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ABSTRACT Currently, a subjective method is used to diagnose cough sounds, particularly wet and dry
coughs, which can lead to incorrect diagnoses. In this study, novel emergent features were extracted
using spectrogram methods and a parallel-stream one-dimensional (1D) deep convolutional neural network
(DCNN) to classify cough sounds. The data of this study were obtained from two datasets. We employed
the Mel spectrogram, chromagram constant-Q transform, Mel-frequency cepstral coefficient, constant-Q
cepstral coefficient, and linear predictive code coefficient to conduct features analysis. The maximum,
mean, variance, and standard deviation values of the original spectrogram as well as the maximum first and
second derivatives of this spectrogram were extracted and fused to create a single-feature vector. We adopted
two types of features: single features and combined features. Each design was restructured according to
the magnitude of features with high discrimination power. A parallel-stream 1D-DCNN was developed
for classifying cough sounds accurately. We compared the results obtained using the aforementioned
network with those obtained using a single-stream 1D-DCNN. We found that the parallel-stream network
outperformed the single-stream network for some feature sets. The developed network achieved F1 scores
of 98.61% and 82.96% for the first and second datasets, respectively. The concatenation of layers at the
flattening level resulted in anF1 score of 99.30% in dataset one.Moreover, layermerging strategies exhibited
a better performance at the second convolutional layer level than at the flattening layer level in many cases.
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INDEX TERMS Classification, convolutional neural network, cough sounds, feature extraction, spectrogram
methods.

I. INTRODUCTION19

Because of the rise in respiratory diseases, increased research20

attention has been paid to cough sound classification. Cough-21

ing is a critical symptom of respiratory diseases [1], [2],22

and two types of coughs exist: wet and dry coughs [3]. Dis-23

criminating between these two types of coughs is crucial [4];24

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongming Li .

however, many hospitals in developing countries adopt inef- 25

ficient approaches for diagnosing the cough type. 26

Advances in computer-assisted technology have enabled 27

the use of audio tools and deep learning (DL) models for 28

reliably classifying wet and dry cough sounds. An audio tool 29

is an electronic device that records and stores sound. Audio 30

tools are used to record sounds in cough research [5], [6] and 31

other related fields. Various audio feature extraction methods 32

have been proposed to detect, analyze, and classify cough 33

sounds. Three types of audio features exist [7], [8], [9]: 34
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time-domain features, including zero-crossing, root mean35

