
Received 8 August 2022, accepted 6 September 2022, date of publication 12 September 2022, date of current version 20 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3205617

Optimized Implementation of PIPO Block Cipher
on 32-Bit ARM and RISC-V Processors
YOUNGBEOM KIM , (Student Member, IEEE), AND SEOG CHUNG SEO , (Member, IEEE)
Department of Financial Information Security, Kookmin University, Seoul 02707, South Korea

Corresponding author: Seog Chung Seo (scseo@kookmin.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) Grant through the Korea Government
[Ministry of Science and ICT (MIST)] under Grant 2022R1C1C1013368.

1

2

3

4

5

6

7

8

9

10

11

12

13

ABSTRACT A lightweight block cipher PIPO-64/128 was presented in ICISC’2020. PIPO of the 8-bit unit
using an unbalanced-bridge S-box showed better performance than other lightweight block cipher algorithms
on an 8-bit AVR environment. So far, optimization methods for implementing PIPO have been proposed
in various environments; however, no optimization research has been conducted for two popular 32-bit
based processors: ARMCortex-M4 and RISC-V. Since RISC-V and ARMCortex-M series platforms do not
support bit-based Single InstructionMultiple Data (SIMD) instructions, several aspects should be considered
to apply a forced parallelization strategy. In this article, we discuss the implementation methodology of
PIPO for 32-bit RISC-V and ARM Cortex-M4 environments. We optimize the performance of S-Layer
via proposed register-scheduling and masking technique while we maintain parallelism to the R-Layer
implementation. Moreover, we propose an on-the-fly key scheduling technique for further performance
improvement. Finally, compared to the existing reference implementations in RISC-V and ARMCortex-M4
platforms, when 4 plaintext encrypted simultaneously, our software achieved performance of 229% and
370%, respectively.

14

15

INDEX TERMS Pipo, arm-cortex m4, risc-v, efficient implementation, software optimization, internet of
things, embedded security.

I. INTRODUCTION16

As industrial technology becomes common, various embed-17

ded devices are being actively used in daily life and indus-18

try. Embedded devices mainly used for sensor nodes are19

called Internet of Things (IoT) devices, and IoT devices20

are equipped with hardware for application and commu-21

nication. Advances in application services have acceler-22

ated the importance of data confidentiality, integrity, and23

authenticity. To solve this issue, a block cipher opera-24

tion mode Galois-Counter Mode/CBC-MAC with Counter25

(GCM/CCM) which is an authenticated encryption method is26

proposed, but there was a limitation in applying GCM/CCM27

on constrained embedded devices. In response, the develop-28

ment of lightweight ciphers has been continuously made in29

terms of memory usage, speed, code size, and low-power30

The associate editor coordinating the review of this manuscript and

approving it for publication was Junggab Son .

consumption; recently, Lightweight Cryptography (LWC) 31

competition for lightweight Authenticated Encryption with 32

Associated Data (AEAD) was held by the National Institute 33

of Standards and Technology (NIST). Since the AEAD algo- 34

rithms submitted for the LWC competition uses lightweight 35

cryptography as a core premetive, the performance of 36

lightweight cryptography is one of the important evalu- 37

ation criteria. However, since IoT devices are relatively 38

vulnerable to side-channel attacks, whether side-channel 39

countermeasures can be applied in the core primitive and 40

performance evaluation of countermeasures are also impor- 41

tant considerations. 42

Block cipher PIPO is lightweight cryptography proposed 43

by ICISC’20 [1]. PIPO’s S-Box is designed through an 44

unbalanced-bridge structure, and the permutation process, 45

R-Layer, is designed through a simple shift operation. Due 46

to the specificity of S-Box, PIPO is oriented towards a 47

bit-slicing implementation different from other lightweight 48

97298 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-4715-8393
https://orcid.org/0000-0001-8016-2808
https://orcid.org/0000-0002-6206-083X

