IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 2 August 2022, accepted 3 September 2022, date of publication 12 September 2022, date of current version 19 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3205591

== METHODS

Classification of Cough Sounds Using
Spectrogram Methods and a Parallel-Stream
One-Dimensional Deep Convolutional
Neural Network

YO-PING HUANG “'1-234, (Fellow, IEEE), AND RICHARD MUSHI""

! Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

2Department of Electrical Engineering, National Penghu University of Science and Technology, Penghu 88046, Taiwan
3Department of Computer Science and Information Engineering, National Taipei University, Taipei 23741, Taiwan
“Department of Information and Communication Engineering, Chaoyang University of Technology, Taichung 41349, Taiwan

Corresponding author: Yo-Ping Huang (yphuang @ gms.npu.edu.tw)

This work was supported in part by the Ministry of Science and Technology, Taiwan, under Grant MOST108-2221-E-346-006-MY3 and
Grant MOST111-2221-E-346-002-MY?3; and in part by the Acer Group Research Project under Grant 210D001-1.

ABSTRACT Currently, a subjective method is used to diagnose cough sounds, particularly wet and dry
coughs, which can lead to incorrect diagnoses. In this study, novel emergent features were extracted
using spectrogram methods and a parallel-stream one-dimensional (1D) deep convolutional neural network
(DCNN) to classify cough sounds. The data of this study were obtained from two datasets. We employed
the Mel spectrogram, chromagram constant-Q transform, Mel-frequency cepstral coefficient, constant-Q
cepstral coefficient, and linear predictive code coefficient to conduct features analysis. The maximum,
mean, variance, and standard deviation values of the original spectrogram as well as the maximum first and
second derivatives of this spectrogram were extracted and fused to create a single-feature vector. We adopted
two types of features: single features and combined features. Each design was restructured according to
the magnitude of features with high discrimination power. A parallel-stream 1D-DCNN was developed
for classifying cough sounds accurately. We compared the results obtained using the aforementioned
network with those obtained using a single-stream 1D-DCNN. We found that the parallel-stream network
outperformed the single-stream network for some feature sets. The developed network achieved F'1 scores
of 98.61% and 82.96% for the first and second datasets, respectively. The concatenation of layers at the
flattening level resulted in an F'1 score of 99.30% in dataset one. Moreover, layer merging strategies exhibited
a better performance at the second convolutional layer level than at the flattening layer level in many cases.

INDEX TERMS Classification, convolutional neural network, cough sounds, feature extraction, spectrogram
methods.

I. INTRODUCTION however, many hospitals in developing countries adopt inef-

Because of the rise in respiratory diseases, increased research
attention has been paid to cough sound classification. Cough-
ing is a critical symptom of respiratory diseases [1], [2],
and two types of coughs exist: wet and dry coughs [3]. Dis-
criminating between these two types of coughs is crucial [4];
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ficient approaches for diagnosing the cough type.

Advances in computer-assisted technology have enabled
the use of audio tools and deep learning (DL) models for
reliably classifying wet and dry cough sounds. An audio tool
is an electronic device that records and stores sound. Audio
tools are used to record sounds in cough research [5], [6] and
other related fields. Various audio feature extraction methods
have been proposed to detect, analyze, and classify cough
sounds. Three types of audio features exist [7], [8], [9]:
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time-domain features, including zero-crossing, root mean
square, and energy envelope; frequency-domain features,
including spectral centroid, bandwidth, roll-off, and power
spectral density; and time—frequency features, including the
Mel spectrogram and Mel-frequency cepstral coefficient
(MFCC).

In the present study, time—frequency features were used
because they can simultaneously represent signal properties
in the time and frequency domains. These features have
been used in many studies for classification application
[10], [11], [12].

The following questions were addressed in the present
study: (1) how are the emergent features extracted using
different methods can be combined and input into a DL
model? (2) which DL method is appropriate for classifying
emergent features? and (3) how are the problems of a small
dataset and varying cough signal dimensions overcome in
cough research?

The output of the time—frequency method is a two-
dimensional (2D) pixel matrix, which can be visualized, and
this method is termed as the time—frequency spectrogram
method [13]. Several types of features can be extracted from
spectrograms to generate one-dimensional (1D) feature vec-
tors. Emergent feature vectors can be extracted from spectro-
grams along the time axis (column) or frequency axis (row).
In our previous study [14], we used one spectrogram method
and focused on extracting the maximum cepstral coeffi-
cient vector from MFCC row. In this study, we expanded
the technique by including five spectrogram methods and
their derivatives and then capturing numerous features from
spectrograms and their derivatives. The extracted subfeatures
include the maximum, mean, variance, and standard devia-
tion. In each spectrogram method, the extracted subfeatures
were fused to form a single-feature vector.

Feature vectors obtained in each adopted method were
aggregated to obtain diverse feature combinations. Aggregat-
ing features and inputting them into a DL model is tedious.
In general, a DL model [e.g., a convolutional neural net-
work (CNN)] is affected by the relationships between fea-
tures in space, especially when two or more features are
integrated. In [15], the correlation matrix, clustering, and
dendrogram techniques were used to restructure integrated
features. A drawback of using the dendrogram technique is
the long time required for processing dendrogram data, which
leads to errors. Thus, in this paper, we propose methods for
restructuring the position of combined features according to
their discrimination power and mutual information value.

