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ABSTRACT Attention mechanisms have been explored with CNNs across the spatial and channel dimen-
sions. However, all the existing methods devote the attention modules to capture local interactions from
a uni-scale. This paper tackles the following question: can one consolidate multi-scale aggregation while
learning channel attentionmore efficiently? To this end, we avail channel-wise attention overmultiple feature
scales, which empirically shows its aptitude to replace the limited local and uni-scale attention modules.
EMCA is lightweight and can efficiently model the global context further; it is easily integrated into any
feed-forward CNN architectures and trained in an end-to-end fashion. We validate our novel architecture
through comprehensive experiments on image classification, object detection, and instance segmentation
with different backbones. Our experiments show consistent gains in performances against their counterparts,
where our proposed module, named EMCA, outperforms other channel attention techniques in accuracy
and latency trade-off. More specifically, compared to SENet, we boost the accuracy by 0.8 %, 0.6 %,
and 1 % on ImageNet benchmark for ResNet-18, 34, and 50, respectively. For detection and segmentation
tasks, MS-COCO are for benchmarking, Our EMCA module boost the accuracy by 0.5 % and 0.3 %,
respectively. We also conduct experiments that probe the robustness of the learned representations. Our
code will be published once the paper is accepted.

INDEX TERMS Channel attention module, deep learning, machine learning, computer vision, object
classification, CNN backbones, CNN encoders, CNNs, convolutions, image processing.

I. INTRODUCTION
Over the years, CNN architectures have developed many
ideas to better deal with spatial image features. Moreover,
their limited receptive field makes such features lack the
global view of the image. As a result, deeper architectures
emerged that stack multiple convolution layers, known as
backbone or encoder. The main advantage of such architec-
tures is their ability to cover spatial features at multiple scales.
As we go deeper in the network, the feature maps get smaller,
while their content represents a broader region in the space,
which puts us closer to better semantics of the image contents.
With the emergence of AlexNet [1], various research has
been conducted to improve deep CNNs’ performance further.
References [2], [3], [4], [5], [6] have sought to strengthen the
CNNs by making them deeper and deeper as they have shown
that increasing the depth of a network could significantly

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy .

increase the quality of the learned representations. Many
researchers are continuously investigating to further improve
the performance of deep CNNs by consolidating attention
mechanisms.

Attention modules, in general, are designed to suppress
noise while keeping useful information by refining the
learned features using attention scaling. By quoting from the
human perception process [7] where the high-level infor-
mation is used in guiding the bottom-up learning process
by capturing more sophisticated features while disregarding
irrelevant details. Human perception and visual attention [8],
[9], [7], [10] are enhanced by top-down stimuli, and
non-relevant neurons are suppressed in feedback loops.
Inspired by the human visual system, various attention mech-
anisms [11], [12], [13], [14], [15] have been explored and
integrated into deep CNNs. Attention mechanisms were
introduced in the context of CNNs to capture the rela-
tions between features, either across the spatial dimension
as in [16] and [17] or across channel-wise dimension as
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TABLE 1. Comparison of various channel attention modules
(CA-modules). Where MS indicates whether multi-scale (MS)
cross-channel interactions are used or not, Dim. determines
the attention dimension, where C indicates channel attention
and S indicates spatial attention, and finally, the light indicates
whether the CA-module is lighter than SENet or not in terms
of the number of parameters and FLOPS.

in [11], [12], [18], [19], and [20], or both dimensions as
in [21], [22], [15], [23], [24], [25], and [26]. Although these
attention methods have achieved higher accuracy than their
counterpart baselines which do not invoke any attention
mechanisms in their architectures, they often bring higher
model complexity and exploit only the current feature map
while refining it; that is why we call it uni-scale or local
attention mechanisms.

Employing multi-scale feature maps has been applied
to image classification [27], [28], [29], image segmenta-
tion [30], tracking [31], and human pose estimation [32],
where they obtain enhanced performance. Driven by the sig-
nificance of employing multi-scale while learning different
tasks [27], [28], [29], [30], [31], [32], a question arises: How
can one incorporate multi-scale aggregation while learning
channel attention more efficiently?

To answer this question, we introduce EMCA, a novel fea-
ture recalibration module based on channel attention, which
improves the quality of the representations produced by a
network using the global information to emphasize infor-
mative features and suppress less useful ones selectively.
In contrast to the attention mechanisms mentioned earlier,
our multi-scale attention block obtains additional inputs from
all preceding attention blocks. It passes its refined feature
maps to all subsequent blocks, creating global awareness by
exploitingmulti-scale aggregation.We use the previous larger
scales from earlier layers that can capture fine-grained infor-
mation, which is helpful for precise localization while attend-
ing to features from the last layers that can encode abstract
semantic information, which is robust to target appearance
changes.

Our contributions are summarized as follows:
• We propose a simple and effective attention module,
EMCA, which can be integrated easily with any CNN
backbone due to the lightweight computation of our
novel architecture.

• We verify the effectiveness and robustness of EMCA
throughout extensive experiments with various baseline
architectures on multiple tasks and datasets.

• Through detailed analysis along with ablation studies,
we examine the internal behavior and validity of our
method.

The rest of the paper is organized as follows. First, we dis-
cuss the related work, followed by the details of the proposed
model. Then we present detailed ablation studies to settle

on the best architectural design, and finally, illustrate the
experimental setup for the various experiments we conducted
for every contribution.

II. RELATED WORK
A. MULTI-SCALE
The Gaussian Scale-Space Paradigm [33] has explored the
multi-scale contribution while representing an image and
mapped its local behavior as a function of scales and reso-
lution. This technique was applied to interpolation, extrapo-
lation, image enhancement, and deblurring. Reference [34]
combines multiple local cues into a globalization framework
based on spectral clustering, which was applied to the contour
detector problem by transforming its output into a hierarchi-
cal region tree. Reference [30] tackles semantic segmentation
problem by adapting DeepLab [35] by joining multi-scale
input images and the attention model for handling different
input resolutions.