Y. Kim, S. C. Seo: Optimized Implementation of PIPO Block Cipher on 32-Bit ARM and RISC-V Processors

ciphers such as GIFT and has the advantage of having a49

small number of encryption/decryption rounds [2]. In addi-50

tion, due to the above characteristics, the countermeasure51

of side-channel attack can be applied with fewer calcula-52

tions compared to other block ciphers. In particular, in the53

8-bit AVR environment, PIPO achieves high speed, small54

code size, and low memory requirements compared to other55

lightweight block ciphers. Accordingly, various studies are56

being actively conducted to evaluate the performance of PIPO57

from the perspective of implementation in various environ-58

ments. Recently, research on the optimized implementation of59

PIPO equipped with countermeasures of side-channel attack60

in the 8-bit AVR environment and parallel implementation of61

PIPO equipped with countermeasures of fault attack in the62

64-bit ARM Cortex-A series were conducted [3], [4].63

However, research on the most used 32 bits-based proces-64

sor among sensor nodes has not been conducted so far. ARM65

Cortex-M4 is currently a popular-device in the IoT industry;66

and, optimized implementations of various lightweight cryp-67

tographic algorithms have been benchmarked on the ARM68

Cortex-M4 [5], [6], [7], [8], [9]. In addition, the implemen-69

tation result of PIPO for RISC-V, an embedded device that70

has recently been spotlighted, is still not clear. Therefore,71

in this article, we present the first optimized implementation72

of PIPO for 32 bits-based RISC-V and ARM-Cortex M473

environments.74

Our contributions in this work can be summarized as75

below:76

1) Presenting First Optimized software of PIPO on 32-bit77

RISC-V/ARM Cortex-M78

In this article, we present an optimization methodology79

for PIPO-64/128 block cipher in a 32 bits-constrained80

environment. Based on the proposed method, our81

re-designed PIPO software achieves fast execution82

time via parallel-implementation logic. It also pro-83

vides flexibility by providing two versions of the84

implementation. Compared to the existing reference85

implementations in RISC-V andARMCortex-M4 plat-86

forms, when 4 plaintext encrypted simultaneously,the87

optimized PIPO implementation achieved performance88

of 229% and 370%, respectively. As far as we know,89

our software is the first PIPO implementation in 32-bit90

platforms.91

2) Proposing Parallel Computation Logic for Perfor-92

mance Efficiency93

Our PIPO implementation is efficiently compressed94

through three techniques. The first is to use a forced95

parallel technique. we design and apply parallel logic96

suitable for PIPO block cipher by utilizing efficient97

register-scheduling and RISC/ARM instruction set.98

This allows simultaneous encryption of 4 plaintexts.99

The second is a rotate-shift technique based on bit-100

masking. With a masking operation that avoids bit101

interference, we implement an R-Layer with minimal102

cost. The third is a combined-AddRoundKey operation.103

TheAddRoundkey operation is implicitly implemented104

in R-Layer with round keys held in general-purpose 105

registers. Finally, our implementation is further opti- 106

mized through the hand-written assembly. 107

3) Presenting Extensive Performance Analysis 108

We compare our PIPO block cipher implementation in 109

detail with various lightweight/general block ciphers in 110

RISC-V and ARM Cortex-M4 environments. We eval- 111

uate the practical applicability of PIPO block cipher 112

through a detailed comparison based on RAM usage, 113

code size, and Clock cycles Per Byte (CPB). Finally, 114

we show that our optimized PIPO software is suffi- 115

ciently competitive. 116

A. CODES 117

Our implementations are Open Source and are available at 118

https://github.com/Youngbeom94/PIPO_RISC-ARM 119

B. EXTENDED VERSION OF WISA’21 120

In this article, we expand on previous our work published in 121

WISA’21 [10]. InWISA’21, page limitations made it difficult 122

to describe our optimization technique in detail; therefore, 123

in this article, we describe the optimization methods in detail 124

and additionally present implementation techniques for the 125

ARM Cortex-M4 device to prove the expandability of our 126

optimization methodology. 127

C. OUTLINE 128

The rest of this article is structured as follows: Section II 129

introduces block cipher PIPO and our target platforms. 130

Section III reviews implementations of cryptographic algo- 131

rithms on RISC-V and ARM Cortex-M series. An introduc- 132

tion into our main idea for implementing PIPO is provided in 133

Section IV. Results of our implementations are presented in 134

Section V, before we conclude the article in Section VI. 135

II. PRELIMINARY 136

In this section, we describe in detail of essential to the imple- 137

mentation of PIPO block cipher and discuss what should be 138

considered. 139

A. PIPO: LIGHTWEIGHT BLOCK CIPHER 140

Lightweight ciphers that have been proposed so far, either 141

implementation-friendly only in the SW environment [11], 142

[12], [13], [14], [15], or friendly only in the HW environ- 143

ment existed [2], [16], [17], [18]. Therefore, when design- 144

ing the existing lightweight cipher, the side-channel attack 145

on point of view was not a major consideration; however, 146

the importance of mounting countermeasures which against 147

side-channel attacks in the IoT environment is increasing 148

due to various side-channel attacks studies. The PIPO block 149

cipher presented in ICISC’20 is a lightweight cipher that is 150

friendly to SW/HW implementation and countermeasures for 151

side-channel attacks [1]. The S-Layer is configured via an 152

Unbalanced-Bridge structure based on a few bit-operations, 153

which has the advantage of having some rounds com- 154

pared to other lightweight block ciphers. In ICISC’20, the 155

VOLUME 10, 2022 97299

Y. Kim, S. C. Seo: Optimized Implementation of PIPO Block Cipher on 32-Bit ARM and RISC-V Processors

FIGURE 1. Overview of PIPO block cipher [1].

performance evaluation was conducted in an 8-bit AVR envi-156

ronment, which is known as the most constrained embedded157

device, and proved its superiority. However, since the perfor-158

mance of the actual cryptography algorithm differs depending159

on the board of devices, performance evaluation in the most160

used 32 bits-based devices should be considered in the future.161

The overview structure of PIPO block cipher is shown in162

Figure 1(a). A round of PIPO consists of S-Layer, R-Layer,163

and AddRoundKey processes. The 64-bit plaintext is stored164

sequentially in an array when implemented, similarly to a165

general lightweight cipher. PIPO uses 128-bit and 256-bit166

keys and it performs 13 and 17 rounds of encryption, respec-167

tively. Unlike other SPN-based block ciphers, the key sched-168

ule process consists of a simple structure in which the value169

of the master key itself is maintained. The pseudo-code for170

the detailed key schedule of the PIPO block cipher is shown171

in Algorithm 1. The 64-bit plaintext is sequentially placed172

in X[0] to X[7] of 8-bit unit in the reference software. Since173

PIPO’s S-Layer is composed as shown in Figure 1(b), it per-174

forms the substitution process with bit operations through175

X[i], where i ∈ [0, 7]. If it is not implemented in a bit-176

slice fashion, the substitution process must be implemented177

in such a way that the bit-order is rearranged in the array178

and referenced to the S-Box. PIPO’s R-Layer is configured 179

as shown in Figure 1(c) and performs a simple rotate-shift 180

operation. In the reference implementation, it is implemented 181

through macros. 182

Table 1 shows the performance results of PIPO implemen- 183

tation, experimented in ICISC’20, in the 8-bit AVR environ- 184

ment. In ICISC’20, performance evaluation was made based 185

on the RANK system introduced in [19]. The measurement 186

of RANK is as follows: 187

RANK = (106/CPB)/(ROM + 2× RAM) (1) 188

In the case of the 8-bit Atiny platform, there are devices 189

that support byte unit Flash memory and SRAM; therefore, 190

it is reasonable to evaluate the performance of the software 191

through the RANK system in the AVR environment. In eval- 192

uation, PIPO has achieved a high RANK compared to the 193

existing lightweight block cipher. However, in relation to the 194

most popular 32-bit or higher devices, since SRAM and Flash 195

memory in KB units is used, the code size point of view may 196

not be important except for specific applications; therefore, 197

in order to mount PIPO block cipher on a 32-bit proces- 198

sor, achieving high speed through optimization methodology 199

will be the most important consideration. In Section IV, 200

97300 VOLUME 10, 2022

Y. Kim, S. C. Seo: Optimized Implementation of PIPO Block Cipher on 32-Bit ARM and RISC-V Processors

TABLE 1. Performance comparison of 64-bit block ciphers on 8-bit AVR∗ [1].

we introduce strategies to accelerate the speed of PIPO from a201

parallel perspective, and we present detailed implementation202

strategies for each 32-bit platform.203

B. RISC-V204

RISC-V is Reduced Instruction Set Computer (RISC)-based205

an open-source standard Instruction Set Architecture (ISA)206

that is freely available to all developers. The basic RISC-207

V’s ISAs are RV32I for 32-bit and RV64I for 64-bit, which208

consist of minimal instructions including bit-based arith-209

metic/logical/shift operations and memory access to RAM.210

With the investment of various companies, the basic ISA of211

the 8/16/128-bit unit is currently under development. Also,212

RISC-V has a various tool-chain for developers. Unlike ARM213

processors, RISC-V has a different cycle per instructions for214

each CPU design, therefore, the implementation results vary215

by board. Optimization research of cryptographic algorithms216

is mainly conducted on the E31 RISC-V core; therefore,217

we choose E31 core as our target platform. 32-bit RISC-V has218

32 general-purpose registers including program counter and219

stack-pointer. Unlike the ARM Cortex-M4, all but one regis-220

ter can be assigned data. Since the basic ISA does not have an221

instruction to specify a state flag, there is a drawback that the222

radix-representation should be used in the specific algorithm,223

differently than ARM processors. Also, RISC-V does not224

support barrel-shifter, all implementations are represented as225

a simple list of instructions. However, research is underway226

on the BitManip extension [23] for logical/rotation and the227

cryptographic instruction set extension [24] for RISC-V, and228

a vector ISA set [25] for SIMD instructions is currently under229

development. These studies will facilitate research on the230

implementation of cryptographic algorithms in RISC-V in231

the future.232

In this article, we implement PIPO block cipher using233

only the basic ISA, without any extended instruction set.234

Compared to ARM processors, RISC-V has about twice as235

many general-purpose registers, it is easy to store temporary236

variables. Therefore, for the optimization methodology of237

PIPO block cipher on RISC-V, it is important to make the best238

use of basic ISA and general-purpose registers to establish239

forced parallelization.240

Algorithm 1 Key Scheduling of PIPO Block Cipher [1]

