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ABSTRACT WebRTC enables users to simultaneously transfer media (over the Real-Time Transport
Protocol (RTP)) and data (over the Stream Control Transmission Protocol (SCTP)) between web browsers,
multiplexed onto a single UDP port pair. This design choice of using two different transport protocols,
each with their own congestion control mechanism, can lead to competition between the flows, resulting
in undesirable spikes in queuing delay and packet loss. In this paper, we investigate solutions to the harmful
effects WebRTC flows cause on each other by having the different congestion controllers of the flows
collaborate. Using implementations in the Chromium browser, we show that our mechanism can combine
a set of heterogeneous congestion control mechanisms, fairly allocate the available bandwidth between the

flows, and reduce overall delay and losses.

INDEX TERMS FSE, RTP, SCTP, congestion control, WebRTC.

I. INTRODUCTION

WebRTC enables interactive real-time communication
between web browsers, supporting a range of applications
such as video conferencing, telephony and interactive gam-
ing. It allows a user to simultaneously transfer media (over
the Real-Time Transport Protocol (RTP)) and data (over
the Stream Control Transmission Protocol (SCTP)), multi-
plexed onto a single UDP port pair. Since routers or other
middle-boxes usually identify flows using the five-tuple of
source and destination IP addresses, ports and the transport
protocol, such multiplexed flows are normally regarded as a
single flow and hence they are treated in the same way by
network elements.

The separate congestion control (CC) mechanisms within
the two different transport protocols in WebRTC can lead
to competition between the flows, resulting in undesirable
spikes in queuing delay and packet loss. Such competition
can be eliminated by using a coupled CC mechanism which
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combines the congestion control mechanisms of all the flows
sharing a common path. In [1] and [2], we have shown that
our coupling scheme called “Flow State Exchange” (FSE)
can significantly improve the overall performance of multiple
congestion-controlled RTP sessions in terms of delay and
packet loss, and that it allows to exert a precise allocation of
the available bandwidth. However, this mechanism only com-
bines a set of homogeneous congestion control mechanisms
and therefore cannot be readily applied to combine the data
and video flows in WebRTC, since they use two different CC
mechanisms: a delay-based CC mechanism for media and a
loss-based CC mechanism for arbitrary data.

Because loss-based CC mechanisms fill the queue until
packets are dropped, the competition between the flows
leads to undesirable spikes in queuing delay and packet
loss for the RTP flow. Combining a heterogeneous set of
CC mechanisms can therefore yield several performance
benefits, especially when one of the mechanisms reacts to
a congestion event earlier than the others. This has been
shown by Flohr ef al. in [1], [3] with an extension of the
FSE called “FSE Next Generation” (FSE-NG). WebRTC’s
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delay-based RTP CC mechanism reacts to the increasing
delay as soon as the queue grows, allowing the FSE-NG
mechanism to react to this signal and ensure that the queue
does not grow even for the loss-based CC mechanism
in SCTP.

FSE and FSE-NG were implemented and evaluated in
simulators only. Consequently, we consider it worthwhile to
investigate if it is feasible to implement coupling mecha-
nisms in the browser, and if we can replicate the promis-
ing results in an actual browser implementation. With
this paper, we take this important step towards practical
use of these mechanisms. Specifically, our contributions
are:

1) We implement and test our FSE mechanism, as speci-
fied in RFC 8699 [4], in the Chromium browser. The
FSE only operates on media flows, and it serves as a
basis for the subsequent solutions.

2) We implement and evaluate the FSE-NG [5] mecha-
nism in the Chromium browser. For this, we had to
extend FSE-NG to work with Google Congestion Con-
trol (GCC) [6], which is the only RTP CC mechanism
that is available in Chromium. Our implementation in
the browser couples GCC and SCTP flows. We evaluate
its efficacy in a real test-bed.

3) Based on the derived implications from FSE-NG,
we propose, implement and evaluate an improved ver-
sion of FSE-NG, called “Extended FSE-NG”’, which
improves several aspects of the original FSE-NG mech-
anism.

4) Finally, we design, implement and evaluate a new
mechanism called “Flow State Exchange v2”’, which
is a re-design of the entire FSE idea to actively couple
heterogeneous flow types. Using implementations in
the Chromium browser, we show that our proposed
mechanism works better than all prior works and does
not exhibit problems that we encounter in FSE, FSE-
NG and Extended FSE-NG.

This paper is organised as follows: section II presents
the background and related work. Section III introduces
our testbed and shows a fairness problem between the
media and data channel in Chromium, highlighting the need
for a congestion control coupling solution. Then, in sec-
tions IV to VII, we introduce the FSE and its deriva-
tives in four steps: i) the original FSE, which operates on
media flows only; ii) FSE-NG, which couples the media
and data channels; iii) Extended FSE-NG, a novel algorithm
which fixes some of the problems that we found with FSE-
NG; iv) FSEv2, another novel algorithm, which is a com-
plete re-design of the FSE idea such that it incorporates
both the media and data channels. FSEv2 incorporates the
lessons that we learned in the process of implementing and
extending FSE-NG. We then evaluate FSE-NG, Extended
FSE-NG and FSEv2 in section VIII using our imple-
mentations in the Chromium browser. Finally, section IX
concludes.
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Il. BACKGROUND AND RELATED WORK

A. WebRTC

WebRTC [7] is a standard that comprises an extensive col-
lection of protocols and Application Programming Interfaces
(API), providing real-time peer-to-peer communication and
data transfer between web browsers. Historically, there was
a tendency for real-time communication software to rely
on proprietary protocols and third-party plugins. WebRTC
presents a break from this pattern, letting applications com-
municate unconstrained in the browser.

The WebRTC W3C Working Group' is responsible for
defining the APIs that applications can use to control the com-
munication via javascript. The IETF Working Group named
Communication in Web-Browsers (RTCWEB)? is responsi-
ble for defining the protocols, data formats and other essential
facets needed to enable real-time peer-to-peer communica-
tion in the browser.

A handful of protocols and technologies are imposed by
what WebRTC needs to offer in terms of services and func-
tionality. WebRTC uses the Real-time Transport Protocol
(RTP) [8] for media transmission and the Stream Control
Transmission Protocol (SCTP) [9] to transmit arbitrary appli-
cation data. These protocols are multiplexed over a sin-
gle User Datagram Protocol (UDP) [10] connection. While
WebRTC requires that all data be encrypted, vanilla RTP and
SCTP are not encrypted. Therefore, WebRTC uses SRTP [11]
(a secure version of RTP) and encrypts SCTP. Datagram
Transport Layer Security (DTLS) [12] is used for key
management.

B. CONGESTION CONTROL MECHANISMS IN WebRTC

1) DATA CHANNEL

SCTP’s CC is based on TCP’s CC [9], [13], and is always
applied to the entire SCTP association and not to individual
SCTP streams. The transmission rate is determined by the
receiver window (RWND) and congestion window (CWND),
of which the minimum is used. RWND is the amount of data
the destination side can receive. CWND is the amount of data
the SCTP sender can transmit into the network before receiv-
ing an acknowledgement (ACK). As in TCP, the four central
algorithms of SCTP’s CC mechanism, which determine the
value of CWND, are Slow Start, Congestion Avoidance, Fast
Retransmit, Fast Recovery.

2) VIDEO CHANNEL

RTP alone provides simple end-to-end delivery services for
multimedia. Therefore, WebRTC must also incorporate a CC
mechanism for RTP. Currently, three different congestion
control mechanisms are being considered for RTP flows in
WebRTC: Google Congestion Control (GCC) [6], Network-
Assisted Dynamic Adaption (NADA) [14] and Self-Clocked
Rate Adaptation for Multimedia (SCReAM) [15]. In this
paper, we only focus on GCC because it is used by two

1 www.w3.org/groups/wg/webrtc

2https ://datatracker.ietf.org/wg/rtcweb/about/
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prominent web browsers: Chrome (with its open-source
counterpart Chromium) and Firefox.

a: GOOGLE CONGESTION CONTROL (GCC)

Google Congestion Control (GCC) specified in [6] is a
CC algorithm proposed by Google and is currently used
in Chromium’s implementation of WebRTC. It consists of
two controllers, one loss-based and one delay-based. The
loss-based controller located on the sender-side uses the
fraction of packets lost, reported via RTCP REMB feedback
messages [16] to compute a target sending bit-rate. The delay-
based controller uses packet arrival information to compute a
maximum bit rate. The delay-based controller can either be
implemented on the receiver-side or sender-side. The delay-
based estimate is passed to the loss-based controller, which
compares it to its calculation and sets the actual send rate to
the lowest of the two.

The delay-based rate controller can be seen as a state
machine with three states: Increase, Decrease and Hold.
Initially, it starts in the Increase state, where it stays until
over-use or under-use is detected. The increase rate is mul-
tiplicative when estimated that convergence is far away and
additive when it seems close to convergence. If the incoming
bit rate is close to an average of incoming bit rates calculated
the last time it was in the decrease state, it is assumed that the
system is close to convergence. If there is no valid estimate
of that average yet, the system remains in the multiplicative
increase. When the over-use detector signals over-use, the
system goes into the Decrease state. In the Decrease state,
the bit-rate decreases with a certain factor multiplied by
the currently incoming bit rate. If the detector then signals
underuse, the system goes into the Hold state where the bit
rate stays constant, allowing queues in the network to empty.

The loss-based controller bases its decisions on RTT,
packet loss and the bit-rate calculated by the delay-based
controller. The controller is run every time an RTCP feedback
message from the receiver-side is received. If more than
10% of packets have been lost, the controller decreases the
estimate. If less than 2% of packets are lost, it will increase the
estimate under the presumption that there is more bandwidth
to utilize; otherwise, the estimate stays the same. The actual
bit rate used is the minimum of the delay-based and loss-
based estimates.

