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ABSTRACT A lightweight block cipher PIPO-64/128 was presented in ICISC’2020. PIPO of the 8-bit unit
using an unbalanced-bridge S-box showed better performance than other lightweight block cipher algorithms
on an 8-bit AVR environment. So far, optimization methods for implementing PIPO have been proposed
in various environments; however, no optimization research has been conducted for two popular 32-bit
based processors: ARM Cortex-M4 and RISC-V. Since RISC-V and ARM Cortex-M series platforms do not
support bit-based Single Instruction Multiple Data (SIMD) instructions, several aspects should be considered
to apply a forced parallelization strategy. In this article, we discuss the implementation methodology of
PIPO for 32-bit RISC-V and ARM Cortex-M4 environments. We optimize the performance of S-Layer
via proposed register-scheduling and masking technique while we maintain parallelism to the R-Layer
implementation. Moreover, we propose an on-the-fly key scheduling technique for further performance
improvement. Finally, compared to the existing reference implementations in RISC-V and ARM Cortex-M4
platforms, when 4 plaintext encrypted simultaneously, our software achieved performance of 229% and
370%, respectively.

INDEX TERMS Pipo, arm-cortex m4, risc-v, efficient implementation, software optimization, internet of
things, embedded security.

I. INTRODUCTION
As industrial technology becomes common, various embed-

consumption; recently, Lightweight Cryptography (LWC)
competition for lightweight Authenticated Encryption with

ded devices are being actively used in daily life and indus-
try. Embedded devices mainly used for sensor nodes are
called Internet of Things (IoT) devices, and IoT devices
are equipped with hardware for application and commu-
nication. Advances in application services have acceler-
ated the importance of data confidentiality, integrity, and
authenticity. To solve this issue, a block cipher opera-
tion mode Galois-Counter Mode/CBC-MAC with Counter
(GCM/CCM) which is an authenticated encryption method is
proposed, but there was a limitation in applying GCM/CCM
on constrained embedded devices. In response, the develop-
ment of lightweight ciphers has been continuously made in
terms of memory usage, speed, code size, and low-power
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Associated Data (AEAD) was held by the National Institute
of Standards and Technology (NIST). Since the AEAD algo-
rithms submitted for the LWC competition uses lightweight
cryptography as a core premetive, the performance of
lightweight cryptography is one of the important evalu-
ation criteria. However, since IoT devices are relatively
vulnerable to side-channel attacks, whether side-channel
countermeasures can be applied in the core primitive and
performance evaluation of countermeasures are also impor-
tant considerations.

Block cipher PIPO is lightweight cryptography proposed
by ICISC’20 [1]. PIPO’s S-Box is designed through an
unbalanced-bridge structure, and the permutation process,
R-Layer, is designed through a simple shift operation. Due
to the specificity of S-Box, PIPO is oriented towards a
bit-slicing implementation different from other lightweight
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ciphers such as GIFT and has the advantage of having a
small number of encryption/decryption rounds [2]. In addi-
tion, due to the above characteristics, the countermeasure
of side-channel attack can be applied with fewer calcula-
tions compared to other block ciphers. In particular, in the
8-bit AVR environment, PIPO achieves high speed, small
code size, and low memory requirements compared to other
lightweight block ciphers. Accordingly, various studies are
being actively conducted to evaluate the performance of PIPO
from the perspective of implementation in various environ-
ments. Recently, research on the optimized implementation of
PIPO equipped with countermeasures of side-channel attack
in the 8-bit AVR environment and parallel implementation of
PIPO equipped with countermeasures of fault attack in the
64-bit ARM Cortex-A series were conducted [3], [4].
However, research on the most used 32 bits-based proces-
sor among sensor nodes has not been conducted so far. ARM
Cortex-M4 is currently a popular-device in the IoT industry;
and, optimized implementations of various lightweight cryp-
tographic algorithms have been benchmarked on the ARM
Cortex-M4 [5], [6], [7], [8], [9]. In addition, the implemen-
tation result of PIPO for RISC-V, an embedded device that
has recently been spotlighted, is still not clear. Therefore,
in this article, we present the first optimized implementation
of PIPO for 32 bits-based RISC-V and ARM-Cortex M4
environments.
Our contributions in this work can be summarized as
below:
1) Presenting First Optimized software of PIPO on 32-bit
RISC-V/ARM Cortex-M
In this article, we present an optimization methodology
for PIPO-64/128 block cipher in a 32 bits-constrained
environment. Based on the proposed method, our
re-designed PIPO software achieves fast execution
time via parallel-implementation logic. It also pro-
vides flexibility by providing two versions of the
implementation. Compared to the existing reference
implementations in RISC-V and ARM Cortex-M4 plat-
forms, when 4 plaintext encrypted simultaneously,the
optimized PIPO implementation achieved performance
of 229% and 370%, respectively. As far as we know,
our software is the first PIPO implementation in 32-bit
platforms.
2) Proposing Parallel Computation Logic for Perfor-
mance Efficiency
Our PIPO implementation is efficiently compressed
through three techniques. The first is to use a forced
parallel technique. we design and apply parallel logic
suitable for PIPO block cipher by utilizing efficient
register-scheduling and RISC/ARM instruction set.
This allows simultaneous encryption of 4 plaintexts.
The second is a rotate-shift technique based on bit-
masking. With a masking operation that avoids bit
interference, we implement an R-Layer with minimal
cost. The third is a combined-AddRoundKey operation.
The AddRoundkey operation is implicitly implemented
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in R-Layer with round keys held in general-purpose
registers. Finally, our implementation is further opti-
mized through the hand-written assembly.
3) Presenting Extensive Performance Analysis

We compare our PIPO block cipher implementation in
detail with various lightweight/general block ciphers in
RISC-V and ARM Cortex-M4 environments. We eval-
uate the practical applicability of PIPO block cipher
through a detailed comparison based on RAM usage,
code size, and Clock cycles Per Byte (CPB). Finally,
we show that our optimized PIPO software is suffi-
ciently competitive.