References [36], [37], [38], [39] refer to multi-scale as
they resize the input image to different resolutions and fuse
them on the input or output level. References [40], [41], [35],
[42], [28] learn finer-scale prediction from lower layers,
where these techniques use multi-scale features instead of
multi-scale input resolution. For instance, [43] aims to
tackle the fact that the high-frequency information and
details in the low-resolution image are hard to be recon-
structed by proposing a multi-scale generative adversarial
network. Where [43] utilizes a pyramid module inside the
generator to extract the features containing high-frequency
information and to capture the multi-level features. GasHis-
Transformer [44] introduces a multi-scale visual transformer
model to tackle the Gastric Histopathological Image Detec-
tion (GHID), to enable the automatic global detection of
gastric cancer images by integrating the describing capability
of the global and the local information of vision-transformers
and CNN’s.

ABFPN [45] proposes an enhanced multi-scale fea-
ture fusion method to improve the detection performance
of small objects by offering the atrous spatial pyramid
pooling-balanced-feature pyramid network, termed ABFPN.
ABFPN utilizes the atrous convolution operators with differ-
ent dilation rates to fully use the context information and the
skip connections to achieve sufficient feature fusions.

MU-Net [46] achieves accurate and low-cost remote sens-
ing image registration by proposing a multi-scale framework
with unsupervised learning. MU-Net stacks several deep
neural network models on multiple scales to generate a
coarse-to-fine registration pipeline to directly learns the end-
to-end mapping from the image pairs to their transformation
parameters.

CrossViT [47] builds above the tremendous success of the
ViT [48] and explores how to learn multi-scale feature rep-
resentations in transformer models for image classification
by proposing a dual-branch transformer to combine image
patches (i.e., tokens in a transformer) of different sizes to
produce more powerful image features.
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FIGURE 1. Abstract overview of the channel attention modules.

B. CHANNEL ATTENTION
Figure 1 depicts an abstract overview of general channel
attention paradigm, where an arbitrary convolution layer
is first feed to the context modeling module to squeeze
the spatial dimensions (H × W ) followed by transform
block which aims to learn correlation between channels C ,
then finally weight each channel by its importance factor.
An arbitrary channel attention module could be formulated
as three sub-blocks, i.e., context module, transformation and
fusion. Where context modeling module aims to squeeze the
spatial dimensions and keep the channel dimension only.
Then, transform block learns the channel importance and
the cross-correlation between different channels. Finally, the
fusion block responsible to re-weight each channel based on
its importance.

SENet [18] proposed SE block, squeeze, and excitation
block, which comprises a lightweight gating mechanism
that focuses on enhancing the representational power of the
network by modeling channel-wise relationships using two
fully connected layers. ECA-Net [20] empirically shows
avoiding dimensionality reduction in [18] by using a simple
1-D convolution layer is essential for learning channel atten-
tion and appropriate cross-channel interaction. SRM [19]
proposes a Style-based Recalibration Module, which adap-
tively recalibrates intermediate feature maps by exploiting
their styles. Reference [13] explore two variations of self-
attention, pairwise and patchwise, that produce more pow-
erful refined features. The basic non-local block (NLB) [12]
aims to strengthen the query position’s features via aggregat-
ing information from other positions. GC-Net [11] introduces
an abstract global context modeling framework that could be
summarized into two blocks: context modeling and transform
block, besides proposing a simplified local network as the
context modeling and using SENet [18] as the transform
block. GSoP [49] obtains a covariance matrix by exploiting
holistic image information using global second-order pool-
ing, which is used for tensor scaling along channel dimen-
sions. ResNeSt [50] presents a modularized architecture
that applies channel attention to different network branches
to capture cross-feature interactions, where the feature is
divided into several groups, then a series of transformations
are applied to each group. CoordAttention [51] propose an
attention mechanism limited for mobile networks only, where
positional information is added, named coordinate attention.

EPSANet [52] proposes an efficient pyramid squeeze
attention block on a convolutional neural network.

FIGURE 2. Abstract overview of the spatial attention modules.

EPSANet [52] aims to design an efficient and effective
channel attention module; thus, two modules are introduced
by EPSANet [52]. The first is the pyramid squeeze attention
module, termed PSA, and the second is squeeze and concat,
termed SPC. First, SPC generates multi-scale feature maps,
which are then processed by an excitationmodule called PSA.
PSA is a repeated SE-modules [18] which predicts scales
indicating the importance of each channel, then fuse the
anticipated scales and multiplies them with the original
feature map. FcaNet [53] proposes a frequency channel
attention networks that formulates the channel attention block
as compression process using frequency analysis. Driven by
an interesting finding that the feature decomposition in the
frequency domain is a general formulation for the conven-
tional global average pooling. Therefore, FcaNet [53] intro-
duced a multi-spectral channel attention module. LAN [54]
proposes a lightweight attention-based network that employs
the channel attention modules to tackles the smartphones’
limitations in both, size and cost, which negatively impact
on the quality of the implemented sensors, through learning
the input mosaic and an unsupervised pre-training strategy.
FL-CSE-ROIE [55] proposes a full-level context squeeze-
and-excitation ROI extractor alongside FPN to capture
multi-scale features to boost the instance segmenta-
tion performance. To ease the background interference,
FL-CSE-ROIE adds multi-context surroundings of differ-
ent scopes to ROIs generated from FPN, by utilizing
SENet [18]. ESE-FN [56] proposes nonlinear multi-modal
fusion approach by utilizing nonlinear attention mechanism
that is extended from Squeeze-and-Excitation Networks;
SENet [18], to tackle the elderly activity recognition.

C. SPATIAL ATTENTION
Figure 2 depicts a general overview of the spatial attention
modules. Driven by the formulation of the channel attention
modules, an arbitrary spatial attention module on high-level
mimics the channel attention module, which could be formu-
lated as three sub-blocks, i.e., context module, transforma-
tion, and fusion. The context module squeezes the channel
dimension while keeping the spatial dimension; then, the
transformation module learns the correlation between the
spatial locations.