C. RELATED WORK
One of the oldest and best known mechanisms for coupling
is ““The Congestion Manager” (CM) [17]. CM couples CCs
by offering a single shared congestion controller for all the
flows. The downside is that it is considered complicated to
implement because it requires an extra congestion controller
and strips away all per-connection CC functionality, which is
a drastic change. Research has also been done on coupling
TCP CC mechanisms [18], [19], [20], [21], [22]; however,
these solutions are only relevant for TCP.

Our prior solution for RTP flows called “Flow State
Exchange” (FSE) [4] combines congestion controls sharing
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the same bottleneck while at the same time being easier to
implement than the CM. As opposed to CM, the FSE utilizes
the flows’ congestion controllers by having them share infor-
mation amongst each other instead of removing them. The
mechanism has already shown promise in [1] and [2] when
implemented with homogeneous CC mechanisms but so far
has not been tested on heterogeneous CC mechanisms.

Two other mechanisms stem from the original FSE imple-
mentation that try to couple NADA and SCTP flows.
“Reduction of Self Inflicted Queuing Delay in WebRTC”
(ROSIEEE) [3] is a mechanism that limits queuing delay in
WebRTC by coupling NADA and the SCTP congestion con-
trol. As opposed to other mechanisms like [4] and [17] that
control the congestion window explicitly, the authors of [3]
propose to only calculate a maximum congestion window
CWND,,,, for SCTP based on the rate calculated by NADA.
The algorithm itself uses the change in send rate AR; and
RTT;—which is the RTT received from NADA every time
an RTCP message i is received—to gradually converge to a
maximum allowed SCTP sending rate that is later converted
to CWND .

While this mechanism does, in fact, couple the WebRTC
congestion controllers, it does not provide the possibility to
prioritize the different flows, which is an essential require-
ment for WebRTC. Accordingly, FSE-NG [5] combines the
active FSE from [4] with the ROSIEEE algorithm to support
the prioritization of flows while still being able to couple and
manage both loss-based and delay-based flows. As with the
original FSE, FSE-NG also calculates a sum of rates S_CR
and assigns it based on the priority of the flows in the FG.
The mechanism does not use information from the loss-based
flows when calculating S_CR. To calculate the upper limits
for the SCTP flows, it shares S_CR and splits it amongst the
SCTP flows in the FG.

Il. A FAIRNESS ISSUE IN CHROMIUM's WebRTC
IMPLEMENTATION

In this section, we introduce our testbed in section III-A
which we use in all our tests, and then present a GCC vs.
SCTP fairness issue by exploring how these two mechanisms
compete under different network settings in section III-B.
This problem further motivates the use of a coupled con-
gestion control mechanism, on top of the earlier mentioned
benefits attainable with congestion control coupling (lower
delay and packet loss, and precise control over the per-flow
rate share).

A. TESTBED

Figure 1 shows the topology used in our experiments. It con-
sists of three physical machines: a WebRTC sender, a receiver
and a router. The sender and receiver are both connected to
the router with Ethernet cables. The three nodes are equipped
with Linux version 5.11.0 (router), 5.13.0 (sender) and
5.15.18 (receiver). Two of the nodes are running one session
each of the Chromium browser (Linux 64-bit 100.0.4896.12)
with an instance of a WebRTC test application, acting as

VOLUME 10, 2022



S. Islam et al.: Real-Life Implementation and Evaluation of Coupled CC for WebRTC Media and Data Flows

IEEE Access

Sender Router Receiver
T ! :' """""""
[ V!
o b
" '
—_— —L
— ) ——
> ' Traffic shaper '
, -— e—v—+——
/ T [e——F"—
WebRTC WebRTC
RTT

Capacity

Router controller

1
' 1
' 1
! 1
! 1
, Buffer size
' 1
' 1
' 1
' '

Commands ——
Signalling =-==--
Media flows ——
Data flows ——

FIGURE 1. The testbed topology. Three nodes—one router performing
traffic shaping and two nodes running Chromium—are connected through
Ethernet cables. The sender node sends commands to the traffic shaper
via ssh and hosts the signalling server, connecting sender and receiver
applications.

sender and receiver. The receiver is only there to passively
receive any streams coming from the sender and is running
a release build of Chromium. The sender runs a build of
the modified Chromium code, with an implementation of a
coupled CC mechanism unless stated otherwise. The sender
node is also hosting the Web server instance which performs
the signalling and serves the WebRTC application. The web
application is already loaded on the receiver side when an
experiment begins. The sender node also acts as a testbed
controller by using ssh to 1) set the link capacity, delay and
the bottleneck queue size on the router node; and 2) start the
sender application with a certain configuration, i.e. how many
flows, which types of flows and when to start and stop them.

A video sequence with a resolution of 1280 x 720 and
recorded in 60 frames per second is used for all video streams;
this replaces the use of an ordinary webcam to achieve
controllable conditions. Chromium allows us to replace the
webcam source with the video being played in a loop. Sound
is disabled for the media streams. We also set the video codec
to be VP8 [23], which yields a maximum possible bitrate of
2.5 Mbps for the media streams.

B. RTP VS. SCTP FAIRNESS EVALUATION

Figure 2 shows three different experiments across a 10 Mbps
capacity bottleneck with 50ms RTT and a queue length
configured to the BandwidthxDelay Product (BDP), using
different starting times for RTP and SCTP. In fig. 2a, with
GCC and SCTP starting at the same time, GCC quickly
can reach 2 Mbps and stay there for the duration of the
experiment. In fig. 2b, GCC starts 10 seconds before SCTP
and hardly seems affected, only experiencing a small dip
in throughput when SCTP starts. Finally, fig. 2c shows a
somewhat slow convergence before RTP reaches 2 Mbps;
however, it does eventually adapt and stay at around 2 Mbps.
We can see that, in general, GCC achieves a reasonably
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high throughput of around 2 Mbps regardless of which flow
starts first, while the SCTP flow utilizes the rest of the link’s
capacity.

On the other hand, when limiting the bottleneck capacity
to 5 Mbps, GCC is not able to compete with SCTP at all
and is starved, as the plots in Figure 3 show. While most
users from countries in the western world usually will have
a much higher bandwidth than 5 Mbps and may therefore
rarely notice this behaviour, it may be problematic for users
in countries with poor internet service.

Recent performance evaluations of GCC [24], [25] show
that GCC can aggressively compete against TCP-like con-
gestion controls, which implies it should also be able to
compete with SCTP. However, we could not replicate the
same behavior in our testbed. As a sanity check, we tried to
use the same topology and settings as described in [25], but
GCC was still starved when competing with long-lived SCTP
or TCP flows over the same bottleneck.

This problem motivates us to investigate if a coupled CC
mechanism can fairly allocate the rates between SCTP and
RTP on low capacity links.

IV. COUPLING, PART 1: THE FLOW STATE

EXCHANGE (FSE)

We started our endeavor with an implementation and evalu-
ation of the FSE in the Chromium browser. Being restrained
to media flows, the direct benefits that can be attained with
this first algorithm only apply to rather limited use cases,
e.g. when simultaneously transferring video from a mobile
phone’s front and back camera. Use cases will become more
realistic (e.g., screen/data and video sharing) when we come
to the extensions of FSE that couple the media and data
channels.

A. ALGORITHM
We briefly introduce the FSE algorithm since it serves as the
basis for other coupling solutions in this paper. The FSE can
be described as a manager that receives information from the
different flows and calculates a new send rate for each flow
based on all the information. When a flow starts, it registers
itself with the FSE and a Shared Bottleneck Detection (SBD)
element (in our case, simply the use of the same 5-tuple),
and when it stops, it deregisters from the FSE. When a flow
registers itself, the SBD will assign it to a Flow Group (FG)
by giving it a Flow Group Identifier (FGI). A flow group is
defined as a set of flows that share the same bottleneck and
thus should exchange information with each other. Whenever
a flow’s congestion controller calculates a new rate, the flow
executes an UPDATE call to the FSE with the newly calcu-
lated rate as a parameter.

Generally, the FSE keeps a list of all flows that are regis-
tered in it. For each flow, the FSE stores:

« A unique number f to identify the flow.
o The Flow Group Identifier (FGI).
o The priority value P(f).
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FIGURE 2. Throughput of SCTP and RTP (GCC) flows competing across a bottleneck with 10 Mbps capacity and 50 ms RTT with different starting times.
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FIGURE 3. Throughput of SCTP and RTP (GCC) flows competing across a bottleneck with 5 Mbps capacity and 50 ms RTT with different starting times.

o The rate used by the flow which is calculated by the FSE
in bits per second FSE_R(f).
o The desired rate of the flow, DR(f).

The priority value is used to calculate the flow’s rate via the
priority portion of the sum of all priority values in the same
FG (e.g., if flows a, b and c have priorities 1, 3, 1, respectively,
then the rate assigned to flow b is 3/5 of the total and the others
get 1/5). The desired rate might be lower than the calculated
rate, e.g. because the application wants to limit the flow or
simply does not have enough data to send. If the flow gives
no desired rate value, it should just be set to the sending rate
provided by the flows congestion controller. For each FG, the
FSE keeps a few static variables:

e The sum S_CR of calculated rates for all flows in the
FG.

o The sum S_P of all priorities in the FG.

o The total leftover rate TLO. This is the sum of leftover
rates by flows that are limited by the desired rate.

o Aggregate rate AR given to flows that are not limited by
the desired rate.

Whenever a flow’s congestion control normally updates the
flow’s rate, they carry out an UPDATE call to FSE instead.
Through this call, they provide their newly calculated rate
and optionally a desired rate. Then the FSE immediately
calculates rate updates for all the flows and sends them back.
When a flow f starts, FSE_R is initialized with the initial
rate determined by f’s congestion controller. After the SBD
assigns the flow to an FG, it adds its FSE_R to S_CR.
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TABLE 1. Variables used in the FSE algorithm from [4].