Studies have transformed cough signals into features such
as Mel spectrograms and MFCCs [16], [17] and then have
input these features directly into 2D DL models. Thus, cough
sounds can be detected using attributes from a spectrogram.
These attributes are one-dimensional features and are suitable
inputs for 1D DL models, which are highly useful because of
their low computational demand, time requirement, and cost.

To the best of our knowledge, a few studies have adopted a
1D DL model for cough detection, and most relevant studies
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have adopted a single-stream model for cough detection.
For example, Baramulari et al. [18] classified cough sounds
by using a bidirectional long short-term memory model.
Hassan er al. [19] used a recurrent neural network to detect
COVID-19. Amrulloh et al. [20] employed a neural network
to classify pneumonia and asthma infections. In the present
study, we examined the performance of a 1D-CNN, gated
recurrent unit (GRU) model, and a neural network for cough
detection. We found that the 1D-CNN model outperformed
the other two models. Therefore, the 1D-CNN model was
used for further analysis in this study.

Insufficient data are a challenge encountered in studies on
cough sound [21], [22], as well as a class imbalance problem
[23], [24]. A similar problem was encountered in this study.
Of the two collected datasets, one contained 118 wet cough
sounds and 170 dry cough sounds, and the other contained
389 wet cough sounds and 413 dry cough sounds. These
datasets exhibited the class imbalance problem. Therefore,
we used the weighted F'1 score [25] and Matthews correla-
tion coefficient (MCC) [26] as metrics for assessing model
performance. Furthermore, the two datasets contained signals
with different dimensions. We used a zero-padding system
to address the varying dimensions of cough signals. The
problem of insufficient data was addressed using the data
enhancement technique.

The main contributions of this study are as follows:

1) Sounds of wet and dry coughs were classified using
novel features extracted using spectrogram methods
and a parallel-stream 1D deep CNN (DCNN).

2) The features extracted using spectrogram methods
were analyzed using a novel method to classify wet and
dry coughs.

3) Feature structures were designed, and two techniques
were developed for restructuring the positions of com-
bined features and were compared to determine the
better technique.

4) A parallel-stream 1D-DCNN was developed, and the
performance of this CNN was compared with that of
a single-stream 1D-CNN. The developed model dif-
fers from existing related models [15], [36] in three
ways: (1) it does not contain a maximum pooling layer,
(2) layer concatenation occurs in its flattening layer,
and (3) it contains a few layers as a small network might
prevent overfitting [28]. Moreover, the performance
benefits of concatenating layers at different levels were
examined.

5) Model performance achieved with layer merging strate-
gies at different levels in a parallel-stream network was
examined.

The rest of this article is organized as follows. Section II
provides an overview of the related research. Section III
details the methodology used for constructing the designed
system. Section IV describes the proposed DL models.
Section V presents the experimental results and a discussion
on the results. Finally, Section VI provides the conclusions of
this study.
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Il. RELATED RESEARCH

Studies have reported that the cough type can be identified
using audio recordings, feature extraction techniques, and DL
models. Therefore, we reviewed research on feature extrac-
tion approaches and 1D DL models.

Islam et al. [29] employed a deep neural network (DNN)
to detect COVID-19. They used time-, frequency-, and
time—frequency-domain features for COVID-19 detection
and obtained an accuracy of 97.5%. Zhao et al. [30] used
pig cough sounds to differentiate respiratory diseases. They
extracted 39 MFCC features and classified them using a
hybrid DNN and hidden Markov model.

Lellaetal. [31]used a 1D-CNN to detect COVID-19 on the
basis of voice, breath, and cough sounds. They input MFCC
data into an autoencoder to extract deep features, which were
then classified using a single-branch 1D-CNN. The afore-
mentioned authors achieved a classification accuracy of 90%.
Amrulloh et al. [20] distinguished asthma and pneumonia by
using three features: the MFCC, Shannon entropy, and non-
Gaussianity score. They fed these features to a DNN and
achieved a sensitivity of 89%.

Feng et al. [32] detected COVID-19 on the basis of
recorded cough sounds. They obtained time- and frequency-
domain features from each sound. They authors achieved a
maximum classification accuracy of 99.56% with a recurrent
neural network. Islam et al. [33] used the chromagram feature
to detect COVID-19. They compared the performance of a
CNN and DNN in COVID-19 detection and found that the
CNN had higher accuracy than did the DNN.

lll. METHODOLOGY

This section describes the methodology used in this study for
constructing the designed system. The system design frame-
work is illustrated in Fig. 1, and it contains seven key parts:
dataset collection, data enhancement, zero padding, emergent
feature analysis, feature structure design, restructuring of
multiple features, and DL.

Dis | Zero-pad :
l
YIS iscriminati
NN

FIGURE 1. System design framework.
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Two datasets were used in this study. The first dataset
comprised 189 files of cough audio [34]. Cough signals were
manually segmented using Audacity software [55] to obtain
170 dry cough sounds and 118 wet cough sounds for this
dataset. Similarly, the second dataset comprised 222 record-
ings of cough audio [35]. Segmentation of cough signals
identified 389 wet coughs and 413 dry coughs in this dataset.
The details of data collection and enhancement are presented
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TABLE 1. Details regarding the collected datasets and data enhancement.

Data Seg®. Duration ~ Enhc’. Total
Type QTY (s) QTY QTY
Wet(100) 118 40.44 472 590
Dataset 1 Dry(89) 170 64.43 680 850
Total(189) 288 104.87 982 1440
Wet(111) 389 196.17 1556 1945
Dataset2  Dry(111) 413 202.64 1652 2065
Total(222) 802 398.81 3208 4010

3Seg = segmentation, *Enhc = enhancement, QTY = quantity. The numbers
inside the parentheses indicates the numbers of cough sound samples selected
from the specified dataset.

in Table 1. The two datasets were preprocessed using tech-
niques that were similar to those performed in [14], with the
only difference being that signals were not resampled in the
present study.

