dividing the rates394

between the flows (see fig. 4b)395

FIGURE 5. Sending rates of 2 coupled RTP (GCC) flows across a 2 Mbps
bottleneck, 100 ms RTT and 300 ms queue. The priorities of flow 1 and
2 are 1 and 2, respectively.

FIGURE 6. Sending rates of 2 coupled RTP (GCC) flows across a 2 Mbps
bottleneck, 100 ms RTT and 300 ms queue. DR of RTP Flow 1 is set to
0.75 Mbps.

2) PRIORITISATION 396

The FSE can allocate rates based on the flows’ priorities with- 397

out requiring any modification in the congestion controller. 398

This is shown in fig. 5 where the priorities of the two RTP 399

flows are set to 1 and 2, respectively. 400

3) RTP FLOWS WITH DESIRED RATES 401

To show that flows limited by the desired rate share their 402

leftovers with other flows, we ran an experiment with two 403

flows, one with the desired rate configured to 0.75 Mbps and 404

the other without a limited desired rate. Figure 6 shows that 405

the first flow never exceeds 0.75Mbps. The FSE allocates the 406

leftover bandwidth to the second flow. 407

4) DERIVED IMPLICATIONS FOR THE FSE 408

As we have shown, the FSE works well for media flows— 409

it improves fairness and offers possibilities for sharing left- 410

over rates and prioritizing flows. However, the main prob- 411

lem plaguing WebRTC congestion control is the way SCTP 412

affects GCC, which necessitates a mechanism that also incor- 413

porates SCTPflows. Themost glaring limitationwith the FSE 414

is that it is only designed for media flows and therefore cannot 415

directly be used to couple RTP and SCTP flows. 416

VOLUME 10, 2022 95051



S. Islam et al.: Real-Life Implementation and Evaluation of Coupled CC for WebRTC Media and Data Flows

TABLE 2. Variables used in the FSE-NG implementation.

V. COUPLING, PART 2: FSE-NG417

This section presents our design, implementation and eval-418

uation of the FSE-NG mechanism in Chromium. Then we419

highlight some issues that we discovered during the evalu-420

ation. So far, FSE-NG was only designed and implemented421

in a simulator [27] to work with NADA [14] by its original422

authors. Since Chromium’s RTP implementation uses GCC423

instead of NADA, we have to make some adjustments; we424

will also outline those.425

A. DESIGN OVERVIEW426

We try to stay as faithful to the pseudo-code and explanations427

in the original paper [5] as possible. However, we found some428

parts of the algorithm description in [5] to be ambiguous or429

lacking detail; for those cases, we choose the approach that430

seems to work best in practice.431

The general structure of the new component is broadly432

similar to the FSE: registration, update and deregistration of433

GCC flows largely remain the same, but with a couple of nec-434

essary extra parameters for the update algorithm. Coupling435

SCTP flows brings about some new implementation aspects;436

most importantly, it means we must interact with the SCTP437

library in Chromium to get and set the maximum CWND438

limit. The following sections present explanations and some439

pseudo-code for the registration, update and deregistration440

phases. The implementation source code can be found in [28].441

Table 2 provides an overview of the variables used in this442

section.443

1) REGISTERING RTP FLOWS444

Upon the first calculation of a new CC_R(f ), a flow f445

registers in the FseNg (a class responsible for handling446

registrations, updates, and deregistrations for the GCC and447

SCTP flows) by sending in its CC_R(f ) (as the initial rate),448

a flow priority P(f ), and a desired rate DR(f ). Moreover, the449

flow also registers a callback function called Update_CC(f ).450

FseNgwill callUpdate_CC(f ) withFSE_R(f ) as a parameter451

when it needs to update f . FseNg adds the initial rate to452

S_CR upon registration and creates a new RateFlow object 453

to store P(f ), Update_CC and DR(f ). The set of RateFlows 454

also stores a pointer to the RateFlow object. The callback 455

function is simply a function that receives a rate and sets 456

the value of the current estimate inside the GCC class that 457

interacts with FseNg. The flows are also assigned a unique 458

flow id by FseNg. 459

2) REGISTERING SCTP FLOWS 460

The WebRTC library uses a class called UsrsctpTransport 461

to interact with the usrsctp library. In the class, there is a 462

method called Connect which is called when a new SCTP 463

association is being made. Accordingly, we choose to register 464

SCTP flows in that method. Upon registration, the Usrsctp- 465

Transport object of flow f sends in the initial CWNDmax(f ), 466

a callback function Update_CC(f ) that gets called by FseNg 467

to set CWNDmax(f ) later, and lastly a flow priority P(f ). The 468

CWNDmax(f ) is stored so that FseNgmay reset CWNDmax(f ) 469

in cases where allRateFlow’s deregister. In such a case there 470

is no CC information being reported to FseNG and it should 471

let SCTP flows use their default CWNDmax . The SCTP flows 472

are also assigned a unique flow id by FseNg. 473

3) DEREGISTERING FLOWS 474

As with the FSE implementation, AimdRateControl calls 475

the deregister method of FseNg inside its destructor. FseNg 476

removes the corresponding RateFlow from the set of Rate- 477

Flows. UsrsctpTransport deregisters the corresponding 478

SCTP flow inside a method called CloseSctpSocket. When 479

a PassiveCwndFlow deregisters, FseNg simply removes it 480

from the set of PassiveCwndFlows. 481

4) PERFORMING UPDATES 482

RTP flows send update information every time they calculate 483

a new rate. This information includes the newly calculated 484

rate CC_R and an estimate of the current RTT last_rtt . For 485

every update iteration, FseNg calculates a new rate for RTP 486

streams, and a new CWNDmax for SCTP flows. 487

In line 2 of Algorithm 3, a function gets called that checks 488

whether any GCC flows are application limited. The exact 489

semantics of this function are not defined in [5]. However, 490

we assume the function should check if all GCC flows f have 491

been assigned an FSE_R(f ) equal to DR(f ). The function is 492

defined in Algorithm 2. 493

Algorithm 2 FSE-NGChecking If All RTP Flows Are Appli-
cation Limited
1: function AllAppLimited
2: for f in rate_flows do
3: if FSE_R(f ) ≥ DR(f ) then
4: return false
5: end if
6: end for
7: return true
8: end function

95052 VOLUME 10, 2022



S. Islam et al.: Real-Life Implementation and Evaluation of Coupled CC for WebRTC Media and Data Flows

To find and update the CWND_max of any registered494

SCTP flows, we add some extra functions to the usrsctp495

library. After having calculated an FSE_Rf for a given496

SCTP flow f , FSE_R(f ) is converted to CWND_max(f ).497

UsrsctpTransport calls a function we added to usrsctp498

called usrsctp_set_max_cwnd that sets the CWND_max499

of the corresponding SCTP socket to the value given500

by FseNg.501

Algorithm 3 FSE-NG Update Algorithm With Extensions
1: function Update(flow,R1,CC_R, last_rtt)
2: if IsEmpty(cwnd_flows) or AllAppLim-

ited(rate_flows) then
3: S_CR← S_CR+ CC_R− FSE_R(flow)
4: else
5: S_CR← S_CR+ CC_R− FSE_R(flow)+ R1

6: end if
7: S_RTP_CR← 0
8: for f in rate_flows do
9: FSE_R(f )← min(P(f )×S_CRS_P ,DR(f ))
10: Update_CC(FSE_R(f ))f
11: S_RTP_CR← S_RTP_CR+ FSE_R(f )
12: end for
13: RTTbase← min(RTTbase, last_rtt)
14: S_CWND_CR← S_CR− S_RTP_CR
15: for f in cwnd_flows do
16: FSE_R(f )← P(f )×S_CWND_CR

S_CWND_P
17: CWNDmax(f )← FSE_R(f )× RTTbase
18: Update_CC(CWNDmax(f ))f
19: end for
20: if IsEmpty(cwnd_flows) then
21: S_CR← S_RTP_CR
22: end if
23: end function