Name Description
CC_R Rate received from a flow’s congestion controller
DR The desired rate of a flow
new_DR | Desired rate of a flow when it calls UPDATE
FSE_R Rate allocated to a flow from the FSE
S_CR Total sum of calculated rates for all flows in the same FG
FG A group of flows sharing the same bottleneck

P The priority of a flow

S_P Sum of all priorities in a flow group

Aggregate rate assigned to GCC flows that are not limited
AR .

by a desired rate
TLO Total leftover rate; sum of rate that could not be assigned

to flows limited by a desired rate

In Table 1, the variables used in both algorithms are out-
lined. The pseudo-code for the update algorithm is shown in
Algorithm 1.

B. EVALUATION

In this section, we first show results of coupling two RTP
flows with the same priorities, then the results of two RTP
flows with different priorities. Finally, we show the efficacy
of the FSE solution when one of the RTP flow is rate-limited.
These test cases have been designed by the IETF RMCAT
Working Group? and are outlined in [26].

3 https://datatracker.ietf.org/wg/rmcat/documents/
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Algorithm 1 FSE Update Algorithm
1: function Update(flow, CC_R)
2: S_CR < S_CR+ CC_R — FSE_R(flow)

3 S P<«0

4 for f in FG do

5 S P« S_P+P()

6: FSE_R({f)=0

7: end for

8 TLO < S_CR

9: AR <0

10: while TLO—AR > 0 and S_P > 0 do
11: AR <0

12: for f in FG do

13: if FSE_R(f) < DR(f) then
14: it 2920 > DR(f) then
15: TLO <« TLO — DR(f)
16: FSE_R(f) < DR(f)
17: S_ P« S_P—P()
18: else

19: FSE_R(f) < <P
20: AR < AR + Q70
21: end if N
22: end if
23: end for
24: end while
25: for f in FG do
26: Update_CC(FSE_R(f))r
27: end for
28: S CR <0
29: for f in FG do

30: S_CR < S_CR+ FSE_R(f)

31: end for
32: end function

2.0 2.0
—_ —— RTP 1 —_ —— RTP 1
215 = R 2 215 = R 2
g g
;:1.0 iy ,\/"\"V" ;:1.0 AR A AN AIARA
« 0.5 « 0.5
~ ~

0.0 - 0.0

0 20 40 60 80 100 120 0 20 40 60 80 100 120
Time (s) Time (s)
(a) Uncoupled (b) FSE

FIGURE 4. Sending rates of 2 RTP (GCC) flows across a 2 Mbps
bottleneck, 100 ms RTT and 300 ms queue.

1) COUPLING TWO RTP FLOWS WITH THE SAME PRIORITIES
Figure 4 shows the sending rates of two RTP flows with and
without the FSE. Priorities of both flows are set to 1 and
flow 2 starts five seconds after flow 1. Without FSE, band-
width usage is more sporadically divided between the flows.
The FSE eliminates this problem by fairly dividing the rates
between the flows (see fig. 4b)

VOLUME 10, 2022

I —— RTP 1
RTP 2

0 2b 4b GIO SIO 1(I)0 120
Time (s)
FIGURE 5. Sending rates of 2 coupled RTP (GCC) flows across a 2 Mbps

bottleneck, 100 ms RTT and 300 ms queue. The priorities of flow 1 and
2 are 1 and 2, respectively.

2.0

0 20 40 60 80 100 120
Time (s)

FIGURE 6. Sending rates of 2 coupled RTP (GCC) flows across a 2 Mbps
bottleneck, 100 ms RTT and 300 ms queue. DR of RTP Flow 1 is set to
0.75 Mbps.

2) PRIORITISATION

The FSE can allocate rates based on the flows’ priorities with-
out requiring any modification in the congestion controller.
This is shown in fig. 5 where the priorities of the two RTP
flows are set to 1 and 2, respectively.

3) RTP FLOWS WITH DESIRED RATES

To show that flows limited by the desired rate share their
leftovers with other flows, we ran an experiment with two
flows, one with the desired rate configured to 0.75 Mbps and
the other without a limited desired rate. Figure 6 shows that
the first flow never exceeds 0.75 Mbps. The FSE allocates the
leftover bandwidth to the second flow.

4) DERIVED IMPLICATIONS FOR THE FSE

As we have shown, the FSE works well for media flows—
it improves fairness and offers possibilities for sharing left-
over rates and prioritizing flows. However, the main prob-
lem plaguing WebRTC congestion control is the way SCTP
affects GCC, which necessitates a mechanism that also incor-
porates SCTP flows. The most glaring limitation with the FSE
is that it is only designed for media flows and therefore cannot
directly be used to couple RTP and SCTP flows.
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TABLE 2. Variables used in the FSE-NG implementation.

Name Description
CC_R Rate received from a registered GCC flow
last_rtt RTT estimate received from a registered GCC flow
CWND, a2 The current maximum CWND limit of an SCTP flow
FSE_R The current rate allocated to a flow from the FSE
cwnd_flows The set of registered SCTP flows
rate_flows The set of registered RTP flows
DR The current desired rate of an RTP flow
S_CR Total sum of calculated rates for all flows
S_RTP_CR The total sum of calculated rates for GCC flows
S_CWND_CR | The total sum of calculated rates for SCTP flows
P The priority of a flow
S_P Sum of all priorities in a flow group
S_CWND_P Sum of all registered SCTP flows priorities
RTTpase The lowest RTT that has been reported from any RTP
flows
Update_CC The update callback function of some flow f
RA Relative rate change of a registered GCC flow

V. COUPLING, PART 2: FSE-NG

This section presents our design, implementation and eval-
uation of the FSE-NG mechanism in Chromium. Then we
highlight some issues that we discovered during the evalu-
ation. So far, FSE-NG was only designed and implemented
in a simulator [27] to work with NADA [14] by its original
authors. Since Chromium’s RTP implementation uses GCC
instead of NADA, we have to make some adjustments; we
will also outline those.

A. DESIGN OVERVIEW

We try to stay as faithful to the pseudo-code and explanations
in the original paper [5] as possible. However, we found some
parts of the algorithm description in [5] to be ambiguous or
lacking detail; for those cases, we choose the approach that
seems to work best in practice.

The general structure of the new component is broadly
similar to the FSE: registration, update and deregistration of
GCC flows largely remain the same, but with a couple of nec-
essary extra parameters for the update algorithm. Coupling
SCTP flows brings about some new implementation aspects;
most importantly, it means we must interact with the SCTP
library in Chromium to get and set the maximum CWND
limit. The following sections present explanations and some
pseudo-code for the registration, update and deregistration
phases. The implementation source code can be found in [28].
Table 2 provides an overview of the variables used in this
section.

1) REGISTERING RTP FLOWS

Upon the first calculation of a new CC_R(f), a flow f
registers in the FseNg (a class responsible for handling
registrations, updates, and deregistrations for the GCC and
SCTP flows) by sending in its CC_R(f) (as the initial rate),
a flow priority P(f), and a desired rate DR(f). Moreover, the
flow also registers a callback function called Update_CC(f).
FseNg will call Update_CC(f) with FSE_R(f) as a parameter
when it needs to update f. FseNg adds the initial rate to
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S_CR upon registration and creates a new RateFlow object
to store P(f), Update_CC and DR(f). The set of RateFlows
also stores a pointer to the RateFlow object. The callback
function is simply a function that receives a rate and sets
the value of the current estimate inside the GCC class that
interacts with FseNg. The flows are also assigned a unique
flow id by FseNg.

2) REGISTERING SCTP FLOWS

The WebRTC library uses a class called UsrsctpTransport
to interact with the usrsctp library. In the class, there is a
method called Connect which is called when a new SCTP
association is being made. Accordingly, we choose to register
SCTP flows in that method. Upon registration, the Usrsctp-
Transport object of flow f sends in the initial CWND,;,.(f),
a callback function Update_CC(f) that gets called by FseNg
to set CWND,,qx(f) later, and lastly a flow priority P(f). The
CWND 05 (f) is stored so that FseNg may reset CWND, 4 (f)
in cases where all RateFlow’s deregister. In such a case there
is no CC information being reported to FseNG and it should
let SCTP flows use their default CWND,,,,,.. The SCTP flows
are also assigned a unique flow id by FseNg.

3) DEREGISTERING FLOWS

As with the FSE implementation, AimdRateControl calls
the deregister method of FseNg inside its destructor. FseNg
removes the corresponding RateFlow from the set of Rate-
Flows. UsrsctpTransport deregisters the corresponding
SCTP flow inside a method called CloseSctpSocket. When
a PassiveCwndFlow deregisters, FseNg simply removes it
from the set of PassiveCwndFlows.

4) PERFORMING UPDATES

RTP flows send update information every time they calculate
a new rate. This information includes the newly calculated
rate CC_R and an estimate of the current RTT last_rtt. For
every update iteration, FseNg calculates a new rate for RTP
streams, and a new CWND,,,,, for SCTP flows.

In line 2 of Algorithm 3, a function gets called that checks
whether any GCC flows are application limited. The exact
semantics of this function are not defined in [5]. However,
we assume the function should check if all GCC flows f have
been assigned an FSE_R(f) equal to DR(f). The function is
defined in Algorithm 2.

Algorithm 2 FSE-NG Checking If All RTP Flows Are Appli-
cation Limited

1: function AllAppLimited
2 for f in rate_flows do
3 if FSE_R(f) > DR(f) then
4: return false
5: end if
6
7
8

end for
return t rue
: end function
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To find and update the CWND_max of any registered
SCTP flows, we add some extra functions to the usrsctp
library. After having calculated an FSE_Ry for a given
SCTP flow f, FSE_R(f) is converted to CWND_max(f).
UsrsctpTransport calls a function we added to usrsctp
called usrsctp_set_max_cwnd that sets the CWND_max
of the corresponding SCTP socket to the value given
by FseNg.