square, and energy envelope; frequency-domain features,36

including spectral centroid, bandwidth, roll-off, and power37

spectral density; and time–frequency features, including the38

Mel spectrogram and Mel-frequency cepstral coefficient39

(MFCC).40

In the present study, time–frequency features were used41

because they can simultaneously represent signal properties42

in the time and frequency domains. These features have43

been used in many studies for classification application44

[10], [11], [12].45

The following questions were addressed in the present46

study: (1) how are the emergent features extracted using47

different methods can be combined and input into a DL48

model? (2) which DL method is appropriate for classifying49

emergent features? and (3) how are the problems of a small50

dataset and varying cough signal dimensions overcome in51

cough research?52

The output of the time–frequency method is a two-53

dimensional (2D) pixel matrix, which can be visualized, and54

this method is termed as the time–frequency spectrogram55

method [13]. Several types of features can be extracted from56

spectrograms to generate one-dimensional (1D) feature vec-57

tors. Emergent feature vectors can be extracted from spectro-58

grams along the time axis (column) or frequency axis (row).59

In our previous study [14], we used one spectrogram method60

and focused on extracting the maximum cepstral coeffi-61

cient vector from MFCC row. In this study, we expanded62

the technique by including five spectrogram methods and63

their derivatives and then capturing numerous features from64

spectrograms and their derivatives. The extracted subfeatures65

include the maximum, mean, variance, and standard devia-66

tion. In each spectrogram method, the extracted subfeatures67

were fused to form a single-feature vector.68

Feature vectors obtained in each adopted method were69

aggregated to obtain diverse feature combinations. Aggregat-70

ing features and inputting them into a DL model is tedious.71

In general, a DL model [e.g., a convolutional neural net-72

work (CNN)] is affected by the relationships between fea-73

tures in space, especially when two or more features are74

integrated. In [15], the correlation matrix, clustering, and75

dendrogram techniques were used to restructure integrated76

features. A drawback of using the dendrogram technique is77

the long time required for processing dendrogram data, which78

leads to errors. Thus, in this paper, we propose methods for79

restructuring the position of combined features according to80

their discrimination power and mutual information value.81

Studies have transformed cough signals into features such82

as Mel spectrograms and MFCCs [16], [17] and then have83

input these features directly into 2D DL models. Thus, cough84

sounds can be detected using attributes from a spectrogram.85

These attributes are one-dimensional features and are suitable86

inputs for 1D DL models, which are highly useful because of87

their low computational demand, time requirement, and cost.88

To the best of our knowledge, a few studies have adopted a89

1D DL model for cough detection, and most relevant studies90

have adopted a single-stream model for cough detection. 91

For example, Baramulari et al. [18] classified cough sounds 92

by using a bidirectional long short-term memory model. 93

Hassan et al. [19] used a recurrent neural network to detect 94

COVID-19. Amrulloh et al. [20] employed a neural network 95

to classify pneumonia and asthma infections. In the present 96

study, we examined the performance of a 1D-CNN, gated 97

recurrent unit (GRU) model, and a neural network for cough 98

detection. We found that the 1D-CNN model outperformed 99

the other two models. Therefore, the 1D-CNN model was 100

used for further analysis in this study. 101

Insufficient data are a challenge encountered in studies on 102

cough sound [21], [22], as well as a class imbalance problem 103

[23], [24]. A similar problem was encountered in this study. 104

Of the two collected datasets, one contained 118 wet cough 105

sounds and 170 dry cough sounds, and the other contained 106

389 wet cough sounds and 413 dry cough sounds. These 107

datasets exhibited the class imbalance problem. Therefore, 108

we used the weighted F1 score [25] and Matthews correla- 109

tion coefficient (MCC) [26] as metrics for assessing model 110

performance. Furthermore, the two datasets contained signals 111

with different dimensions. We used a zero-padding system 112

to address the varying dimensions of cough signals. The 113

problem of insufficient data was addressed using the data 114

enhancement technique. 115

The main contributions of this study are as follows: 116

1) Sounds of wet and dry coughs were classified using 117

novel features extracted using spectrogram methods 118

and a parallel-stream 1D deep CNN (DCNN). 119

2) The features extracted using spectrogram methods 120

were analyzed using a novel method to classify wet and 121

dry coughs. 122

3) Feature structures were designed, and two techniques 123

were developed for restructuring the positions of com- 124

bined features and were compared to determine the 125

better technique. 126

4) A parallel-stream 1D-DCNN was developed, and the 127

performance of this CNN was compared with that of 128

a single-stream 1D-CNN. The developed model dif- 129

fers from existing related models [15], [36] in three 130

ways: (1) it does not contain a maximum pooling layer, 131

(2) layer concatenation occurs in its flattening layer, 132

and (3) it contains a few layers as a small networkmight 133

prevent overfitting [28]. Moreover, the performance 134

benefits of concatenating layers at different levels were 135

examined. 136

5) Model performance achievedwith layermerging strate- 137

gies at different levels in a parallel-stream network was 138

examined. 139

The rest of this article is organized as follows. Section II 140

provides an overview of the related research. Section III 141

details the methodology used for constructing the designed 142

system. Section IV describes the proposed DL models. 143

Section V presents the experimental results and a discussion 144

on the results. Finally, Section VI provides the conclusions of 145

this study. 146
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II. RELATED RESEARCH147

Studies have reported that the cough type can be identified148

using audio recordings, feature extraction techniques, and DL149

models. Therefore, we reviewed research on feature extrac-150

tion approaches and 1D DL models.151

Islam et al. [29] employed a deep neural network (DNN)152

to detect COVID-19. They used time-, frequency-, and153

time–frequency-domain features for COVID-19 detection154

and obtained an accuracy of 97.5%. Zhao et al. [30] used155

pig cough sounds to differentiate respiratory diseases. They156

extracted 39 MFCC features and classified them using a157

hybrid DNN and hidden Markov model.158

Lella et al. [31] used a 1D-CNN to detect COVID-19 on the159

basis of voice, breath, and cough sounds. They input MFCC160

data into an autoencoder to extract deep features, which were161

then classified using a single-branch 1D-CNN. The afore-162

mentioned authors achieved a classification accuracy of 90%.163

Amrulloh et al. [20] distinguished asthma and pneumonia by164

using three features: the MFCC, Shannon entropy, and non-165

Gaussianity score. They fed these features to a DNN and166

achieved a sensitivity of 89%.167

Feng et al. [32] detected COVID-19 on the basis of168

recorded cough sounds. They obtained time- and frequency-169

domain features from each sound. They authors achieved a170

maximum classification accuracy of 99.56% with a recurrent171

neural network. Islam et al. [33] used the chromagram feature172

to detect COVID-19. They compared the performance of a173

CNN and DNN in COVID-19 detection and found that the174

CNN had higher accuracy than did the DNN.175

III. METHODOLOGY176

This section describes the methodology used in this study for177

constructing the designed system. The system design frame-178

work is illustrated in Fig. 1, and it contains seven key parts:179

dataset collection, data enhancement, zero padding, emergent180

feature analysis, feature structure design, restructuring of181

multiple features, and DL.182

FIGURE 1. System design framework.