A. DATA ENHANCEMENT

The basic concept of data enhancement in machine learning
involves increasing the quantity of training data; however,
data enhancement also can be performed to enrich data in
a dataset [27]. Data enhancement can be performed using
two approaches: image- and audio-based approaches. The
audio-based approach was used in the present study. Two
strategies were used in this study to enhance the quantity of
data: time stretch and pitch shift. In the time stretch method,
we stretched the duration of cough signals by factors of
1.07 and 0.5. The factor of 1.07 was used to accelerate a
cough signal, and the factor of 0.5 was used to decelerate a
cough signal. Pitch shift was performed using factors similar
to those used in [27].

The results indicated that after data enhancement, the num-
bers of dry and wet cough signals in dataset 1 increased
from 170 to 850 and from 118 to 590, respectively. More-
over, the numbers of dry and wet cough signals in dataset 2
increased from 413 to 2065 and from 389 to 1945, respec-
tively. Overall, the total number of cough signals increased
from 288 to 1440 for the first dataset and from 802 to 4010 for
the second dataset.

B. PADDING SYSTEM
A padding system is used to overcome the problem of mul-
tivariable bit lengths of cough signals in a dataset. In this
study, the bit lengths of the signals with short bit lengths were
increased to the maximum value. Thus, a fixed bit length was
achieved for all the cough signals (bit length is the size of a
signal). Inspired by the random padding technique proposed
by Dong et al. [36], we created a zero-padding system instead
of a random padding system. The procedures for creating a
zero-padding system are described in the following text.
Consider the example of dataset 2. First, we determined
that the maximum bit length in this dataset was 45 982,
approximately 2.08 s, when the sample rate was set as
22050 Hz. Second, we calculated the bit length of each
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cough signal in the database. Subsequently, we determined
the difference (V) between the maximum bit length and the
bit length of the signal. Third, the zero () function was used to
obtain a zero array of size N. Finally, the append () function
was used to copy the current signal sample with N zero values
until the maximum bit length was attained.

The experimental results indicated that after padding, the
dimensions of each signal in a dataset became the same. The
dimensions of signals in datasets 1 and 2 were 29952 and
45982, respectively. Fig. 2 displays an example of a cough
signal obtained before and after zero padding on dataset 2.

Amplitude

Amplitude
I
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20000 30000
Number of samples

[} 2000 4000 6000  BOOO 10000 12000
Numl amples

lber of sam

(@) (b)

FIGURE 2. Example dry cough waveforms from dataset 2: (a) original
waveform and (b) waveform obtained after zero padding.

C. FEATURE EXTRACTION

The following methods were used for feature extraction:
the Mel spectrogram, MFCC, chromagram constant-Q trans-
form (CQT), constant-Q cepstral coefficient (CQCC), and
linear predictive code coefficient (LPC) [37]. Table 2 presents
the parameter settings for the conversion of cough signals
into spectrograms and LPCs. In contrast to [38] and [39],
we extracted the maximum, mean, variance, and standard
deviation values of the original spectrogram as well as
the maximum first and second derivatives of the original
spectrogram.

TABLE 2. Parameters Setting.

Parameters Practical values
Window size 882
Window name Hann
Number of FFT 882
General Number 9f 220
overlapping
Window size 882
Sampling frequency 22050 Hz
Maximum frequency 11025 Hz
LPC Order 26
Bins per octave 40
Chroma Number of chroma 20
Number of 512
overlapping
Bins per octave 12
cQce Eumber of bins 84
umber of
. 512
overlapping
HTK True
MFCC Number of MFCC 40
HTK True
MELSPEC Number of MEL 64
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Essentially, a spectrogram is obtained after four steps: pre-
emphasis, framing, windowing, and short-time Fourier trans-
form (STFT). The spectrogram S(n, k) [40] is the squared
magnitude of X (n, k), which is expressed as follows:

T
X (n, k)= / x(7) -w(t —k)-exp(—2rnt)dt (1)
-T

where x(t) is the cough signal, n is the Fourier coefficient, k
is the time frame, w(¢) is the windowing function, and X (n, k)
is the STFT in the complex number.

S (n, k) = X (n, k)[* 2)

1) MEL SPECTROGRAM
A Mel spectrogram (MELSPEC) is an auditory system
derived by passing a cough signal through an STFT filter and
a Mel filter bank [41]. A Mel spectrogram is expressed as
follows [42], [43], [44]:

M (m,k) =) X (n, K)I* - A(m) 3)

where M (m, k) is the generated Mel spectrogram, and A(m)
represents a triangular Mel filter bank with m Mel-frequency
bands. The Mel frequency is calculated using the following
formula:

f
Mel = 2595 ! 1+ =— 4
el freq x logio(1 + 700) 4)

In a Mel spectrogram, cough intensity bands are repre-
sented equally in Mel frequencies; thus, capturing different
attributes from each frequency band will provide interesting
results. Table 3 presents the code procedures used to obtain
attributes from a Mel spectrogram.

TABLE 3. Code for extracting emergent features from a Mel spectrogram.

Input: cough signals,
Output: a single feature vectors.