VOLUME 10, 2022 103449



E. M. Bakr et al.: EMCA: Efficient Multiscale Channel Attention Module

FIGURE 3. Abstract overview of the heterogeneous architecture that
employ both spatial and channel attention modules.

GENet [17] consists of two operators that also follow the
context modeling framework [11], gather and excite opera-
tors. GENet [17] uses stridden depth-wise convolution, which
acts as the gather operator. The gather operator applies spatial
filters to independent input channels, and a simple excite
operator consists of sigmoid function and multiplication.
Spatial Transformer Networks [57] tackle the lack of CNN
ability to be spatially invariant to the input by integrating
a learnable module, the Spatial Transformer, which can be
inserted into CNNs, giving neural networks the ability to
actively spatially transform feature maps, conditional on the
feature map itself. DETR [16] stacks a spatial transformer
after the CNN backbone to learn the interaction between each
spatial position and its effect on different vision tasks, object
detection, and instance segmentation.

D. SPATIAL AND CHANNEL ATTENTION
Figure 3 depicts a general overview of the heterogeneous
architecture that employ both spatial and channel attention
modules. The majority of the exiting architectures attend
along the channel dimension first followed by a spatial atten-
tion module.

BAM [21], CBAM [22], DANet [23], Residual attention
network [15], SCA-CNN [26], scSE [25] and GALA [24]
show that taking the spatial axis into consideration besides
channel axis boost the attention module accuracy. Given an
intermediate feature map, they sequentially infer attention
maps along two separate dimensions, channel and spatial,
then the attention maps are multiplied to the input feature
map for adaptive feature refinement. RAN [15] proposes
a Residual Attention Network, which is built by stacking
complex Attention Modules to generate attention-aware fea-
tures that are changed adaptively in each layer. The Attention
Module used in [15] is complex because of using bottom-up
and top-down feedforward structure and due to inserting
trunk-and-mask attention mechanism based on hourglass
modules [32] between the intermediate stages. CANet [58]
tackles the RGB-D semantic segmentation task by propos-
ing a co-attention network to construct a proper interaction
between RGB and depth features. CANet mainly proposes a
co-attention fusionmodule that utilizes the position and chan-
nel co-attention to adaptively fuse RGB and depth features in
spatial and channel dimensions. Several fusion co-attention
modules are employed to obtain a more representative feature
that is crucial for the semantic segmentation task.

FIGURE 4. Abstract overview demonstrates two possibilities of
integrating a channel attention module (CA-module) into an arbitrary
CNN backbone. The upper part shows the dense integration mechanism
that is followed by the existing channel attention modules. The lower part
shows our proposed integration mechanism.

Table 1 summarizes the existing attention modules regard-
ing whether multi-scale cross-channel interactions are incor-
porated or not, lightweight model, and attention type.

III. METHODOLOGY
In this section, we first revisit the integration mechanism that
is used in the channel attention modules. Then, we show the
drawbacks of the used integrationmechanismmathematically
and empirically, which we name dense integration. Accord-
ingly, we are motivated to incorporate the multi-scale infor-
mation while designing an efficient channel attention module
by proposing our EMCA module. In addition, we dissect our
EMCA module by detailing its main blocks.

A. REVISITING INTEGRATING CHANNEL ATTENTION
MODULES
Let the function F(x) represents a CNN block that consists
of successive CNN layers interspersed with non-linear acti-
vation. Given an arbitrary input x ∈ RHi×Wi×Ci , an output
y ∈ RHo×Wo×Co is generated using the mapping function F ,
where Hi, Wi, and Ci are height, width, and channel dimen-
sions for the input x, while Ho,Wo, and Co are height, width,
and channel dimensions for the output y. The upper part of
Figure 4 shows the integration mechanism followed by the
existing channel attention modules (CA-module), discussed
in Section II.
The CA-module C is attached at the tail of each CNN

block F to generate meaningful scales S, representing the
importance of each channel. Then the CNN output y is refined
by multiplying it by the learned scales S, producing a refined
input x for the next CNN block.We call this integrationmech-
anism dense integration, as the CA-module is plugged into the
network after each CNN block, which can be represented by
Equation 1 as follows:
From the above equation, CA-module’s output relies

on the outputs from all the previous layers, increasing
the gradient path’s length. Increasing the gradient path
complicates the backpropagation process. Moreover, dur-
ing the backpropagation process for an arbitrary refined
CNN output xk , the gradients of all preceding CNN blocks
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F(k−1), F(k−2), . . ., F(1) are taken into consideration as shown
in Equation 2, which represents the updating steps for the
CNN weights as follows:

xk = Ck−1 (yk−1)⊗ yk−1

= Ck−1
(
Fk−1 (xk−1)

)
⊗

[
Ck−2 (Fk−2 (xk−2))

⊗

[
· · · ⊗ [C0 (F0 (x0))⊗ x0]

]]
(1)

W ′1 = U1
(
W1, {gC0 , gF0}

)
W ′2 = U2

(
W2, {gC0 , gF0 , gC1 , gF1}

)
...

W ′k = Uk (Wk , {gC0 , gF0 , gC1 , gF1 ,

· · · gCk−1 , gFk−1}) (2)

B. EFFICIENT MULTI-SCALE CHANNEL ATTENTION
(EMCA) MODULE
1) AVOIDING DENSE INTEGRATION
Unlike the existing CA-modules that emphasize the inter-
nal design neglecting to study the best integration method,
we propose a more efficient integration mechanism that
avoids the dense integration technique, discussed in
Section III-A. As demonstrated above, the dense integration,
i.e., Equation 1, will cause a large duplicated amount of
gradients used while updating the CA-modules weights,
i.e., Equation 2.
Accordingly, we avoid dense integration by proposing a

more light and efficient integration mechanism. The architec-
ture of our proposed integration mechanism is shown in the
lower part of Figure 4. In addition, to avoid using duplicated
gradients while updating CA-module weights, we integrate
it into the last CNN block only instead of integrating it into
each CNN block. The equations of the feed-forward pass
and the weight updating of our mechanism are shown in
Equations 3 and 4, respectively.

xk = Ck−1 (yk−1)⊗ yk−1

= Ck−1
(
Fk−1 (xk−1)

)
⊗ Fk−2

(
Fk−1

(
· · ·F0 (x0)

))
(3)

W ′1 = U1
(
W1, {gF0}

)
W ′2 = U2

(
W2, {gF0 , gF1}

)
...