Require: K 128 or K 256

Ensure: RoundKey RKi where i = 0 to 13 or 17
1: if K 128 then
2: K 128

= K 64
1 ||K

64
0

3: for i = 0 to 13 do
4: RKi = K 64

i mod 2
5: end for
6: else if K 256 then
7: K 256

= K 64
3 ||K

64
2 ||K

64
1 ||K

64
0

8: for i = 0 to 17 do
9: RKi = K 64

i mod 4
10: end for
11: end if

C. ARM-CORTEX M4 241

ARM Cortex-M family is the most popular 32-bit platform. 242

So far, various bench-marking and optimization research for 243

cryptographic-algorithm are being performed on the Cortex- 244

M series. In particular, Cortex-M4 is a target device for 245

the performance evaluation of algorithms submitted to Light 246

Weight Cryptography (LWC) and Post-Quantum Cryptogra- 247

phy (PQC) competitions held by NIST [7], [26]. The tar- 248

get device of this article, the Cortex M4, consists of 16 249

32-bit general-purpose registers. Among them, 14 registers 250

can be used in actual implementation except for the two 251

registers corresponding to the program counter and stack 252

pointer. On the Cortex-M4, Bit-wise and arithmetic instruc- 253

tions require a single cycle, but memory access instructions 254

require 2 cycles. Like RISC-V, all 32-bit data cannot be 255

used for address reference, but compared to RISC-V, flexible 256

indexing is possible when registers are used as addresses. The 257

SIMD instruction can be used for a specific 8/16-bit unit, 258

but it is not a consideration in the case of block ciphers and 259

hash functions in which bit-wise shift instructions are mainly 260

used. Similarly, the optional flag instructions are not used in 261

this article. The most unique feature of the ARM processor is 262

the barrel-shifter, which can perform bit-wise shift and rotate 263

operations for almost any instruction at no additional cost. 264

VOLUME 10, 2022 97301

Y. Kim, S. C. Seo: Optimized Implementation of PIPO Block Cipher on 32-Bit ARM and RISC-V Processors

Since the S-Layer of PIPO is designed for the bit-slice265

friendly, PIPO has a different slicing way from general block266

ciphers such as AES [6]; so, it is desirable not to apply267

the ARM-specific instruction scheduler presented in [27].268

Therefore, it is necessary to devise a strategy to use as many269

barrel-shifter instructions as possible and efficiently assign270

registers to implement PIPO block cipher on Cortex-M4.271

III. RELATED WORK272

In this section, we investigate the implementation results of273

PIPO block cipher in all environments. Also, we check the274

latest implementation results of block ciphers in our target275

platform, 32-bit devices, and discuss considerations for our276

optimization strategy.277

A. IMPLEMENTATION OF PIPO278

Due to the advantages of the Unbalanced-Bridge structure-279

based S-Layer, various researches on countermeasures for280

side-channel attacks have been mainly conducted so far. [3]281

proposed the implementation of masked PIPO block cipher282

on an 8-bit AVR environment. By proposing a non-linear283

masked S-Layer with a minimum of arithmetic instruc-284

tions, a side-channel attack countermeasure was built and285

its efficiency was proved. Since the masking-based imple-286

mentation is a countermeasure to power analysis, designing287

a response to fault attacks is another study. In [28], the288

first attempt at fault attack on PIPO block cipher was con-289

ducted. authors emphasized the importance of designing fault290

attack countermeasures, along with research that accurate291

key recovery is possible with a 98% probability through292

differential fault attacks. Accordingly, research on fault attack293

countermeasures of PIPO block cipher was conducted in294

the ARMv8 Cortex-A series environment. [4] presented a295

random-shuffling-based countermeasure for fault attack, and296

also proposed parallel optimization implementation using297

the NEON engine. Research on PIPO implementation is not298

actively conducted in environments that do not support SIMD299

instructions such as the NEON engine.300

As far as we know, the only implementation research of301

PIPO block cipher is a bench-mark study published in [29].302

Bench-marking was done in a RISC-V environment and303

ported as a pure assembly without adopting a paralleliza-304

tion strategy. As a result, PIPO implementation has signifi-305

cantly reduced performance in terms of speed and code size306

compared to general block ciphers such as AES and LEA.307

Unfortunately, the performance benefits of PIPO block cipher308

seen in Table 1 are limited to only 8-bit AVR environments.309

This fact ultimately suggests the limitations of implementing310

a simple ported PIPO block cipher on 32-bit devices. There311

is another study [30] on the implementation of PIPO block312

cipher, but it was conducted in a quantum-computing envi-313

ronment, so it is not of our interest.314

B. BLOCK CIPHER ON RISC-V315

The study of the implementation of a block cipher on RISC-V316

has mainly moved toward designing an extended instruction317

set by the HW environment. Except for various extension sets 318

introduced in Section II-B, [31] designed extension sets for 319

the ARIA block cipher and [32] proposed a cryptographic 320

extension set for LWC. However, since these are a study 321

of finite-field operations of ARIA and instruction sets for 322

4 × 4 S-Box of LWC, it has less relevance to do with 323

PIPO block cipher. Research on the SW implementation 324

of block cipher using the basic ISA has also been actively 325

conducted. In 2019, when RISC-V began to become popular, 326

benchmark studies of AES, ChaCha20, and keccak were 327

conducted using RV32I [33]. As a result of comparison with 328

the implementation with Cortex-M4, RISC-V has about twice 329

as general-purpose registers as Cortex-M4, but the efficiency 330

of barrel-shifter is higher in terms of implementation speed 331

for block cipher and hash function; therefore, It proved that 332

RISC-V difficult to catch up Cortex-M4, using only 32RVI. 333

In [34], an implementation study was conducted on the algo- 334

rithm for LWC competition using RV32I. In their research, 335

32RVI and assembly characteristics weremainly used, not the 336

algorithm itself. The sublation of branch instructions, loop- 337

unrolling, and interleaved methods to prevent pipeline-stalled 338

have been recombined to match the RV32I model. The work 339

focused on property of block cipher is the Fixslicing work 340

done on RISC-V and Cortex-M4. They applied Fixslicing to 341

GIFT and SKINNY [7] and finally expanded it to AES [6]. 342

The implication of these studies is that when only RV32I 343

is used without barrel-shifter, the optimization strategy for 344

block cipher should be designed to reduce memory access 345

using as many general-purpose registers as possible. 346

C. BLOCK CIPHER ON CORTEX-M4 347

The representative runner of the conventional CortexM series 348

is Cortex-M3, and the researches of block cipher has also 349

progressed a lot from Cortex-M3 [35], [36], [37]. Cortex-M4 350

has a very similar core to Cortex-M3, but it supports Floating 351

Point Unit (FPU) instructions and single-cycle multiplica- 352

tion instructions, making it particularly efficient for imple- 353

menting public-key-based cryptosystems [38]. However, as in 354

the LWC competition held by NIST, SW/HW implementa- 355

tion research for performance evaluation and optimization 356

of block cipher in Cortex-M4 is being actively conducted. 357

In this article, we can’t cover all of the vast amount of research 358

ever conducted; therefore, we investigate a few core SW 359

implementations on Cortex-M4.While RISC-V has not made 360

progress in toolchain and compiler research, in Cortex-M 361

series, tools for instruction scheduling and register allocation 362

was proposed in [27]. These tools performed better than 363

commercial gcc and clang, demonstrating their efficiency 364

through the implementation of AES. In 2020, optimization 365

study of HIGH block cipher was conducted in [5]. Since, 366

HIGHT uses 8-bit words like PIPO block cipher, 4 words 367

in a 32-bit register can be processed simultaneously; how- 368

ever, HIGHT is an Add-Rotate-XOR (ARX)-based block 369

cipher, it differs from PIPO in that SIMD instructions can 370

be applied. In [8], an AES implementation study was con- 371

ducted. It implemented AES and CounTeR (CTR) Mode by 372

97302 VOLUME 10, 2022

Y. Kim, S. C. Seo: Optimized Implementation of PIPO Block Cipher on 32-Bit ARM and RISC-V Processors

FIGURE 2. The structure of the proposed PIPO implementation.