Two datasets were used in this study. The first dataset183

comprised 189 files of cough audio [34]. Cough signals were184

manually segmented using Audacity software [55] to obtain185

170 dry cough sounds and 118 wet cough sounds for this186

dataset. Similarly, the second dataset comprised 222 record-187

ings of cough audio [35]. Segmentation of cough signals188

identified 389 wet coughs and 413 dry coughs in this dataset.189

The details of data collection and enhancement are presented190

TABLE 1. Details regarding the collected datasets and data enhancement.

in Table 1. The two datasets were preprocessed using tech- 191

niques that were similar to those performed in [14], with the 192

only difference being that signals were not resampled in the 193

present study. 194

A. DATA ENHANCEMENT 195

The basic concept of data enhancement in machine learning 196

involves increasing the quantity of training data; however, 197

data enhancement also can be performed to enrich data in 198

a dataset [27]. Data enhancement can be performed using 199

two approaches: image- and audio-based approaches. The 200

audio-based approach was used in the present study. Two 201

strategies were used in this study to enhance the quantity of 202

data: time stretch and pitch shift. In the time stretch method, 203

we stretched the duration of cough signals by factors of 204

1.07 and 0.5. The factor of 1.07 was used to accelerate a 205

cough signal, and the factor of 0.5 was used to decelerate a 206

cough signal. Pitch shift was performed using factors similar 207

to those used in [27]. 208

The results indicated that after data enhancement, the num- 209

bers of dry and wet cough signals in dataset 1 increased 210

from 170 to 850 and from 118 to 590, respectively. More- 211

over, the numbers of dry and wet cough signals in dataset 2 212

increased from 413 to 2065 and from 389 to 1945, respec- 213

tively. Overall, the total number of cough signals increased 214

from 288 to 1440 for the first dataset and from 802 to 4010 for 215

the second dataset. 216

B. PADDING SYSTEM 217

A padding system is used to overcome the problem of mul- 218

tivariable bit lengths of cough signals in a dataset. In this 219

study, the bit lengths of the signals with short bit lengths were 220

increased to the maximum value. Thus, a fixed bit length was 221

achieved for all the cough signals (bit length is the size of a 222

signal). Inspired by the random padding technique proposed 223

by Dong et al. [36], we created a zero-padding system instead 224

of a random padding system. The procedures for creating a 225

zero-padding system are described in the following text. 226

Consider the example of dataset 2. First, we determined 227

that the maximum bit length in this dataset was 45 982, 228

approximately 2.08 s, when the sample rate was set as 229

22050 Hz. Second, we calculated the bit length of each 230
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cough signal in the database. Subsequently, we determined231

the difference (N ) between the maximum bit length and the232

bit length of the signal. Third, the zero () function was used to233

obtain a zero array of size N . Finally, the append () function234

was used to copy the current signal sample withN zero values235

until the maximum bit length was attained.236

The experimental results indicated that after padding, the237

dimensions of each signal in a dataset became the same. The238

dimensions of signals in datasets 1 and 2 were 29 952 and239

45 982, respectively. Fig. 2 displays an example of a cough240

signal obtained before and after zero padding on dataset 2.241

FIGURE 2. Example dry cough waveforms from dataset 2: (a) original
waveform and (b) waveform obtained after zero padding.

C. FEATURE EXTRACTION242

The following methods were used for feature extraction:243

the Mel spectrogram, MFCC, chromagram constant-Q trans-244

form (CQT), constant-Q cepstral coefficient (CQCC), and245

linear predictive code coefficient (LPC) [37]. Table 2 presents246

the parameter settings for the conversion of cough signals247

into spectrograms and LPCs. In contrast to [38] and [39],248

we extracted the maximum, mean, variance, and standard249

deviation values of the original spectrogram as well as250

the maximum first and second derivatives of the original251

spectrogram.252

TABLE 2. Parameters Setting.