B. EXTENSIONS502

Here, we detail our extensions that deviate from the algorithm503

description in [5]. The final version of the update algorithm504

is shown in Algorithm 3.505

1) DEALING WITH EXCESS RATE506

The original paper [5] does not specify how to handle situa-507

tions where the S_CR is larger than the sum of desired rates,508

and there are no SCTP flows present. If we do not handle this509

case, there is excess rate at the end of the update; this leads510

to the S_CR growing every update call without allocating all511

the rate. Consequently, when an SCTP flow registers, all the512

leftover rate gets allocated, giving SCTP an almost unlimited513

CWNDmax because S_CR has grown too high. We therefore514

extend the FSE-NG algorithm with an extra check, as can be515

seen in lines 20-21 in Algorithm 3. If no SCTP flows are516

registered, the extension sets S_CR to S_RTP_CR. If there517

are SCTP flows registered, we know that any leftover rate518

has been allocated to the SCTP flows.519

2) DESIRED RATE 520

The original FSE-NG algorithm uses the same DR for all 521

the RTP flows; however, the maximum bit rate of RTP flows 522

may vary. For instance, the WebRTC Javascript API offers 523

an RTCRtpEncodingParameters object which lets the appli- 524

cation set the maximum bit rate of the underlying RTP trans- 525

mission of a mediaStreamTrack. Consequently, we extend 526

the original algorithm by requiring each update call to also 527

provide the flow’s current DR. FseNg uses the individual 528

flow’s last reported DR instead of a shared global DR value 529

when allocating bandwidth to the RTP flows. 530

3) CHOOSING CC_R 531

Wemake some adjustments when implementing the FSE-NG 532

updates because of an inherent difference in how NADA 533

and GCC work. NADA combines loss, delay, and ECN 534

into a single aggregated value called ‘‘composite conges- 535

tion signal’’ [14]. When coupling NADA flows in the 536

FSE-NG, each NADA flow updates FSE-NG with the aggre- 537

gated value as CC_R which FSE-NG then sets to FSE_R 538

instead. 539

GCC, on the other hand, maintains two separate esti- 540

mates, one based on loss (As_hat) and one based on delay 541

(A_hat). The final rate used is min(As_hat,A_hat). In the 542

GCC implementation two classes are responsible for main- 543

taining the estimates, SendSideBandwidthEstimation and 544

AimdRateControl. AimdRateControl maintains the delay 545

based estimate. SendSideBandwidthEstimation is responsi- 546

ble both for maintaining the loss-based estimate and then set- 547

ting the final target based on the most conservative of the two 548

values. 549

In our tests, we found that the A_hat will always be the 550

most conservative value, and hence use A_hat as the rate that 551

will be reported to FSE-NG. 552

C. EVALUATION 553

This section presents results from experiments performed 554

with the evaluation testbed (see Section III-A). Firstly, 555

we look at simple scenarios where the mechanism works as 556

intended; then, we highlight some issues. We can trace some 557

problems back to design flaws in themechanism, while others 558

arise because we implemented it with GCC while FSE-NG 559

was originally designed to work with NADA. The IETF 560

RMCAT Working Group developed test cases to evaluate 561

real-timemedia flows in [26]. In accordancewith [26], we use 562

a bottleneck queue length of 300ms in all our tests (with the 563

exception of fig. 11, as we will explain in section V-C2.a). 564

We have also run tests with different queue lengths, which 565

yielded similar results. 566

1) CORRECT OPERATION 567

a: COUPLING TWO RTP FLOWS 568

We start with the simplest case of two RTP flows to test the 569

efficacy of the FSE-NG mechanism. Figure 7 shows that the 570

effect of coupling two RTP flows with the FSE-NG is similar 571

VOLUME 10, 2022 95053



S. Islam et al.: Real-Life Implementation and Evaluation of Coupled CC for WebRTC Media and Data Flows

FIGURE 7. Sending rates of 2 RTP (GCC) flows. The bottleneck has a
capacity of 2 Mbps and a 300 ms queue. The RTT is 100 ms.

FIGURE 8. Sending rates of one RTP (GCC) flow and one SCTP flow. The
bottleneck has a capacity of 3 Mbps and a 300 ms queue. The RTT is
100 ms.

FIGURE 9. Sending rates of two RTP (GCC) flows and one SCTP flow. The
bottleneck has a capacity of 3 Mbps and a 300 ms queue. The RTT is
100 ms.

to the previous FSE result. It can be seen from fig. 7b that the572

bandwidth is shared fairly between the FSE-NG-controlled573

media flows.574

b: ONE RTP FLOW VERSUS ONE SCTP FLOW575

The simplest case with heterogeneous flows is one RTP flow576

competing against one SCTP flow. fig. 8 illustrates the send-577

ing rates of an RTP and a SCTP flow, with and without the578

FSE-NG. The flows are given equal priority in the coupled579

scenario. The RTP flow starts 10 seconds earlier than SCTP580

and ends 20 seconds before. fig. 8a shows the fairness issue581

that we have identified in section III-B, where RTP gets582

starved almost entirely when running without the coupling583

mechanism. In contrast, fig. 8b clearly shows that coupling584

eliminates this problem, as flows are given their fair share of585

the total bandwidth when the FSE-NG is enabled.586

c: TWO RTP FLOWS VERSUS ONE SCTP FLOW587

We also ran similar experiments with two RTP flows com-588

peting with one SCTP flow. Again, we can see that, without589

coupling, the two RTP flows are unable to compete with590

SCTP and are starved completely (fig. 9a). fig. 9b shows that591

the capacity of 3 Mbps is fairly shared between all the flows592

so that each one gets 1 Mbps once all have started.593

d: PRIORITISATION 594

To show that FSE-NG correctly handles and enforces priori- 595

ties, fig. 10 presents sending rate plots of 2 RTP and 1 SCTP 596

flows with different priority configurations. It can bee seen 597

from fig. 10a to 10c that FSE-NG allocates rates based on the 598

flows’ priorities when the flow group is heterogeneous. 599

2) PROBLEMS 600

a: SCTP INITIALIZATION 601

At the beginning of an RTP connection, AimdRateControl 602

has not yet measured an RTT and initializes the RTT to a 603

default of 200 ms. We have also identified that it may take 604

several seconds before an actual RTT is registered. In sce- 605

narios where there are registered GCC flows in the FSE-NG 606

before any SCTP flows, this is not a problem since it gives 607

ample time for GCC to find approximately the base RTT 608

value. On the other hand, in cases where SCTP flows are 609

registered before or simultaneously with any GCC flows, and 610

the real base RTT is lower than 200 ms, the SCTP flow gets 611

a much higher rate allocated by the FSE-NG than it should. 612

This problem leads to GCC being out-competed by SCTP in 613

the first few seconds of the transmission. The phenomenon 614

is shown in fig. 11 with a high initial SCTP rate spike even 615

though both flows are coupled and should be getting their 616

fair share each. The RTT used in the figure is 50 ms, and, 617

deviating from the common 300 ms configuration, we con- 618

figured the router queue to 150 ms to ensure that the total 619

measured RTT stays low enough. We also ran an experiment 620

with a 100 ms RTT and found the same issue. 621

b: SCTP STARTING BEFORE RTP 622

Since FSE-NG only uses the congestion signals generated by 623

GCC, S_CR stays at 0 as long as no RTP flows are registered, 624

even though SCTP flows might be running and using a large 625

share of the capacity. One side effect of this design is that 626

when RTP flows start later than SCTP flows, the SCTP flow 627

gets drastically pulled down when the an RTP flow registers. 628

The phenomenon is illustrated in fig. 12—when the RTP flow 629

starts, SCTP gets dragged down to around 750Kbps; it should 630

be close to 1.5 Mbps. The issue is that S_CR will start at 631

the initial RTP rate, and the flows are both limited for some 632

time until S_CR has grown enough for them to utilise the 633

bandwidth. The impact of this problem could get slightly 634

mitigated by the aforementioned RTT problem, because it 635

accidentally gives SCTP a much higher CWNDmax than it is 636

supposed to. However, this is not something that the FSE-NG 637

mechanism is in control of, and it should therefore not rely on 638

the default reported RTT being much higher than the RTTbase. 639

640

c: SLOW SCTP CONVERGENCE WHEN USING DR 641

When the desired rate limits the RTP flow, and the link’s 642

capacity is higher. the convergence time for SCTP becomes 643

very long. GCC’s delay-based controller has an ‘‘increase’’ 644

state in which it may use an additive or multiplicative increase 645

95054 VOLUME 10, 2022



S. Islam et al.: Real-Life Implementation and Evaluation of Coupled CC for WebRTC Media and Data Flows

FIGURE 10. Sending rates of two RTP flows and one SCTP flow with different priority configurations. The bottleneck has a capacity of 3 Mbps and a
300 ms queue. The RTT is 100 ms.

FIGURE 11. Sending rates of one RTP flow and one SCTP flow. The
bottleneck has a capacity of 3 Mbps and a 150 ms queue. The RTT is
50 ms.