W ′k = Uk (Wk , {gF0 , gF1 ,

· · · gFk−1 , gCk−1}) (4)

From the above equations, we can see that the refined
output xk relies only on the outputs from the associated
CA-module Ck−1 instead of relying on the whole previous
CA-module, as shown in Equation 1.

TABLE 2. Comparison of various integration mechanisms, i.e., ALL, First,
and Last, for integrating CA-module into Deep CNN backbone. Where All,
First, and Last determine whether the CA-module will be integrated into
the whole CNN blocks or the first or the last CNN block only, respectively.
ResNet-18, 34, and 50 are used on the ImageNet dataset.

As shown in Table 2, avoiding dense integration pays off in
terms of speed across different network sizes, ranging from
ResNet-18 to ResNet-50. However the accuracy decreased
for the extensive backbones, i.e., ResNet-34 and ResNet-50.
This degradation in the accuracy is justified by dropping the
feature reuse advantages by avoiding the dense integration,
especially for the large networks which contain more blocks
at each stage, e.g., ResNet-50 contains 3, 4, 23, 3 CNN blocks
at each stage, respectively. Thus, we have to preserve the
advantages of the feature reuse characteristics and capture
the long-range dependencies, but at the same time prevent the
excessive amount of duplicate gradient information.

2) MULTI-SCALE INCORPORATION
Driven by the above analysis, the network must have some
mechanism to effectively process and consolidate features
across different scales from the preceding CNN blocks.
By scrutinizing the channel attention techniques mentioned
earlier, as presented in Table 1, multi-scale aggregation was
not explored from the channel attention module perspec-
tive. In contradiction to the channel attention techniques
as mentioned above, which relies on an arbitrary CNN
block’s output, our proposed EMCA module, as shown in
Figure 5, exploits both the current CNN block output, x0 ∈
RH0×W0×C0 , and a range of preceding multi-scale feature
maps, Xm = [x1, x2, . . . , xR]. Where [x1, x2, . . . , xR] refers
to the concatenation of the feature-maps, R is the coverage
region that delimits how many preceding multi-scale CNN
blocks output will be consolidated alongside the current CNN
block, x1 ∈ RH1×W1×C1 , x2 ∈ RH2×W2×C2 , and xR ∈
RHR×WR×CR .

To consolidate the preceding multi-scale features, Multi-
scale Aggregation Block (MAB) is proposed. Moreover,
to control how many preceding multi-scale features will be
consolidated, a Coverage Region (R) is introduced. The con-
vention for the CNN backbone is that the spatial dimensions
are shrunk as we go deep, and the depth is increased. There-
fore, two alignments operations are essential, i.e., spatial
dimension alignment and channel dimension alignment.

a: COVERAGE REGION (R)
To control the information flow between CNN blocks,
we introduce the coverage region R. The lower part in
Figure 5 illustrates the layout of the multi-scale connections

VOLUME 10, 2022 103451



E. M. Bakr et al.: EMCA: Efficient Multiscale Channel Attention Module

FIGURE 5. Upper part shows the diagram of our Efficient Multi-scale
Channel Attention (EMCA) module. Given aggregated features, EMCA
generates multi-scale aware channel weights by fast 1D convolution, i.e.,
Multi-scale Aggregation Block (MAB). The lower part shows our proposed
integration method that consolidates multi-scale information based on
the Coverage Region (R), i.e., Equation 5.

for an arbitrary CNN backbone, where it consists of stages
and blocks; we follow the definition of the stage in [18]
which refers to a group of convolutions with an identical
spatial dimension. Where connection Xi,k indicates the CNN
output of block k in the ith stage. For example, the connec-
tion Xi−2,1 indicates the CNN output of the first block in
stage i − 2, and the connection Xi−2,Ni−2 indicates the CNN
output of the last block in stage i− 2, where Ni−2 represents
the number of the blocks in stage i − 2. Consequently, the
ith channel attention block Ci receives Ri feature-maps from
the preceding CNN blocks, thus in general:

Ri = 1+
S∑
j=1

N ′i−j, (5)

where the one indicates the associated connectionXi,1, S indi-
cates the number of the stages that should be considered, and
N ′i−j indicates the number of the blocks’ output in the stage
i−j utilized into the channel attention blockCi. Consequently,
in case we consolidate the whole preceding multi-scales con-
nection, where N ′i−j = Ni−j and S = i− 1, the Ri will hit the
upper bound; Rmaxi = Ni−1 + Ni−2 + · · · + N1 + 1.

b: CHANNEL DIMENSION ALIGNMENT (CDA)
In general, the earlier multi-scale features Xm have different
channel dimensions, as the convention is as we go deeper in
the network, the depth is increased. Therefore, the first opera-
tion in our EMCA module is aligning the channel dimension
among different CNN blocks. As C0 ≥ C1 ≥ C2 ≥ CR,
aligning operation can be done by learnable upsampling tech-
niques or a simple repeating operation to align with the chan-
nel dimension of the current CNN block C0. Consequently,
channel-aligned feature maps are produced, x ′i ∈ RHi×Wi×C0 .

c: SPATIAL DIMENSION ALIGNMENT (SDA)
Analogous to aligning the channel dimensions, the spa-
tial dimensions; H and W , are aligned through squeeze

operation by adopting the general global average pooling
equation as follows, x̃i = 1

WH

∑W
j=1

∑H
k=1 x

′
i (j, k), where

x̃i ∈ R1×1×C0 and represents the squeezed feature maps
from the channel aligned aggregated feature maps x ′i , where
i = 0, 1, . . . , R− 1.

d: MULTI-SCALE AGGREGATION BLOCK (MAB)

Algorithm 1 EMCA Module Algorithm
Input: x0: Current feature map.