1 for k in range of dataset shape:

2 Compute Mel spectrogram

3 Compute first and second derivatives of Mel spectrogram

4 for j in range of dataset shape:

S. MEL = M(m, k)[j]

6 MEL =M(m, k)'[j]

7 MEL" =M(m, k)"[j]

8 mx = [np.max(MEL(i) for i in range(MEL. shape[0])]
9. mn = [np.mean(MEL (i) for i in range(MEL. shape[0])]
10. var = [np.var(MEL(Q) for i in range(MEL. shape[0])]

11. std = [np.std(MEL(i) for i in range(MEL. shape[0])]

12. mx’ = [np.max(MEL (i) for i in range(MEL'. shape[0])]
13. mx" = [np.max(MEL" (i)for i in range(MEL". shape[0])]
14. Fuse the results (8-13).

In dataset 1, the Mel spectrogram M (m, k) and its deriva-
tives (M (m, k) and M (m, k)"") were computed for each cough
signal. Subsequently, for each computed Mel spectrogram,
the vectors of the maximum spectral intensity, mean spectral
intensity, spectral intensity variance, and standard deviation
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of the spectral intensity were extracted from each frequency
band. The aforementioned process was also used to extract
maximum spectral intensity vectors from the derivatives of
a Mel spectrogram. The results obtained from a Mel spec-
trogram and its derivatives were then fused. The fused fea-
ture was a single-feature vector. The resulting shape of a
single-feature vector obtained from a Mel spectrogram for
dataset 1 was (1440,384), where 1440 is the quantity of data
in the dataset, and 384 is the length of a single-feature vector.

2) MEL-FREQUENCY CEPSTRAL COEFFICIENT

The MFCC is one of the most crucial features for speech
recognition, and MFCC is based on the power spectrum. The
MEFCC is typically calculated after passing a cough signal
through an STFT filter, a Mel filter bank, and a discrete
cosine transform filter [45]. The MFCC is calculated using
the following equation:

MFCC (m,k) =Y log(IX (n, k)|* -A(m))

1 n
- cos |:m(z - —)—:| (5)
27z

where M (m, k) is a matrix in which the row (m) represents the
MFCC and the column (k) represents the time frame. In this
study, the attributes were acquired from each row of M (m, k)
matrix. The following text describes how various attributes
from the MFCC were captured. For each cough sound, the
MFCC and its derivatives were generated.

Vectors of the maximum cepstral coefficient, mean cepstral
coefficient, cepstral coefficient variance, and standard devia-
tion of the cepstral coefficient were captured from each row
of the MFCC. Moreover, the maximum cepstral coefficient
was extracted from each derivative of the MFCC. The results
attained from MFCC and its derivatives were combined, and
the shape of a single-feature vector obtained from the MFCC
was (1440,240).

3) CHROMAGRAM

A chromagram (CHROMA) is a feature used to examine
pitch characteristics in music. A chromagram is a pitch class
profile and can be used to distinguish different types of
cough sounds because the cough signals of different patients
have different amplitudes; thus, transforming cough sounds
into a chromagram can indicate how cough energy is dis-
tributed among different pitch classes. Three types of chro-
magrams exist [37]: the CHROMA-STFT, CHROMA-CQT,
and CHROMA-energy normalized (CHROMA-EN). The
CHROMA-STFT is generated through STFT, which includes
a linear frequency scale. The CHROMA-CQT is generated
using the CQT, which contains a logarithmic frequency scale
[46]. The energy is normalized in the CHROMA-EN. The
CHROMA-CQT was adopted in the present study.

A CHROMA [47] is usually a 2D matrix with pitch classes
in the rows and the time frames in the columns. We intended
to determine the features in the pitch classes; therefore,
we employed a method similar to MELSPEC. First, the
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CHROMA-CQT and its derivatives were generated. Second,
the maximum, mean, variance, and standard deviation of the
CHROMA magnitude as well as the maximum magnitude of
the derivatives of the CHROMA-CQT were generated. The
overall shape of a single-feature vector developed using the
CHROMA-CQT was (1440,120).

4) CONSTANT-Q CEPSTRAL COEFFICIENT

The CQCC was developed for automatic speaker verification.
It has also been applied to distinguish between patients with
asthma and healthy people [48]. The CQCC is determined
using three steps: (1) the CQT is calculated, after which the
amplitude of CQT is converted into decibels; (2) the MFCC
is used to obtain a 2D CQCC; and (3) emergent features are
extracted. The aforementioned steps are described in Table 4.
The shape of a single-feature vector obtained from the CQCC
was (1440, 240) in this study.

TABLE 4. Code for extracting emergent features from the CQCC.

Input: cough signals,
Output: a single feature vectors.

1 for k in range of dataset shape:

2 Compute Constant-Q transform (CQT)
3. Compute the magnitude of CQT
4

Using results in (3) and transform to dB using amplitude to dB
conversion
Using results in (4), compute MFCC as a result CQCC

Compute the first and second derivatives of CQCC.

€Q = €QCC(m, K)[j]
€Q'=CQCc(m k)l

5
6
7. for j in range of dataset shape:
8
9.
10. CQ" = CQCC(m, k)"[j]

11. mx = [np.max(CQ (i) for i in range(CQ.shape[0])]

12. mn = [np.mean(CQ (i) for i in range(CQ. shape[0])]
13. var = [np.var(CQ (i) for i in range(CQ. shape[0])]

14. std = [np.std(CQ(P) for i in range(CQ. shape[0])]

15. mx’ = [np.max(CQ' (i) for i in range(CQ'.shape[0])]
16. mx" = [np.max(CQ" (i) for i in range(CQ".shape[0])]
17. Fuse the results (11-16).