FIGURE 12. Sending rates of one RTP flow and one SCTP flow. The
bottleneck has a capacity of 3 Mbps and a 300 ms queue. The RTT is
100 ms.

depending on how close to convergence the rate appears to be.646

In fig. 13, GCC is carrying out a multiplicative increase from647

time 0s to approximately time 40s. However, GCC’s multi-648

plicative increase is limited to a growth of 8% per second,649

so with a DR of 1.5 Mbps, GCC may only increase by 0.08×650

1.5 Mbps per second, which amounts to only a 120 kbps per-651

second increase factor. In other words, even though GCC is in652

the multiplicative increase state, it gets limited to an additive653

increase of 120 kbps per second because we are giving all654

the excess rate to SCTP flows instead and resetting GCC655

FIGURE 13. Sending rates of one RTP flow and one SCTP flow, RTP with
DR set to 1.5 Mbps. The bottleneck has a capacity of 6 Mbps and a
300 ms queue. The RTT is 100 ms.

back to its DR. Naturally, this makes convergence for SCTP 656

very slow; in the scenario of Figure 13 it takes approximately 657

30 seconds from SCTP’s start until the total capacity of 658

6 Mbps is utilized. 659

D. DERIVED IMPLICATIONS OF THE FSE-NG MECHANISM 660

This section summarizes the design issues and limitations of 661

FSE-NG that we found when in our implementation using 662

GCC. 663

• In the beginning, GCC has not yet gotten a realistic RTT 664

report; therefore, it reports the default RTT of 200ms 665

to FSE-NG; this leads to unfair bandwidth allocation 666

between RTP flows and SCTP in the first couple of 667

seconds (fig. 11). 668

• When SCTP flows start before any RTP flows, the 669

FSE-NG will significantly throttle them once any RTP 670

flow begins (fig. 12). 671

• Because GCC is limited to a maximum rate change of 672

8% no matter the conditions, only using GCC’s rate as 673

input leads to a very slow SCTP convergence when the 674

link has a high capacity (fig. 13). 675

• Since FSE-NG originally was designed to assume that 676

all RTP flows will have the same desired rate, it does not 677

share leftovers between RTP flows in cases where one 678

flow is limited to a given desired rate and another one is 679

not (fixed by our extension described in section V-B2). 680

VOLUME 10, 2022 95055



S. Islam et al.: Real-Life Implementation and Evaluation of Coupled CC for WebRTC Media and Data Flows

• In line 5 in Algorithm 3, the relative rate change is681

technically added to S_CR twice because the relative682

rate change R1 is actually calculated via CC_R −683

FSE_R. We have not found the reason for this decision684

in [5] and therefore consider it a bug. However, it does685

help mitigate the problems discussed in sections V-C2.b686

and V-C2.c which would be more serious if the rela-687

tive rate change was added once. On the other hand,688

it exacerbates the problem explained in Section V-C2.a.689

We decided not to change this part of the algorithm690

for our implementation since the advantages seem to691

outweigh the disadvantages; it is also more faithful to692

the original algorithm to leave it as is.693

• It is also noteworthy that FSE-NG does not have any694

coupling effect in cases where several SCTP flows695

belonging to different SCTP associations are registered,696

and no GCC flows are present.697

E. LESSONS LEARNED698

The problem described in Subsection V-C2a underscores the699

benefits of using information from both types of controllers700

in update calls. For instance, letting the SCTP flows update701

the FSE-NG’s RTT information would not conflict with the702

design decision that only RTP controllers should provide the703

rate updates and would fix that particular issue. The benefits704

of using information from both flow types are further driven705

home by the issues highlighted in V-C2c and V-C2b, which706

also are reactions to the mechanism only getting rate updates707

from one type of flow and likely may be fixed by getting708

information from SCTP flows as well.709

VI. COUPLING, PART 3: EXTENDED FSE-NG710

The basis for the following extensions is that we added SCTP711

information updates to themechanism. SCTP updates are sent712

every time SCTP calculates a new CWND; what is included713

in the updates and how the FSE-NG uses the information will714

be explained in the following subsections. Table 3 provides an715

overview of the variables and functions used throughout this716

section when explaining the mechanism.717

A. RTT INFORMATION718

Because GCC needs some time before getting a real RTT719

measurement, SCTP flow could get a significant rate fluc-720

tuation in the beginning (see fig. 11). Our fix for this issue721

is to change the algorithm such that only SCTP will send722

RTT information to the manager instead of GCC. In addition723

to the initial CWNDmax , SCTP sends in the current RTT724

estimate upon registration as well. SCTP also includes the725

RTT in update calls. Since SCTP registers upon the first726

new calculation of CWND, at which point it already has an727

accurate RTT measurement, this ensures that whenever any728

SCTP flows are registered, RTTbase has a proper value. Since729

RTTbase is only used to update CWNDmax , it is not necessary730

to update it in the absence of SCTP flows.731

B. SLOW SCTP CONVERGENCE 732

We also introduce fixes for the issues of SCTP being dragged 733

down upon GCC registration (see fig. 12), and the slow SCTP 734

convergence (see fig. 13): these issues stem from the fact 735

that only GCC is responsible for the rate growth of both 736

mechanisms. Consequently, both of these issues can be solved 737

by also letting SCTP report a rate and add to S_CR growth. 738

Firstly, this fixes the issue of SCTP getting dragged down 739

when it starts before any RTP flows because SCTP will 740

already have converged to a rate reasonably close to the link’s 741

capacity, which then can be shared with the newly registered 742

RTP flow. Secondly, the very slow SCTP convergence when 743

the RTP flow is application limited is fixed because SCTP 744

contributes to S_CR alongside RTP. 745

When both controllers contribute to S_CR, it grows much 746

quicker. However, the FSE-NG’s reduction of delay is based 747

around only letting GCC control any rate increases. To ensure 748

GCC is allowed to control any rate increase and keep the 749

delay low when necessary, we therefore compromise by only 750

adding SCTP’s relative rate change under two conditions: 1) 751

if there are no RTP flows registered, or 2) if S_CR is large 752

enough to give all registered RTP flows their DRs. This fix 753

also improves the initial start-up of the GCC flow because 754

SCTP has already contributed to the aggregate S_CR. 755

C. FIXING THE DOUBLE RATE ADDITION TO S_CR 756

In the original algorithm, we discovered a bug which led to 757

the rate change reported by GCC flows to be added twice 758

when all GCC flows are application limited or when there 759

are no registered SCTP flows. As we have discussed, this bug 760

mitigated the slow SCTP convergence problem arising after a 761

later-joining GCC flow, but since this problem is now fixed, 762

it is also safe to eliminate this bug and ensure that the rate 763

change is added only once. 764

D. IMPLEMENTATION DETAILS 765

The implementation of the Extended FSE-NG algorithm is 766

very similar to FSE-NG’s implementation; in this section, 767

we will explain the extensions and changes. 768

1) EXTENDED FSE-NG CLASS DESCRIPTIONS 769

We reuse some classes from the FSE and FSE-NG. What 770

follows is an overview of the new classes created for the 771

module: 772

HybridCwndFlow 773

This child class of Flow represents an SCTP flow 774

that receives rate updates but may also send a rate 775

to the Extended FSE-NG under certain conditions. 776

ExtendedFseNg 777

This implements the Extended FSE-NG as a sin- 778

gleton class. It stores the same state as FseNg, but 779

has a slightly changed update algorithm, and a new 780

method allowing SCTP to also send rate updates. 781

95056 VOLUME 10, 2022



S. Islam et al.: Real-Life Implementation and Evaluation of Coupled CC for WebRTC Media and Data Flows

TABLE 3. Variables and functions used in the extended FSE-NG.