A. CODES

Our implementations are Open Source and are available at
https://github.com/Youngbeom94/PIPO_RISC-ARM

B. EXTENDED VERSION OF WISA21

In this article, we expand on previous our work published in
WISA’21 [10]. In WISA’21, page limitations made it difficult
to describe our optimization technique in detail; therefore,
in this article, we describe the optimization methods in detail
and additionally present implementation techniques for the
ARM Cortex-M4 device to prove the expandability of our
optimization methodology.

C. OUTLINE

The rest of this article is structured as follows: Section II
introduces block cipher PIPO and our target platforms.
Section III reviews implementations of cryptographic algo-
rithms on RISC-V and ARM Cortex-M series. An introduc-
tion into our main idea for implementing PIPO is provided in
Section IV. Results of our implementations are presented in
Section V, before we conclude the article in Section VI.

Il. PRELIMINARY

In this section, we describe in detail of essential to the imple-
mentation of PIPO block cipher and discuss what should be
considered.

A. PIPO: LIGHTWEIGHT BLOCK CIPHER

Lightweight ciphers that have been proposed so far, either
implementation-friendly only in the SW environment [11],
[12], [13], [14], [15], or friendly only in the HW environ-
ment existed [2], [16], [17], [18]. Therefore, when design-
ing the existing lightweight cipher, the side-channel attack
on point of view was not a major consideration; however,
the importance of mounting countermeasures which against
side-channel attacks in the IoT environment is increasing
due to various side-channel attacks studies. The PIPO block
cipher presented in ICISC’20 is a lightweight cipher that is
friendly to SW/HW implementation and countermeasures for
side-channel attacks [1]. The S-Layer is configured via an
Unbalanced-Bridge structure based on a few bit-operations,
which has the advantage of having some rounds com-
pared to other lightweight block ciphers. In ICISC’20, the
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FIGURE 1. Overview of PIPO block cipher [1].

performance evaluation was conducted in an 8-bit AVR envi-
ronment, which is known as the most constrained embedded
device, and proved its superiority. However, since the perfor-
mance of the actual cryptography algorithm differs depending
on the board of devices, performance evaluation in the most
used 32 bits-based devices should be considered in the future.
The overview structure of PIPO block cipher is shown in
Figure 1(a). A round of PIPO consists of S-Layer, R-Layer,
and AddRoundKey processes. The 64-bit plaintext is stored
sequentially in an array when implemented, similarly to a
general lightweight cipher. PIPO uses 128-bit and 256-bit
keys and it performs 13 and 17 rounds of encryption, respec-
tively. Unlike other SPN-based block ciphers, the key sched-
ule process consists of a simple structure in which the value
of the master key itself is maintained. The pseudo-code for
the detailed key schedule of the PIPO block cipher is shown
in Algorithm 1. The 64-bit plaintext is sequentially placed
in X[0] to X[7] of 8-bit unit in the reference software. Since
PIPO’s S-Layer is composed as shown in Figure 1(b), it per-
forms the substitution process with bit operations through
X[i], where i € [0, 7]. If it is not implemented in a bit-
slice fashion, the substitution process must be implemented
in such a way that the bit-order is rearranged in the array
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and referenced to the S-Box. PIPO’s R-Layer is configured
as shown in Figure 1(c) and performs a simple rotate-shift
operation. In the reference implementation, it is implemented
through macros.

Table 1 shows the performance results of PIPO implemen-
tation, experimented in ICISC’20, in the 8-bit AVR environ-
ment. In ICISC’20, performance evaluation was made based
on the RANK system introduced in [19]. The measurement
of RANK is as follows:

RANK = (10°/CPB)/(ROM + 2 x RAM) (1)

In the case of the 8-bit Atiny platform, there are devices
that support byte unit Flash memory and SRAM; therefore,
it is reasonable to evaluate the performance of the software
through the RANK system in the AVR environment. In eval-
uation, PIPO has achieved a high RANK compared to the
existing lightweight block cipher. However, in relation to the
most popular 32-bit or higher devices, since SRAM and Flash
memory in KB units is used, the code size point of view may
not be important except for specific applications; therefore,
in order to mount PIPO block cipher on a 32-bit proces-
sor, achieving high speed through optimization methodology
will be the most important consideration. In Section IV,
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TABLE 1. Performance comparison of 64-bit block ciphers on 8-bit AVR* [1].

. . Code size RAM usage Execution time
security Block cipher (bytes) (bytes) (cycles per byte) RANK [19]
PIPO [1] 320 31 197 13.31
""" SIMON[19] [ 290 | 24 | 253 | 1169
RoadRunneR [20] | 9 | 24 477 | 859
pewe  |RECTANGLEDN | de6 | a4 |4 | om
PRIDE [21] 650 47 969 1.39
~ SKINNY [21] | 502 | 87 | 877 | 130
- PRESENT [21] | 660 | 280 | 1,349 | 0.61
""" CRAFT [22]| 894 | 243 | 1,504 | 048
256-bit PIPO [1] | 320 47 253 9.54 \

*The code size represents ROM, and RAM metric includes STACK

we introduce strategies to accelerate the speed of PIPO from a
parallel perspective, and we present detailed implementation
strategies for each 32-bit platform.