5) LINEAR PREDICTIVE CODE COEFFICIENT

The LPC is a vocal tract feature used to characterize the
spectral envelope of a speech signal. This coefficient has
been used for classifying cough sounds [49], [50], with suit-
able results. After extracting the LPC [37], [51], its first
and second derivatives are calculated. Subsequently, all the
computed features are fused to obtain a single LPC feature.
The shape of a single-LPC-feature vector generated in this
study was (1440,81). Fig. 3 illustrates the features extracted
using some spectrogram methods in this study.

D. PROPOSED FEATURE STRUCTURES AND METHODS
FOR RESTRUCTURING COMBINED FEATURES

This section describes the proposed feature structures and
techniques for restructuring combined features. The proposed
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FIGURE 3. Feature extraction results obtained for dry cough signals from
dataset 2: (a) MELSPEC and (b) MFCC.
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feature structures are single features and combined features.
As described in section I, a single feature is a feature obtained
after fusing the subfeatures extracted using different spectro-
gram methods. By contrast, a combined feature is obtained
after combining the single features extracted using different
spectrogram methods.

The structure of a single feature for dataset 1 is explained
as follows:

o The length of a single feature of a Mel spectrogram
is 384.

fi=Aar,az, a3, ..., azsa} (6)
o The length of a single feature of the MFCC is 240.
fo=1{b1,b2, b3, ..., brao} @)

o The length of a single feature of the CHROMA-CQT
is 120.

f=Alci,c2,c3,...,c120}) (8

o The length of a single feature of the CQCC is 240.

Ja=A{di,da, ds, ..., dauo} )
o The length of a single feature of the LPC is 81.
fs={er,ex,e3,... €81} (10

Moreover, the feature combination F is expressed as
follows:

= {ay, ., asga, b1, ., baap, c1, ., €120, d1, ., drao, €1, ., €g1}
(11)

The overall structure of a feature combination is expressed
as follows:

= {ki1, k2, .., k1065} (12)

where; a, b, c,d,e, k € R

After determining a single-feature set f and feature com-
bination F', we restructured the position of multi-combining
features in f and F. The combined features were restruc-
tured according to their discrimination power (mean absolute
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TABLE 5. Code for the restructuring of combined features.

Input: feature sets in NumPy array
Output: features at different positions.

1. Convert feature sets for F to DataFrame.

2. Compute the mean absolute deviation/mutual information value.

3. Determine the indices of each column.

4.  Use feature sets f or F to generate the DataFrame with column names
using the calculated indices in (3).

5. Sort the DataFrame in ascending order using the column index.

deviation) and mutual information value. The two restruc-
turing techniques are detailed in Table 5. These techniques
were analogous, with the difference being that the mean
absolute deviation was calculated using (13), whereas the
mutual information [52], [53] was calculated using (14).

Z 1% — Xa| (13)

px,y)
MX,Y) = 1 xd 14
X, r) //p(xy)n()(y) 'y (14)

where n is the number of data points, x; is the value of
each data point in a series, x,, is an average value of the
data, MAD(t) is the mean absolute deviation of the data,
p(x,y) is the joint probability of variables x and y, p(x) is
the probability of variable x, and p(y) is the probability of
variable y.

MAD(t) =

IV. PROPOSED 1D-DCNN

The main DL architecture used in this study was a parallel-
stream 1D-DCNN. The performance of this network was
compared with that of a single-stream 1D-DCNN. Both
the aforementioned networks exhibited the basic structure
of a CNN, which comprises an input layer, a hidden
layer, and an output layer. The parallel- and single-stream
1D-DCNNs were constructed using a Keras library and exe-
cuted in TensorFlow-GPU. The aforementioned networks are
described in the following text.

A. SINGLE-STREAM 1D-DCNN

As depicted in Fig. 4, the constructed single-stream
1D-DCNN contained one input layer, three convolutional
layers, one flattening layer, one dense layer, and one out-
put layer. The first convolutional layer of this network used
the regularizer 12 (0.001) kernel. The rectified linear unit
activation function was used in all the layers except the last
layer, in which the softmax activation function was used. Each
convolutional layer had a stride of 1 and the same padding.
After the dense layer, a 50% dropout was used.

B. PARALLEL-STREAM 1D-DCNN
The architecture of the constructed parallel-stream 1D-DCNN
was similar to that of the constructed single-stream 1D-CNN;
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however, in contrast to the single-stream 1D-CNN, the
parallel-stream network included multiple streams in parallel.
Each stream comprised a feature set (input layer), three
convolutional layers, one flattening layer, one merged layer,
one dense layer, and one output layer (Fig. 4).

-
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— — ] eI
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(@ (b)

FIGURE 4. Proposed 1D-DCNN: (a) parallel-stream network and
(b) single-stream network.

When training the two networks, the number of epochs was
set as 50, and the batch size was set as 32. The networks
were optimized using the root mean squared propagation
(RMSProp) optimizer; their loss function was the categorical
cross-entropy function; and their performance was evaluated
in terms of their accuracy.

C. EXPERIMENTAL SETUP AND EVALUATION METRICS

In the experiments, extracted spectrogram features were nor-
malized using the z-score method. Subsequently, two steps
were conducted to split the datasets. First, 80% and 20%
of each dataset were randomly divided into a training set
and testing set, respectively. Second, 80% and 20% of the
training data were further divided into a training set and
validation set, respectively. Finally, the F'1 score and MCC
were determined. The confusion matrix was used to evaluate
the prediction for each cough category.