2) REGISTRATION, UPDATES AND DEREGISTRATION782

DETAILS783

Here, we describe each stage of the coupling sequence,784

highlighting the difference between Extended FSE-NG and785

original FSE-NG.786

a: REGISTRATION787

Registration of GCC flows remains the same as in the FSE-788

NG implementation. Registration of SCTP, on the other789

hand, has changed. Upon registration, flow f sends in: initial790

CWND(f ), initial CWNDmax(f ), initial RTT (f ), a callback791

functionUpdate_CC(f ), and flow priorityP(f ). As with FSE-792

NG, the initial CWNDmax(f ) is only stored for the occasion793

where allRateflows deregister and the SCTP flow should use794

its default CWNDmax . AHybridCwndFlow object is created795

and added to a set ofHybridCwndFlows. ExtendedFseNg’s796

RTTbase value is also updated in the same fashion as for797

FSE-NG but this time with SCTP’s RTT (f ) value. In either798

case, RTT (f ) is used to convert CWND(f ) to a rate added to799

S_CR. The intention is that since either themeasured capacity800

is large enough to satisfy all GCC flows or there are no GCC801

flows to take care of, SCTP should be allowed to increase802

S_CR.803

b: PERFORMING UPDATES804

GCC’s rate updates largely remain the same, except that805

SCTP is now responsible for sending in RTT measurements;806

thus, GCC only sends in the newly calculated rate. The update807

algorithm also remains the same, except that RTTbase is no808

longer updated because that is done when SCTP flows sends809

updates, which we will delve into next. Algorithm 4 includes810

pseudo-code for the update algorithm for rate-based flows.811

Every time an SCTP flow f calculates a new CWND,812

it sends an update to ExtendedFseNg containing813

CC_CWND(f ) and last_rtt(f ). last_rtt(f ) is used to update814

RTTbase in the same way as FSE-NG. Then last_rtt(f ) is815

used to convert CC_CWND(f ) into a rate. Lastly, similar to 816

the registration algorithm, if all GCC flows are application 817

limited or no GCC flows are registered, the newly calculated 818

rate is used to update S_CR with the relative rate difference. 819

It is worth noting that though SCTP is now allowed to 820

update S_CR, it does not trigger a recalculation or distribution 821

of rates for other registered flows; this still only happenswhen 822

GCC flows send updates. Algorithm 5 includes pseudo code 823

showing what happens when SCTP flows send updates. 824

c: DEREGISTRATION 825

The deregistration phase for both types of flows remains 826

the same as in FSE-NG. If all GCC flows deregister, the 827

CWNDmax values for all SCTP flows are reset to their initial 828

values. 829

Algorithm 4 Extended FSE-NG’s GCC Update Algorithm
1: function RateFlowUpdate(flow,CC_R)
2: S_CR← S_CR+ CC_R− FSE_R(flow)
3: S_RTP_CR← 0
4: for f in rate_flows do
5: FSE_R(f )← min(P(f )×S_CRS_P ,DR(f ))
6: Update_CC(FSE_R(f ))f
7: S_RTP_CR← S_RTP_CR+ FSE_R(f )
8: end for
9: S_CWND_CR← S_CR− S_RTP_CR
10: for f in cwnd_flows do
11: FSE_R(f )← P(f )×S_CWND_CR

S_CWND_P
12: CWNDmax(f )← FSE_R(f )× RTTbase
13: Update_CC(CWNDmax(f ))f
14: end for
15: if IsEmpty(cwnd_flows) then
16: S_CR← S_RTP_R
17: end if
18: end function

VOLUME 10, 2022 95057



S. Islam et al.: Real-Life Implementation and Evaluation of Coupled CC for WebRTC Media and Data Flows

Algorithm 5 Extended FSE-NG’s SCTP Update Algorithm
1: function CwndFlowUpdate(flow,CC_CWND, last_rtt)
2: S_CWND_CR← S_CR− S_RTP_CR
3: RTTbase← min(RTTbase, last_rtt)
4: CC_R← CC_CWND× RTTbase
5: if IsEmpty(rate_flows) or AllAppLim-

ited(rate_flows) then
6: S_CR← S_CR+ CC_R− FSE_R(flow)
7: end if
8: FSE_R(flow)← CC_R
9: end function

FIGURE 14. Sending rate of one RTP flow and one SCTP flow, RTP with DR
set to 1.5 Mbps. The bottleneck has a capacity of 6 Mbps and a 300 ms
queue. The RTT is 100 ms.

E. DERIVED IMPLICATIONS830

Although some FSE-NG issues are now resolved, our tests831

of the Extended FSE-NG algorithm still show some limi-832

tations, necessitating yet another design step (accordingly,833

we will present evaluation results of Extended FSE-NG later,834

in section VIII, in comparison with the other variants). These835

limitations are:836

• The introduced changes improve SCTP’s slow conver-837

gence when there is enough capacity available to give838

GCC flows their desired rates. However, when this is not839

the case (in lower bandwidth conditions), SCTPwill still840

experience slow convergence. This problem is illustrated841

in fig. 14, where it takes 15 seconds from the start of842

SCTP until S_CR has grown high enough for RTP to843

be allocated its DR of 1.5 Mbps. At that point our fix844

kicks in and lets SCTP add to S_CR, resulting in quick845

convergence from that point on.846

• As with FSE-NG, the mechanism still does not share the847

leftover rate between GCC flows in cases where some848

flows are application limited and some are not.849

• Extended FSE-NG cannot provide any coupling850

between separate SCTP flows (i.e., different SCTP asso-851

ciations) running alone, because SCTP update calls do852

not trigger rate updates from Extended FSE-NG to other853

flows.854

F. LESSONS LEARNED855

The original FSE-NG solely relies on the delay-based flow to856

drive the rate calculation and leaves SCTP passive. As we857

have discussed, a delay-based flow can also benefit from 858

receiving information from a loss-based flow. However, 859

FSE-NG is designed around the core concept that only the 860

delay-based flow should lead, and therefore possibilities for 861

incorporating SCTP updates are limited. This motivates us to 862

investigate a different avenue where both types of flows are 863

treated equally from the get-go. 864

VII. COUPLING, PART 4: FSEv2 865

We design and implement Flow State Exchange v2 (FSEv2), 866

a new coupling mechanism for heterogeneous congestion 867

control mechanisms that is based on lessons learned in the 868

preceding sections. 869

A. DESIGN OVERVIEW 870

Our previously discussed extensions to FSE-NG mitigate 871

some of FSE-NG’s problems by using SCTP’s rate changes 872

under certain conditions. However, this works only for cases 873

where capacity is large enough to accommodate all desired 874

rates anyway. Furthermore, one potential problem with the 875

FSE-NG mechanism is that it makes both types of coupled 876

flows solely rely on GCC’s ability to compete against other 877

flows. To try a different approach, we base our new mech- 878

anism on the idea that the loss-based mechanism should be 879

more active in the coupling process. That is, it should be 880

allowed to contribute to rate changes, while still expecting 881

that the delay-based mechanism will keep queuing delay 882

down. The design is primarily based on the FSE mechanism 883

but with support for loss-based mechanisms added. The basis 884

for basing the update algorithm on FSE rather than FSE-NG 885

is firstly that FSE-NG assumes all GCC flows have the same 886

DR, thus not supporting sharing of leftover rate between GCC 887

flows. Secondly, our mechanism couples SCTP in an inher- 888

ently different way to FSE-NG by using the actual CWND 889

of the flows as opposed to FSE-NG, which only sets the 890

CWNDmax values for SCTP flows. Thus, FSE-NG concepts 891

like, for instance, keeping track of RTTbase are no longer rel- 892

evant. Loss-based flows are treated similarly to delay-based 893

flows, except that we do not take any DR into consideration 894

for them. 895

B. IMPLEMENTATION DETAILS 896

We now delve into more concrete details about the new 897

mechanism and its implementation. 898

1) CLASS DESCRIPTIONS 899

The RateFlow is also reused for the new mechanism to 900

represent GCC flows. Here is an overview of the new classes 901

that we created: 902

ActiveCwndFlow 903

This new type of flow class inherits from Flow. 904

An object of this class is created for every registered 905

SCTP flow. 906

FseV2 907

This represents the new mechanisms manager, 908

like the original FlowStateExchange class but 909

extended to couple SCTP flows. 910

95058 VOLUME 10, 2022



S. Islam et al.: Real-Life Implementation and Evaluation of Coupled CC for WebRTC Media and Data Flows

TABLE 4. Variables used in the FSEv2 implementation.