using the bit-slice technique. Later, GIFT, SKINNY, and AES373

using Fixslicing techniques, mentioned in Section III-B, were374

also implemented in Cortex-M4 [6], [7]. Since PIPO block375

cipher is a Substitution-Permutation Network (SPN)-based376

block cipher, it is not possible to apply SIMD instructions,377

because no arithmetic unit instructions are used to implement378

the S-Box. Therefore, it is important to use barrel-shifter379

efficiently to implement parallelized PIPO block cipher such380

as HIGHT.381

IV. MAIN IDEA382

In this section, we consider all optimization techniques to383

implement PIPO block cipher in a 32-bit environment. First,384

we compare the two implementation method of PIPO block385

cipher presented in [1]; and, analyze the reason why the386

exquisite Fixslicing technique, which does not follow the387

rules of classical block cipher, cannot be applied to PIPO388

block cipher, unfortunately. Finally, we present three strate-389

gies suitable for 32-bit devices and discuss implementation390

methodologies in Cortex-M4 andRISC-V platforms. Figure 2391

gives a brief overview of our optimization methodology.392

To encrypt 4 plaintexts in 32-bit platforms, 4 independent393

PIPO block ciphers should be called in the case of the394

reference implementation. Our software loads 4 plaintexts395

simultaneously for 32-bit platforms. The loaded plaintext396

is aligned in general-purpose registers and the optimized397

S-Layer, R-Layer, and AddRoundKey process are performed.398

A. FORCED PARALLELIZATION STRATEGY399

According to [1], there are two implementation methods of400

PIPO block cipher. The first method is to sequentially store401

the plaintext in X[i], where i ∈ [0, 7] and it processes402

S-Layer using bitslicing technique. In this method, the most403

cost occurs on the S-Layer. Another method is to not fol- 404

low bitslicing and use S-Box table. In order to use S-box, 405

bits should be rearranged to enable memory access using 406

SWAPMOVE technique for plaintext stored in the forward 407

direction [39]; however, since R-Layer performs rotate-shift 408

operations on forward array, the array should be rearranged 409

forward after referring S-box. Therefore, in the reference 410

code, the forward bitslicing implementation method shows 411

much better speed than s-box method which occurs the cost 412

of two SWAPMOVE for every round of the PIPO block cipher. 413

We examined whether Fixslicing technique introduced 414

in [7] can be applied to PIPO block cipher. If in the S-box- 415

based implementation, the bits are rearranged to the position 416

of the next S-box bits instead of in the forward direction 417

after memory reference and it uses fewer instructions than 418

bitslicing method in each round, it can be effective enough. 419

In other words, our goal was to eliminate the SWAPMOVE 420

used in every round of PIPO block cipher. However, R-Layer 421

consists of a bit rotate-shift operation. Unlike AES and GIFT 422

block ciphers, there is no rule between each unit block in 423

PIPO block cipher. In addition, when using 4 plaintexts in 424

a 32-bit environment, the size of the S-box also increases 425

by multiples, so it is inefficient to use this method. After 426

all, S-Layer of the PIPO block cipher is configured based on 427

the Unbalanced-Bridge structure, unlike GIFT and bitslicing 428

AES, which require a realignment in the initial round; there- 429

fore, it is difficult to apply Fixslicing technique. 430

Therefore, we choose the forward bitslicing implementa- 431

tion and strategize for the forced parallel implementation. 432

Figure 3 shows register scheduling for a 32-bit platform. 433

In pt ij , j is the index of the plaintext and i is the index of 434

the bit of the j-th plaintext. For bitslicing-based S-Layer, 435

the four plaintexts have aligned 8-bits units in each register. 436

VOLUME 10, 2022 97303

Y. Kim, S. C. Seo: Optimized Implementation of PIPO Block Cipher on 32-Bit ARM and RISC-V Processors

FIGURE 3. Register scheduling of PIPO block cipher on 32-bit platforms [10].

With this, an S-Layer for 4 plaintexts can be simultaneously437

implemented through bitslicing. Since LoaD/STore-based438

instructions of Cortex-M4 do not support a barrel-shifter,439

on Cortex-M4 and RISC-V platforms, plaintext loading is440

implemented through simple bit-wise operations and bit-shift441

instructions.442

B. BIT-MASKING TECHNIQUE FOR R-LAYER443

32-bit general-purpose registers of both RISC-V and444

Cortex-M4 do not support vectorization; therefore, unfortu-445

nately, rotate-shift instructions for byte/half-word/word units446

cannot be used. Our goal is to rotate-shift plaintext in a447

32-bit register divided 4 unit withminimal use of instructions.448

Therefore, we use a bit-masking technique for rotate-shift449

for 4 8-bit units. Listing 1 shows an implementation examples450

of R-Layer in Cortex-M4 and RISC-V. For example, for 7-bit451

rotate-shift of X[1] in Cortex-M4, we use 0× 01010101452

and 0xFEFEFEFE as masking value to extract 1-bit and453

7-bit for each unit. Using the fact that 7-bit rotate-shift-454

left is the same as 1-bit rotate-shift-right, 1-bit logical-shift-455

right is performed on X[1], the masked value is shifted and456

XOR(eXclusive OR)ed. Since Cortex-M4 has an advantage457

of the powerful barrel-shifter technology, we apply it when458

XORing the masked value in the last step (line 10 of List-459

ing 1). Using a barrel-shifter can achieve the same single460

cycle (1 clock) as using a simple ORR instruction.461

In the case of RISC-V, the maximum value for the imme-462

diate value of bit-operation instructions (ANDI, XORI, ORI)463

is 12-bit due to the characteristic of the instruction format of464

RISC-V [40]. Therefore, it is not possible to mask 32-bit data465

using single-bit instructions like the Cortex-M4 (like a line 7-466

8 of Listing 1). To solve this, a commonly used method is to467

use the LI instruction to immediate-load the masking values,468

for 7-bit rotate-shift, 0× 01010101 and 0xFEFEFEFE.469

In this case, 28 (2(LI) × 2(masking) × 7(PT)) clock470

cycles occur per round to load the masking value when-471

ever R-Layer operation is performed once. In other words,472

an additional 364 (28 × 13) clock cycles are required during473

the 13 rounds of the PIPO-64/128. Therefor, we propose474

a masking table of 32 bytes for optimization of R-Layer. 475

Listing 1 has an example of our R-Layer implementation 476

for RISC-V. We observe that the XOR value of two 32-bit 477

data pairs required for masking is 0xFFFFFFFF. For exam- 478

ple, we XOR-operate 0× 01010101 and 0xFFFFFFFF 479

to produce 0xFEFEFEFE, which is the masking pair of 480

0× 01010101. 0xFFFFFFFF data can only be loaded 481

once at the beginning of the R-Layer. By using this technique, 482

it costs 18 (2(LW) × 1(masking) × 7(PT) + 2(LA) + 2(LW)) 483

clock cycle per round, 13 rounds of for PIPO-64/128 It costs 484

234 (18 × 13) clock cycles. This means this method can 485

achieve a bit-masking more efficiently than another method 486

using LI instructions. 487

C. COMBINED ADDROUNDKEY 488

In the case of Cortex-M4, a powerful technology called 489

barrel-shifter exists, but unfortunately, the RISC-V platform 490

has fewer effective instructions for block ciphers imple- 491

mentation than Cortex-M4 platform. However, as intro- 492

duced in Section II-B, RISC-V device has twice as 493

many general-purpose registers as Cortex-M4; therefore, 494

we focused on how to make the most of this characteristic. 495

In this section, we propose a methodology to reduce the 496

memory access cost by holding the master key in registers 497

of RISC-V environments. Detailed register scheduling of 498

RISC-V platform is shown in Figure 4. The shaded areas 499

of Figure 4 are registers that are not used by the actual 500

implementation. Our implementation divides and stores the 501

128-bit master key in 4 of the 32 general-purpose registers of 502

RISC-V (x14 to x17). If PIPO block cipher use a 256-bit 503

security level, we can still store the entire 256-bit master 504

key by additionally using x2, x7, x12, and x13 registers. 505

Since the master key is stored in several registers, there is 506

no need to load the master key every round. The only cost 507

in AddRoundKey process is to unpack and expand the master 508

key for forced parallelism. Of course, there is another method 509

to optimize AddRoundKey process via simple loading by 510

operating all round keys in advance, but since it needs to be 511

extended to 32-bit and stored, an additional memory space 512

97304 VOLUME 10, 2022

Y. Kim, S. C. Seo: Optimized Implementation of PIPO Block Cipher on 32-Bit ARM and RISC-V Processors

Listing. 1. R-layer of Cortex-M4 and RISC-V.