Essentially, a spectrogram is obtained after four steps: pre- 253

emphasis, framing, windowing, and short-time Fourier trans- 254

form (STFT). The spectrogram S(n, k) [40] is the squared 255

magnitude of X (n, k), which is expressed as follows: 256

X (n, k) =
∫ T

−T
x (τ ) · w(τ − k) · exp (−j2πnτ )dτ (1) 257

where x(t) is the cough signal, n is the Fourier coefficient, k 258

is the time frame,w(t) is the windowing function, and X (n, k) 259

is the STFT in the complex number. 260

S (n, k) = |X (n, k)|2 (2) 261

1) MEL SPECTROGRAM 262

A Mel spectrogram (MELSPEC) is an auditory system 263

derived by passing a cough signal through an STFT filter and 264

a Mel filter bank [41]. A Mel spectrogram is expressed as 265

follows [42], [43], [44]: 266

M (m, k) =
∑
m

|X (n, k)|2 ·1(m) (3) 267

where M (m, k) is the generated Mel spectrogram, and 1(m) 268

represents a triangular Mel filter bank with mMel-frequency 269

bands. The Mel frequency is calculated using the following 270

formula: 271

Mel freq = 2595× log10(1+
f

700
) (4) 272

In a Mel spectrogram, cough intensity bands are repre- 273

sented equally in Mel frequencies; thus, capturing different 274

attributes from each frequency band will provide interesting 275

results. Table 3 presents the code procedures used to obtain 276

attributes from a Mel spectrogram. 277

TABLE 3. Code for extracting emergent features from a Mel spectrogram.

In dataset 1, the Mel spectrogram M (m, k) and its deriva- 278

tives (M (m, k)′ andM (m, k)′′) were computed for each cough 279

signal. Subsequently, for each computed Mel spectrogram, 280

the vectors of the maximum spectral intensity, mean spectral 281

intensity, spectral intensity variance, and standard deviation 282
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of the spectral intensity were extracted from each frequency283

band. The aforementioned process was also used to extract284

maximum spectral intensity vectors from the derivatives of285

a Mel spectrogram. The results obtained from a Mel spec-286

trogram and its derivatives were then fused. The fused fea-287

ture was a single-feature vector. The resulting shape of a288

single-feature vector obtained from a Mel spectrogram for289

dataset 1 was (1440,384), where 1440 is the quantity of data290

in the dataset, and 384 is the length of a single-feature vector.291

2) MEL-FREQUENCY CEPSTRAL COEFFICIENT292

The MFCC is one of the most crucial features for speech293

recognition, and MFCC is based on the power spectrum. The294

MFCC is typically calculated after passing a cough signal295

through an STFT filter, a Mel filter bank, and a discrete296

cosine transform filter [45]. The MFCC is calculated using297

the following equation:298

MFCC (m, k) =
∑
z

log(|X (n, k)|2 ·1(m))299

· cos
[
m(z−

1
2
)
π

z

]
(5)300

whereM (m, k) is a matrix in which the row (m) represents the301

MFCC and the column (k) represents the time frame. In this302

study, the attributes were acquired from each row ofM (m, k)303

matrix. The following text describes how various attributes304

from the MFCC were captured. For each cough sound, the305

MFCC and its derivatives were generated.306

Vectors of themaximum cepstral coefficient, mean cepstral307

coefficient, cepstral coefficient variance, and standard devia-308

tion of the cepstral coefficient were captured from each row309

of the MFCC. Moreover, the maximum cepstral coefficient310

was extracted from each derivative of the MFCC. The results311

attained from MFCC and its derivatives were combined, and312

the shape of a single-feature vector obtained from the MFCC313

was (1440,240).314

3) CHROMAGRAM315

A chromagram (CHROMA) is a feature used to examine316

pitch characteristics in music. A chromagram is a pitch class317

profile and can be used to distinguish different types of318

cough sounds because the cough signals of different patients319

have different amplitudes; thus, transforming cough sounds320

into a chromagram can indicate how cough energy is dis-321

tributed among different pitch classes. Three types of chro-322

magrams exist [37]: the CHROMA-STFT, CHROMA-CQT,323

and CHROMA-energy normalized (CHROMA-EN). The324

CHROMA-STFT is generated through STFT, which includes325

a linear frequency scale. The CHROMA-CQT is generated326

using the CQT, which contains a logarithmic frequency scale327

[46]. The energy is normalized in the CHROMA-EN. The328

CHROMA-CQT was adopted in the present study.329

A CHROMA [47] is usually a 2D matrix with pitch classes330

in the rows and the time frames in the columns. We intended331

to determine the features in the pitch classes; therefore,332

we employed a method similar to MELSPEC. First, the333

CHROMA-CQT and its derivatives were generated. Second, 334

the maximum, mean, variance, and standard deviation of the 335

CHROMA magnitude as well as the maximum magnitude of 336

the derivatives of the CHROMA-CQT were generated. The 337

overall shape of a single-feature vector developed using the 338

CHROMA-CQT was (1440,120). 339

4) CONSTANT-Q CEPSTRAL COEFFICIENT 340

The CQCCwas developed for automatic speaker verification. 341

It has also been applied to distinguish between patients with 342

asthma and healthy people [48]. The CQCC is determined 343

using three steps: (1) the CQT is calculated, after which the 344

amplitude of CQT is converted into decibels; (2) the MFCC 345

is used to obtain a 2D CQCC; and (3) emergent features are 346

extracted. The aforementioned steps are described in Table 4. 347

The shape of a single-feature vector obtained from the CQCC 348

was (1440, 240) in this study. 349

TABLE 4. Code for extracting emergent features from the CQCC.