2) REGISTRATION, UPDATES AND DEREGISTRATION911

DETAILS912

This subsection will go through the coupling sequence’s reg-913

istration, update, and deregistration parts. We reuse the same914

terms and variables as in the original FSE; some new concepts915

are introduced. All the variables and terms relevant to FSEv2916

are listed in Table 4.917

a: REGISTERING GCC FLOWS918

Regarding registration, GCC flows are treated the same way919

as with the FSE: their initial rate is added to S_CR, and920

the newly created RateFlow is added to a set of RateFlow921

pointers.922

b: REGISTERING SCTP FLOWS923

When an SCTP flow f registers, it sends in its initial924

CC_CWND(f ) value and its initial last_rtt(f ) value. FseV2’s925

last RTT estimate is updated with last_rtt(f ). CC_CWND(f )926

is converted toCC_R by dividing it by last_rtt(f ).CC_R(f ) is927

then added to S_CR. An ActiveCwndFlow object is created928

to store this information for the SCTP flow, and a pointer929

to the object is added to a set of ActiveCwndFlow pointers930

representing the flow group of registered SCTP flows.931

c: GCC FLOW UPDATES932

Whenever a GCC flow calculates a new rate, it sends an933

update to FseV2 containing the newly estimated rate. FseV2934

then runs an update algorithm that is used by both types of935

flows. This algorithm updates S_CR and distributes S_CR936

among both types of flows.937

d: THE UPDATE ALGORITHM938

Algorithm 6 is used by both types of flows. The algorithm939

takes two arguments, the flow flow performing the update940

and the newly calculated CC rate CC_R(flow). If an SCTP941

flow is performing the update, we assume that it has already 942

converted the reported CWND value to CC_R(flow). Firstly, 943

S_CR is updated based on the CC_R(f ) by adding the sum of 944

the difference between CC_R(f ) and the flow’s previously 945

allocated rate FSE_R(flow). Then, in lines 3-11, the algo- 946

rithm calculates the total sum of priorities S_P by adding 947

all priorities of both types of flows; it also initializes all 948

allocated rates to zero. Next, in lines 14-32, the algorithm 949

simultaneously allocates rates to all GCC and SCTP flows 950

while ensuring that application-limited GCC flows do not get 951

more than their desired rate. The leftover rate is shared fairly 952

between all the other flows. The allocation for the GCC flows 953

is the same as the original FSE algorithm (see Algorithm 1). 954

However, an extra loop is added in lines 28-33. Finally, in 955

lines 33-39, when all flows have been allocated a rate, the 956

rates are distributed to the flows. 957

e: CHOOSING THE GCC UPDATE ESTIMATE 958

When FseV2 sends updates to GCC flows, both the delay 959

based estimate and the loss based estimates are updated 960

with the FSE_R. The loss based estimate is calculated in 961

a different GCC class called SendSideBandwidthEstima- 962

tion than the delay based estimate, which is calculated in 963

AimdRateControl. Both of these classes are controlled by 964

yet another class called GoogCc, which is responsible for 965

tying the various GCC components together. Accordingly, 966

when FseV2 sends updates to GCC, they are sent toGoogCc 967

which then relays the information to AimdRateControl and 968

SendSideBandwidthEstimation so that both estimates are 969

updated to FSE_R. 970

f: SCTP FLOW UPDATES 971

When an SCTP flow f changes the CWND it sends an 972

update to FseV2 containing CC_CWND(f ) and last_rtt(f ). 973

CC_CWND(f ) is converted to CC_R(f ) and Algorithm 6 974

is executed with CC_R(f ) as input. FseV2 sets the actual 975

CWND when distributing rate updates. To accommodate for 976

this we added another function called set_cwnd to the usrsctp 977

library; set_cwnd is called from UsrsctpTransport. 978

g: SCTP STATE CONSIDERATIONS 979

Because the mechanism sets the actual CWND, which is 980

tied to the state of SCTP’s CC mechanism, we consider the 981

following before setting CWND to FSE_CWND. 982

1) Adopting FSE_CWND: even though the actual CWND 983

is stored in bytes in the usrsctp library, it only 984

increases and decreases by the segment size number of 985

bytes. Therefore, before setting the CWND, we round 986

FSE_CWND down to the closest number of whole 987

segments. 988

2) Avoiding unnecessary Slow Start: as opposed to 989

SCTP’s maximum CWND, which is simply an upper 990

limit, the actual CWND is tied to SCTP’s CC state. 991

Specifically, if CWND is smaller than or equal 992

to ssthresh, SCTP goes into the slow start phase; 993

VOLUME 10, 2022 95059



S. Islam et al.: Real-Life Implementation and Evaluation of Coupled CC for WebRTC Media and Data Flows

Algorithm 6 FSEv2 Update Algorithm, Called When Either
Type of Flow Sends Updates
1: function OnFlowUpdated(flow,CC_R(flow))
2: S_CR← S_CR+ CC_R− FSE_R(flow)
3: S_P← 0
4: for f in rate_flows do
5: S_P← S_P+ P(f )
6: FSE_R(f ) = 0
7: end for
8: for f in cwnd_flows do
9: S_P← S_P+ P(f )
10: FSE_R(f ) = 0
11: end for
12: TLO← S_CR
13: AR← 0
14: while TLO−AR > 0 and S_P > 0 do
15: AR← 0
16: for f in rate_flows do
17: if FSE_R(f ) < DR(f ) then
18: if TLO×P(f )S_P ≥ DR(f ) then
19: TLO← TLO− DR(f )
20: FSE_R(f )← DR(f )
21: S_P← S_P− P(f )
22: else
23: FSE_R(f )← TLO×P(f )

S_P
24: AR← AR+ TLO×P(f )

S_P
25: end if
26: end if
27: end for
28: for f in cwnd_flows do
29: FSE_R(f )← TLO×P(f )

S_P
30: AR← AR+ TLO×P(f )

S_P
31: end for
32: end while
33: for f in rate_flows do
34: Update_CC(FSE_R(f ))f
35: end for
36: for f in cwnd_flows do
37: FSE_CWND(f )← FSE_R(f )× last_rtt
38: Update_CC(FSE_CWND(f ))f
39: end for
40: end function

otherwise, it stays in Congestion Avoidance. It may994

happen that the FseV2 sends a FSE_CWND value995

which is lower than ssthresh if, for instance, a GCC996

flow decreased the rate due to congestion. In the997

described scenario, if ssthresh remains unchanged and998

CWND is set to FSE_CWND, SCTP will go into999

Slow Start without having experienced a loss event1000

because CWNDwill suddenly be smaller than ssthresh.1001

To make sure this does not happen, we also set the1002

ssthresh value to FSE_CWND minus the size of one1003

segment in such cases.1004

h: DEREGISTRATION 1005

Deregistrations in FseV2 are treated in the same way for 1006

either type of flow. The flow is removed from the correspond- 1007

ing set of flows. 1008

VIII. EVALUATION 1009

We carry out experiments to evaluate the three heterogeneous 1010

CC coupling mechanisms that we presented in section V to 1011

VII. We present results from experiments performed with 1012

the evaluation testbed described in section III-A. The IETF 1013

RMCAT Group developed test cases to evaluate congestion 1014

control mechanisms for real-time media flows in [26]. Our 1015

test cases are inspired from [26] —- some cases are extended 1016

or modified to accommodate the fact that we are coupling 1017

heterogeneous flows. This section describes the general con- 1018

ditions surrounding the experiments. In accordance with [26], 1019

we use a bottleneck queue length of 300 ms in all our tests. 1020

The total run time of the experiments is 120 seconds. FIFO 1021

is used as the bottleneck queue type, and no artificial packet 1022

loss or jitter are added along the path. 1023

We consider the following evaluation metrics: 1024

• Sending rate, as observed by capturing the packets being 1025

sent on the sender node’s interface with tcpdump. 1026

• Throughput, as observed by capturing the packets arriv- 1027

ing on the receiver node’s interface with tcpdump. 1028

• Bandwidth utilization, the ratio between available 1029

capacity and average throughput. 1030

• Delay, gathered by logging the measured RTT in the 1031

GCC and SCTP Chromium code. 1032

• Jain’s fairness index [29]. When there are n flows, where 1033

xi is the throughput for the ith flow, the fairness is rated 1034

with the following formula: 1035

J (x1, x2, . . . , xn) =
(
∑n

i=1 xi)
2

n×
∑n

i=1 xi
2 1036

The result ranges from 1
n to 1, with the former being 1037

the worst result and the latter being the best. A result 1038

of 1 means that all flows receive the same allocation, 1039

while a result of 1
n means that one flow receives all the 1040

allocation. 1041

• RTP (GCC) packet loss. The number of RTP packets 1042

dropped during an interval of 500ms is gathered through 1043

the WebRTC JavaScript API in the test application. 1044

A. ONE GCC AND ONE SCTP FLOW COUPLED WITH 1045

EQUAL PRIORITIES 1046

We begin by examining the behavior of two heterogeneous 1047

flows having equal priorities. This experiment aims to assert 1048

that the given coupling mechanism can solve the essential 1049

issue of assuring fairness between data and media flows in 1050

WebRTC. We expect the link to be shared fairly between the 1051

two flows in this test case. Specifically, Jain’s fairness index 1052

should stay close to 1 whenever both flows are registered 1053

in the coupling mechanism and transmitting. We also expect 1054

95060 VOLUME 10, 2022



S. Islam et al.: Real-Life Implementation and Evaluation of Coupled CC for WebRTC Media and Data Flows

FIGURE 15. Sending rates one RTP (GCC) and one SCTP flow coupled with equal priorities. The bottleneck has a capacity of 2 Mbps and a 300 ms queue.
The RTT is 100 ms.