Xm: List of preceding feature maps.
Output: Z : Learned channel scales
1: R← Length(Y )+ 1
2: for r in range(R) do
3: x ′[r]← CDA(Xm[r])
4: x̃[r]← SDA(x ′[r])
5: end for
6: S ← Stack(x0, x̃)
7: Xa← ReLU (1DConv(S,Kernel = R))
8: Z ← σ (Wm2 (Xa))
9: return Z

Since our EMCA module aims at appropriately fusing local
and global cues, various possibilities are discussed to set-
tle down on the best fusion mechanism. By global cues,
we mean the aggregated multi-scale features. A general form
of our proposed MAB can be seen as Xa = υ(Wm(X̃ )),
where Xa ∈ R1×1×C0 is the aggregated multi-scale fea-
tures, υ represents a non-linear activation function, Wm is
the learnable weights associated with our MAB, and X̃ =
[x0, x̃1, . . . , x̃R−1]. Where [x0, x̃1, . . . , x̃R−1] refers to the
concatenation operation of the preceding aligned multi-scale
featuremaps x̃i with the current CNNblock output x0. To fully
capture the multi-scale interactions in conjunction with cross-
channel interactions, Wm can be interpreted as a fully con-
nected layer where Wm ∈ RRC0×RC0 . In contrast, to learn
the multi-scale interactions and channel interactions with
neglecting the cross-channel relations,Wm can be interpreted
as a depth-wise separable convolution layer, where Wm ∈

R1×RC0 . Consequently, both approaches involve a tremen-
dous number of parameters. Thus a possible compromise can
be achieved if we split Wm into two sub-functions. The first
function,Wm1 ∈ RRC0×RC0 , will capture the multi-scale inter-
actions, which can be readily interpreted as a 1-D convolution
layer with kernel size equals R. The second function Wm2 ,
fully captures channel-wise dependencies adopting one of
the on-the-shelf local channel attention techniques that are
discussed in Section II. Consequently, the final form of our
EMCA module is Z = σ (Wm2 (υ(Wm1 (X̃ )))), where Z is the
learned scales that represent the importance of each channel
from the input feature map x0, and σ is the sigmoid activation
function.

Algorithm 1 combines the blocks mentioned above and
demonstrates a pseudo-code for our EMCA module.
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IV. EXPERIMENTS
This section performs controlled ablation experiments to set-
tle on the best internal design for our proposed module and
assess its sub-modules. Then we evaluate the performance
of the proposed Multi-Scale Attention module on a series
of benchmark datasets across different tasks include classi-
fication, detection, and segmentation. To assess our EMCA
module on the classification task, Tiny-ImageNet [59],
and ImageNet [60] are used. While for the detection task
MS-COCO [61] and KITTI [62], are used. Also, we bench-
mark our proposed module on instance segmentation task
using MS-COCO [61]. Finally, We conduct empirical experi-
ments that probe the robustness of the representations learned
by EMCA compared to other attention mechanisms.

A. DATASETS
In this section, we will cover the details of the used datasets
while evaluating our module (EMCA). We have evaluated
our module on well-known set of benchmarks the covers
wide range of applications ranging from image classification
ending with downstreams tasks like object detection and
segmentation.

• ImageNet. ImageNet is an image database categorized
according to the WordNet hierarchy (currently only the
nouns), in which thousands of images describe each
node of the hierarchy. The project has been instru-
mental in promoting computer vision and deep learn-
ing research. The data was made publicly available for
free to researchers for non-commercial use. ImageNet
offers many variants of the dataset. Each version is
labeled by the year of publication. For instance, Ima-
geNet 2012 was published in 2012, the most commonly
used while reporting the accuracy. When ImageNet was
firstly released, it aimed to enhance and reinforce the
research progress on computer vision tasks.What makes
the data very challenging is containing a vast number of
categories, i.e., 1000 classes. The data is not perfectly
balanced, where each class has a different number of
images ranging from tens to hundreds.

• Tiny-ImageNet. Tiny ImageNet is a subset of the Ima-
geNet dataset in the famous ImageNet Large Scale
Visual Recognition Challenge (ILSVRC). When Ima-
geNet was firstly released, it aimed to enhance and
reinforce the research progress on computer vision tasks.
However, it is not straightforward to download and store
it due to its vast size. Even the more complicated part
is to train using the entire dataset. Therefore many
researchers create their own mini-version of the data
to be able to train on this newly created sub-set of the
data. The disadvantage of this technique is that other
researchers have to reproduce the same subset of the data
to be able to benchmark it. This motivates the computer
vision community to offer a well-defined subset of the
ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) The dataset dubbed Tiny-ImageNet contains

100,000 images of 200 classes (500 for each class)
downsized to 64 × 64 colored images. Each class has
500 training images, 50 validation images, and 50 test
images.

• KITTI. KITTI develops real-world challenges in the
computer vision domain by proposing many bench-
marks covering a wide range of real applications, such
as stereo-based detection and tracking, optical flow esti-
mation, visual odometry prediction, 3D object detection,
segmentation, and 3D tracking. For this purpose, they
equipped the car with two colorful high-resolution cam-
eras mounted on the roof of the vehicle to provide us
with a stereo vision. In addition, they provide an accurate
3D representation of the scene using a lidar sensor. The
dataset is captured by driving around a mid-size city
in rural areas and on highways. Therefore the scenes
captured can be considered crowded scenes where each
scene contains up to 15 cars and 30 pedestrians. They
also provide an evaluation metric for each benchmark.
KITTI-RGB [62] consists of 7,481 training images and
7,518 test images, comprising a total of 80,256 labeled
objects of eight different classes. Each image has 3 RGB
color channels and pixel dimensions 1242×375which is
resized to 224× 224. We follow the same training setup
as mentioned in the image classification section.

• MS-COCO. COCO has been focused on advancing
computer vision and deep learning research progress in
general and explicitly advancing the state-of-the-art in
object detection and recognition tasks. The data is built
by collecting images from regular daily activities and
is categorized into 91 object types. The total number
of labeled items is 2.5 million for almost 328k images.
COCOprovides a wide range of annotations for different
tasks, i.e., object detection and recognition and semantic
and instance segmentation.