5) LINEAR PREDICTIVE CODE COEFFICIENT 350

The LPC is a vocal tract feature used to characterize the 351

spectral envelope of a speech signal. This coefficient has 352

been used for classifying cough sounds [49], [50], with suit- 353

able results. After extracting the LPC [37], [51], its first 354

and second derivatives are calculated. Subsequently, all the 355

computed features are fused to obtain a single LPC feature. 356

The shape of a single-LPC-feature vector generated in this 357

study was (1440,81). Fig. 3 illustrates the features extracted 358

using some spectrogram methods in this study. 359

D. PROPOSED FEATURE STRUCTURES AND METHODS 360

FOR RESTRUCTURING COMBINED FEATURES 361

This section describes the proposed feature structures and 362

techniques for restructuring combined features. The proposed 363
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FIGURE 3. Feature extraction results obtained for dry cough signals from
dataset 2: (a) MELSPEC and (b) MFCC.

feature structures are single features and combined features.364

As described in section I, a single feature is a feature obtained365

after fusing the subfeatures extracted using different spectro-366

gram methods. By contrast, a combined feature is obtained367

after combining the single features extracted using different368

spectrogram methods.369

The structure of a single feature for dataset 1 is explained370

as follows:371

• The length of a single feature of a Mel spectrogram372

is 384.373

f1 = {a1, a2, a3, . . . , a384} (6)374

• The length of a single feature of the MFCC is 240.375

f2 = {b1, b2, b3, . . . , b240} (7)376

• The length of a single feature of the CHROMA-CQT377

is 120.378

f3 = {c1, c2, c3, . . . , c120} (8)379

• The length of a single feature of the CQCC is 240.380

f4 = {d1, d2, d3, . . . , d240} (9)381

• The length of a single feature of the LPC is 81.382

f5 = {e1, e2, e3, . . . , e81} (10)383

Moreover, the feature combination F is expressed as384

follows:385

F = {a1, ., a384, b1, ., b240, c1, ., c120, d1, ., d240, e1, ., e81}386

(11)387

The overall structure of a feature combination is expressed388

as follows:389

F = {k1, k2, .., k1065} (12)390

where; a, b, c, d, e, k ∈ R391

After determining a single-feature set f and feature com-392

bination F , we restructured the position of multi-combining393

features in f and F . The combined features were restruc-394

tured according to their discrimination power (mean absolute395

TABLE 5. Code for the restructuring of combined features.

deviation) and mutual information value. The two restruc- 396

turing techniques are detailed in Table 5. These techniques 397

were analogous, with the difference being that the mean 398

absolute deviation was calculated using (13), whereas the 399

mutual information [52], [53] was calculated using (14). 400

MAD(t) =
1
n
·

n∑
t=1

|xt − xav| (13) 401

M (X ,Y ) =
∫∫

p(x, y) ln
p(x, y)
p (x) p(y)

dxdy (14) 402

where n is the number of data points, xt is the value of 403

each data point in a series, xav is an average value of the 404

data, MAD(t) is the mean absolute deviation of the data, 405

p(x, y) is the joint probability of variables x and y, p(x) is 406

the probability of variable x, and p(y) is the probability of 407

variable y. 408

IV. PROPOSED 1D-DCNN 409

The main DL architecture used in this study was a parallel- 410

stream 1D-DCNN. The performance of this network was 411

compared with that of a single-stream 1D-DCNN. Both 412

the aforementioned networks exhibited the basic structure 413

of a CNN, which comprises an input layer, a hidden 414

layer, and an output layer. The parallel- and single-stream 415

1D-DCNNs were constructed using a Keras library and exe- 416

cuted in TensorFlow-GPU. The aforementioned networks are 417

described in the following text. 418

A. SINGLE-STREAM 1D-DCNN 419

As depicted in Fig. 4, the constructed single-stream 420

1D-DCNN contained one input layer, three convolutional 421

layers, one flattening layer, one dense layer, and one out- 422

put layer. The first convolutional layer of this network used 423

the regularizer l2 (0.001) kernel. The rectified linear unit 424

activation function was used in all the layers except the last 425

layer, in which the softmax activation function was used. Each 426

convolutional layer had a stride of 1 and the same padding. 427

After the dense layer, a 50% dropout was used. 428

B. PARALLEL-STREAM 1D-DCNN 429

The architecture of the constructed parallel-stream 1D-DCNN 430

was similar to that of the constructed single-stream 1D-CNN; 431
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however, in contrast to the single-stream 1D-CNN, the432

parallel-stream network includedmultiple streams in parallel.433

Each stream comprised a feature set (input layer), three434

convolutional layers, one flattening layer, one merged layer,435

one dense layer, and one output layer (Fig. 4).436

FIGURE 4. Proposed 1D-DCNN: (a) parallel-stream network and
(b) single-stream network.