B. RISC-V

RISC-V is Reduced Instruction Set Computer (RISC)-based
an open-source standard Instruction Set Architecture (ISA)
that is freely available to all developers. The basic RISC-
V’s ISAs are RV32I for 32-bit and RV64I for 64-bit, which
consist of minimal instructions including bit-based arith-
metic/logical/shift operations and memory access to RAM.
With the investment of various companies, the basic ISA of
the 8/16/128-bit unit is currently under development. Also,
RISC-V has a various tool-chain for developers. Unlike ARM
processors, RISC-V has a different cycle per instructions for
each CPU design, therefore, the implementation results vary
by board. Optimization research of cryptographic algorithms
is mainly conducted on the E31 RISC-V core; therefore,
we choose E31 core as our target platform. 32-bit RISC-V has
32 general-purpose registers including program counter and
stack-pointer. Unlike the ARM Cortex-M4, all but one regis-
ter can be assigned data. Since the basic ISA does not have an
instruction to specify a state flag, there is a drawback that the
radix-representation should be used in the specific algorithm,
differently than ARM processors. Also, RISC-V does not
support barrel-shifter, all implementations are represented as
a simple list of instructions. However, research is underway
on the BitManip extension [23] for logical/rotation and the
cryptographic instruction set extension [24] for RISC-V, and
a vector ISA set [25] for SIMD instructions is currently under
development. These studies will facilitate research on the
implementation of cryptographic algorithms in RISC-V in
the future.

In this article, we implement PIPO block cipher using
only the basic ISA, without any extended instruction set.
Compared to ARM processors, RISC-V has about twice as
many general-purpose registers, it is easy to store temporary
variables. Therefore, for the optimization methodology of
PIPO block cipher on RISC-V, it is important to make the best
use of basic ISA and general-purpose registers to establish
forced parallelization.
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Algorithm 1 Key Scheduling of PIPO Block Cipher [1]

Require: K28 or K256
Ensure: RoundKey RK; where i = 0 to 13 or 17
1: if K!8 then

2 K128 — K164| |Kg4

3: fori=0to 13 do

4 RK; = Kot 2

5: end for

6: else if K29 then

7. K256 — K364| |K264| |K164| |Kg4
8: fori=0to 17 do

9: RK; = K[\ 4 4

10: end for

11: end if

C. ARM-CORTEX M4

ARM Cortex-M family is the most popular 32-bit platform.
So far, various bench-marking and optimization research for
cryptographic-algorithm are being performed on the Cortex-
M series. In particular, Cortex-M4 is a target device for
the performance evaluation of algorithms submitted to Light
Weight Cryptography (LWC) and Post-Quantum Cryptogra-
phy (PQC) competitions held by NIST [7], [26]. The tar-
get device of this article, the Cortex M4, consists of 16
32-bit general-purpose registers. Among them, 14 registers
can be used in actual implementation except for the two
registers corresponding to the program counter and stack
pointer. On the Cortex-M4, Bit-wise and arithmetic instruc-
tions require a single cycle, but memory access instructions
require 2 cycles. Like RISC-V, all 32-bit data cannot be
used for address reference, but compared to RISC-V, flexible
indexing is possible when registers are used as addresses. The
SIMD instruction can be used for a specific 8/16-bit unit,
but it is not a consideration in the case of block ciphers and
hash functions in which bit-wise shift instructions are mainly
used. Similarly, the optional flag instructions are not used in
this article. The most unique feature of the ARM processor is
the barrel-shifter, which can perform bit-wise shift and rotate
operations for almost any instruction at no additional cost.
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Since the S-Layer of PIPO is designed for the bit-slice
friendly, PIPO has a different slicing way from general block
ciphers such as AES [6]; so, it is desirable not to apply
the ARM-specific instruction scheduler presented in [27].
Therefore, it is necessary to devise a strategy to use as many
barrel-shifter instructions as possible and efficiently assign
registers to implement PIPO block cipher on Cortex-M4.

lIl. RELATED WORK
In this section, we investigate the implementation results of
PIPO block cipher in all environments. Also, we check the
latest implementation results of block ciphers in our target
platform, 32-bit devices, and discuss considerations for our
optimization strategy.

A. IMPLEMENTATION OF PIPO

Due to the advantages of the Unbalanced-Bridge structure-
based S-Layer, various researches on countermeasures for
side-channel attacks have been mainly conducted so far. [3]
proposed the implementation of masked PIPO block cipher
on an 8-bit AVR environment. By proposing a non-linear
masked S-Layer with a minimum of arithmetic instruc-
tions, a side-channel attack countermeasure was built and
its efficiency was proved. Since the masking-based imple-
mentation is a countermeasure to power analysis, designing
a response to fault attacks is another study. In [28], the
first attempt at fault attack on PIPO block cipher was con-
ducted. authors emphasized the importance of designing fault
attack countermeasures, along with research that accurate
key recovery is possible with a 98% probability through
differential fault attacks. Accordingly, research on fault attack
countermeasures of PIPO block cipher was conducted in
the ARMvS Cortex-A series environment. [4] presented a
random-shuffling-based countermeasure for fault attack, and
also proposed parallel optimization implementation using
the NEON engine. Research on PIPO implementation is not
actively conducted in environments that do not support SIMD
instructions such as the NEON engine.