The weighted F'1 score [25] is expressed as follows:

TP
TP+ 0.5(FP + FN) |
The MCC [54] is expressed as follows:
(TPxTN)—(FPxFN)

= /(TP t FP)-(TP+EN)-(IN + FP).(IN + EN)
(16)

F1 score =

Wi 15)

MCC

where TP indicates the number of true positives, TN indicates
the number of true negatives, FP indicates the number of false
positives, FN indicates the number false negatives, and w; is
the weight ratio of class i.

D. HARDWARE AND SOFTWARE
The hardware used in this study was a desktop with an
Intel CoreTM i7-10700 CPU @2.9 GHz with 16 GB RAM,
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an Nvidia GeForce GTX 2060 graphics card with 6 GB
VRAM, and a 1-TB hard disk drive. Audacity version
3.1.3 was used for signal segmentation in this study. Audacity
is a multifunctional tool that enables users to import, edit,
export, and record audio files [55]. A Librosa library [37]
was used to analyze cough signals through processes such as
audio wave loading and spectrogram extraction.

V. RESULTS AND DISCUSSION

A. COMPARISON OF DIFFERENT 1D DL MODELS

A simple exploratory study was conducted to compare the
performance of a 1D-CNN model, ID-DNN model, and GRU
model. Each of these models comprised only one input layer
and one output layer. The 1D-DCNN model comprised two
convolutional layers and one flattening layer. For this model,
the kernel size was 10, the number of filters was 32, and the
number of units in the dense layer was 64. The 1D-DNN
model contained two dense layers with 32 units each. The
GRU model contained two recurrent neural network layers
and a flattening layer. It had the same number of units as did
the 1D-DNN model. As presented in Table 6, the 1D-DCNN,
1D-DNN, and GRU models achieved F'1 scores of 97.21%,
96.52%, and 96.51%, respectively. Because the 1D-DCNN
model exhibited the highest F'1 score, this model was selected
for further exploration.

TABLE 6. F1 score and MCC values obtained for different 1D DL models.

Network Feature set F1-score (%) MCC
ID-DCNN CHROMA+LPC+MFCC  97.21 0.942
1D-DNN CHROMA+LPC+MFCC  96.52 0.928
GRU CHROMA+LPC+MFCC  96.51 0.928

B. COMPARISON OF THE METHODS USED FOR
RESTRUCTURING COMBINED FEATURES

Two methods were used in this study for restructuring com-
bined features, and the results obtained with these methods
are presented in Table 7. The restructuring method based
on discrimination power outperformed that based on the
mutual information value. The F'1 score obtained with the
method based on discrimination power was 1.4% and 1.39%
higher than that based on the mutual information value
for two feature sets. Therefore, the restructuring method
based on discrimination power was selected for further
analysis.

C. RESULTS OBTAINED FOR THE SINGLE-STREAM
1D-DCNN FOR DIFFERENT DATASETS

Single-feature vectors extracted from all the spectrograms
were aggregated, and the method based on discrimination
power was used to restructure combined features. Sub-
sequently, these features were input to a single-stream
1D-DCNN. The classification results of this network were
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TABLE 7. Results obtained for the two methods used in this study for
restructuring combined features.

F1-
Methods Feature sets score MCC
(%)
Discrimination CHROMA+LPC+MFCC 97.57 0.949
power MFCC+LPC+MELSPEC+CHR 98.26 0.964
OMA
Mutual CHROMA+LPC+MFCC 96.17 0.920
. . MFCC+LPC+MELSPEC+CHR 96.87 0.935
information OMA

TABLE 8. Classification results obtained with the single-stream 1D-DCNN
for different feature sets and datasets.

F1-
ngtg:l/t Feature sets score  MCC
(%)
MFCC+LPC 97.22  0.942
MELSPEC+LPC 95.82 00913
Single- CHROMA+LPC+MFCC 97.57 0.949
stream MFCC+LPC+MELSPEC 98.26  0.964
/Datasct | CHROMA+LPC+MELSPEC 9548 0.906
MFCC+LPC+MELSPEC+CHROMA 98.26  0.964
MFCC+LPC+MELSPEC+
CHROMA+CQCC o791 0957
MFCC+LPC 81.24 0.626
MELSPEC+LPC 81.92 0.638
Single- CHROMA+LPC+MFCC 80.63 0.613
stream MFCC+LPC+MELSPEC 83.53  0.67
/Datasct 2 CHROMA+LPC+MELSPEC 71.65 0433
MFCC+LPC+MELSPEC+CHROMA 80.28  0.605
MFCC+LPC+MELSPEC+
CHROMA+CQCC 80.02 0601

evaluated using the F'1 score and MCC. Table 8 presents
the performance of 1D-DCNN for various feature sets and
the two datasets. As presented in Table 8, the results
obtained for the feature sets differed according to the
dataset.

For dataset 1, the MFCC + LPC + MELSPEC and
MFCC + LPC + MELSPEC + CHROMA feature sets exhib-
ited the same classification results. The F'1 score and MCC
for the two feature sets were 98.26% and 0.964, respec-
tively. In addition, lower performance was achieved for the
MELSPEC + LPC and CHROMA + LPC + MELSPEC
feature sets than for the aforementioned two feature sets.
The F1 scores and MCCs of the MELSPEC + LPC and
CHROMA + LPC + MELSPEC feature sets differed by
0.34% and 0.007, respectively. For dataset 2, the classifica-
tion results obtained for the MFCC + LPC + MELSPEC
feature set were superior to those obtained for the other
feature sets. An F'1 score of 83.53% and an MCC of 0.67 were
obtained for the aforementioned feature set. Poor classifi-
cation results were obtained for the CHROMA + LPC +
MELSPEC feature set, with the F'1 score and MCC being
71.65% and 0.433, respectively.