When training the two networks, the number of epochs was437

set as 50, and the batch size was set as 32. The networks438

were optimized using the root mean squared propagation439

(RMSProp) optimizer; their loss function was the categorical440

cross-entropy function; and their performance was evaluated441

in terms of their accuracy.442

C. EXPERIMENTAL SETUP AND EVALUATION METRICS443

In the experiments, extracted spectrogram features were nor-444

malized using the z-score method. Subsequently, two steps445

were conducted to split the datasets. First, 80% and 20%446

of each dataset were randomly divided into a training set447

and testing set, respectively. Second, 80% and 20% of the448

training data were further divided into a training set and449

validation set, respectively. Finally, the F1 score and MCC450

were determined. The confusion matrix was used to evaluate451

the prediction for each cough category.452

The weighted F1 score [25] is expressed as follows:453

F1 score =
TP

TP+ 0.5(FP+ FN )
× wi (15)454

The MCC [54] is expressed as follows:455

MCC=
(TP×TN )−(FP×FN )

√
(TP+ FP)·(TP+FN )·(TN+FP)·(TN+FN )

456

(16)457

where TP indicates the number of true positives, TN indicates458

the number of true negatives,FP indicates the number of false459

positives, FN indicates the number false negatives, and wi is460

the weight ratio of class i.461

D. HARDWARE AND SOFTWARE462

The hardware used in this study was a desktop with an463

Intel CoreTM i7-10700 CPU @2.9 GHz with 16 GB RAM,464

an Nvidia GeForce GTX 2060 graphics card with 6 GB 465

VRAM, and a 1-TB hard disk drive. Audacity version 466

3.1.3 was used for signal segmentation in this study. Audacity 467

is a multifunctional tool that enables users to import, edit, 468

export, and record audio files [55]. A Librosa library [37] 469

was used to analyze cough signals through processes such as 470

audio wave loading and spectrogram extraction. 471

V. RESULTS AND DISCUSSION 472

A. COMPARISON OF DIFFERENT 1D DL MODELS 473

A simple exploratory study was conducted to compare the 474

performance of a 1D-CNNmodel, 1D-DNNmodel, and GRU 475

model. Each of these models comprised only one input layer 476

and one output layer. The 1D-DCNN model comprised two 477

convolutional layers and one flattening layer. For this model, 478

the kernel size was 10, the number of filters was 32, and the 479

number of units in the dense layer was 64. The 1D-DNN 480

model contained two dense layers with 32 units each. The 481

GRU model contained two recurrent neural network layers 482

and a flattening layer. It had the same number of units as did 483

the 1D-DNN model. As presented in Table 6, the 1D-DCNN, 484

1D-DNN, and GRU models achieved F1 scores of 97.21%, 485

96.52%, and 96.51%, respectively. Because the 1D-DCNN 486

model exhibited the highestF1 score, this model was selected 487

for further exploration. 488

TABLE 6. F1 score and MCC values obtained for different 1D DL models.

B. COMPARISON OF THE METHODS USED FOR 489

RESTRUCTURING COMBINED FEATURES 490

Two methods were used in this study for restructuring com- 491

bined features, and the results obtained with these methods 492

are presented in Table 7. The restructuring method based 493

on discrimination power outperformed that based on the 494

mutual information value. The F1 score obtained with the 495

method based on discrimination power was 1.4% and 1.39% 496

higher than that based on the mutual information value 497

for two feature sets. Therefore, the restructuring method 498

based on discrimination power was selected for further 499

analysis. 500

C. RESULTS OBTAINED FOR THE SINGLE-STREAM 501

1D-DCNN FOR DIFFERENT DATASETS 502

Single-feature vectors extracted from all the spectrograms 503

were aggregated, and the method based on discrimination 504

power was used to restructure combined features. Sub- 505

sequently, these features were input to a single-stream 506

1D-DCNN. The classification results of this network were 507
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TABLE 7. Results obtained for the two methods used in this study for
restructuring combined features.