Algorithm 3 FSE-NG Update Algorithm With Extensions

1: function Update(flow, RA, CC_R, last_rtt)

2: if IsEmpty(cwnd_flows) or AllAppLim-

ited(rate_flows) then

3 S_CR < S_CR+ CC_R — FSE_R(flow)
4 else
5 S_CR <~ S_CR + CC_R — FSE_R(flow) + RA
6: end if
.
8
9

S_RTP_CR < 0
for f in rate_flows do
: FSE_R(f) < min(*Z5R DR(f))
10: Update_CC(FSE_R(f))r
11: S_RTP_CR <~ S_RTP_CR + FSE_R(f)
12: end for
13: RTTpu5e < min(RTTpgge, last_rtt)
14: S_CWND_CR < S_CR — S_RTP_CR

15: for f in cwnd_flows do

16: FSE_R(f) « %

17: CWND ,0x(f) < FSE_R(f) x RTTpuse
18: Update_ CC(CWND pax (f))r

19: end for

20: if IsEmpty(cwnd_flows) then

21: S_CR < S_RTP_CR

22: end if

23: end function

B. EXTENSIONS

Here, we detail our extensions that deviate from the algorithm
description in [5]. The final version of the update algorithm
is shown in Algorithm 3.

1) DEALING WITH EXCESS RATE

The original paper [5] does not specify how to handle situa-
tions where the S_CR is larger than the sum of desired rates,
and there are no SCTP flows present. If we do not handle this
case, there is excess rate at the end of the update; this leads
to the S_CR growing every update call without allocating all
the rate. Consequently, when an SCTP flow registers, all the
leftover rate gets allocated, giving SCTP an almost unlimited
CWND,,,,x because S_CR has grown too high. We therefore
extend the FSE-NG algorithm with an extra check, as can be
seen in lines 20-21 in Algorithm 3. If no SCTP flows are
registered, the extension sets S_CR to S_RTP_CR. If there
are SCTP flows registered, we know that any leftover rate
has been allocated to the SCTP flows.
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2) DESIRED RATE

The original FSE-NG algorithm uses the same DR for all
the RTP flows; however, the maximum bit rate of RTP flows
may vary. For instance, the WebRTC Javascript API offers
an RTCRtpEncodingParameters object which lets the appli-
cation set the maximum bit rate of the underlying RTP trans-
mission of a mediaStreamTrack. Consequently, we extend
the original algorithm by requiring each update call to also
provide the flow’s current DR. FseNg uses the individual
flow’s last reported DR instead of a shared global DR value
when allocating bandwidth to the RTP flows.

3) CHOOSING CC_R

We make some adjustments when implementing the FSE-NG
updates because of an inherent difference in how NADA
and GCC work. NADA combines loss, delay, and ECN
into a single aggregated value called ‘“‘composite conges-
tion signal” [14]. When coupling NADA flows in the
FSE-NG, each NADA flow updates FSE-NG with the aggre-
gated value as CC_R which FSE-NG then sets to FSE_R
instead.

GCC, on the other hand, maintains two separate esti-
mates, one based on loss (As_hat) and one based on delay
(A_hat). The final rate used is min(As_hat, A_hat). In the
GCC implementation two classes are responsible for main-
taining the estimates, SendSideBandwidthEstimation and
AimdRateControl. AimdRateControl maintains the delay
based estimate. SendSideBandwidthEstimation is responsi-
ble both for maintaining the loss-based estimate and then set-
ting the final target based on the most conservative of the two
values.

In our tests, we found that the A_hat will always be the
most conservative value, and hence use A_hat as the rate that
will be reported to FSE-NG.

C. EVALUATION

This section presents results from experiments performed
with the evaluation testbed (see Section III-A). Firstly,
we look at simple scenarios where the mechanism works as
intended; then, we highlight some issues. We can trace some
problems back to design flaws in the mechanism, while others
arise because we implemented it with GCC while FSE-NG
was originally designed to work with NADA. The IETF
RMCAT Working Group developed test cases to evaluate
real-time media flows in [26]. In accordance with [26], we use
a bottleneck queue length of 300ms in all our tests (with the
exception of fig. 11, as we will explain in section V-C2.a).
We have also run tests with different queue lengths, which
yielded similar results.

1) CORRECT OPERATION

a: COUPLING TWO RTP FLOWS

We start with the simplest case of two RTP flows to test the
efficacy of the FSE-NG mechanism. Figure 7 shows that the
effect of coupling two RTP flows with the FSE-NG is similar
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FIGURE 7. Sending rates of 2 RTP (GCC) flows. The bottleneck has a
capacity of 2 Mbps and a 300 ms queue. The RTT is 100 ms.
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FIGURE 8. Sending rates of one RTP (GCC) flow and one SCTP flow. The
bottleneck has a capacity of 3 Mbps and a 300 ms queue. The RTT is
100 ms.
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FIGURE 9. Sending rates of two RTP (GCC) flows and one SCTP flow. The
bottleneck has a capacity of 3 Mbps and a 300 ms queue. The RTT is
100 ms.

to the previous FSE result. It can be seen from fig. 7b that the
bandwidth is shared fairly between the FSE-NG-controlled
media flows.

b: ONE RTP FLOW VERSUS ONE SCTP FLOW

The simplest case with heterogeneous flows is one RTP flow
competing against one SCTP flow. fig. 8 illustrates the send-
ing rates of an RTP and a SCTP flow, with and without the
FSE-NG. The flows are given equal priority in the coupled
scenario. The RTP flow starts 10 seconds earlier than SCTP
and ends 20 seconds before. fig. 8a shows the fairness issue
that we have identified in section III-B, where RTP gets
starved almost entirely when running without the coupling
mechanism. In contrast, fig. 8b clearly shows that coupling
eliminates this problem, as flows are given their fair share of
the total bandwidth when the FSE-NG is enabled.

¢: TWO RTP FLOWS VERSUS ONE SCTP FLOW

We also ran similar experiments with two RTP flows com-
peting with one SCTP flow. Again, we can see that, without
coupling, the two RTP flows are unable to compete with
SCTP and are starved completely (fig. 9a). fig. 9b shows that
the capacity of 3 Mbps is fairly shared between all the flows
so that each one gets 1 Mbps once all have started.

95054

d: PRIORITISATION

To show that FSE-NG correctly handles and enforces priori-
ties, fig. 10 presents sending rate plots of 2 RTP and 1 SCTP
flows with different priority configurations. It can bee seen
from fig. 10a to 10c that FSE-NG allocates rates based on the
flows’ priorities when the flow group is heterogeneous.

2) PROBLEMS

a: SCTP INITIALIZATION

At the beginning of an RTP connection, AimdRateControl
has not yet measured an RTT and initializes the RTT to a
default of 200 ms. We have also identified that it may take
several seconds before an actual RTT is registered. In sce-
narios where there are registered GCC flows in the FSE-NG
before any SCTP flows, this is not a problem since it gives
ample time for GCC to find approximately the base RTT
value. On the other hand, in cases where SCTP flows are
registered before or simultaneously with any GCC flows, and
the real base RTT is lower than 200 ms, the SCTP flow gets
a much higher rate allocated by the FSE-NG than it should.
This problem leads to GCC being out-competed by SCTP in
the first few seconds of the transmission. The phenomenon
is shown in fig. 11 with a high initial SCTP rate spike even
though both flows are coupled and should be getting their
fair share each. The RTT used in the figure is 50 ms, and,
deviating from the common 300 ms configuration, we con-
figured the router queue to 150 ms to ensure that the total
measured RTT stays low enough. We also ran an experiment
with a 100 ms RTT and found the same issue.

b: SCTP STARTING BEFORE RTP

Since FSE-NG only uses the congestion signals generated by
GCC, S_CR stays at 0 as long as no RTP flows are registered,
even though SCTP flows might be running and using a large
share of the capacity. One side effect of this design is that
when RTP flows start later than SCTP flows, the SCTP flow
gets drastically pulled down when the an RTP flow registers.
The phenomenon is illustrated in fig. 12—when the RTP flow
starts, SCTP gets dragged down to around 750 Kbps; it should
be close to 1.5 Mbps. The issue is that S_CR will start at
the initial RTP rate, and the flows are both limited for some
time until S_CR has grown enough for them to utilise the
bandwidth. The impact of this problem could get slightly
mitigated by the aforementioned RTT problem, because it
accidentally gives SCTP a much higher CWND,,,;, than it is
supposed to. However, this is not something that the FSE-NG
mechanism is in control of, and it should therefore not rely on
the default reported RTT being much higher than the RTTj .-

c: SLOW SCTP CONVERGENCE WHEN USING DR

When the desired rate limits the RTP flow, and the link’s
capacity is higher. the convergence time for SCTP becomes
very long. GCC’s delay-based controller has an “increase”
state in which it may use an additive or multiplicative increase
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FIGURE 10. Sending rates of two RTP flows and one SCTP flow with different priority configurations. The bottleneck has a capacity of 3 Mbps and a
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FIGURE 11. Sending rates of one RTP flow and one SCTP flow. The
bottleneck has a capacity of 3 Mbps and a 150 ms queue. The RTT is
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FIGURE 12. Sending rates of one RTP flow and one SCTP flow. The
bottleneck has a capacity of 3 Mbps and a 300 ms queue. The RTT is
100 ms.

depending on how close to convergence the rate appears to be.
In fig. 13, GCC is carrying out a multiplicative increase from
time Os to approximately time 40s. However, GCC’s multi-
plicative increase is limited to a growth of 8% per second,
so with a DR of 1.5 Mbps, GCC may only increase by 0.08 x
1.5 Mbps per second, which amounts to only a 120 kbps per-
second increase factor. In other words, even though GCC is in
the multiplicative increase state, it gets limited to an additive
increase of 120 kbps per second because we are giving all
the excess rate to SCTP flows instead and resetting GCC
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FIGURE 13. Sending rates of one RTP flow and one SCTP flow, RTP with
DR set to 1.5 Mbps. The bottleneck has a capacity of 6 Mbps and a
300 ms queue. The RTT is 100 ms.

back to its DR. Naturally, this makes convergence for SCTP
very slow; in the scenario of Figure 13 it takes approximately
30 seconds from SCTP’s start until the total capacity of
6 Mbps is utilized.