B. IMPLEMENTATION DETAILS
For the classification task, two datasets are used, i.e., Tiny-
ImageNet dataset [59] and ImageNet dataset [60], to evalu-
ate our proposed module and show its effectiveness, where
the same data augmentation and hyper-parameter settings
in [18] are adopted. For the Tiny-ImageNet dataset [59],
input images are randomly cropped to 64 × 64 with random
horizontal flipping. For the ImageNet dataset [60], we adopt
the same training setup as [3], [18], where a 224× 224 crop
is randomly sampled from an image or its horizontal flip,
with the per-pixel RGB mean value subtracted. All models
are trained for 100 epochs from scratch, using the weight
initialization strategy described in [63], and the initial learn-
ing rate is set to 0.1 and decreased by a factor of 10 every
30 epochs. Stochastic gradient descent (SGD) with weight
decay of 10−4, the momentum of 0.9, and mini-batch size
of 32 are used for Tiny-ImageNet [59], and 256 for Ima-
geNet [60]. Our module is implemented in Python using the
PyTorch framework using four PCs with Intel Xeon(R) 4108
1.8GHz CPU, 64G RAM, Nvidia Titan-XP.
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For detection and instance segmentation tasks, we evalu-
ate our EMCA module on MS-COCO [61] using Faster R-
CNN [64], Mask R-CNN [65], and RetinaNet [66], where
ResNet-50 along with FPN [67] are used as a backbone.
We implement all detectors based on the MMDetection
toolkit [68] and employ the default settings as described
in [20]. Specifically, We resize the shorter side of input
images to 800. Then The learning rate is initialized to
0.01 and decreased by 10 after 8 and 11 epochs, respectively.
All models are optimized using SGD with a weight decay of
1e-4, momentum of 0.9, and mini-batch size of 8. Finally,
we train all detectors within 12 epochs on train2017 of COCO
and report the results on val2017.

Furthermore, we evaluate our proposed EMCA module on
object detection task using KITTI dataset [62] on a modified
version of the YOLO-V3 detector, explicitly tailored to inte-
grate the different channel attention modules to it, including
ours, EMCA. The backbone is replaced by the modified
version of the ResNet backbone, where the different channel
attention modules are integrated into it. We followed the
original setup proposed by YOLO-V2 and YOLO-V3. The
input images are resized into colored square images with the
following shape, 448*448. The stochastic gradient descent
with a starting learning rate of 0.1, polynomial rate decay
with a power of 4, weight decay of 0.0005, and momentum
of 0.9 is used. The standard data augmentation techniques are
followed, including random crops, rotations, hue, saturation,
and exposure shifts. Also, no hard negative mining is used.
Multi-scale training is followed, where the network first is
trained on a smaller resolution; 224*224, then trained on the
final resolution; 448*448, where these tricks are proposed by
the original YOLOdetectors that showed a significant impact.

C. EFFECT OF COVERAGE REGION (R)
To assess the proposed coverage region (R) and provide a
clear picture of its role, we experiment with four coverage
region variants based on three ResNet family variants, i.e.,
R-18, R-34, and R50, on the ImageNet dataset. Specifi-
cally, we vary the S and N ′i−j parameters in Equation 5 to
demonstrate the coverage region effect in terms of inference
speed for the model by inferring one image at a time (FPS),
network parameters (#.P in millions), and Top-1 accuracy
(in %). The first row in Table 3 refers to the original channel
attention module [18], [19], [20]. In the second row, S and
N ′i−j parameters are set to zeros, which refers to the simplest
form of our EMCA module that avoids the dense integration
as discussed in Section III-B1, where there is no multi-scale
information is propagated from the preceding CNN blocks.
The third row demonstrates the results of setting S and N ′i−j
parameters to ones, which means the current channel module
Ci will aggregate the multi-scale information from the last
block at the preceding stage only. While the fourth row shows
the results of setting S and N ′i−j parameters to one and Ni−j,
respectively, which means the current channel module, Ci,
will aggregate the multi-scale information from the whole
blocks at the preceding stage only. Finally, the last row shows

TABLE 3. Effect of Coverage Region (R). Comparison between different
values of S and N ′i−j parameters in Equation 5. Setting both parameters
to zero refers to the original channel attention module without
incorporating multi-scale information.

the results of setting S and N ′i−j parameters to i − 1 and 1,
respectively, which means the current channel module Ci
will aggregate the multi-scale information from the last block
only from the whole preceding stages. To keep the module
compactness and efficiency, we did not study the extreme
case, where the current channel module Ci will aggregate
the multi-scale information from the whole blocks from the
whole preceding stages; S = i− 1 and N ′i−j = Ni−j.
As shown in Table 3, our four proposed variants achieve

better performance than the original CA-modules in terms of
memory usage, inference speed, and accuracy. Based on the
results above, S and N ′i−j in Equation 5 is set to one and Ni−j,
respectively, in the rest of our experiments.

D. IMAGE CLASSIFICATION
We evaluate the performance of the proposed EMCA mod-
ule on classification benchmark datasets include Tiny-
ImageNet [59], which is mentioned in the supplemen-
tary materials, and ImageNet [60]. ImageNet LSVRC 2012
dataset [60] contains 103 classes with 1.2 million training
images, 50 × 103 validation images, and 105 test images.
The evaluation is measured on the non-blacklist images of
the ImageNet LSVRC 2012 validation set.