As far as we know, the only implementation research of
PIPO block cipher is a bench-mark study published in [29].
Bench-marking was done in a RISC-V environment and
ported as a pure assembly without adopting a paralleliza-
tion strategy. As a result, PIPO implementation has signifi-
cantly reduced performance in terms of speed and code size
compared to general block ciphers such as AES and LEA.
Unfortunately, the performance benefits of PIPO block cipher
seen in Table 1 are limited to only 8-bit AVR environments.
This fact ultimately suggests the limitations of implementing
a simple ported PIPO block cipher on 32-bit devices. There
is another study [30] on the implementation of PIPO block
cipher, but it was conducted in a quantum-computing envi-
ronment, so it is not of our interest.

B. BLOCK CIPHER ON RISC-V
The study of the implementation of a block cipher on RISC-V
has mainly moved toward designing an extended instruction
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set by the HW environment. Except for various extension sets
introduced in Section II-B, [31] designed extension sets for
the ARIA block cipher and [32] proposed a cryptographic
extension set for LWC. However, since these are a study
of finite-field operations of ARIA and instruction sets for
4 x 4 S-Box of LWC, it has less relevance to do with
PIPO block cipher. Research on the SW implementation
of block cipher using the basic ISA has also been actively
conducted. In 2019, when RISC-V began to become popular,
benchmark studies of AES, ChaCha20, and keccak were
conducted using RV32I [33]. As a result of comparison with
the implementation with Cortex-M4, RISC-V has about twice
as general-purpose registers as Cortex-M4, but the efficiency
of barrel-shifter is higher in terms of implementation speed
for block cipher and hash function; therefore, It proved that
RISC-V difficult to catch up Cortex-M4, using only 32RVI.
In [34], an implementation study was conducted on the algo-
rithm for LWC competition using RV32I. In their research,
32RVI and assembly characteristics were mainly used, not the
algorithm itself. The sublation of branch instructions, loop-
unrolling, and interleaved methods to prevent pipeline-stalled
have been recombined to match the RV32I model. The work
focused on property of block cipher is the Fixslicing work
done on RISC-V and Cortex-M4. They applied Fixslicing to
GIFT and SKINNY [7] and finally expanded it to AES [6].
The implication of these studies is that when only RV32I
is used without barrel-shifter, the optimization strategy for
block cipher should be designed to reduce memory access
using as many general-purpose registers as possible.

C. BLOCK CIPHER ON CORTEX-M4

The representative runner of the conventional Cortex M series
is Cortex-M3, and the researches of block cipher has also
progressed a lot from Cortex-M3 [35], [36], [37]. Cortex-M4
has a very similar core to Cortex-M3, but it supports Floating
Point Unit (FPU) instructions and single-cycle multiplica-
tion instructions, making it particularly efficient for imple-
menting public-key-based cryptosystems [38]. However, as in
the LWC competition held by NIST, SW/HW implementa-
tion research for performance evaluation and optimization
of block cipher in Cortex-M4 is being actively conducted.
In this article, we can’t cover all of the vast amount of research
ever conducted; therefore, we investigate a few core SW
implementations on Cortex-M4. While RISC-V has not made
progress in toolchain and compiler research, in Cortex-M
series, tools for instruction scheduling and register allocation
was proposed in [27]. These tools performed better than
commercial gcc and clang, demonstrating their efficiency
through the implementation of AES. In 2020, optimization
study of HIGH block cipher was conducted in [5]. Since,
HIGHT uses 8-bit words like PIPO block cipher, 4 words
in a 32-bit register can be processed simultaneously; how-
ever, HIGHT is an Add-Rotate-XOR (ARX)-based block
cipher, it differs from PIPO in that SIMD instructions can
be applied. In [8], an AES implementation study was con-
ducted. It implemented AES and CounTeR (CTR) Mode by
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FIGURE 2. The structure of the proposed PIPO implementation.

using the bit-slice technique. Later, GIFT, SKINNY, and AES
using Fixslicing techniques, mentioned in Section I1I-B, were
also implemented in Cortex-M4 [6], [7]. Since PIPO block
cipher is a Substitution-Permutation Network (SPN)-based
block cipher, it is not possible to apply SIMD instructions,
because no arithmetic unit instructions are used to implement
the S-Box. Therefore, it is important to use barrel-shifter
efficiently to implement parallelized PIPO block cipher such
as HIGHT.

IV. MAIN IDEA

In this section, we consider all optimization techniques to
implement PIPO block cipher in a 32-bit environment. First,
we compare the two implementation method of PIPO block
cipher presented in [1]; and, analyze the reason why the
exquisite Fixslicing technique, which does not follow the
rules of classical block cipher, cannot be applied to PIPO
block cipher, unfortunately. Finally, we present three strate-
gies suitable for 32-bit devices and discuss implementation
methodologies in Cortex-M4 and RISC-V platforms. Figure 2
gives a brief overview of our optimization methodology.
To encrypt 4 plaintexts in 32-bit platforms, 4 independent
PIPO block ciphers should be called in the case of the
reference implementation. Our software loads 4 plaintexts
simultaneously for 32-bit platforms. The loaded plaintext
is aligned in general-purpose registers and the optimized
S-Layer, R-Layer, and AddRoundKey process are performed.

A. FORCED PARALLELIZATION STRATEGY

According to [1], there are two implementation methods of
PIPO block cipher. The first method is to sequentially store
the plaintext in X[i], where i € [0, 7] and it processes
S-Layer using bitslicing technique. In this method, the most
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cost occurs on the S-Layer. Another method is to not fol-
low bitslicing and use S-Box table. In order to use S-box,
bits should be rearranged to enable memory access using
SWAPMOVE technique for plaintext stored in the forward
direction [39]; however, since R-Layer performs rotate-shift
operations on forward array, the array should be rearranged
forward after referring S-box. Therefore, in the reference
code, the forward bitslicing implementation method shows
much better speed than s-box method which occurs the cost
of two SWAPMOVE for every round of the PIPO block cipher.