D. DERIVED IMPLICATIONS OF THE FSE-NG MECHANISM
This section summarizes the design issues and limitations of
FSE-NG that we found when in our implementation using
GCC.

« In the beginning, GCC has not yet gotten a realistic RTT
report; therefore, it reports the default RTT of 200ms
to FSE-NG:; this leads to unfair bandwidth allocation
between RTP flows and SCTP in the first couple of
seconds (fig. 11).

o« When SCTP flows start before any RTP flows, the
FSE-NG will significantly throttle them once any RTP
flow begins (fig. 12).

o Because GCC is limited to a maximum rate change of
8% no matter the conditions, only using GCC’s rate as
input leads to a very slow SCTP convergence when the
link has a high capacity (fig. 13).

o Since FSE-NG originally was designed to assume that
all RTP flows will have the same desired rate, it does not
share leftovers between RTP flows in cases where one
flow is limited to a given desired rate and another one is
not (fixed by our extension described in section V-B2).
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e In line 5 in Algorithm 3, the relative rate change is
technically added to S_CR twice because the relative
rate change RA is actually calculated via CC_R —
FSE_R. We have not found the reason for this decision
in [5] and therefore consider it a bug. However, it does
help mitigate the problems discussed in sections V-C2.b
and V-C2.c which would be more serious if the rela-
tive rate change was added once. On the other hand,
it exacerbates the problem explained in Section V-C2.a.
We decided not to change this part of the algorithm
for our implementation since the advantages seem to
outweigh the disadvantages; it is also more faithful to
the original algorithm to leave it as is.

o It is also noteworthy that FSE-NG does not have any
coupling effect in cases where several SCTP flows
belonging to different SCTP associations are registered,
and no GCC flows are present.

E. LESSONS LEARNED

The problem described in Subsection V-C2a underscores the
benefits of using information from both types of controllers
in update calls. For instance, letting the SCTP flows update
the FSE-NG’s RTT information would not conflict with the
design decision that only RTP controllers should provide the
rate updates and would fix that particular issue. The benefits
of using information from both flow types are further driven
home by the issues highlighted in V-C2c and V-C2b, which
also are reactions to the mechanism only getting rate updates
from one type of flow and likely may be fixed by getting
information from SCTP flows as well.

VI. COUPLING, PART 3: EXTENDED FSE-NG

The basis for the following extensions is that we added SCTP
information updates to the mechanism. SCTP updates are sent
every time SCTP calculates a new CWND; what is included
in the updates and how the FSE-NG uses the information will
be explained in the following subsections. Table 3 provides an
overview of the variables and functions used throughout this
section when explaining the mechanism.

A. RTT INFORMATION

Because GCC needs some time before getting a real RTT
measurement, SCTP flow could get a significant rate fluc-
tuation in the beginning (see fig. 11). Our fix for this issue
is to change the algorithm such that only SCTP will send
RTT information to the manager instead of GCC. In addition
to the initial CWND,,,,, SCTP sends in the current RTT
estimate upon registration as well. SCTP also includes the
RTT in update calls. Since SCTP registers upon the first
new calculation of CWND, at which point it already has an
accurate RTT measurement, this ensures that whenever any
SCTP flows are registered, RTTp,s. has a proper value. Since
RTTyse s only used to update CWND,,,.«, it is not necessary
to update it in the absence of SCTP flows.
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B. SLOW SCTP CONVERGENCE

We also introduce fixes for the issues of SCTP being dragged
down upon GCC registration (see fig. 12), and the slow SCTP
convergence (see fig. 13): these issues stem from the fact
that only GCC is responsible for the rate growth of both
mechanisms. Consequently, both of these issues can be solved
by also letting SCTP report a rate and add to S_CR growth.

Firstly, this fixes the issue of SCTP getting dragged down
when it starts before any RTP flows because SCTP will
already have converged to a rate reasonably close to the link’s
capacity, which then can be shared with the newly registered
RTP flow. Secondly, the very slow SCTP convergence when
the RTP flow is application limited is fixed because SCTP
contributes to S_CR alongside RTP.

When both controllers contribute to S_CR, it grows much
quicker. However, the FSE-NG’s reduction of delay is based
around only letting GCC control any rate increases. To ensure
GCC is allowed to control any rate increase and keep the
delay low when necessary, we therefore compromise by only
adding SCTP’s relative rate change under two conditions: 1)
if there are no RTP flows registered, or 2) if S_CR is large
enough to give all registered RTP flows their DRs. This fix
also improves the initial start-up of the GCC flow because
SCTP has already contributed to the aggregate S_CR.

C. FIXING THE DOUBLE RATE ADDITION TO S_CR

In the original algorithm, we discovered a bug which led to
the rate change reported by GCC flows to be added twice
when all GCC flows are application limited or when there
are no registered SCTP flows. As we have discussed, this bug
mitigated the slow SCTP convergence problem arising after a
later-joining GCC flow, but since this problem is now fixed,
it is also safe to eliminate this bug and ensure that the rate
change is added only once.

D. IMPLEMENTATION DETAILS

The implementation of the Extended FSE-NG algorithm is
very similar to FSE-NG’s implementation; in this section,
we will explain the extensions and changes.

1) EXTENDED FSE-NG CLASS DESCRIPTIONS

We reuse some classes from the FSE and FSE-NG. What
follows is an overview of the new classes created for the
module:

HybridCwndFlow
This child class of Flow represents an SCTP flow
that receives rate updates but may also send a rate
to the Extended FSE-NG under certain conditions.
ExtendedFseNg
This implements the Extended FSE-NG as a sin-
gleton class. It stores the same state as FseNg, but
has a slightly changed update algorithm, and a new
method allowing SCTP to also send rate updates.
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TABLE 3. Variables and functions used in the extended FSE-NG.

Name Description
CC_R Rate received from a registered GCC flow
CC_CWND Cwnd received from a registered SCTP flow
last_rtt RTT estimate received from a registered SCTP flow
CWND a2z The current maximum CWND limit of an SCTP flow
FSE_R The current rate allocated to a flow from the FSE
cwnd_flows The set of registered SCTP flows
Var rate_flows The set of registered RTP flows
DR The current desired rate of an RTP flow
S_CR Total sum of calculated rates for all flows
S_RTP_CR The total sum of calculated rates for GCC flows
S_CWND_CR The total sum of calculated rates for SCTP flows
P The priority of a flow
S_P Sum of all priorities in a flow group
RTTpqse RTT that has been reported from any SCTP flows
Update_CCy The update callback function of some flow f
Func CwndFlowUpdate | Algorithm called when an SCTP flow sends an update
RateFlowUpdate | Algorithm called when a GCC sends an update
IsEmpty Utility function, checks if a given set is empty
AllAppLimited Utility function, see pseudo-code in Algorithm 2

2) REGISTRATION, UPDATES AND DEREGISTRATION
DETAILS

Here, we describe each stage of the coupling sequence,
highlighting the difference between Extended FSE-NG and
original FSE-NG.

a: REGISTRATION

Registration of GCC flows remains the same as in the FSE-
NG implementation. Registration of SCTP, on the other
hand, has changed. Upon registration, flow f sends in: initial
CWND(f), initial CWND,.x(f), initial RTT (), a callback
function Update_CC(f), and flow priority P(f). As with FSE-
NG, the initial CWND,,,,(f) is only stored for the occasion
where all Rateflows deregister and the SCTP flow should use
its default CWND,,,.. A HybridCwndFlow object is created
and added to a set of HybridCwndFlows. ExtendedFseNg’s
RTTp4se value is also updated in the same fashion as for
FSE-NG but this time with SCTP’s RTT (f) value. In either
case, RTT(f) is used to convert CWND(f) to a rate added to
S_CR. The intention is that since either the measured capacity
is large enough to satisfy all GCC flows or there are no GCC
flows to take care of, SCTP should be allowed to increase
S_CR.

b: PERFORMING UPDATES
GCC’s rate updates largely remain the same, except that
SCTP is now responsible for sending in RTT measurements;
thus, GCC only sends in the newly calculated rate. The update
algorithm also remains the same, except that RTTpgs. iS NO
longer updated because that is done when SCTP flows sends
updates, which we will delve into next. Algorithm 4 includes
pseudo-code for the update algorithm for rate-based flows.
Every time an SCTP flow f calculates a new CWND,
it sends an update to ExtendedFseNg containing
CC_CWND(f) and last_rtt(f). last _rtt(f) is used to update
RTTpys. in the same way as FSE-NG. Then last_rtt(f) is
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used to convert CC_CWND(f) into a rate. Lastly, similar to
the registration algorithm, if all GCC flows are application
limited or no GCC flows are registered, the newly calculated
rate is used to update S_CR with the relative rate difference.
It is worth noting that though SCTP is now allowed to
update S_CR, it does not trigger a recalculation or distribution
of rates for other registered flows; this still only happens when
GCC flows send updates. Algorithm 5 includes pseudo code
showing what happens when SCTP flows send updates.

c: DEREGISTRATION

The deregistration phase for both types of flows remains
the same as in FSE-NG. If all GCC flows deregister, the
CWND,,,, values for all SCTP flows are reset to their initial
values.