TABLE 8. Classification results obtained with the single-stream 1D-DCNN
for different feature sets and datasets.

evaluated using the F1 score and MCC. Table 8 presents508

the performance of 1D-DCNN for various feature sets and509

the two datasets. As presented in Table 8, the results510

obtained for the feature sets differed according to the511

dataset.512

For dataset 1, the MFCC + LPC + MELSPEC and513

MFCC+LPC+MELSPEC+CHROMA feature sets exhib-514

ited the same classification results. The F1 score and MCC515

for the two feature sets were 98.26% and 0.964, respec-516

tively. In addition, lower performance was achieved for the517

MELSPEC + LPC and CHROMA + LPC + MELSPEC518

feature sets than for the aforementioned two feature sets.519

The F1 scores and MCCs of the MELSPEC + LPC and520

CHROMA + LPC + MELSPEC feature sets differed by521

0.34% and 0.007, respectively. For dataset 2, the classifica-522

tion results obtained for the MFCC + LPC + MELSPEC523

feature set were superior to those obtained for the other524

feature sets. AnF1 score of 83.53% and anMCCof 0.67were525

obtained for the aforementioned feature set. Poor classifi-526

cation results were obtained for the CHROMA + LPC +527

MELSPEC feature set, with the F1 score and MCC being528

71.65% and 0.433, respectively.529

The classification results obtained for dataset 2 were infe-530

rior to those obtained for dataset 1. To determine the reason531

for the inferior classification performance for dataset 2, 532

we performed a quick review of previous studies conducted 533

using this dataset. Poor classification results were obtained 534

for dataset 2 in [56] and [57]. 535

D. RESULTS OBTAINED FOR THE PARALLEL-STREAM 536

1D-DCNN FOR DIFFERENT DATASETS 537

In the parallel-stream 1D-DCNN, every single-feature vector 538

was simultaneously fed to different inputs, and the features 539

extracted from parallel streams were subsequently concate- 540

nated to form a merged layer. The resulting features were 541

passed through a dense layer before being classified at the 542

output layer (Fig. 4). The classification results obtained for 543

the parallel-stream network are presented in Table 9. 544

TABLE 9. Classification results obtained with the parallel-stream
1D-DCNN for different feature sets and datasets.

For dataset 1, the best classification results were obtained 545

for the MFCC + LPC and MFCC + LPC + MELSPEC + 546

CHROMA feature sets. The F1 score andMCC for these fea- 547

ture sets were 98.61% and 0.971, respectively. An F1 score 548

of 97.91% was obtained for the MFCC+ LPC+MELSPEC 549

and MFCC + LPC + MELSPEC + CHROMA + CQCC 550

feature sets. Moreover, the worst classification results were 551

observed for the CHROMA + LPC + MELSPEC feature 552

set, with the F1 score being 93.37% and the MCC being 553

0.863. Fig. 5(a) shows the confusion matrix of the feature 554

set for which the best classification results were obtained. 555

Dataset 1 contained 170 dry cough sounds and 118 wet cough 556

sounds. The classification results of the proposed parallel- 557

stream network contained three false positives and one false 558

negative. For dataset 1, the aforementioned network predicted 559

168 cough signals as dry coughs and 120 cough signals as wet 560

coughs. 561

For dataset 2, the best classification results were obtained 562

for the MFCC + LPC +MELSPEC + CHROMA + CQCC 563

feature set. The F1 score and MCC for this feature set 564

were 82.96% and 0.663, respectively. Theworst classification 565
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FIGURE 5. Confusion matrix of the feature sets for which the proposed
parallel-stream 1D-DCNN exhibited the best classification results:
(a) dataset 1 and (b) dataset 2.

results were obtained for the CHROMA + LPC + MEL-566

SPEC feature set, with the F1 score being 68.93% and the567

MCC being 0.378. Fig. 5(b) displays the confusion matrix of568

the feature set for which the best classification results were569

obtained. Dataset 2 contained 413 and 389 dry and wet cough570

sounds, respectively. The proposed network predicted 46 dry571

cough signals as wet cough signals and 90 wet cough signals572

as dry cough signals.573

E. COMPARISON OF THE PERFORMANCE OF THE574

SINGLE-STREAM 1D-DCNN AND575

PARALLEL-STREAM 1D-DCNN576

The performance, execution times, and number of param-577

eters of the single-stream 1D-DCNN and parallel-stream578

1D-DCNN were compared. For dataset 1, the parallel-579

stream network exhibited the best classification results for580

two feature sets, with the F1 score being 98.61% and581

the MCC being 0.971. Nevertheless, the single-stream net-582

work exhibited excellent classification results for most583

feature sets. In addition, when using all five features584

(MFCC + LPC + MELSPEC + CHROMA + CQCC),585

the single- and parallel-stream networks categorized cough586

sounds in 386.18 and 481.08 s, respectively. For dataset 2,587

the parallel-stream network exhibited superior classifica-588

tion results to the single-stream network for most feature589

sets. Moreover, when using all five features, the single590

and parallel-stream networks classified cough sounds in591

864.21 and 1445.87 s, respectively (Fig. 6).592

FIGURE 6. Execution time of and training parameters required by the
constructed parallel- and single-stream networks for different datasets.