TABLE 5. Average results based on 10 runs of the experiment with GCC (RTP) starting at t = 0s and SCTP starting at t = 10s. The bottleneck has a capacity
of 2 Mbps and a 300 ms queue. The RTT is 100 ms. We only consider the time intervals when both flows are running at the same time.

that the coupling mechanism prevents SCTP from filling the1055

queue to make sure queuing delay is within acceptable levels.1056

Figure 15a shows the sending rates of an RTP and an1057

SCTP flow without the coupling mechanisms. The bottle-1058

neck capacity and one-way delay are 2 Mbps and 50 ms,1059

respectively. As Figures 15b, 15c and 15d show, coupling1060

mechanisms effectively ensure fairness with all mechanisms,1061

even between heterogeneous flows.1062

Table 5 shows metrics based on the average results. The1063

most important thing to note is that all three coupling mech-1064

anisms can provide a Jain’s Fairness Index score of 1 or1065

very close to 1, while the case of uncoupled flows is close1066

to the worst possible value of 0.5. We also ran the same1067

test case with a bottleneck capacity of 1, 3 and 4 Mbps;1068

it yielded the same close-to-perfect Jain’s fairness index1069

scores. Furthermore, the coupling mechanisms exhibit a1070

much lower average RTT than the uncoupled case. The1071

experiments were repeated ten times to ensure statistical1072

significance.1073

The delay box plots in fig. 16 make it clear that the coupled1074

CC mechanisms make the RTT vastly more stable for GCC1075

when competing with an SCTP flow in all cases. Figure 16b1076

shows that coupled CC also makes the RTT more stable for1077

the coupled SCTP flow as well, which could be beneficial1078

for WebRTC applications that, for instance, rely on the RTC-1079

DataChannel for interactivity. We also checked the results for1080

different queue lengths, and the results were the same for the1081

coupling mechanisms.1082

It is worth mentioning that this is the only test case where1083

some negligible (0.0016% of sent packets) GCC losses were1084

observed for one of the coupling mechanisms. A couple of1085

packets get dropped for FSEv2 when SCTP starts. The losses1086

occur due to SCTP’s Slow Start phase because SCTP is too1087

aggressive for GCC’s decreases to stop the queuing filling up.1088

Once SCTP goes into Congestion Avoidance, no more losses1089

are observed.1090

FIGURE 16. RTT measurements with equally prioritized flows. The
bottleneck has a capacity of 2 Mbps and a 300 ms queue. The RTT is
100 ms. We only consider the cases when both flows are running at the
same time.

B. PRIORITISATION 1091

1) ONE GCC AND ONE SCTP FLOW COUPLED, WITH 1092

DIFFERENT PRIORITIES 1093

This experiment aims to evaluate how well the coupling 1094

mechanism adheres to configured priorities when both types 1095

of flows are registered. A GCC flow is given a priority level 1096

VOLUME 10, 2022 95061



S. Islam et al.: Real-Life Implementation and Evaluation of Coupled CC for WebRTC Media and Data Flows

FIGURE 17. Sending rate (Mbps) and RTT (ms) for the case of one RTP flow and one SCTP flow. RTP 1 with P = 2, SCTP with P = 1. The bottleneck has a
capacity of 2 Mbps and a 300 ms queue. The RTT is 100 ms.

TABLE 6. Average results based on 10 runs of the test case when GCC has P = 2 and SCTP has P = 1, the bottleneck has a capacity of 2 Mbps, 100 ms RTT
and a 300 ms queue. We only consider the time intervals when both flows are running at the same time.

FIGURE 18. Throughput of a GCC flow and an SCTP flow coupled with
Extended FSE-NG and FSEv2 mechanisms, with the GCC priority set to
1 while the SCTP flow’s priority varies from 1 to 0.1. We only consider the
time intervals when both flows are running at the same time.

twice as large as an SCTP Flow. Firstly, the coupled flows1097

should reach a steady state where their rate equals their share1098

corresponding to the configured priority. Secondly, the cou-1099

pling mechanism should achieve this while still ensuring an1100

appropriate level of bandwidth utilization. Consequently, it is1101

expected that the GCC should comprise 2/3 or approx. 66% of1102

the total bandwidth utilization while SCTP should utilize the1103

remaining 33%. Meanwhile, the queuing delay should stay1104

the same no matter what type of flow is being prioritized. The1105

bottleneck capacity is 2Mbps and one-way propagation delay1106

is 50 ms.1107

Table 6 includes various metrics calculated by taking the1108

average values based on 10 experiments. The table results1109

show that all mechanisms can enforce the prioritization pol-1110

icy well since GCC gets 2/3 of the total throughput for all1111

mechanisms.1112

Figure. 17 shows sending rates and RTT from one exper- 1113

iment. All three mechanisms do seem to experience some 1114

rate oscillations. For FSE-NG and extended FSE-NG, the 1115

oscillations follow a pattern of being stretched for longer 1116

periods, though FSE-NG’s oscillations are more extreme. 1117

In the case of FSE-NG, this is due to the bug which adds 1118

GCC’s rate increases and decreases twice (see section V-D). 1119

Because rate decreases become twice as large, FSE-NG has a 1120

much lower bandwidth utilization than the other mechanisms. 1121

However, we can see that FSE-NG keeps the delay lowest; 1122

extended FSE-NG experiences a bit more delay while FSEv2 1123

has the most delay. Tests with larger queues also provided 1124

similar or very close results. 1125

FSEv2’s extra delay can be traced back to the fact that 1126

SCTP is also allowed to send rate updates to the manager; 1127

however, GCC seems to prevent SCTP from increasing the 1128

delay toomuch, making sure the delay is within an acceptable 1129

range. As fig. 17c shows, this also leads to quite a large initial 1130

delay increase when the SCTP flow is in the slow start phase. 1131

Figure. 18 shows the the throughput for both flows 1132

when GCC’s priority is set to 1 and SCTP’s priority varies 1133

from 1 to 0.1. The throughput values for each different 1134

priority configuration in the plot are based on the average 1135

value of 10 different runs to ensure statistical significance. 1136

The mechanisms are able to distribute the rate according to 1137

varying priorities. 1138

2) TWO GCC FLOWS AND ONE SCTP FLOW COUPLED, WITH 1139

DIFFERENT PRIORITIES 1140

In this test case, two GCC flows run in parallel with one 1141

SCTP flow. The GCC flows are given extra priority of 50% 1142

95062 VOLUME 10, 2022



S. Islam et al.: Real-Life Implementation and Evaluation of Coupled CC for WebRTC Media and Data Flows

TABLE 7. Average results based on 10 runs of the test case when GCC has P = 1.5 and SCTP has P = 1. The bottleneck has a capacity of 4 Mbps and a
300 ms queue. The RTT is 100 ms. GCC flows are not shown on separate lines since their values are close to identical. Only time intervals when all flows
are running are considered.

FIGURE 19. Sending rate (Mbps) and RTT (ms) for the 3 mechanisms. RTP 1 and 2 with P = 1.5, SCTP with P = 1. The bottleneck has a capacity of 4 Mbps
and a 300 ms queue. The RTT is 100 ms.

in relation to SCTP. Similarly to the previous test case, it is1143

expected that; 1) the prioritization is enforced, 2) there is1144

still appropriate bandwidth utilization, and 3) finally, that1145

queuing delay stays the same. Consequently, each GCC flow1146

is expected to get 3/8 of the total utilized bandwidth while the1147

final 2/8 parts are given to SCTP. The bottleneck capacity is1148

4 Mbps and one-way propagation delay is 50 ms.1149

Table 7 includes various metrics calculated by taking the1150

average values based on 10 experiments. GCC flows are1151

expected to comprise 37.5% of the total throughput while1152

the SCTP flow should get 26% based on the priority levels.1153

In Table 7, we can see that all three mechanisms achieve this1154

very well. In terms of cumulative utilization, all mechanisms1155

perform similarly.1156

Figure 19 plots the sending rates and delay for all 3 mech-1157

anisms. FSE-NG and extended FSE-NG show very similar1158

behavior in terms of both metrics. The FSEv2 plot in fig. 19c1159

exhibits oscillations between time 25s and 35s.1160

This behavior is caused by a conflict between the cou-1161

pled flows, where SCTP is in Slow Start mode, aggressively1162

increasing the CWND while the GCC flows decrease the1163

rate because of the increased delay. Thus, the time before1164

SCTP experiences loss and goes into Congestion Avoidance1165

is prolonged. It is also apparent that GCC flows slightly1166

under-performwhile SCTP slightly over-performs during this1167

time period, leading to the priorities not being precisely1168

honored. This is because the media encoder is not able1169

to change the video quality as quickly as the target rate1170

changes. The FSE-NG based mechanisms do not experience1171

this because they set the upper limit of the CWND and do 1172

not receive the rapid rate updates from SCTP. Avoiding this 1173

behavior with a mechanism that receives updates from SCTP, 1174

for instance, by skipping SCTP’s Slow Start mode when it 1175

registers after GCC flows, would likely lead to slow con- 1176

vergence on higher capacity links; therefore it is a necessary 1177

trade-off. 1178

C. ONE GCC AND ONE SCTP FLOW COUPLED, GCC 1179

HAVING DR = 1.5 MBPS 1180

This test case aims to evaluate how well the mechanisms 1181

allow SCTP to utilize available bandwidth when there is 1182

enough capacity to satisfy RTP flows. In this test case, the 1183

GCC flow is configured to have a DR of 1.5 Mbps, and 1184

both flows are given equal priority. It is expected that GCC’s 1185

throughput will converge to a stable rate of 1.5 Mbps. SCTP 1186

should be able to quickly converge to around 3.5 Mbps since 1187

the total capacity is 5 Mbps. The coupling mechanism should 1188

also ensure that delay is kept low despite SCTP sending at a 1189

higher throughput than GCC. The bottleneck capacity in this 1190

scenario is 5 Mbps and one-way propagation delay is 50 ms. 1191

Figure. 20 shows the throughput and delay for the mech- 1192

anisms when the SCTP flow is started before the GCC 1193

flow. In this case, some difference between the mechanisms 1194

is visible. Firstly, in fig. 20a, FSE-NG has two problems; 1195

1) when the GCC flow starts, the SCTP flow’s sending rate 1196

gets dragged all theway down to 1Mbps (see Section V-C2b), 1197

2) SCTP recovering convergence afterwards is very slow, tak- 1198

ing approx. 20 seconds (see Section V-C2c). Our Extended 1199

VOLUME 10, 2022 95063



S. Islam et al.: Real-Life Implementation and Evaluation of Coupled CC for WebRTC Media and Data Flows

FIGURE 20. Sending rate (Mbps) and RTT (ms) of one RTP flow and one SCTP flow. The bottleneck has a capacity of 5 Mbps and a 300 ms queue. The RTT
is 100 ms. DR of the RTP flow is set to 1.5 Mbps.