We examined whether Fixslicing technique introduced
in [7] can be applied to PIPO block cipher. If in the S-box-
based implementation, the bits are rearranged to the position
of the next S-box bits instead of in the forward direction
after memory reference and it uses fewer instructions than
bitslicing method in each round, it can be effective enough.
In other words, our goal was to eliminate the SWAPMOVE
used in every round of PIPO block cipher. However, R-Layer
consists of a bit rotate-shift operation. Unlike AES and GIFT
block ciphers, there is no rule between each unit block in
PIPO block cipher. In addition, when using 4 plaintexts in
a 32-bit environment, the size of the S-box also increases
by multiples, so it is inefficient to use this method. After
all, S-Layer of the PIPO block cipher is configured based on
the Unbalanced-Bridge structure, unlike GIFT and bitslicing
AES, which require a realignment in the initial round; there-
fore, it is difficult to apply Fixslicing technique.

Therefore, we choose the forward bitslicing implementa-
tion and strategize for the forced parallel implementation.
Figure 3 shows register scheduling for a 32-bit platform.
In pt;, j is the index of the plaintext and i is the index of
the bit of the j-th plaintext. For bitslicing-based S-Layer,
the four plaintexts have aligned 8-bits units in each register.
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Plaintext1 Plaintext2 Plaintext3 Plaintext4
Ry | pt? pt{ | pt] pt3 | pt3 pti | ptd pt;
Ry | pt? pti® | pt3 pt;° | pts pt3° | pt§ pty>
Ry | pt{® pti? | pt;° pt3® | pt3® pt3® | ptz® pt3®
Rs | ptf* ptit | pt3* pt;* | pt3* pt3* | pti* pti*
Ry | pti? pti® | pt3? pt3° | pt3* pt3° | pti? pt;°
Rs | pti® pti” | pt3° pty” | pt3° pt3” | pti° pti’
Re | pti® pti® | pt3° pt3° | pt3® pt3® | pti® pt3°
R; | pt7® pti® | pt3° pts® | pt3® pt$* | pt3® pts’

FIGURE 3. Register scheduling of PIPO block cipher on 32-bit platforms [10].

With this, an S-Layer for 4 plaintexts can be simultaneously
implemented through bitslicing. Since LoaD/STore-based
instructions of Cortex-M4 do not support a barrel-shifter,
on Cortex-M4 and RISC-V platforms, plaintext loading is
implemented through simple bit-wise operations and bit-shift
instructions.

B. BIT-MASKING TECHNIQUE FOR R-LAYER

32-bit general-purpose registers of both RISC-V and
Cortex-M4 do not support vectorization; therefore, unfortu-
nately, rotate-shift instructions for byte/half-word/word units
cannot be used. Our goal is to rotate-shift plaintext in a
32-bit register divided 4 unit with minimal use of instructions.
Therefore, we use a bit-masking technique for rotate-shift
for 4 8-bit units. Listing 1 shows an implementation examples
of R-Layer in Cortex-M4 and RISC-V. For example, for 7-bit
rotate-shift of X[1] in Cortex-M4, we use 0 x 01010101
and OxFEFEFEFE as masking value to extract 1-bit and
7-bit for each unit. Using the fact that 7-bit rotate-shift-
left is the same as 1-bit rotate-shift-right, 1-bit logical-shift-
right is performed on X[1], the masked value is shifted and
XOR(eXclusive OR)ed. Since Cortex-M4 has an advantage
of the powerful barrel-shifter technology, we apply it when
XORing the masked value in the last step (line 10 of List-
ing 1). Using a barrel-shifter can achieve the same single
cycle (1 clock) as using a simple ORR instruction.

In the case of RISC-V, the maximum value for the imme-
diate value of bit-operation instructions (ANDI, XORI, ORI)
is 12-bit due to the characteristic of the instruction format of
RISC-V [40]. Therefore, it is not possible to mask 32-bit data
using single-bit instructions like the Cortex-M4 (like a line 7-
8 of Listing 1). To solve this, a commonly used method is to
use the LT instruction to immediate-load the masking values,
for 7-bit rotate-shift, 0 x 01010101 and OXFEFEFEFE.
In this case, 28 (2(LI) x 2(masking) x 7(PT)) clock
cycles occur per round to load the masking value when-
ever R-Layer operation is performed once. In other words,
an additional 364 (28 x 13) clock cycles are required during
the 13 rounds of the PIPO-64/128. Therefor, we propose
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a masking table of 32 bytes for optimization of R-Layer.
Listing 1 has an example of our R-Layer implementation
for RISC-V. We observe that the XOR value of two 32-bit
data pairs required for masking is OxFFFFFFFF. For exam-
ple, we XOR-operate 0 x 01010101 and OXFFFFFFFF
to produce OXxFEFEFEFE, which is the masking pair of
0x 01010101. OXFFFFFFFF data can only be loaded
once at the beginning of the R-Layer. By using this technique,
it costs 18 (2(LW) x 1(masking) x 7(PT) 4+ 2(L2) + 2(LW))
clock cycle per round, 13 rounds of for PIPO-64/128 It costs
234 (18 x 13) clock cycles. This means this method can
achieve a bit-masking more efficiently than another method
using LT instructions.