Algorithm 4 Extended FSE-NG’s GCC Update Algorithm

1: function RateFlowUpdate(flow, CC_R)
2: S_CR < S_CR + CC_R — FSE_R(flow)
3: S_RTP_CR < 0
4: for f in rate_flows do
5: FSE_R(f) < min(®25= DR(f))
6: Update_CC(FSE_R(f))r
7: S_RTP_CR <~ S_RTP_CR + FSE_R(f)
8: end for
9: S_CWND_CR <~ S_CR — S_RTP_CR
10: for f in cwnd_flows do
1 FSE_R(f) « %
12: CWND 10 (f) < FSE_R(f) x RTTpuse
13: Update_ CC(CWND ax(f))r
14: end for
15: if IsSEmpty(cwnd_flows) then
16: S_CR < S_RTP_R
17: end if

18: end function
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Algorithm 5 Extended FSE-NG’s SCTP Update Algorithm
1: function CwndFlowUpdate(flow, CC_CWND, last_rtt)
S_CWND_CR <~ S_CR — S_RTP_CR
RTTpu5e < min(RTTpuse, last_rit)
CC_R < CC_CWND x RTTpys,
if IsEmpty(rate_flows) or
ited(rate_flows) then
S_CR < S_CR+ CC_R — FSE_R(flow)
end if
FSE_R(flow) < CC_R
: end function

AllAppLim-
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FIGURE 14. Sending rate of one RTP flow and one SCTP flow, RTP with DR

set to 1.5 Mbps. The bottleneck has a capacity of 6 Mbps and a 300 ms
queue. The RTT is 100 ms.

E. DERIVED IMPLICATIONS

Although some FSE-NG issues are now resolved, our tests
of the Extended FSE-NG algorithm still show some limi-
tations, necessitating yet another design step (accordingly,
we will present evaluation results of Extended FSE-NG later,
in section VIII, in comparison with the other variants). These
limitations are:

o The introduced changes improve SCTP’s slow conver-
gence when there is enough capacity available to give
GCC flows their desired rates. However, when this is not
the case (in lower bandwidth conditions), SCTP will still
experience slow convergence. This problem is illustrated
in fig. 14, where it takes 15 seconds from the start of
SCTP until S_CR has grown high enough for RTP to
be allocated its DR of 1.5 Mbps. At that point our fix
kicks in and lets SCTP add to S_CR, resulting in quick
convergence from that point on.

o As with FSE-NG, the mechanism still does not share the
leftover rate between GCC flows in cases where some
flows are application limited and some are not.

o Extended FSE-NG cannot provide any coupling
between separate SCTP flows (i.e., different SCTP asso-
ciations) running alone, because SCTP update calls do
not trigger rate updates from Extended FSE-NG to other
flows.

F. LESSONS LEARNED
The original FSE-NG solely relies on the delay-based flow to
drive the rate calculation and leaves SCTP passive. As we
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have discussed, a delay-based flow can also benefit from
receiving information from a loss-based flow. However,
FSE-NG is designed around the core concept that only the
delay-based flow should lead, and therefore possibilities for
incorporating SCTP updates are limited. This motivates us to
investigate a different avenue where both types of flows are
treated equally from the get-go.

VII. COUPLING, PART 4: FSEv2

We design and implement Flow State Exchange v2 (FSEv2),
a new coupling mechanism for heterogeneous congestion
control mechanisms that is based on lessons learned in the
preceding sections.

A. DESIGN OVERVIEW

Our previously discussed extensions to FSE-NG mitigate
some of FSE-NG’s problems by using SCTP’s rate changes
under certain conditions. However, this works only for cases
where capacity is large enough to accommodate all desired
rates anyway. Furthermore, one potential problem with the
FSE-NG mechanism is that it makes both types of coupled
flows solely rely on GCC'’s ability to compete against other
flows. To try a different approach, we base our new mech-
anism on the idea that the loss-based mechanism should be
more active in the coupling process. That is, it should be
allowed to contribute to rate changes, while still expecting
that the delay-based mechanism will keep queuing delay
down. The design is primarily based on the FSE mechanism
but with support for loss-based mechanisms added. The basis
for basing the update algorithm on FSE rather than FSE-NG
is firstly that FSE-NG assumes all GCC flows have the same
DR, thus not supporting sharing of leftover rate between GCC
flows. Secondly, our mechanism couples SCTP in an inher-
ently different way to FSE-NG by using the actual CWND
of the flows as opposed to FSE-NG, which only sets the
CWND,,,, values for SCTP flows. Thus, FSE-NG concepts
like, for instance, keeping track of RTTp4. are no longer rel-
evant. Loss-based flows are treated similarly to delay-based
flows, except that we do not take any DR into consideration
for them.

B. IMPLEMENTATION DETAILS
We now delve into more concrete details about the new
mechanism and its implementation.

1) CLASS DESCRIPTIONS

The RateFlow is also reused for the new mechanism to
represent GCC flows. Here is an overview of the new classes
that we created:

ActiveCwndFlow
This new type of flow class inherits from Flow.
An object of this class is created for every registered
SCTP flow.

FseV2
This represents the new mechanisms manager,
like the original FlowStateExchange class but
extended to couple SCTP flows.
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TABLE 4. Variables used in the FSEv2 implementation.

Name Description
cwnd_flows The set of registered SCTP flows
rate_flows The set of registered GCC flows
S_CR Total sum of calculated rates for all flows
FSE_CWND(f) | The CWND allocated to an SCTP by FSEv2
Update_CCy The update callback function of some flow f
CC_R Rate received from a flow’s congestion con-
troller
CC_CWND CWND received from a SCTP flow’s con-
gestion controller
DR The desired rate of a GCC flow
FSE_R Current rate allocated to a flow from the
FSEv2
S_CR Total sum of calculated rates for all flows in
the same FG
FG A group of flows sharing the same bottleneck
P The priority of a flow
S_P Sum of all priorities
AR Aggregate rate assigned to flows that are not
limited by a desired rate
TLO Total leftover rate; sum of rate that could not
be assigned to flows limited by a desired rate
last_rtt The last reported RTT estimate from an
SCTP flow

2) REGISTRATION, UPDATES AND DEREGISTRATION
DETAILS

This subsection will go through the coupling sequence’s reg-
istration, update, and deregistration parts. We reuse the same
terms and variables as in the original FSE; some new concepts
are introduced. All the variables and terms relevant to FSEv2
are listed in Table 4.

a: REGISTERING GCC FLOWS

Regarding registration, GCC flows are treated the same way
as with the FSE: their initial rate is added to S_CR, and
the newly created RateFlow is added to a set of RateFlow
pointers.

b: REGISTERING SCTP FLOWS

When an SCTP flow f registers, it sends in its initial
CC_CWND(f) value and its initial last_rtt(f ) value. FseV2’s
last RTT estimate is updated with last_rtt(f). CC_CWND(f)
is converted to CC_R by dividing it by last_rtt(f). CC_R(f) is
then added to S_CR. An ActiveCwndFlow object is created
to store this information for the SCTP flow, and a pointer
to the object is added to a set of ActiveCwndFlow pointers
representing the flow group of registered SCTP flows.

¢: GCC FLOW UPDATES

Whenever a GCC flow calculates a new rate, it sends an
update to FseV2 containing the newly estimated rate. FseV2
then runs an update algorithm that is used by both types of
flows. This algorithm updates S_CR and distributes S_CR
among both types of flows.

d: THE UPDATE ALGORITHM
Algorithm 6 is used by both types of flows. The algorithm

takes two arguments, the flow flow performing the update
and the newly calculated CC rate CC_R(flow). If an SCTP
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flow is performing the update, we assume that it has already
converted the reported CWND value to CC_R(flow). Firstly,
S_CR is updated based on the CC_R(f) by adding the sum of
the difference between CC_R(f) and the flow’s previously
allocated rate FSE_R(flow). Then, in lines 3-11, the algo-
rithm calculates the total sum of priorities S_P by adding
all priorities of both types of flows; it also initializes all
allocated rates to zero. Next, in lines 14-32, the algorithm
simultaneously allocates rates to all GCC and SCTP flows
while ensuring that application-limited GCC flows do not get
more than their desired rate. The leftover rate is shared fairly
between all the other flows. The allocation for the GCC flows
is the same as the original FSE algorithm (see Algorithm 1).
However, an extra loop is added in lines 28-33. Finally, in
lines 33-39, when all flows have been allocated a rate, the
rates are distributed to the flows.

e: CHOOSING THE GCC UPDATE ESTIMATE

When FseV2 sends updates to GCC flows, both the delay
based estimate and the loss based estimates are updated
with the FSE_R. The loss based estimate is calculated in
a different GCC class called SendSideBandwidthEstima-
tion than the delay based estimate, which is calculated in
AimdRateControl. Both of these classes are controlled by
yet another class called GoogCc, which is responsible for
tying the various GCC components together. Accordingly,
when FseV2 sends updates to GCC, they are sent to GoogCc
which then relays the information to AimdRateControl and
SendSideBandwidthEstimation so that both estimates are
updated to FSE_R.

f: SCTP FLOW UPDATES

When an SCTP flow f changes the CWND it sends an
update to FseV2 containing CC_CWND(f) and last_rtt(f).
CC_CWND(f) is converted to CC_R(f) and Algorithm 6
is executed with CC_R(f) as input. FseV2 sets the actual
CWND when distributing rate updates. To accommodate for
this we added another function called set_cwnd to the usrsctp
library; set_cwnd is called from UsrsctpTransport.

g: SCTP STATE CONSIDERATIONS

Because the mechanism sets the actual CWND, which is
tied to the state of SCTP’s CC mechanism, we consider the
following before setting CWND to FSE_CWND.

1) Adopting FSE_CWND: even though the actual CWND
is stored in bytes in the usrsctp library, it only
increases and decreases by the segment size number of
bytes. Therefore, before setting the CWND, we round
FSE_CWND down to the closest number of whole
segments.