FIGURE 21. RTT measurements with the RTP flow being application
limited. The bottleneck has a capacity of 5 Mbps and a 300 ms queue. The
RTT is 100 ms. DR of the RTP flow is set to 1.5 Mbps. We only consider the
time intervals when both flows have converged.

FSE-NG changes mostly fix the first problem and entirely1200

remove the second problem. However, testing shows that1201

these fixes only matter whenever the total rate is large enough1202

to satisfy the DR of all registered GCC flows. Thus, when this1203

is not the case, SCTP gets dragged down if it starts first, and1204

SCTP convergence is also slow.1205

FSEv2 never suffers from either of the aforementioned1206

issues and in this case, the advantages of receiving SCTP rate1207

updates in all cases become very clear. We also ran tests with1208

the GCC flow starting first; in this case, FSE-NG also made1209

FIGURE 22. Sending rate of one RTP flow and one SCTP flow, RTP with DR
set to 1.5 Mbps, and coupled with FSEv2. The bottleneck has a capacity of
6 Mbps and a 300 ms queue. The RTT is 100 ms.

SCTP convergence very slow, while Extended FSE-NG and 1210

FSEv2 allowed quick convergence. Furthermore, in case of 1211

FSEv2, we can see from fig. 20c that GCC converges faster 1212

than with the other mechanisms. 1213

Figure. 21 shows delay box plots based on logging of GCC 1214

and SCTP RTT measurements. The GCC measurements in 1215

fig. 21a make it apparent that the mechanisms all are able to 1216

keep GCC delay reasonably low despite the parallel SCTP 1217

transmission. The SCTP RTT measurements illustrated in 1218

fig. 21b show FSE-NG keeping delay lower than the other 1219

two mechanisms. We can trace FSE-NG’s lower delay back 1220

to the fact that the mechanism limits SCTP to a higher degree 1221

than the other mechanisms by not allowing it to send rate 1222

updates. 1223

D. IMPROVING SCTP’s SLOW CONVERGENCE 1224

When the desired rate limits the RTP flow, and the link’s 1225

capacity is large, the convergence time for SCTP can become 1226

very long. Both FSE-NG and our Extended FSE-NG are not 1227

able to solve this problem (see fig. 13 for FSE-NG and fig. 14 1228

for Extended FSE-NG). Because FSEv2 takes rates from both 1229

GCC and SCTP flows, it can be seen from fig. 22 that FSEv2 1230

fixes this problem. 1231

95064 VOLUME 10, 2022



S. Islam et al.: Real-Life Implementation and Evaluation of Coupled CC for WebRTC Media and Data Flows

IX. CONCLUSION1232

In this paper, we have shown how the design of using two1233

different congestion control mechanisms within two differ-1234

ent transport protocols in WebRTC can lead to competition1235

between them, resulting in fairness issues and undesired1236

spikes in queuing delay and losses. In the light of this, we have1237

implemented two state-of-the-art congestion control coupling1238

mechanisms in the Chromium browser: 1) the Active FSE1239

from RFC 8699 [4] that couples media flows, and 2) FSE-NG1240

from [5] that couples NADA and SCTP flows. Based on the1241

derived implications and lessons learned from FSE and FSE-1242

NG, we have implemented and evaluated two novel solu-1243

tions for heterogeneous flows: 1) Extended FSE-NG and 2)1244

FSEv2. Controlled testbed experiments have shown that our1245

mechanisms can combine a set of heterogeneous congestion1246

control mechanisms, fairly allocate the available bandwidth1247

between the flows, and reduce overall delay and losses. Our1248

experimental results confirm that our mechanisms reduce the1249

negative impact of the data channel on the video channel.1250

Having implemented and tested them in Chromium, this1251

paper has taken these congestion control coupling algorithms1252

from theory to practice. We believe that only one final1253

limitation must be addressed before real-life deployment in1254

web browsers: while the introduced mechanisms cater for1255

application-limitedmedia flows, we have assumed that SCTP,1256

when present, always fully utilizes its allowed cwnd. In a1257

real implementation, a distinction between this case and the1258

case of other limitations (SCTP running out of data, or being1259

limited by the receiver window) must be made. Then, the1260

implementation of an FSE variant would obtain a ‘‘desired1261

cwnd’’ from SCTP, and the algorithm should be extended to1262

use this value in the same way in which we have used the1263

‘‘desired rate’’ of GCC flows.1264

Our code is open source, and freely available from [28];1265

we believe that these implementations should serve as a good1266

basis for code in widely-used WebRTC-capable browsers.1267

Regarding the choice of algorithm, we recommend FSEv2.1268

While our results have shown that, due to its heavier reliance1269

on SCTP rate updates, this algorithm does not always consis-1270

tently perform best, e.g., in terms of delay, the differences1271

are miniscule. FSEv2 is, however, the only algorithm that1272

fixes the SCTP convergence problem in the realistic case1273

where GCC flows are application-limited. Also, at the time of1274

writing this paper, the WebRTC developers began a transition1275

to a new SCTP library, which might necessitate adapting1276

the implementations to use the new library. This could be1277

problematic for mechanisms such as FSE-NG since they1278

are dependent on the SCTP library supporting a maximum1279

CWND limit option, which the new library seemingly does1280

not, for the time being.1281

The present work has only focused on coupling flows1282

running between two peers. One possible avenue for fur-1283

ther research is to explore a scenario with several peers,1284

e.g., conference call applications where all flows sent from1285

a given peer or several peers to one or more destinations1286

may share the same bottleneck. As future work, we plan to1287

investigate such scenarios using a shared bottleneck detection 1288

method [30], [31] to infer which flows share a common 1289

path. Such an extension could greatly amplify the benefits 1290

attained with these coupling mechanisms, since they would 1291

then operate on a much larger number of flows. 1292

REFERENCES 1293

[1] S. Islam, M. Welzl, S. Gjessing, and N. Khademi, ‘‘Coupled congestion 1294

control for RTPmedia,’’ SIGCOMMComput. Commun. Rev., vol. 44, no. 4, 1295

pp. 1–10, Aug. 2014, doi: 10.1145/2740070.2630089. 1296

[2] S. Islam,M.Welzl, D. Hayes, and S. Gjessing, ‘‘Managing real-timemedia 1297

flows through a flow state exchange,’’ in Proc. IEEE/IFIP Netw. Oper. 1298

Manag. Symp. (NOMS), Apr. 2016, pp. 112–120. 1299

[3] J. Flohr and E. P. Rathgeb, ‘‘ROSIEE: Reduction of self inflicted queuing 1300

delay in webRTC,’’ in Proc. 29th Int. Teletraffic Congr. (ITC), vol. 3, 1301

Sep. 2017, pp. 7–12. 1302

[4] S. Islam, M. Welzl, and S. Gjessing, Coupled Congestion Control for RTP 1303

Media, document RFC 8699, Jan. 2020. [Online]. Available: https://rfc- 1304

editor.org/rfc/rfc8699.txt 1305

[5] J. Flohr, E. Volodina, and E. P. Rathgeb, ‘‘FSE-NG for managing real time 1306

media flows and SCTP data channel inwebRTC,’’ inProc. IEEE 43rdConf. 1307

Local Comput. Netw. (LCN), May 2018, pp. 315–318. 1308

[6] S. Holmer, H. Lundin, G. Carlucci, L. D. Cicco, and S. Mascolo, 1309

‘‘A Google congestion control algorithm for real-time communication,’’ 1310

Internet-Draft draft-ietf-rmcat-gcc-02, Internet Eng. Task Force, Fre- 1311

mont, CA, USA, Tech. Rep., Jul. 2016. [Online]. Available: Available: 1312

https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-gcc-02 1313

[7] Google WebRTC Team. (2021). Real-Time Communication for the Web. 1314

[Online]. Available: https://webrtc.org/ 1315

[8] H. Schulzrinne, S. L. Casner, R. Frederick, and V. Jacobson, RTP: A Trans- 1316