C. COMBINED ADDROUNDKEY

In the case of Cortex-M4, a powerful technology called
barrel-shifter exists, but unfortunately, the RISC-V platform
has fewer effective instructions for block ciphers imple-
mentation than Cortex-M4 platform. However, as intro-
duced in Section II-B, RISC-V device has twice as
many general-purpose registers as Cortex-M4; therefore,
we focused on how to make the most of this characteristic.
In this section, we propose a methodology to reduce the
memory access cost by holding the master key in registers
of RISC-V environments. Detailed register scheduling of
RISC-V platform is shown in Figure 4. The shaded areas
of Figure 4 are registers that are not used by the actual
implementation. Our implementation divides and stores the
128-bit master key in 4 of the 32 general-purpose registers of
RISC-V (x14 to x17). If PIPO block cipher use a 256-bit
security level, we can still store the entire 256-bit master
key by additionally using x2, x7, x12, and x13 registers.
Since the master key is stored in several registers, there is
no need to load the master key every round. The only cost
in AddRoundKey process is to unpack and expand the master
key for forced parallelism. Of course, there is another method
to optimize AddRoundKey process via simple loading by
operating all round keys in advance, but since it needs to be
extended to 32-bit and stored, an additional memory space
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1{// Input : X[i], where i in [0, 7]
2|// Input T[3], where 7 in [0, 3]
3|// Input : A[0] (address)

4

5|//*Cortex—-M4x//

6|// 7-bit left rotate-shift
7|AND T[O0], X[1], #0x01010101

8 |AND X[1], X[1l], #OxFEFEFEFE
9|LSR X[1], X[1], #1

10 |ORR X[1], X[1], T[0], LSL #7

11

12| //*RISC-V=*//

13 | MASKING_TABLE

14 .word 0x01010101, OxOFOFOFOF
15 .word Ox1F1F1F1F, 0x03030303
16 .word 0x07070707, Ox7F7F7FTF
17 .word Ox3F3F3F3F, OXFFFFFFFF
18

19| // Set Address

20| LA A[0], MASKING_TABLE

21 |LW T[3], 28(A[0]) // OxFFFFFFEF
22

23|// 7-bit left rotate-shift

24 |LW T[0], A[O]

25|AND T[1], X[1], T[O]

26 | SLLI T[1], T[1], 7

27 |XOR T[2], TI[0], TI[3]

28 |AND T[2], X[1], TI[2]

29 | SRLI T[2], T[2], 1

30|OR X[1], T[1l], TI[2]

Listing. 1. R-layer of Cortex-M4 and RISC-V.

of at least 64 bytes is required based on 128-bit security
level. Therefore, if all round keys are stored in RAM or Flash
memory, 832/1088 bytes are required based on 128/256-bit
security level. Since the PIPO block cipher is a lightweight
cipher, RAM should be used to a minimum according to
its characteristics. The method of storing the round key in
Flash memory can cause other security issues; therefore,
this method is not very effective except for devices with
completely physical security countermeasures applied. Also,
it should be considered that encrypting small-sized plaintexts
as reported in [6]. Therefore, pre-computing all round keys
may not be a flexible solution in all application situations.
Hence, we believe that the best implementation way of the
PIPO block cipher in RISC-V is to hold the master key in
a registers, unpack it, and apply it to forced parallelism.
Our methodology can accelerate performance while preserv-
ing parallelism without additional memory usage. Finally,
AddRoundKey process is merged with R-Layer process.

V. RESULT

This section shows our software results on the RISC-V
and Cortex-M4. We first describe our target platforms and
setup and then present the evaluation in Section V-B and
Section V-C. Section V-D analyzes PIPO block cipher per-
formance in RISC-V and Cortex-M4 platforms. We have
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made every effort to ensure that performance measurements
are performed as fair and accurate as possible. Our implemen-
tation is available in two versions. The first implementation
(marked by 1) is the software of encrypting one plaintext,
and the reference implementation methodology is ported to
software as a handwritten assembly suitable for RISC-V
and Cortex-M4 environments. The second implementation
(marked by 1) is the code to which the methodology we pro-
pose is applied, and it is a software that encrypts 4 plaintexts
together with the assembly instructions in parallel. We evalu-
ate our performance based on the performance improvement
of the second software. The reference implementation of
PIPO block cipher presented in [1] was measured by com-
piling on Cortex-M4 and RISC-V, respectively.

A. SETUP TARGET DEVICE

1) RISC-V: HiFiveRevB

Our RISC-V target platform is the HiFiveRevB board con-
taining a SiFive’s 32-bit RISC-V processor with 16 kB of
SRAM, 32 MB of flash, and 320 MHz of frequency. The
integrated development environment is FreedomStudio (ver.
2020) of SiFive, our work is handwritten assembly PIPO
block cipher code. For building code, we use the gcc (ver.
10.1.0) with -O3 option. Benchmarking was conducted in the
same method as in the RISC-V platforms. For benchmark-
ing, 32 bytes of plaintext are encrypted 10,000 times and
averaged. To ensure that no instructions and data remain in
cache memory, a dummy operation is performed after one
PIPO block cipher is executed. Dummy operations are not
counted in the average of clock cycles. The process of loading
and aligning the 4 plaintexts and the process of rearranging
and writing out the ciphertext aligned in the general-purpose
registers are also counted by clock cycles.

2) CORTEX-M4: STM32F407-DISOVERY

We target the STM32F407-DISOVERY board, featuring a
STM32F407VG Cortex-M4 microcontroller with 196 kB of
SRAM, 1 MB of flash, and 168 MHz of frequency. The
integrated development environment is Keil-uVision5, our
work is handwritten assembly PIPO block cipher code. For
building code, we use the Keil ARM Compiler with -O3
option. Benchmarking was conducted in the same method as
in the RISC-V platforms.