of at least 64 bytes is required based on 128-bit security513

level. Therefore, if all round keys are stored in RAM or Flash514

memory, 832/1088 bytes are required based on 128/256-bit515

security level. Since the PIPO block cipher is a lightweight516

cipher, RAM should be used to a minimum according to517

its characteristics. The method of storing the round key in518

Flash memory can cause other security issues; therefore,519

this method is not very effective except for devices with520

completely physical security countermeasures applied. Also,521

it should be considered that encrypting small-sized plaintexts522

as reported in [6]. Therefore, pre-computing all round keys523

may not be a flexible solution in all application situations.524

Hence, we believe that the best implementation way of the525

PIPO block cipher in RISC-V is to hold the master key in526

a registers, unpack it, and apply it to forced parallelism.527

Our methodology can accelerate performance while preserv-528

ing parallelism without additional memory usage. Finally,529

AddRoundKey process is merged with R-Layer process.530

V. RESULT531

This section shows our software results on the RISC-V532

and Cortex-M4. We first describe our target platforms and533

setup and then present the evaluation in Section V-B and534

Section V-C. Section V-D analyzes PIPO block cipher per-535

formance in RISC-V and Cortex-M4 platforms. We have536

made every effort to ensure that performance measurements 537

are performed as fair and accurate as possible. Our implemen- 538

tation is available in two versions. The first implementation 539

(marked by †) is the software of encrypting one plaintext, 540

and the reference implementation methodology is ported to 541

software as a handwritten assembly suitable for RISC-V 542

and Cortex-M4 environments. The second implementation 543

(marked by ‡) is the code to which the methodology we pro- 544

pose is applied, and it is a software that encrypts 4 plaintexts 545

together with the assembly instructions in parallel. We evalu- 546

ate our performance based on the performance improvement 547

of the second software. The reference implementation of 548

PIPO block cipher presented in [1] was measured by com- 549

piling on Cortex-M4 and RISC-V, respectively. 550

A. SETUP TARGET DEVICE 551

1) RISC-V: HiFiveRevB 552

Our RISC-V target platform is the HiFiveRevB board con- 553

taining a SiFive’s 32-bit RISC-V processor with 16 kB of 554

SRAM, 32 MB of flash, and 320 MHz of frequency. The 555

integrated development environment is FreedomStudio (ver. 556

2020) of SiFive, our work is handwritten assembly PIPO 557

block cipher code. For building code, we use the gcc (ver. 558

10.1.0) with -O3 option. Benchmarking was conducted in the 559

same method as in the RISC-V platforms. For benchmark- 560

ing, 32 bytes of plaintext are encrypted 10,000 times and 561

averaged. To ensure that no instructions and data remain in 562

cache memory, a dummy operation is performed after one 563

PIPO block cipher is executed. Dummy operations are not 564

counted in the average of clock cycles. The process of loading 565

and aligning the 4 plaintexts and the process of rearranging 566

and writing out the ciphertext aligned in the general-purpose 567

registers are also counted by clock cycles. 568

2) CORTEX-M4: STM32F407-DISOVERY 569

We target the STM32F407-DISOVERY board, featuring a 570

STM32F407VG Cortex-M4 microcontroller with 196 kB of 571

SRAM, 1 MB of flash, and 168 MHz of frequency. The 572

integrated development environment is Keil-uVision5, our 573

work is handwritten assembly PIPO block cipher code. For 574

building code, we use the Keil ARM Compiler with -O3 575

option. Benchmarking was conducted in the same method as 576

in the RISC-V platforms. 577

B. RESULT OF RISC-V 578

We evaluate our optimization strategy in a RISC-V envi- 579

ronment through the set HiFiveRevB board. Table 2 shows 580

the performance of the implementation of various cryp- 581

tographic algorithms and our software in a RISC-V plat- 582

form. Unfortunately, research on lightweight block ciphers 583

of the RISC-V environment is relatively small compared to 584

Cortex-M3/M4 platforms; therefore, we investigate all the 585

latest cryptographic software implemented in RISC-V plat- 586

forms. Fix-GIFT and Fix-AES are implementations to which 587

Fixslicing technology proposed in [7] and [6] is applied. 588

VOLUME 10, 2022 97305

Y. Kim, S. C. Seo: Optimized Implementation of PIPO Block Cipher on 32-Bit ARM and RISC-V Processors

FIGURE 4. Details of register scheduling on RISC-V and cortex-M4.