All the classification experiments follow the same training
procedure that is discussed in Section IV-B. However, not
all attention methods followed the same training and testing
procedure where: 1) SRM [19] is trained for 90 epochs only.
2) FCANet [53] is trained for 100 epochs with cosine learning
rate decay [72] and label-smoothing regularization [5] with
the coefficient value as 0.1 during training. 3) SANet [69]
starts from the initial learning rate of 0.1 with a linear warm-
up [73] of 5 epochs and follows a differentmethod to initialize
the parameters. 4) EPSANet [52] uses label-smoothing regu-
larization [5], where the coefficient value is set to 0.1 during
training and is trained for 120 epochs instead of 100 epochs.
5) ECA [20] follows the same experimental setup; however,
we notice difficulties reproducing and verifying their results.1

1Referring to issues number 21, 52, 62, 24, 46, and 58 from the official
ECA-Net implementation.
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TABLE 4. Comparison between our three proposed versions of EMCA
module that adopt SE, ECA, and SRM as the cross channel excitation
block producing, EMCA-SE, EMCA-ECA, and EMCA-SRM, respectively.
The comparison is built on the ImageNet dataset and covers the following
aspects; network parameters (#.P in millions), floating-point operations
per second in Gigas (GFLOPs), Top-1 and Top-5 accuracy (in %), inference
speed for the model by inferring one image at a time (FPS), inference
speed for the model by inferring batch of images at a time (FPS†) and
inference speed for the whole validation process by inferring batch of
images at a time (FPS††). The ∗ symbol indicates we retrain the model
for fair comparison. Top-1 relative improvement results are reported
between parentheses w.r.t the corresponding CA-module
improvement over the Vanilla Resnet.

The retrained models are marked with the ∗ symbol and
report the results of other compared methods from their origi-
nal papers. Our evaluationmetrics incorporate both efficiency
and effectiveness. The efficiency is measured by the network
parameters (#P.) in millions, the inference frame rate per
second (FPS), and the floating-point operations per second
(FLOPs) in Gigas. The effectiveness is measured by the Top-1
and Top-5 accuracies.

Firstly, we adopt three well-known channel attention mod-
ules, i.e., SENet, ECANet, SRMNet, and incorporate them
as the cross channel excitation block, as shown in Figure 5.
Thus, three versions of our EMCAmodule are produced, i.e.,
EMCA-SE, EMCA-ECA, and EMCA-SRM, where SENet,
ECANet, and SRMNet are regarded as the cross channel
excitation block respectively. Then, in Table 4, we compare
the three proposed variants of our EMCA module against
their original CA-modules. The results are given in Table 4
show that our EMCA module has fewer model complexity
(i.e., network parameters, GFLOPs, and inference speed) than
the respective original CA-modules while achieving better
accuracy across different ResNet sizes and based on vari-
ous CA-modules. Top-1 relative improvement (RI) results in
percentage are reported between parentheses in red w.r.t the
corresponding CA-module improvement over Vanilla Resnet.

Then, we compare our EMCA module with several
state-of-the-art attention methods using the ResNet family.
As shown in Table 5, our proposed EMCA module reduces

TABLE 5. Comparison of different attention methods on ImageNet in
terms of network parameters (#.P in millions), floating-point operations
per second in Gigas (GFLOPs), Top-1 and Top-5 accuracy (in %), inference
speed for the model by inferring one image at a time (FPS), inference
speed for the model by inferring batch of images at a time (FPS†) and
inference speed for the whole validation process by inferring batch of
images at a time (FPS††). The ∗ symbol indicates we retrain the model
as it is trained initially with different training settings.

computation cost and memory usage of these networks and
benefits inference speed and accuracy. To measure the infer-
ence speed, three methods are reported in Table 4 and Table 5
as follows: 1) Inferring one image at a time to the model
(FPS), to this end, we use only one worker at the data loader
and set the model’s batch size to one. 2) To cope with the
reported results at [20], wemeasure the inference speed while
inferring a batch of images at a time, where we set themodel’s
batch size to 256. We refer to this as FPS† 3) Inference speed
for the whole validation process is calculated (FPS††) by
inferring a batch of images at a time, where we set themodel’s
batch size to 256 and use eight workers while loading the
data. We believe the first method (FPS) is the most accurate
to show the actual effect of adding an attention module to the
vanilla ResNet. However, we reported the other measures to
cope with other results reported in previous work.

E. OBJECT DETECTION
1) MS-COCO
Weevaluate our EMCAmodule on object detection task using
Faster R-CNN [64], Mask R-CNN [65], and RetinaNet [66]
on MS COCO dataset [61]. We implement our EMCA mod-
ule using the MM-Detection framework [68]. All CNN mod-
els are pre-trained on ImageNet, and their results are reported
in Table 6 from their original papers except for ECANet [20],
where it is pre-trained using the weights produced by us
after retraining on ImageNet, as mentioned in Section IV-D.
As shown in Table 6, integration of our EMCAmodule based
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TABLE 6. Object detection results of different attention methods on
COCO val2017.

TABLE 7. Comparisons with state-of-the-art attention modules on
KITTI-RGB [62] in terms of mAP.

on either SE or ECA modules can improve the performance
of downstream tasks like object detection.

2) KITTI
Furthermore, we evaluate our proposed EMCA mod-
ule on object detection task using KITTI dataset [62].
We adapt YOLOV3 [74] detector by replacing its original
DarkNet backbone with the different channel attention net-
works that are built based on the ResNet backbone fam-
ily. KITTI-RGB [62] consists of 7,481 training images and
7,518 test images, comprising a total of 80,256 labeled
objects of eight different classes. Each image has 3 RGB color
channels and pixel dimensions 1242 × 375 which is resized
to 224×224. We follow the same training setup as mentioned
in the image classification section. As shown in Table 7,
EMCA considerably improves the accuracy more than other
attention modules compared to the baseline [3]. EMCA-SE
variant is used in these experiments as it achieves the best
performance on the ImageNet dataset.

F. INSTANCE SEGMENTATION
To prove the effectiveness of our EMCA module, we assess
it using another downstream task, i.e., instance segmentation
using Mask R-CNN [65] on the MS COCO dataset [61].
We implement our EMCA module using the MM-Detection
framework [68]. TheResNet-50 variant is used as a backbone.
All models are optimized using SGD with a weight decay
of 1e-4, momentum of 0.9, and mini-batch size of 8 and
trained for 12 epochs. Where, the learning rate is initialized
to 0.01 and decreased by 10 after 8 and 11 epochs, respec-
tively. The train2017 and val2017 splits are used for the
training and the evaluation, respectively.