B. RESULT OF RISC-V

We evaluate our optimization strategy in a RISC-V envi-
ronment through the set HiFiveRevB board. Table 2 shows
the performance of the implementation of various cryp-
tographic algorithms and our software in a RISC-V plat-
form. Unfortunately, research on lightweight block ciphers
of the RISC-V environment is relatively small compared to
Cortex-M3/M4 platforms; therefore, we investigate all the
latest cryptographic software implemented in RISC-V plat-
forms. Fix-GIFT and Fix-AES are implementations to which
Fixslicing technology proposed in [7] and [6] is applied.
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RISC-V Cortex-M4
Register Used for Register Used for Register Used for
X0 Hard-wired zero x16 mk 6495 x0 pt address
x1 Return address x17 mk96~127 x1 mk address
x2 Stack pointer x18 ptd~7,i €10,3] x2 ptd7,i €10,3]
x3 Global pointer x19 pt15,i €[0,3] x3 pt¥15,i €[0,3]
x4 Thread pointer x20 pt}e23,i €10,3] x4 pt}e3,i €10,3]
x5 0x08 (shift temp) x21 pt#*31i €10,3] x5 pt#*31i €10,3]
X6 OxFF (mask temp) x22 pt¥3%i €10,3] X6 pt?¥%i €10,3]
x7 - x23 pt0~* i €10,3] x7 pto* i €10,3]
x8 Frame pointer x24 pt#®55,i €10,3] x8 pt#®55,i €0,3]
x9 Saved register x25 pt?e~%3,i €10,3] x9 pt®~%3,i €10,3]
x10 pt address x26 0x01 (loop + 1) x10 Temp register
x11 mk address x27 Rcon (for round #) x11 Temp register
x12 = x28 Temp register x12 Temp register
x13 = x29 Temp register x13 Stack pointer
x14 mk0~3t x30 Temp register x14 Link register
x15 mk32~63 x31 Temp register x15 Program counter

FIGURE 4. Details of register scheduling on RISC-V and cortex-M4.

The implementation of Fix-GIFT in RISC-V was done
in [41]. bench-ARIA and bench-LEA are benchmark reports
that are simply ported from [29] using assembly instruc-
tions of RISC-V. We also compare the various crypto-
graphic functions in the RISC-V platform reported in [33].
Compared to the reference implementation of PIPO block
cipher, our PIPO! software without parallelization strat-
egy achieved 260 CPB (a performance improvement of
about 50 %). PIPOT, applied the forced parallelization strat-
egy, achieved 121 CPB (approximately 229 % performance
improvement). PIPO software requires a higher cost than
Fix-GIFT implementation, while PIPO software requires a
lower CPB than Fix-GIFT due to our parallelization strategy.
Unfortunately, we report that our code shows lower perfor-
mance than LEA and AES in RISC-V. The implementation
of PIPOT with our optimization strategy shows that PIPO in
the RISC-V environment is superior to the software of GIFT
and ARIA, purely in terms of performance.

C. RESULT OF ARM CORTEX-M4

As in the previous section, we evaluate our software through
the set STM32F407-DISCOVERY board. Table 3 shows
the performance of the implementation of various cryp-
tographic algorithms and our software in a Cortex-M4.
Lightweight and general block cipher implementations were
evenly implemented in Cortex-M3 and M4. We evaluate soft-
ware based on the performance of implementation reports
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for the Cortex-M3 and M4 platforms. The biggest differ-
ence between Cortex-M3 and Cortex-M4 is the multiplication
instruction and the Floating-Point Unit instruction, so it does
not significantly affect the performance evaluation of the
actual block cipher implementation. For that reason, we refer
to [6], Fix-AES performance report, which shows the fact
that the performance did not change significantly in the
Cortex-M3 and Cortex-M4 environments. Compared to the
reference implementation of PIPO block cipher, our PIPOY
software without parallelization strategy achieved 171 CPB
(a performance improvement of about 81 %). PIPO?, applied
the forced parallelization strategy, achieved 66 CPB (approx-
imately 370 % performance improvement). Comparing other
lightweight block ciphers with our PIPO software, PIPO?
achieves better performance than the software of Fix-GIFT,
PRESENT, RECTANGLE, and SIMON. For HIGHT soft-
ware presented in [5], it achieves the 56 CPB during
the encryption process, but, for key scheduling process,
it requires an additional 49 CPB. Since our software includes
the key scheduling inside the encryption process, we can
show that our PIPO? case achieved faster results than HIGHT
implementation, considering all the clocks required for the
actual encryption process. In addition, our implementation
achieves lower RAM usage and higher performance than
general block ciphers with 128-bit plaintext lengths such
as Fix-AES and ARIA. Unfortunately, similar to what was
reported in the previous section, PIPO block cipher also
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TABLE 2. Constant-time implementation results on RISC-V for various versions of PIPO block cipher, as well as other block ciphers. For encryption
routines, speed is expressed in Cycles Per Bytes*.

security Block cipher PlainText size Code size RAM usage Execution time

(bits) (bytes) (bytes) (cycles per byte)
PIPO [1] 64 3,288 31 392

""" Fix-GIFT 411 | e | 762 | 176 | 197

~ bench-LEA [29] | 228 | 2432 | 2 | 46

128-bit _ bench-ARIA [29] | 128 ) 8192 %2 291
Fix-AES [6] 128 10,652 72 87

~ Table-AES [33] | 128 | 4352 | - 517

‘ChaCha20 enc [33] | 512 | 12960 | - 28

Keccack 1600 [33] | 1600 |  793%6 | - 69
128-bit (our work) PIPOY 64 10,816 24 260
(our work) PIPO* 64 12,352 48 121

TABLE 3. Constant-time implementation results on cortex-M4 for various versions of PIPO block cipher, as well as other block ciphers. For encryption
routines, speed is expressed in Cycles Per Bytes*.