2) Avoiding unnecessary Slow Start: as opposed to
SCTP’s maximum CWND, which is simply an upper
limit, the actual CWND is tied to SCTP’s CC state.
Specifically, if CWND is smaller than or equal
to ssthresh, SCTP goes into the slow start phase;
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Algorithm 6 FSEv2 Update Algorithm, Called When Either
Type of Flow Sends Updates

1: function OnFlowUpdated(flow, CC_R(flow))

2: S_CR <~ S_CR+ CC_R — FSE_R(flow)

3 S P<0
4 for f in rate_flows do
5 S P« S_P+P()
6: FSE_R(f)=0
7: end for
8 for f in cwnd_flows do
9: S P« S_P+P()
10: FSE_R(f)=0
11: end for
12: TLO < S_CR
13: AR <0
14 while TLO—AR > O and S_P > 0 do
15: AR <0
16: for f in rate_flows do
17: if FSE_R(f) < DR(f) then
18: it 2920 > DR(f) then
19: TLO < TLO — DR(f)
20: FSE_R(f) < DR(f)
21: S P« S_P—P{)
22: else
23: FSE_R(f) < <P
24: AR < AR + Q70D
25: end if -
26: end if
27: end for
28: for f in cwnd_flows do
29: FSE_R(f) < QPO
30: AR < AR + L@ T0)
31 end for -
32: end while
33: for f in rate_flows do
34: Update_CC(FSE_R(f))r
35: end for
36: for f in cwnd_flows do
37: FSE_CWND(f) < FSE_R(f) x last_rtt
38: Update_CC(FSE_CWND(f))r
39: end for

40: end function

otherwise, it stays in Congestion Avoidance. It may
happen that the FseV2 sends a FSE_CWND value
which is lower than ssthresh if, for instance, a GCC
flow decreased the rate due to congestion. In the
described scenario, if ssthresh remains unchanged and
CWND is set to FSE_CWND, SCTP will go into
Slow Start without having experienced a loss event
because CWND will suddenly be smaller than ssthresh.
To make sure this does not happen, we also set the
ssthresh value to FSE_CWND minus the size of one
segment in such cases.
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h: DEREGISTRATION

Deregistrations in FseV2 are treated in the same way for
either type of flow. The flow is removed from the correspond-
ing set of flows.

VIIl. EVALUATION

We carry out experiments to evaluate the three heterogeneous
CC coupling mechanisms that we presented in section V to
VII. We present results from experiments performed with
the evaluation testbed described in section III-A. The IETF
RMCAT Group developed test cases to evaluate congestion
control mechanisms for real-time media flows in [26]. Our
test cases are inspired from [26] —- some cases are extended
or modified to accommodate the fact that we are coupling
heterogeneous flows. This section describes the general con-
ditions surrounding the experiments. In accordance with [26],
we use a bottleneck queue length of 300 ms in all our tests.
The total run time of the experiments is 120 seconds. FIFO
is used as the bottleneck queue type, and no artificial packet
loss or jitter are added along the path.

We consider the following evaluation metrics:

« Sending rate, as observed by capturing the packets being
sent on the sender node’s interface with t cpdump.

« Throughput, as observed by capturing the packets arriv-
ing on the receiver node’s interface with t cpdump.

o Bandwidth utilization, the ratio between available
capacity and average throughput.

o Delay, gathered by logging the measured RTT in the
GCC and SCTP Chromium code.

o Jain’s fairness index [29]. When there are n flows, where
x; is the throughput for the ith flow, the fairness is rated
with the following formula:

Qi %)

L Xp) =
o nx Y xi?

J(x1, x2, ..

The result ranges from % to 1, with the former being
the worst result and the latter being the best. A result
of 1 means that all flows receive the same allocation,
while a result of rll means that one flow receives all the
allocation.

o RTP (GCC) packet loss. The number of RTP packets
dropped during an interval of 500 ms is gathered through
the WebRTC JavaScript API in the test application.

A. ONE GCC AND ONE SCTP FLOW COUPLED WITH
EQUAL PRIORITIES

We begin by examining the behavior of two heterogeneous
flows having equal priorities. This experiment aims to assert
that the given coupling mechanism can solve the essential
issue of assuring fairness between data and media flows in
WebRTC. We expect the link to be shared fairly between the
two flows in this test case. Specifically, Jain’s fairness index
should stay close to 1 whenever both flows are registered
in the coupling mechanism and transmitting. We also expect
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FIGURE 15. Sending rates one RTP (GCC) and one SCTP flow coupled with equal priorities. The bottleneck has a capacity of 2 Mbps and a 300 ms queue.

The RTT is 100 ms.

TABLE 5. Average results based on 10 runs of the experiment with GCC (RTP) starting at t = 0s and SCTP starting at t = 10s. The bottleneck has a capacity
of 2 Mbps and a 300 ms queue. The RTT is 100 ms. We only consider the time intervals when both flows are running at the same time.

Metric Uncoupled

FSE-NG | Extended FSE-NG | FSEv2

Avg. GCC throughput (Mbps) 0.106

0.955 1.001 0.946

Avg. SCTP throughput (Mbps) 1.889

0.942 0.954 0.948

Avg. Cumulative Utilization 99.8%

94.9% 97.8% 94.7%

Jain’s Fairness Index 0.556

1 0.999 1

Avg. GCC RTT (ms) 268

114 120 115

Avg. SCTP RTT (ms) 213

113 118 112

that the coupling mechanism prevents SCTP from filling the
queue to make sure queuing delay is within acceptable levels.

Figure 15a shows the sending rates of an RTP and an
SCTP flow without the coupling mechanisms. The bottle-
neck capacity and one-way delay are 2 Mbps and 50 ms,
respectively. As Figures 15b, 15¢ and 15d show, coupling
mechanisms effectively ensure fairness with all mechanisms,
even between heterogeneous flows.

Table 5 shows metrics based on the average results. The
most important thing to note is that all three coupling mech-
anisms can provide a Jain’s Fairness Index score of 1 or
very close to 1, while the case of uncoupled flows is close
to the worst possible value of 0.5. We also ran the same
test case with a bottleneck capacity of 1, 3 and 4 Mbps;
it yielded the same close-to-perfect Jain’s fairness index
scores. Furthermore, the coupling mechanisms exhibit a
much lower average RTT than the uncoupled case. The
experiments were repeated ten times to ensure statistical
significance.

The delay box plots in fig. 16 make it clear that the coupled
CC mechanisms make the RTT vastly more stable for GCC
when competing with an SCTP flow in all cases. Figure 16b
shows that coupled CC also makes the RTT more stable for
the coupled SCTP flow as well, which could be beneficial
for WebRTC applications that, for instance, rely on the RTC-
DataChannel for interactivity. We also checked the results for
different queue lengths, and the results were the same for the
coupling mechanisms.

It is worth mentioning that this is the only test case where
some negligible (0.0016% of sent packets) GCC losses were
observed for one of the coupling mechanisms. A couple of
packets get dropped for FSEv2 when SCTP starts. The losses
occur due to SCTP’s Slow Start phase because SCTP is too
aggressive for GCC’s decreases to stop the queuing filling up.
Once SCTP goes into Congestion Avoidance, no more losses
are observed.
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FIGURE 16. RTT measurements with equally prioritized flows. The
bottleneck has a capacity of 2 Mbps and a 300 ms queue. The RTT is
100 ms. We only consider the cases when both flows are running at the
same time.

B. PRIORITISATION

1) ONE GCC AND ONE SCTP FLOW COUPLED, WITH
DIFFERENT PRIORITIES

This experiment aims to evaluate how well the coupling
mechanism adheres to configured priorities when both types
of flows are registered. A GCC flow is given a priority level
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FIGURE 17. Sending rate (Mbps) and RTT (ms) for the case of one RTP flow and one SCTP flow. RTP 1 with P = 2, SCTP with P = 1. The bottleneck has a

capacity of 2 Mbps and a 300 ms queue. The RTT is 100 ms.

TABLE 6. Average results based on 10 runs of the test case when GCC has P = 2 and SCTP has P = 1, the bottleneck has a capacity of 2 Mbps, 100 ms RTT

and a 300 ms queue. We only consider the time intervals when both flows are running at the same time.

Metric FSE-NG | Extended FSE-NG | FSEv2

Avg. GCC throughput(Mbps) 1.124 1.23 1.215
Avg. SCTP throughput(Mbps) 0.596 0.626 0.626
Avg. GCC share of total throughput 66% 66% 66%
Avg. SCTP share of total throughput 34% 34% 34%
Avg. Cumulative Utilization 86% 93% 92%
Avg. GCC RTT(ms) 108 112 115
Avg. SCTP RTT(ms) 107 111 111
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FIGURE 18. Throughput of a GCC flow and an SCTP flow coupled with
Extended FSE-NG and FSEv2 mechanisms, with the GCC priority set to

1 while the SCTP flow’s priority varies from 1 to 0.1. We only consider the
time intervals when both flows are running at the same time.

twice as large as an SCTP Flow. Firstly, the coupled flows
should reach a steady state where their rate equals their share
corresponding to the configured priority. Secondly, the cou-
pling mechanism should achieve this while still ensuring an
appropriate level of bandwidth utilization. Consequently, it is
expected that the GCC should comprise 2/3 or approx. 66% of
the total bandwidth utilization while SCTP should utilize the
remaining 33%. Meanwhile, the queuing delay should stay
the same no matter what type of flow is being prioritized. The
bottleneck capacity is 2 Mbps and one-way propagation delay
is 50 ms.

Table 6 includes various metrics calculated by taking the
average values based on 10 experiments. The table results
show that all mechanisms can enforce the prioritization pol-
icy well since GCC gets 2/3 of the total throughput for all
mechanisms.
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iment. All three mechanisms do seem to experience some
rate oscillations. For FSE-NG and extended FSE-NG, the
oscillations follow a pattern of being stretched for longer
periods, though FSE-NG’s oscillations are more extreme.
In the case of FSE-NG, this is due to the bug which adds
GCC’s rate increases and decreases twice (see section V-D).
Because rate decreases become twice as large, FSE-NG has a
much lower bandwidth utilization than the other mechanisms.
However, we can see that FSE-NG keeps the delay lowest;
extended FSE-NG experiences a bit more delay while FSEv2
has the most delay. Tests with larger queues also provided
similar or very close results.

FSEv2’s extra delay can be traced back to the fact that
SCTP is also allowed to send rate updates to the manager;
however, GCC seems to prevent SCTP from increasing the
delay too much, making sure the delay is within an acceptable
range. As fig. 17¢c shows, this also leads to quite a large initial
delay increase when the SCTP flow is in the slow start phase.