As compared to Table 8, our EMCAmodule achieves better
performance than the original ResNet, SE, and ECAmodules.

TABLE 8. Instance segmentation results of different methods using Mask
R-CNN on COCO val2017.

TABLE 9. Analyzing the robustness of CA-modules on ImageNet.

FIGURE 6. Comparison for the learned channel scales by our novel EMCA
module against local channel attention modules. Better view with
zooming in.

G. ROBUSTNESS
We have conducted experiments to probe the robustness of
the representations learned by our proposed module EMCA,
compared to other channel attention mechanisms on the
ImageNet dataset, by rotating the testing images deliber-
ately in one of three ways: clockwise 90◦, clockwise 180◦,
clockwise 270◦. These rotations were not scrutinized at the
training. As shown in Table 9, our EMCA module is less
vulnerable than other attention modules.

H. DISSECTING THE PRODUCED LEARNABLE SCALES
To further analyze the effect of our EMCA module on
learning channel attention, we visualize the scales learned
by our novel EMCA modules and compare it against local
channel attention modules; ECA and SRM. As dicussed in
Section III-A, avoiding dense integration is a key factor
in boosting the attention mechanisms performance. Thus
we have integrated our EMCA module into the first CNN
block only for each stage. Conseqently, for fair comparison,
we have compared the learnable scales produced by our
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FIGURE 7. Sample visualization on ImageNet dataset [60] generated by GradCAM [75].
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FIGURE 8. Sample visualization on ImageNet dataset [60] generated by GradCAM [75].
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FIGURE 9. Training ResNet, local channel attention modules (LCA) baseline architectures and their EMCA counterparts on ImageNet validation
set. EMCA exhibits improved optimization characteristics and produces consistent gains in performance which are sustained throughout the
training process.

EMCA module with only the scales produced from the first
attention module at each stage. For this experiment, we adopt
ResNet-50 as backbone and use ImageNet validation set.

In contrast to ECA setup, where a random sample consists
of four classes only from ImageNet dataset, i.e., hammerhead
shark, ambulance, medicine chest and butternut squash, are
involved while producing the scales, we have used a more
generic and fair way to analyze the learned scales by averag-
ing them over the whole validation dataset instead of using
only four selected classes. Figure 6 visualizes the channel
learned scales for each first block from each stage for each
attention module; ECA in blue, SRM in orange, and ECA in
orange.

Driven by the results in Figure 6, we make some observa-
tions about the role of our EMCA module:

• EMCA scales have larger variance than ECA and SRM
learned scales, which indicates a better discrimina-
tive ability which necessarily reflect the quality of the
learned scales.

• ECA and SRM learned scales have a mean around
0.5 which indicates almost the majority of the channels
have the same importance. In contrast, the EMCA scales
mean is around much lower value than 0.5, i.e., 0.1 and
0.3 for stage 2,3 and stage 1,4 respectively.

• The majority of EMCA scales are below 0.5, which is
very beneficial in compressing the network, by pruning
the channels that have importance factor less than a
certain threshold, e.g. 0.2. In addition, 1.5 % of the
produced scales by EMCA are zeros, while ECA and
SRM produce non-zero scales. Thus by pruning the
channels that have zero importance; scale, we achieve
a further gain in the performance in terms of GFLOPs,
FPS, and number of parameters while achieving the
same accuracy.

• Finally, our learnable scales show empirically that they
are more representative as they boost the accuracy in a

consistent manner over different architectures and dif-
ferent tasks.

As a future work driven by the earlier observations and
analysis, more experiments are needed to validate EMCA
contribution regarding pruning the network more efficiently.

I. VISUALIZING ATTENTION MAPS
In order to validate the effectiveness of EMCA module
more intuitively, we sample nine images from ImageNet
dataset [60] validation split. We use Grad-CAM [75] to visu-
alize their heatmaps at the last attention module based on
ResNet50 backbone. As shown in Figure 7 and Figure 8,
our proposed EMCA module allows the classification model
to focus on more relevant regions with more object details,
which means the EMCA module can effectively improve the
classification accuracy. Also, it is obvious that our EMCA
module can handle more than one object in the scene at
the same time thanks to the mutli-scale aggregation module.
For instance, as shown in Figure 7, the last column depicts
an image with two deer, where ECA and SRM, first two
rows, are focusing only on one of the deer. In contrast, the
three variants of our proposed module EMCA are success-
fully paying more attention to the two deer. Therefore, the
proposed EMCA module is validated to indeed enhance the
representation power of networks.

J. TOP-1 VALIDATION ACCURACY CURVES
To provide some insight into the influence of our EMCA
module on the optimization process of these models during
the training phase, we tracked the validation Top-1 accuracy
during the training. As shown in Figure 9, we compare the
training curves, where each epoch’s validation accuracy is
reported. In this analysis, our EMCA module is compared
against the naive ResNet [3] and the local channel attention
modules, i.e., SE [18], SRM [19], and ECA [20]. Driven by
this analysis, we observe that our EMCA module yields a
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steady improvement throughout the optimization procedure.
Moreover, this trend is relatively consistent across a range of
network architectures considered as baselines.

V. CONCLUSION
In this paper, we concentrate on determining an effective
channel attention module with low model complexity. To this
end, we propose Efficient Multi-scale Channel Attention
Module (EMCA). As discussed in Section III-B2, our EMCA
module preserves the advantages of feature reuse character-
istics thanks to the proposed coverage region (R), but at the
same time prevents an excessive amount of duplicate gradient
information by truncating the gradient flow, Section III-A.
Because of the lightweight computation of the EMCA mod-
ule, it can be integrated into all modern CNN architectures
across all layers and trained end-to-end. While most previ-
ous works utilized uni-scale features, EMCA is designed to
employ multi-scale information while re-calibrating feature
maps. Our experiments demonstrate that simply inserting
EMCA into standard CNN architectures boosts the perfor-
mance across different tasks. Furthermore, we verify the
robustness of the representations learned by EMCA and its
generalization ability via zero-shot experiments to rotated
images.
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