Platform with Block cipher PlainText size Code size RAM usage Execution time
(128 security) (bits) (bytes) (bytes) (cycles per byte)
PIPO [1] 64 3,288 31 310
""" Fix-GIFT [7]1| 64 | 762 | 176 | 197
"""" HIGHT [5]| 64 | 592 | 188 | 56
- PRESENT [42] | 64 | 2476 | - 100
Cortex-M4 | Fix-AES [6] | 128 | 9,184 | [ 80
~ Fix-SKINNY [6] | 28 | 1,620 | 60 | 117
~ Table-AES [33] | 128 | 3613 | - 40
ChaCha20 enc [33] | 512 | 10,112 | - 4
"""""""""" Fix-AES[6] | 128 | 9184 | 112 | 19
RECTANGLE [43] | 64 | goo | 7% | 107
SIMON [43] 64 456 48 81
Cortex-M3 - SPECK [43] | 64 | 68 | CTIRRRRE AR 24
"""" LEA[37] | 128 | 1,532 | 228 | 34
"""" ARIA 9] | 128 | 10,636 | 224 | 160
(our work) PIPOf 64 8,348 24 171
Cortex-M4 (our work) PIPO? 64 10,752 48 66

*The code size represents ROM, and RAM metric includes STACK

shows lower performance than the LEA in the Cortex-M4
environment.

D. PERFORMANCE ANALYSIS

To achieve the forced parallelization methodology, the linear
and non-linear layer operations for four plaintexts should
theoretically be reduced by a factor of four. In the case of
S-Layer, it is natural that the performance improvement is
4 times compared to the single plaintext implementation;
however, the costs of loading bit masking in R-Layer and
expanding the round key kept in the register are required addi-
tional clock cycles. Our ideal goal is best speed performance
based on minimal RAM usage. As discussed in Section II-A,
code size, measured to Flash memory, is not a major limit
point for 32-bit environments. Our implementation is fully
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t single plaintext encryption includes key schedule process

1 4 plaintext encryption includes key schedule process

unrolled to achieve top speed. Also, as reported in [6],
Since different keys may be used based on a small size
of plaintext depending on the application situation, we do
not pre-compute all round keys, using minimal RAM usage.
Our choice makes our software flexible in that it can be
used fluidly for all block cipher operation modes and all
platforms and application situations. The additional overhead
incurred in the process of aligning plaintext, loading bit-
masking value, and expanding round keys for forced par-
allelization strategy is offset to an extent by architectural
characteristics. In the case of RISC-V, the process of load-
ing the round key for each round of PIPO block cipher is
omitted by holding the key in the general-purpose register.
In the case of Cortex-M4, By using a barrel-shifter, the
clocks of bit-masking and round key processes are compactly
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compressed. Finally, we report that our PIPO software gener-
ally achieved higher performance in RISC-V and Cortex-M4
platforms than other lightweight and common block ciphers
except for LEA block cipher.

However, our PIPO¥ software still requires a higher CPB
than the implementation of the LEA block cipher in both
RISC-V and Cortex-M4. Block cipher LEA is an ARX-based
block cipher consisting of bit and arithmetic operations;
and, its optimization method used in 32-bit units has been
proposed. The 32-bit LEA implementation has the advan-
tage that bit and arithmetic operations do not need to con-
sider the bit-masking technique for rotate-shifts and carry
for module addition. Therefore, in 32-bit devices, computing
plaintext packed in 32-bit is usually a more efficient imple-
mentation strategy for LEA block cipher than parallelization
tasks. To determine if the performance of the LEA block
cipher depend on the 32-bit platform, we also research LEA
implementations in the AVR environment. The latest opti-
mized LEA implementation results in an 8-bit AVR plat-
forms were presented in [44], and performance was reported
at 167 CPB. As can be seen in Table 1, the reported PIPO ref-
erence Implementation is 197 CPB, which is basically lower
than the LEA block cipher. Therefore, it can be considered
algorithm-dependent results that our PIPO implementation
performs lower than implementation of LEA block cipher on
a 32-bit platform.

VI. CONCLUSION

In this article, we applied a forced parallelization strategy
to PIPO block cipher to push the performance of PIPO
block cipher to the limit on the 32-bit platform. To this
end, we proposed a bit mask technique consisting of mini-
mal instructions. In addition, we took full advantage of the
architectural characteristics to reduce the additional overhead
incurred in the forced parallelization strategy. Depending on
the characteristics of the architecture, for Cortex-M4 plat-
form, we accelerated performance via barrel-shifter; and, for
RISC-V platform, we took full advantage of the registers to
keep the master key in the registers. We aimed to achieve high
performance with minimal RAM usage to match the char-
acteristics of resource-constrained devices and lightweight
block cipher PIPO, as a result, our PIPO-64/128 software
achieved 121 CPB and 66 CPB in RISC-V and Cortex-M4,
respectively. In addition, our fair and detailed performance
analysis shows that PIPO block cipher is sufficiently compet-
itive compared to other lightweight block ciphers in a 32-bit
implementation environment, which contributes to PIPO’s
performance evaluation. While our constant implementation
was targeted at 32-bit platforms, our forced parallelization
methodology can be extended to other architectures, such
as the 16 bits-based MSP430 and Intel CPUs that can use
16/32-bit data types.
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