The classification results obtained for dataset 2 were infe-
rior to those obtained for dataset 1. To determine the reason
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for the inferior classification performance for dataset 2,
we performed a quick review of previous studies conducted
using this dataset. Poor classification results were obtained
for dataset 2 in [56] and [57].

D. RESULTS OBTAINED FOR THE PARALLEL-STREAM
1D-DCNN FOR DIFFERENT DATASETS

In the parallel-stream 1D-DCNN, every single-feature vector
was simultaneously fed to different inputs, and the features
extracted from parallel streams were subsequently concate-
nated to form a merged layer. The resulting features were
passed through a dense layer before being classified at the
output layer (Fig. 4). The classification results obtained for
the parallel-stream network are presented in Table 9.

TABLE 9. Classification results obtained with the parallel-stream
1D-DCNN for different feature sets and datasets.

F1-
I]\)/I;ji/t Feature sets score MCC
(%)
MFCC+LPC 98.61 0.971
MELSPEC+LPC 95.12 0.899
Parallel- CHROMA+LPC+MFCC 97.22  0.943
stream MFCC+LPC+MELSPEC 9791 0.957
Dataset 1 CHROMA+LPC+MELSPEC 93.37 0.863
MFCC+LPC+MELSPEC+CHROMA 98.61 0.971
MFCC+LPC+MELSPEC+
CHROMA+CQCC o791 0.957
MFCC+LPC 81.88  0.638
MELSPEC+LPC 82.28 0.645
Parallel- CHROMA+LPC+MFCC 81.39  0.628
stream MFCC+LPC+MELSPEC 81.27 0.625
/Dataset 2 CHROMA+LPC+MELSPEC 68.93 0.378
MFCC+LPC+MELSPEC+CHROMA 81.78  0.635
MFCC+LPC+MELSPEC+
CHROMA+CQCC 8296~ 0.663

For dataset 1, the best classification results were obtained
for the MFCC + LPC and MFCC + LPC + MELSPEC +
CHROMA feature sets. The F'1 score and MCC for these fea-
ture sets were 98.61% and 0.971, respectively. An F'1 score
of 97.91% was obtained for the MFCC + LPC + MELSPEC
and MFCC + LPC + MELSPEC + CHROMA + CQCC
feature sets. Moreover, the worst classification results were
observed for the CHROMA + LPC + MELSPEC feature
set, with the F'1 score being 93.37% and the MCC being
0.863. Fig. 5(a) shows the confusion matrix of the feature
set for which the best classification results were obtained.
Dataset 1 contained 170 dry cough sounds and 118 wet cough
sounds. The classification results of the proposed parallel-
stream network contained three false positives and one false
negative. For dataset 1, the aforementioned network predicted
168 cough signals as dry coughs and 120 cough signals as wet
coughs.

For dataset 2, the best classification results were obtained
for the MFCC + LPC + MELSPEC + CHROMA + CQCC
feature set. The F'1 score and MCC for this feature set
were 82.96% and 0.663, respectively. The worst classification
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Overall, the single-stream network required fewer
3 training parameters than did the parallel-stream net-
z z work (3866954 vs. 3998 042). The results presented in
E g Tables 8 and 9 indicate that (1) training multiple paral-

wet
o
B
<

w
Predicted Label

Predicted Label

(a) (b)

FIGURE 5. Confusion matrix of the feature sets for which the proposed
parallel-stream 1D-DCNN exhibited the best classification results:
(a) dataset 1 and (b) dataset 2.

results were obtained for the CHROMA + LPC + MEL-
SPEC feature set, with the F'1 score being 68.93% and the
MCC being 0.378. Fig. 5(b) displays the confusion matrix of
the feature set for which the best classification results were
obtained. Dataset 2 contained 413 and 389 dry and wet cough
sounds, respectively. The proposed network predicted 46 dry
cough signals as wet cough signals and 90 wet cough signals
as dry cough signals.

E. COMPARISON OF THE PERFORMANCE OF THE
SINGLE-STREAM 1D-DCNN AND

PARALLEL-STREAM 1D-DCNN

The performance, execution times, and number of param-
eters of the single-stream 1D-DCNN and parallel-stream
ID-DCNN were compared. For dataset 1, the parallel-
stream network exhibited the best classification results for
two feature sets, with the F'1 score being 98.61% and
the MCC being 0.971. Nevertheless, the single-stream net-
work exhibited excellent classification results for most
feature sets. In addition, when using all five features
(MFCC + LPC 4+ MELSPEC + CHROMA + CQCCOC),
the single- and parallel-stream networks categorized cough
sounds in 386.18 and 481.08 s, respectively. For dataset 2,
the parallel-stream network exhibited superior classifica-
tion results to the single-stream network for most feature
sets. Moreover, when using all five features, the single
and parallel-stream networks classified cough sounds in
864.21 and 1445.87 s, respectively (Fig. 6).

FIGURE 6. Execution time of and training parameters required by the
constructed parallel- and single-stream networks for different datasets.
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lel networks concurrently does not guarantee excellent
classification results, but selection of input features are
important, and that (2) the simultaneous aggregation of many
features in a single-stream network does not result in high
performance.