port Protocol for Real-Time Applications, document RFC 3550, Jul. 2003. 1317

[Online]. Available: https://rfc-editor.org/rfc/rfc3550.txt 1318

[9] R. R. Stewart, Stream Control Transmission Protocol, docu- 1319

ment RFC 4960, Sep. 2007. [Online]. Available: https://www.rfc- 1320

editor.org/info/rfc4960 1321

[10] User Datagram Protocol, document RFC 768, Aug. 1980. [Online]. Avail- 1322

able: https://rfc-editor.org/rfc/rfc768.txt 1323

[11] E. Carrara, K. Norrman, D. McGrew, M. Naslund, and M. Baugher, 1324

The Secure Real-Time Transport Protocol (SRTP), document RFC 3711, 1325

Mar. 2004. [Online]. Available: https://www.rfc-editor.org/info/rfc3711 1326

[12] E. Rescorla andN.Modadugu,DatagramTransport Layer Security Version 1327

1.2, document RFC 6347, Jan. 2012. [Online]. Available: https://www.rfc- 1328

editor.org/info/rfc6347 1329

[13] E. Blanton, D. V. Paxson, and M. Allman, TCP Congestion Control, 1330

document RFC 5681, Sep. 2009. [Online]. Available: https://www.rfc- 1331

editor.org/info/rfc5681 1332

[14] X. Zhu, R. Pan, M. A. Ramalho, and S. M. de la Cruz, Network-Assisted 1333

Dynamic Adaptation (NADA): A Unified Congestion Control Scheme for 1334

Real-Time Media, document RFC 8698, Feb. 2020. [Online]. Available: 1335

https://rfc-editor.org/rfc/rfc8698.txt 1336

[15] I. Johansson and Z. Sarker, Self-Clocked Rate Adaptation for Multimedia, 1337

document RFC 8298, Dec. 2017. [Online]. Available: https://www.rfc- 1338

editor.org/info/rfc8298 1339

[16] H. T. Alvestrand, ‘‘RTCP message for receiver estimated maximum 1340

bitrate,’’ Internet-Draft draft-alvestrandrmcat-remb-03, Internet Eng. Task 1341

Force, Fremont, CA, USA, Tech. Rep., Oct. 2013. [Online]. Available: 1342

https://datatracker.ietf.org/doc/html/draft-alvestrand-rmcat-remb-03 1343

[17] H. Balakrishnan and S. Seshan, The Congestion Manager, document RFC 1344

3124, Jun. 2001. [Online]. Available: https://rfc-editor.org/rfc/rfc3124.txt 1345

[18] S. Islam and M. Welzl, ‘‘Start me up: Determining and sharing TCP’s 1346

initial congestion window,’’ in Proc. Appl. Netw. Res. Workshop (ANRW). 1347

New York, NY, USA: Association for Computing Machinery, 2016, 1348

pp. 52–54, doi: 10.1145/2959424.2959440. 1349

[19] S. Islam, M. Welzl, K. Hiorth, D. Hayes, G. Armitage, and S. Gjessing, 1350

‘‘CtrlTCP: Reducing latency through coupled, heterogeneous multi-flow 1351

TCP congestion control,’’ in Proc. IEEE Conf. Comput. Commun. Work- 1352

shops (INFOCOM WKSHPS), May 2018, pp. 214–219. 1353

[20] S. Islam, M. Welzl, S. Gjessing, and J. You, ‘‘OpenTCP: Combining 1354

congestion controls of parallel TCP connections,’’ in Proc. IEEE Adv. 1355

Inf. Manag., Communicates, Electron. Autom. Control Conf. (IMCEC), 1356

Aug. 2016, pp. 194–198. 1357

VOLUME 10, 2022 95065

http://dx.doi.org/10.1145/2740070.2630089
http://dx.doi.org/10.1145/2959424.2959440


S. Islam et al.: Real-Life Implementation and Evaluation of Coupled CC for WebRTC Media and Data Flows

[21] L. Eggert, J. Heidemann, and J. Touch, ‘‘Effects of Ensemble-TCP,’’1358

SIGCOMM Comput. Commun. Rev., vol. 30, no. 1, pp. 15–29, Jan. 2000,1359

doi: 10.1145/505688.505691.1360

[22] M. Savoric, H. Karl, M. Schläger, T. Poschwatta, and A.Wolisz, ‘‘Analysis1361

and performance evaluation of the EFCM common congestion controller1362

for TCP connections,’’ Comput. Netw., vol. 49, no. 2, pp. 269–294, 2005.1363

[23] P. Wilkins, Y. Xu, L. Quillio, J. Bankoski, J. Salonen, and J. Koleszar,1364

VP8 Data Format and Decoding Guide, document RFC 6386, Nov. 2011.1365

[Online]. Available: https://www.rfc-editor.org/info/rfc63861366

[24] B. Jansen, T. Goodwin, V. Gupta, F. Kuipers, and G. Zussman, ‘‘Perfor-1367

mance evaluation of webRTC-based video conferencing,’’ ACM SIGMET-1368

RICS Perform. Eval. Rev., vol. 45, pp. 56–68, Mar. 2018.1369

[25] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, ‘‘Analysis and1370

design of the Google congestion control for web real-time communication1371

(WebRTC),’’ in Proc. 7th Int. Conf. Multimedia Syst. (MMSys). New York,1372

NY, USA: Association for Computing Machinery, Feb. 2016, pp. 1–5, doi:1373

10.1145/2910017.2910605.1374

[26] Z. Sarker, V. Singh, X. Zhu, andM. A. Ramalho, Test Cases for Evaluating1375

Congestion Control for Interactive Real-TimeMedia, document RFC 8867,1376

Jan. 2021. [Online]. Available: https://www.rfc-editor.org/info/rfc88671377

[27] (2022). OMNeT++ Discrete Event Simulator. [Online]. Available:1378

https://omnetpp.org/1379

[28] (2022). Source Code—Coupled Congestion Control Mechanisms for Data1380

and Video Flows. [Online]. Available: https://github.com/tobiasfl/tobias-1381

master-thesis-webrtc1382

[29] R. Jain, D. Chiu, and W. Hawe, ‘‘A quantitative measure of fairness and1383

discrimination for resource allocation in shared computer systems,’’CoRR,1384

vol. cs.NI/9809099, Jan. 1998.1385

[30] D. Hayes, S. Ferlin, M. Welzl, and K. Hiorth, Shared Bottleneck Detection1386

for Coupled Congestion Control for RTP Media, document RFC 8382,1387

Jun. 2018. [Online]. Available: https://www.rfc-editor.org/info/rfc83821388

[31] D. A. Hayes, M. Welzl, S. Ferlin, D. Ros, and S. Islam, ‘‘Online identifica-1389

tion of groups of flows sharing a network bottleneck,’’ IEEE/ACM Trans.1390

Netw., vol. 28, no. 5, pp. 2229–2242, Apr. 2020.1391

SAFIQUL ISLAM (Member, IEEE) received the1392

Ph.D. degree in computer science from the Uni-1393

versity of Oslo, Norway. He is currently an Asso-1394

ciate Professor at the University of South-Eastern1395

Norway. He is also an Adjunct Associate Professor1396

at the University of Oslo. He actively participated1397

in two EU projects (NEAT and RITE) and was a1398

technical lead of an international project (‘‘TCP-1399

in- UDP’’) with Huawei, China. He is active in the1400

IETF and IRTF, where he has contributed to sev-1401

eral IETF/IRTFWorking Groups. His research interests include performance1402

analysis, evaluation, and optimization of transport layer protocols.1403

MICHAEL WELZL (Member, IEEE) received the 1404

Ph.D. and Habilitation degrees from the Univer- 1405

sity of Darmstadt, Germany, in 2002 and 2007, 1406

respectively. He has been a Full Professor at the 1407

University of Oslo, Norway, since 2009. He has 1408

been active in the IETF and IRTF for many years, 1409

such as by chairing the Internet Congestion Con- 1410

trol Research Group (ICCRG) leading the effort 1411

to form the Transport Services (TAPS) Working 1412

Group. He has also participated in several Euro- 1413

pean research projects, including roles such as a co-ordinator and a technical 1414

manager. His main research interest includes transport layer. 1415

TOBIAS FLADBY received the M.Sc. degree in 1416

computer science from the University of Oslo, 1417

Norway. He is currently a Software Engineer 1418

at Cisco, Norway. His research interests include 1419

performance analysis of transport protocols and 1420

WebRTC. 1421

1422

95066 VOLUME 10, 2022

http://dx.doi.org/10.1145/505688.505691
http://dx.doi.org/10.1145/2910017.2910605