The implementation of Fix-GIFT in RISC-V was done589

in [41]. bench-ARIA and bench-LEA are benchmark reports590

that are simply ported from [29] using assembly instruc-591

tions of RISC-V. We also compare the various crypto-592

graphic functions in the RISC-V platform reported in [33].593

Compared to the reference implementation of PIPO block594

cipher, our PIPO† software without parallelization strat-595

egy achieved 260 CPB (a performance improvement of596

about 50 %). PIPO†, applied the forced parallelization strat-597

egy, achieved 121 CPB (approximately 229 % performance598

improvement). PIPO† software requires a higher cost than599

Fix-GIFT implementation, while PIPO† software requires a600

lower CPB than Fix-GIFT due to our parallelization strategy.601

Unfortunately, we report that our code shows lower perfor-602

mance than LEA and AES in RISC-V. The implementation603

of PIPO† with our optimization strategy shows that PIPO in604

the RISC-V environment is superior to the software of GIFT605

and ARIA, purely in terms of performance.606

C. RESULT OF ARM CORTEX-M4607

As in the previous section, we evaluate our software through608

the set STM32F407-DISCOVERY board. Table 3 shows609

the performance of the implementation of various cryp-610

tographic algorithms and our software in a Cortex-M4.611

Lightweight and general block cipher implementations were612

evenly implemented in Cortex-M3 andM4. We evaluate soft-613

ware based on the performance of implementation reports614

for the Cortex-M3 and M4 platforms. The biggest differ- 615

ence between Cortex-M3 and Cortex-M4 is themultiplication 616

instruction and the Floating-Point Unit instruction, so it does 617

not significantly affect the performance evaluation of the 618

actual block cipher implementation. For that reason, we refer 619

to [6], Fix-AES performance report, which shows the fact 620

that the performance did not change significantly in the 621

Cortex-M3 and Cortex-M4 environments. Compared to the 622

reference implementation of PIPO block cipher, our PIPO†
623

software without parallelization strategy achieved 171 CPB 624

(a performance improvement of about 81 %). PIPO‡, applied 625

the forced parallelization strategy, achieved 66 CPB (approx- 626

imately 370 % performance improvement). Comparing other 627

lightweight block ciphers with our PIPO software, PIPO‡
628

achieves better performance than the software of Fix-GIFT, 629

PRESENT, RECTANGLE, and SIMON. For HIGHT soft- 630

ware presented in [5], it achieves the 56 CPB during 631

the encryption process, but, for key scheduling process, 632

it requires an additional 49 CPB. Since our software includes 633

the key scheduling inside the encryption process, we can 634

show that our PIPO‡ case achieved faster results than HIGHT 635

implementation, considering all the clocks required for the 636

actual encryption process. In addition, our implementation 637

achieves lower RAM usage and higher performance than 638

general block ciphers with 128-bit plaintext lengths such 639

as Fix-AES and ARIA. Unfortunately, similar to what was 640

reported in the previous section, PIPO block cipher also 641

97306 VOLUME 10, 2022

Y. Kim, S. C. Seo: Optimized Implementation of PIPO Block Cipher on 32-Bit ARM and RISC-V Processors

TABLE 2. Constant-time implementation results on RISC-V for various versions of PIPO block cipher, as well as other block ciphers. For encryption
routines, speed is expressed in Cycles Per Bytes∗.

TABLE 3. Constant-time implementation results on cortex-M4 for various versions of PIPO block cipher, as well as other block ciphers. For encryption
routines, speed is expressed in Cycles Per Bytes∗.

shows lower performance than the LEA in the Cortex-M4642

environment.643

D. PERFORMANCE ANALYSIS644

To achieve the forced parallelization methodology, the linear645

and non-linear layer operations for four plaintexts should646

theoretically be reduced by a factor of four. In the case of647

S-Layer, it is natural that the performance improvement is648

4 times compared to the single plaintext implementation;649

however, the costs of loading bit masking in R-Layer and650

expanding the round key kept in the register are required addi-651

tional clock cycles. Our ideal goal is best speed performance652

based on minimal RAM usage. As discussed in Section II-A,653

code size, measured to Flash memory, is not a major limit654

point for 32-bit environments. Our implementation is fully655

unrolled to achieve top speed. Also, as reported in [6], 656

Since different keys may be used based on a small size 657

of plaintext depending on the application situation, we do 658

not pre-compute all round keys, using minimal RAM usage. 659

Our choice makes our software flexible in that it can be 660

used fluidly for all block cipher operation modes and all 661

platforms and application situations. The additional overhead 662

incurred in the process of aligning plaintext, loading bit- 663

masking value, and expanding round keys for forced par- 664

allelization strategy is offset to an extent by architectural 665

characteristics. In the case of RISC-V, the process of load- 666

ing the round key for each round of PIPO block cipher is 667

omitted by holding the key in the general-purpose register. 668

In the case of Cortex-M4, By using a barrel-shifter, the 669

clocks of bit-masking and round key processes are compactly 670

VOLUME 10, 2022 97307

Y. Kim, S. C. Seo: Optimized Implementation of PIPO Block Cipher on 32-Bit ARM and RISC-V Processors

compressed. Finally, we report that our PIPO software gener-671

ally achieved higher performance in RISC-V and Cortex-M4672

platforms than other lightweight and common block ciphers673

except for LEA block cipher.674

However, our PIPO‡ software still requires a higher CPB675

than the implementation of the LEA block cipher in both676

RISC-V and Cortex-M4. Block cipher LEA is an ARX-based677

block cipher consisting of bit and arithmetic operations;678

and, its optimization method used in 32-bit units has been679

proposed. The 32-bit LEA implementation has the advan-680

tage that bit and arithmetic operations do not need to con-681

sider the bit-masking technique for rotate-shifts and carry682

for module addition. Therefore, in 32-bit devices, computing683

plaintext packed in 32-bit is usually a more efficient imple-684

mentation strategy for LEA block cipher than parallelization685

tasks. To determine if the performance of the LEA block686

cipher depend on the 32-bit platform, we also research LEA687

implementations in the AVR environment. The latest opti-688

mized LEA implementation results in an 8-bit AVR plat-689

forms were presented in [44], and performance was reported690

at 167 CPB. As can be seen in Table 1, the reported PIPO ref-691

erence Implementation is 197 CPB, which is basically lower692

than the LEA block cipher. Therefore, it can be considered693

algorithm-dependent results that our PIPO implementation694

performs lower than implementation of LEA block cipher on695

a 32-bit platform.696

VI. CONCLUSION697

In this article, we applied a forced parallelization strategy698

to PIPO block cipher to push the performance of PIPO699

block cipher to the limit on the 32-bit platform. To this700

end, we proposed a bit mask technique consisting of mini-701

mal instructions. In addition, we took full advantage of the702

architectural characteristics to reduce the additional overhead703

incurred in the forced parallelization strategy. Depending on704

the characteristics of the architecture, for Cortex-M4 plat-705

form, we accelerated performance via barrel-shifter; and, for706

RISC-V platform, we took full advantage of the registers to707

keep the master key in the registers. We aimed to achieve high708

performance with minimal RAM usage to match the char-709

acteristics of resource-constrained devices and lightweight710

block cipher PIPO, as a result, our PIPO-64/128 software711

achieved 121 CPB and 66 CPB in RISC-V and Cortex-M4,712

respectively. In addition, our fair and detailed performance713

analysis shows that PIPO block cipher is sufficiently compet-714

itive compared to other lightweight block ciphers in a 32-bit715

implementation environment, which contributes to PIPO’s716

performance evaluation. While our constant implementation717

was targeted at 32-bit platforms, our forced parallelization718

methodology can be extended to other architectures, such719

as the 16 bits-based MSP430 and Intel CPUs that can use720

16/32-bit data types.721

CONFLICT OF INTEREST722

All authors have no conflict of interest723

ACKNOWLEDGMENT 724

YoungBeom Kim wrote the original draft, and Seog Chung 725

Seo wrote, reviewed, and edited the article. The authors have 726

read and agreed to the published version of the manuscript. 727

They would like to thank the anonymous reviewers for their 728

helpful comments. 729

REFERENCES 730

[1] H. Kim, Y. Jeon, G. Kim, J. Kim, B.-Y. Sim, D.-G. Han, H. Seo, S. Kim, 731

S. Hong, J. Sung, and D. Hong, ‘‘PIPO: A lightweight block cipher with 732

efficient higher-order masking software implementations,’’ in Informa- 733

tion Security and Cryptology–(ICISC), D. Hong, Ed. Cham, Switzerland: 734

Springer, 2021, pp. 99–122. 735

[2] S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and 736

Y. Todo, ‘‘GIFT: A small Present-towards reaching the limit of lightweight 737

encryption,’’ in Proc. 19th Int. Conf. Cryptograph. Hardw. Embedded 738

Syst. (CHES) (Lecture Notes in Computer Science), vol. 10529,W. Fischer 739

and N. Homma, Eds. Taiwan: Springer, 2017, pp. 321–345. 740

[3] H. Kim, M. Sim, S. Eum, K. Jang, G. Song, H. Kim, H. Kwon, 741

W. Lee, and H. Seo, ‘‘Masked implementation of PIPO block cipher 742

on 8-bit AVR microcontrollers,’’ in Proc. 22nd Int. Conf. Inf. Secur. 743

Appl. (WISA) (Lecture Notes in Computer Science), vol. 13009, H. Kim, 744

Ed. Jeju Island, South Korea: Springer, Aug. 2021, pp. 171–182. 745

[4] J. Song, Y. Kim, and S. C. Seo, ‘‘High-speed fault attack resistant imple- 746