F. CLASSIFICATION RESULTS OBTAINED UNDER THE
CONCATENATION OF LAYERS AT DIFFERENT LEVELS

We examined whether the classification performance of the
constructed parallel-stream network could be improved by
concatenating layers at different levels. We trained the pro-
posed parallel-stream network [Fig. 4(b)] and then modified
the network by performing concatenation at the second and
third convolutional layers. The MFCC + CQCC feature set
was selected as the input of the aforementioned network
because of the similarities in the dimensions of these features.
Better classification results were obtained when concatenat-
ing layers at the flattening level than when concatenating lay-
ers at other levels. When concatenating layers at the flattening
level, the F1 score was 99.30%, and the MCC was 0.985
(Table 10).

TABLE 10. Classification results obtained when concatenating layers at
different levels using dataset 1.

Level F1-score (%) MCC
Second 98.26 0.964
convolutional

Third convolutional 97.57 0.949
Flattening 99.30 0.985

G. CLASSIFICATION RESULTS OBTAINED WHEN USING
DIFFERENT STRATEGIES FOR MERGING LAYERS

We compared the classification results obtained with the
proposed parallel-stream network when using different strate-
gies for merging layers, such as addition, multiplication,
maximization, and concatenation. Layer merging involves
combining two or more models or layers. Four layer merg-
ing strategies were adopted at different levels in this study
(Table 11). At the flattening level, excellent classification

TABLE 11. Classification results obtained when adopting different layer
merging strategies at different levels using dataset 1.

Level Strategy Fl-score (%) MCC
Addition 97.92 0.957
Second Multiplication 97.21 0.942
convolutional Maximum 98.61 0.971
concatenation 98.26 0.964
Addition 95.50 0.909
Flattening Mult.iplication 96.15 0.922
Maximum 97.23 0.944
concatenation 99.30 0.985
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results were obtained when using the concatenation strategy.
Moreover, better classification results were obtained at the
second convolutional level than at the flattening level for
three of the four adopted strategies (i.e., the addition, mul-
tiplication, and maximization strategies). The maximization
strategy exhibited the best results (F'1 score of 98.61%) at
the second convolutional level, whereas the concatenation
strategy exhibited the best results (F'1 score of 99.30%) at
the flattening level.

VI. CONCLUSION

In this study, cough sounds were classified into wet and
dry coughs through the analysis of the emergent fea-
tures extracted from spectrograms and a parallel-stream
ID-DCNN. Two datasets were used in this study. Data
enhancement was conducted to increase the quantity of data
in each dataset, and each cough signal was then padded using
a zero-padding system to generate cough signals with fixed
dimensions. After using the zero-padding system, the cough
signals of datasets 1 and 2 had fixed dimensions of 29952
and 45 982, respectively.

Numerous attributes were extracted from each row of orig-
inal spectrograms and their derivatives and then fused. The
MELSPEC, CHROMA, MFCC, CQCC, and LPC spectro-
grams were used in this study. We obtained two types of
attributes: single attributes and combined attributes. We then
examined the performance of two techniques designed in this
study to restructure combined attributes. One of these tech-
niques was based on features with high discrimination power,
whereas the other was based on features with high mutual
information values. The approach based on discrimination
power exhibited 1.4% and 1.39% higher F'1 scores than did
the approach based on the mutual value when two feature sets
were input to the proposed parallel-stream 1D-DCNN.

Before developing the proposed parallel-stream
1D-DCNN, we conducted a simple study on three models:
ID-DCNN, GRU model, and 1D-DNN. The 1D-DCNN
outperformed the other two models; thus, this model was
adopted for further analysis in this study. We compared the
performance of the proposed parallel-stream 1D-DCNN with
that of a single-stream 1D-DCNN.

We then compared the parallel-stream network and a
single-stream network. For dataset 1, the highest F'1 score
exhibited by the parallel-stream network was 98.61%. How-
ever, the parallel-stream network outperformed the single-
stream network for only a few feature sets. Moreover, the
confusion matrix of the feature set for which the best classifi-
cation performance was obtained indicated that the numbers
of false positives and false negatives were low.

For dataset 2, the best classification results were obtained
for the MFCC + LPC + MELSPEC + CHROMA + CQCC
feature set (F'1 score of 82.96% and MCC of 0.663). The con-
fusion matrix of this feature set contained large numbers of
false positives and false negatives. The number of false neg-
atives was almost twice that of false positives. In some cases,
the parallel-stream network exhibited excellent classification
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performance but required a long classification time and
numerous training parameters.

We also compared the classification performance achieved
when concatenating layers at different levels. When the
MFCC + CQCC feature set was used, better classification
results were obtained when concatenating layers at the flat-
tening level (F'1 score of 99.30%) than at other levels.

Finally, the classification performance of the proposed
parallel-stream network was examined under four layer merg-
ing strategies: addition, multiplication, concatenation, and
maximization. These strategies were implemented at two
levels: the second convolutional level and flattening level.
Better classification results were obtained for all the layer
merging strategies, except the concatenation strategy, at the
second convolutional level than at the flattening level. The
best classification results were obtained with the maximiza-
tion and concatenation strategies at the second convolutional
and flattening levels, respectively.

In the future, we will develop a transfer learning algo-
rithm that can execute the spectrogram methods used in
this study. The performance of this algorithm will then be
compared with the parallel-stream network designed in this
study. Moreover, a novel method will be adopted to increase
the quantity of data, and this method will be compared with
the data enhancement method adopted in this study.
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