Figure. 18 shows the the throughput for both flows
when GCC'’s priority is set to 1 and SCTP’s priority varies
from 1 to 0.1. The throughput values for each different
priority configuration in the plot are based on the average
value of 10 different runs to ensure statistical significance.
The mechanisms are able to distribute the rate according to
varying priorities.

2) TWO GCC FLOWS AND ONE SCTP FLOW COUPLED, WITH
DIFFERENT PRIORITIES

In this test case, two GCC flows run in parallel with one
SCTP flow. The GCC flows are given extra priority of 50%
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TABLE 7. Average results based on 10 runs of the test case when GCC has P = 1.5 and SCTP has P = 1. The bottleneck has a capacity of 4 Mbps and a
300 ms queue. The RTT is 100 ms. GCC flows are not shown on separate lines since their values are close to identical. Only time intervals when all flows

are running are considered.

Metric FSE-NG | Extended FSE-NG | FSEv2
Avg. GCC flow throughput(Mbps) 1.299 1.341 1.343
Avg. SCTP throughput(Mbps) 0.941 0.918 0.977
Avg. GCC flow share of total throughput 37% 37% 37%
Avg. SCTP share of total throughput 26% 26% 27%
Avg. Cumulative Utilization 88% 90% 92%
Avg. GCC RTT(ms) 108 109 115
Avg. SCTP RTT(ms) 107 107 113
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FIGURE 19. Sending rate (Mbps) and RTT (ms) for the 3 mechanisms. RTP 1 and 2 with P = 1.5, SCTP with P = 1. The bottleneck has a capacity of 4 Mbps

and a 300 ms queue. The RTT is 100 ms.

in relation to SCTP. Similarly to the previous test case, it is
expected that; 1) the prioritization is enforced, 2) there is
still appropriate bandwidth utilization, and 3) finally, that
queuing delay stays the same. Consequently, each GCC flow
is expected to get 3/8 of the total utilized bandwidth while the
final 2/8 parts are given to SCTP. The bottleneck capacity is
4 Mbps and one-way propagation delay is 50 ms.

Table 7 includes various metrics calculated by taking the
average values based on 10 experiments. GCC flows are
expected to comprise 37.5% of the total throughput while
the SCTP flow should get 26% based on the priority levels.
In Table 7, we can see that all three mechanisms achieve this
very well. In terms of cumulative utilization, all mechanisms
perform similarly.

Figure 19 plots the sending rates and delay for all 3 mech-
anisms. FSE-NG and extended FSE-NG show very similar
behavior in terms of both metrics. The FSEv2 plot in fig. 19¢
exhibits oscillations between time 25s and 35s.

This behavior is caused by a conflict between the cou-
pled flows, where SCTP is in Slow Start mode, aggressively
increasing the CWND while the GCC flows decrease the
rate because of the increased delay. Thus, the time before
SCTP experiences loss and goes into Congestion Avoidance
is prolonged. It is also apparent that GCC flows slightly
under-perform while SCTP slightly over-performs during this
time period, leading to the priorities not being precisely
honored. This is because the media encoder is not able
to change the video quality as quickly as the target rate
changes. The FSE-NG based mechanisms do not experience

VOLUME 10, 2022

this because they set the upper limit of the CWND and do
not receive the rapid rate updates from SCTP. Avoiding this
behavior with a mechanism that receives updates from SCTP,
for instance, by skipping SCTP’s Slow Start mode when it
registers after GCC flows, would likely lead to slow con-
vergence on higher capacity links; therefore it is a necessary
trade-off.

C. ONE GCC AND ONE SCTP FLOW COUPLED, GCC
HAVING DR = 1.5 MBPS
This test case aims to evaluate how well the mechanisms
allow SCTP to utilize available bandwidth when there is
enough capacity to satisfy RTP flows. In this test case, the
GCC flow is configured to have a DR of 1.5 Mbps, and
both flows are given equal priority. It is expected that GCC’s
throughput will converge to a stable rate of 1.5 Mbps. SCTP
should be able to quickly converge to around 3.5 Mbps since
the total capacity is 5 Mbps. The coupling mechanism should
also ensure that delay is kept low despite SCTP sending at a
higher throughput than GCC. The bottleneck capacity in this
scenario is 5 Mbps and one-way propagation delay is 50 ms.
Figure. 20 shows the throughput and delay for the mech-
anisms when the SCTP flow is started before the GCC
flow. In this case, some difference between the mechanisms
is visible. Firstly, in fig. 20a, FSE-NG has two problems;
1) when the GCC flow starts, the SCTP flow’s sending rate
gets dragged all the way down to 1 Mbps (see Section V-C2b),
2) SCTP recovering convergence afterwards is very slow, tak-
ing approx. 20 seconds (see Section V-C2c). Our Extended
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FIGURE 20. Sending rate (Mbps) and RTT (ms) of one RTP flow and one SCTP flow. The bottleneck has a capacity of 5 Mbps and a 300 ms queue. The RTT

is 100 ms. DR of the RTP flow is set to 1.5 Mbps.
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FIGURE 21. RTT measurements with the RTP flow being application
limited. The bottleneck has a capacity of 5 Mbps and a 300 ms queue. The
RTT is 100 ms. DR of the RTP flow is set to 1.5 Mbps. We only consider the
time intervals when both flows have converged.

FSE-NG changes mostly fix the first problem and entirely
remove the second problem. However, testing shows that
these fixes only matter whenever the total rate is large enough
to satisfy the DR of all registered GCC flows. Thus, when this
is not the case, SCTP gets dragged down if it starts first, and
SCTP convergence is also slow.

FSEv2 never suffers from either of the aforementioned
issues and in this case, the advantages of receiving SCTP rate
updates in all cases become very clear. We also ran tests with
the GCC flow starting first; in this case, FSE-NG also made
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FIGURE 22. Sending rate of one RTP flow and one SCTP flow, RTP with DR
set to 1.5 Mbps, and coupled with FSEv2. The bottleneck has a capacity of
6 Mbps and a 300 ms queue. The RTT is 100 ms.

SCTP convergence very slow, while Extended FSE-NG and
FSEv2 allowed quick convergence. Furthermore, in case of
FSEv2, we can see from fig. 20c that GCC converges faster
than with the other mechanisms.

Figure. 21 shows delay box plots based on logging of GCC
and SCTP RTT measurements. The GCC measurements in
fig. 21a make it apparent that the mechanisms all are able to
keep GCC delay reasonably low despite the parallel SCTP
transmission. The SCTP RTT measurements illustrated in
fig. 21b show FSE-NG keeping delay lower than the other
two mechanisms. We can trace FSE-NG’s lower delay back
to the fact that the mechanism limits SCTP to a higher degree
than the other mechanisms by not allowing it to send rate
updates.

D. IMPROVING SCTP’s SLOW CONVERGENCE

When the desired rate limits the RTP flow, and the link’s
capacity is large, the convergence time for SCTP can become
very long. Both FSE-NG and our Extended FSE-NG are not
able to solve this problem (see fig. 13 for FSE-NG and fig. 14
for Extended FSE-NG). Because FSEv2 takes rates from both
GCC and SCTP flows, it can be seen from fig. 22 that FSEv2
fixes this problem.
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IX. CONCLUSION

In this paper, we have shown how the design of using two
different congestion control mechanisms within two differ-
ent transport protocols in WebRTC can lead to competition
between them, resulting in fairness issues and undesired
spikes in queuing delay and losses. In the light of this, we have
implemented two state-of-the-art congestion control coupling
mechanisms in the Chromium browser: 1) the Active FSE
from RFC 8699 [4] that couples media flows, and 2) FSE-NG
from [5] that couples NADA and SCTP flows. Based on the
derived implications and lessons learned from FSE and FSE-
NG, we have implemented and evaluated two novel solu-
tions for heterogeneous flows: 1) Extended FSE-NG and 2)
FSEv2. Controlled testbed experiments have shown that our
mechanisms can combine a set of heterogeneous congestion
control mechanisms, fairly allocate the available bandwidth
between the flows, and reduce overall delay and losses. Our
experimental results confirm that our mechanisms reduce the
negative impact of the data channel on the video channel.

Having implemented and tested them in Chromium, this
paper has taken these congestion control coupling algorithms
from theory to practice. We believe that only one final
limitation must be addressed before real-life deployment in
web browsers: while the introduced mechanisms cater for
application-limited media flows, we have assumed that SCTP,
when present, always fully utilizes its allowed cwnd. In a
real implementation, a distinction between this case and the
case of other limitations (SCTP running out of data, or being
limited by the receiver window) must be made. Then, the
implementation of an FSE variant would obtain a “desired
cwnd” from SCTP, and the algorithm should be extended to
use this value in the same way in which we have used the
“desired rate” of GCC flows.

Our code is open source, and freely available from [28];
we believe that these implementations should serve as a good
basis for code in widely-used WebRTC-capable browsers.
Regarding the choice of algorithm, we recommend FSEv2.
While our results have shown that, due to its heavier reliance
on SCTP rate updates, this algorithm does not always consis-
tently perform best, e.g., in terms of delay, the differences
are miniscule. FSEv2 is, however, the only algorithm that
fixes the SCTP convergence problem in the realistic case
where GCC flows are application-limited. Also, at the time of
writing this paper, the WebRTC developers began a transition
to a new SCTP library, which might necessitate adapting
the implementations to use the new library. This could be
problematic for mechanisms such as FSE-NG since they
are dependent on the SCTP library supporting a maximum
CWND limit option, which the new library seemingly does
not, for the time being.

The present work has only focused on coupling flows
running between two peers. One possible avenue for fur-
ther research is to explore a scenario with several peers,
e.g., conference call applications where all flows sent from
a given peer or several peers to one or more destinations
may share the same bottleneck. As future work, we plan to
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investigate such scenarios using a shared bottleneck detection
method [30], [31] to infer which flows share a common
path. Such an extension could greatly amplify the benefits
attained with these coupling mechanisms, since they would
then operate on a much larger number of flows.
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