mentation of PIPO block cipher on ARM cortex—A,’’ IEEE Access, vol. 9, 747

pp. 162893–162908, 2021. 748

[5] H. Seo and Z. Liu, ‘‘All the hight you need on cortex–M4,’’ in Proc. 749

22nd Int. Conf. Inf. Secur. Cryptol. (ICISC) (Lecture Notes in Computer 750

Science), vol. 11975, J. H. Seo, Ed. Seoul, South Korea: Springer, 2019, 751

pp. 70–83. 752

[6] A. Adomnicai and T. Peyrin, ‘‘Fixslicing AES-like ciphers: New bitsliced 753

AES speed records on ARM-Cortex M and RISC-V,’’ IACR Trans. Cryp- 754

togr. Hardw. Embedded Syst., vol. 2021, no. 1, pp. 402–425, 2021. 755

[7] A. Adomnicai, Z. Najm, and T. Peyrin, ‘‘Fixslicing: A new GIFT repre- 756

sentation: Fast constant-time implementations of GIFT and GIFT-COFB 757

on ARM Cortex-M,’’ IACR Trans. Cryptogr. Hardw. Embedded Syst., 758

vol. 2020, no. 3, pp. 402–427, 2020. 759

[8] P. Schwabe and K. Stoffelen, ‘‘All the AES you need on Cortex-M3 and 760

M4,’’ in Proc. 23rd Int. Conf. Sel. Areas Cryptogr. (SAC) (Lecture Notes in 761

Computer Science), vol. 10532, R. Avanzi and H.M. Heys, Eds. St. John’s, 762

NL, Canada: Springer, 2016, pp. 180–194. 763

[9] H. Seo, H. Kim, K. Jang, H. Kwon, M. Sim, G. Song, and S. Uhm, 764

‘‘Compact implementation of ARIA on 16-bit MSP430 and 32-bit ARM 765

cortex-M3microcontrollers,’’Electronics, vol. 10, no. 8, p. 908, Apr. 2021. 766

[10] Y. Kwak, Y. Kim, and S. C. Seo, ‘‘Parallel implementation of PIPO block 767

cipher on 32-bit RISC-V processor,’’ in Proc. 22nd Int. Conf. Inf. Secur. 768

Appl. (WISA) (Lecture Notes in Computer Science), vol. 13009, H. Kim, 769

Ed. Jeju Island, South Korea: Springer, 2021, pp. 183–193. 770

[11] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T. Shirai, 771

‘‘Piccolo: An ultra-lightweight blockcipher,’’ in Proc. 13th Int. Workshop 772

Cryptograph. Hardw. Embedded Syst. (CHES) (Lecture Notes in Computer 773

Science), vol. 6917, B. Preneel and T. Takagi, Eds. Nara, Japan: Springer, 774

2011, pp. 342–357. 775

[12] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, 776

M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, ‘‘PRESENT: An ultra- 777

lightweight block cipher,’’ inProc. 9th Int. Workshop Cryptograph. Hardw. 778

Embedded Syst. (CHES) (Lecture Notes in Computer Science), vol. 4727, 779

P. Paillier and I. Verbauwhede, Eds. Vienna, Austria: Springer, 2007, 780

pp. 450–466. 781

[13] S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Akishita, 782

and F. Regazzoni, ‘‘Midori: A block cipher for low energy,’’ in Proc. 21st 783

Int. Conf. Theory Appl. Cryptol. Inf. Secur. (ASIACRYPT) (Lecture Notes 784

in Computer Science), vol. 9453, T. Iwata and J. H. Cheon, Eds. Auckland, 785

New Zealand: Springer, 2015, pp. 411–436. 786

[14] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang, 787

J. Lee, K. Jeong, H. Kim, J. Kim, and S. Chee, ‘‘HIGHT: A new block 788

cipher suitable for low-resource device,’’ in Proc. 8th Int. Workshop Cryp- 789

tograph. Hardw. Embedded Syst. (CHES) (Lecture Notes in Computer 790

Science), vol. 4249, L. Goubin and M. Matsui, Eds. Yokohama, Japan: 791

Springer, 2006, pp. 46–59. 792

97308 VOLUME 10, 2022

Y. Kim, S. C. Seo: Optimized Implementation of PIPO Block Cipher on 32-Bit ARM and RISC-V Processors

[15] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic,793

L. R. Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts,794

S. S. Thomsen, and T. Yalçin, ‘‘PRINCE—A low-latency block cipher for795

pervasive computing applications,’’ in Proc. 18th Int. Conf. Theory Appl.796

Cryptol. Inf. Secur. (ASIACRYPT) (Lecture Notes in Computer Science),797

vol. 7658, X. Wang and K. Sako, Eds. Beijing, China, Springer, 2012,798

pp. 208–225.799

[16] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and800

L.Wingers, ‘‘The SIMON and SPECK lightweight block ciphers,’’ inProc.801

52nd Annu. Design Automat. Conf., San Francisco, CA, USA, Jun. 2015,802

p. 175.803

[17] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki,804

P. Sasdrich, and S. M. Sim, ‘‘SKINNY-AEAD and skinny-hash,’’ IACR805

Trans. Symmetric Cryptol., vol. 2020, no. S1, pp. 88–131, 2020.806

[18] J. Guo, T. Peyrin, A. Poschmann, and M. J. B. Robshaw, ‘‘The LED block807

cipher,’’ in Proc. 13th Int. Workshop (CHES) (Lecture Notes in Computer808

Science), B. Preneel and T. Takagi, Eds. Nara, Japan: Springer, 2011,809

pp. 326–341.810

[19] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and811

L. Wingers, ‘‘The SIMON and SPECK block ciphers on AVR 8-bit812

microcontrollers,’’ in Proc. 3rd Int. Workshop Lightweight Cryptogr. Secur.813

Privacy (Lecture Notes in Computer Science), vol. 8898, T. Eisenbarth and814

E. Öztürk, Eds. Istanbul, Turkey: Springer, 2014, pp. 3–20.815

[20] A. Baysal and S. Sahin, ‘‘RoadRunneR: A small and fast bitslice block816

cipher for low cost 8-bit processors,’’ in Proc. 4th Lightweight Cryp-817

togr. Secur. Privacy (Lecture Notes in Computer Science), vol. 9542,818

T. Güneysu, G. Leander, and A.Moradi, Eds. Bochum, Germany: Springer,819

2015, pp. 58–76.820

[21] D. D. Dinu, A. Biryukov, J. Groszschädl, D. Khovratovich, Y. L. Corre,821

and L. Perrin, ‘‘FELICS–fair evaluation of lightweight cryptographic sys-822

tems,’’ in Proc. NIST Workshop Lightweight Cryptogr., 2015, pp. 1–38.823

[22] C. Beierle, G. Leander, A. Moradi, and S. Rasoolzadeh, ‘‘CRAFT:824

Lightweight tweakable block cipher with efficient protection against DFA825

attacks,’’ IACRTrans. Symmetric Cryptol., vol. 2019, no. 1, pp. 5–45, 2019.826

[23] RISC-V. (2021). RISC-V Bitmanip Extension. [Online]. Available:827

https://github.com/riscv/riscv-bitmanip828

[24] B. Marshall, G. R. Newell, D. Page, M. O. Saarinen, and C. Wolf, ‘‘The829

design of scalar AES instruction set extensions for RISC-V,’’ IACR Trans.830

Cryptogr. Hardw. Embedded Syst., vol. 2021, no. 1, pp. 109–136, 2021.831

[Online]. Available: https://github.com/riscv/riscv-crypto832

[25] RISC-V. (2021). RISC-V Vector Extension. [Online]. Available:833

https://github.com/riscv/riscv-v-spec834

[26] C. M. Chung, V. Hwang, M. J. Kannwischer, G. Seiler, C. Shih, and835

B. Yang, ‘‘NTT multiplication for NTT-unfriendly rings: New speed836

records for Saber and NTRU on cortex-M4 and AVX2,’’ IACR Trans.837

Cryptogr. Hardw. Embedded Syst., vol. 2021, no. 2, pp. 159–188, 2021.838

[27] K. Stoffelen, ‘‘Instruction scheduling and register allocation on ARM839

cortex-M,’’ in Software Performance Enhancement for Encryption and840

Decryption, and Benchmarking–SPEED-B. 2016. [Online]. Available:841

https://ko.stoffelen.nl/talks/20161020-speedb.pdf842

[28] S. Lim, J. Han, T.-H. Lee, and D.-G. Han, ‘‘Differential fault843

attack on lightweight block cipher PIPO,’’ Cryptol. ePrint Arch.,844

Tech. Rep. 2021/1190, 2021. [Online]. Available: https://eprint.iacr.org/845

2021/1190846

[29] Y. Kwak, Y. Kim, and S. C. Seo, ‘‘Benchmarking Korean block ciphers on847

32-bit RISC-V processor,’’ J. Korea Inst. Inf. Secur. Cryptol., vol. 31, no. 3,848

pp. 331–340, 2021.849

[30] K. Jang, G. Song, H. Kwon, S. Uhm, H. Kim, W.-K. Lee, and H. Seo,850

‘‘Grover on PIPO,’’ Electronics, vol. 10, no. 10, p. 1194, May 2021.851

[31] J.-J. Lee, J.-U. Park, M.-J. Kim, and H.-W. Kim, ‘‘Efficient ARIA cryp-852

tographic extension to a RISC-V processor,’’ J. Korea Inst. Inf. Secur.853

Cryptol., vol. 31, no. 3, pp. 309–322, 2021.854

[32] E. Tehrani, T. Graba, A. S. Merabet, and J.-L. Danger, ‘‘RISC-V extension855

for lightweight cryptography,’’ in Proc. 23rd Euromicro Conf. Digit. Syst.856

Design (DSD), Aug. 2020, pp. 222–228.857

[33] K. Stoffelen, ‘‘Efficient cryptography on the RISC-V architecture,’’ in858

Progress in Cryptology–(LATINCRYPT). P. Schwabe and N. Thériault,859

Eds. Cham, Switzerland: Springer, 2019, pp. 323–340.860

[34] F. Campos, L. Jellema, M. Lemmen, L. Müller, D. Sprenkels, and861

B. Viguier, ‘‘Assembly or optimized C for lightweight cryptography on862

RISC-V?’’ inCryptology and Network Security S. Krenn, H. Shulman, and863

S. Vaudenay, Eds. Cham, Switzerland: Springer, 2020, pp. 526–545.864

[35] Y. Le Corre, J. Großschädl, and D. Dinu, ‘‘Micro-architectural power sim- 865

ulator for leakage assessment of cryptographic software on ARM cortex- 866

M3 processors,’’ in Proc. Int. Workshop Constructive Side-Channel Anal. 867

Secure Design. Springer, 2018, pp. 82–98. 868

[36] H. Kim, K. Jang, G. Song, M. Sim, S. Eum, H. Kim, H. Kwon, 869

W.-K. Lee, andH. Seo, ‘‘SPEEDYon cortex–M3: Efficient software imple- 870

mentation of SPEEDY on ARM cortex–M3,’’ Cryptology ePrint Arch., 871

Tech. Rep. 2021/1212, 2021. [Online]. Available: https://ia.cr/2021/1212 872

[37] H.-J. Seo, ‘‘High speed implementation of LEA on ARM cortex-M3 pro- 873

cessor,’’ J. Korea Inst. Inf. Commun. Eng., vol. 22, no. 8, pp. 1133–1138, 874

2018. 875

[38] D. O. C. Greconici, M. J. Kannwischer, and D. Sprenkels, ‘‘Com- 876

pact dilithium implementations on cortex-M3 and cortex-M4,’’ IACR 877

Trans. Cryptograph. Hardw. Embedded Syst., vol. 2021, no. 1, pp. 1–24, 878

Dec. 2020. 879

[39] L. May, L. Penna, and A. Clark, ‘‘An implementation of bitsliced DES 880

on the Pentium MMX processor,’’ in Proc. Australas. Conf. Inf. Secur. 881

Privacy. Springer, 2000, pp. 112–122. 882

[40] A. Waterman1 and K. Asanovic. The RISC-V Instruction Set Man- 883

ual, Volume I: User-Level ISA. [Online]. Available: https://riscv.org/wp- 884

content/uploads/2017/05/riscv-spec-v2.2.pdf 885

[41] G. Pojoga and K. Papagiannopoulos, ‘‘Low-latency implementation of the 886

GIFT cipher on RISC-V architectures,’’ in Proc. 19th ACM Int. Conf. 887

Comput. Frontiers, May 2022, pp. 287–295. 888

[42] T. Reis, D. F. Aranha, and J. López, ‘‘PRESENT runs fast,’’ in Proc. Int. 889

Conf. Cryptograph. Hardw. Embedded Syst. Springer, 2017, pp. 644–664. 890

[43] D. Dinu, Y. L. Corre, D. Khovratovich, L. Perrin, J. Großschädl, and 891

A. Biryukov, ‘‘Triathlon of lightweight block ciphers for the Internet of 892

Things,’’ J. Cryptogr. Eng., vol. 9, no. 3, pp. 283–302, Sep. 2019. 893

[44] H. Seo, K. An, andH.Kwon, ‘‘Compact LEA andHIGHT implementations 894

on 8-bit AVR and 16-bit MSP processors,’’ in Proc. Int. Workshop Inf. 895

Secur. Appl. Springer, 2018, pp. 253–265. 896

YOUNGBEOM KIM (Student Member, IEEE) 897

received the B.S. degree from the Department of 898

Information Security, Cryptology, and Mathemat- 899

ics, Kookmin University, where he is currently 900

pursuing the master’s degree in financial infor- 901

mation security. His research interests include the 902

optimization of cryptographic algorithms, its effi- 903

cient implementations on various IoT devices, and 904

cryptographic module validation programs. 905

SEOG CHUNG SEO (Member, IEEE) received 906

the B.S. degree in information and com- 907

puter engineering from Ajou University, Suwon, 908

South Korea, in 2005, the M.S. degree in infor- 909

mation and communications from the Gwangju 910

Institute of Science and Technology (GIST), 911

Gwangju, South Korea, in 2007, and the Ph.D. 912

degree fromKorea University, Seoul, South Korea, 913

in 2011. He worked as a Research Staff Member 914

of the Samsung Advanced Institute of Technology 915

(SAIT) and the Samsung DMC Research and Development Center, from 916

September 2011 to April 2014. He was a Senior Research Member of the 917

Affiliated Institute of ETRI, South Korea, from 2014 to 2018. He currently 918

works as an Associate Professor at Kookmin University, South Korea. His 919

research interests include public-key cryptography, its efficient implemen- 920

tations on various IT devices, cryptographic module validation program, 921

networks security, and data authentication algorithms. 922

923

VOLUME 10, 2022 97309