Overall, the single-stream network required fewer 593

training parameters than did the parallel-stream net- 594

work (3 866 954 vs. 3 998 042). The results presented in 595

Tables 8 and 9 indicate that (1) training multiple paral- 596

lel networks concurrently does not guarantee excellent 597

classification results, but selection of input features are 598

important, and that (2) the simultaneous aggregation of many 599

features in a single-stream network does not result in high 600

performance. 601

F. CLASSIFICATION RESULTS OBTAINED UNDER THE 602

CONCATENATION OF LAYERS AT DIFFERENT LEVELS 603

We examined whether the classification performance of the 604

constructed parallel-stream network could be improved by 605

concatenating layers at different levels. We trained the pro- 606

posed parallel-stream network [Fig. 4(b)] and then modified 607

the network by performing concatenation at the second and 608

third convolutional layers. The MFCC + CQCC feature set 609

was selected as the input of the aforementioned network 610

because of the similarities in the dimensions of these features. 611

Better classification results were obtained when concatenat- 612

ing layers at the flattening level than when concatenating lay- 613

ers at other levels.When concatenating layers at the flattening 614

level, the F1 score was 99.30%, and the MCC was 0.985 615

(Table 10). 616

TABLE 10. Classification results obtained when concatenating layers at
different levels using dataset 1.

G. CLASSIFICATION RESULTS OBTAINED WHEN USING 617

DIFFERENT STRATEGIES FOR MERGING LAYERS 618

We compared the classification results obtained with the 619

proposed parallel-stream networkwhen using different strate- 620

gies for merging layers, such as addition, multiplication, 621

maximization, and concatenation. Layer merging involves 622

combining two or more models or layers. Four layer merg- 623

ing strategies were adopted at different levels in this study 624

(Table 11). At the flattening level, excellent classification 625

TABLE 11. Classification results obtained when adopting different layer
merging strategies at different levels using dataset 1.
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results were obtained when using the concatenation strategy.626

Moreover, better classification results were obtained at the627

second convolutional level than at the flattening level for628

three of the four adopted strategies (i.e., the addition, mul-629

tiplication, and maximization strategies). The maximization630

strategy exhibited the best results (F1 score of 98.61%) at631

the second convolutional level, whereas the concatenation632

strategy exhibited the best results (F1 score of 99.30%) at633

the flattening level.634

VI. CONCLUSION635

In this study, cough sounds were classified into wet and636

dry coughs through the analysis of the emergent fea-637

tures extracted from spectrograms and a parallel-stream638

1D-DCNN. Two datasets were used in this study. Data639

enhancement was conducted to increase the quantity of data640

in each dataset, and each cough signal was then padded using641

a zero-padding system to generate cough signals with fixed642

dimensions. After using the zero-padding system, the cough643

signals of datasets 1 and 2 had fixed dimensions of 29 952644

and 45 982, respectively.645

Numerous attributes were extracted from each row of orig-646

inal spectrograms and their derivatives and then fused. The647

MELSPEC, CHROMA, MFCC, CQCC, and LPC spectro-648

grams were used in this study. We obtained two types of649

attributes: single attributes and combined attributes. We then650

examined the performance of two techniques designed in this651

study to restructure combined attributes. One of these tech-652

niques was based on features with high discrimination power,653

whereas the other was based on features with high mutual654

information values. The approach based on discrimination655

power exhibited 1.4% and 1.39% higher F1 scores than did656

the approach based on the mutual value when two feature sets657

were input to the proposed parallel-stream 1D-DCNN.658

Before developing the proposed parallel-stream659

1D-DCNN, we conducted a simple study on three models:660

1D-DCNN, GRU model, and 1D-DNN. The 1D-DCNN661

outperformed the other two models; thus, this model was662

adopted for further analysis in this study. We compared the663

performance of the proposed parallel-stream 1D-DCNNwith664

that of a single-stream 1D-DCNN.665

We then compared the parallel-stream network and a666

single-stream network. For dataset 1, the highest F1 score667

exhibited by the parallel-stream network was 98.61%. How-668

ever, the parallel-stream network outperformed the single-669

stream network for only a few feature sets. Moreover, the670

confusion matrix of the feature set for which the best classifi-671

cation performance was obtained indicated that the numbers672

of false positives and false negatives were low.673

For dataset 2, the best classification results were obtained674

for the MFCC + LPC +MELSPEC + CHROMA + CQCC675

feature set (F1 score of 82.96% andMCC of 0.663). The con-676

fusion matrix of this feature set contained large numbers of677

false positives and false negatives. The number of false neg-678

atives was almost twice that of false positives. In some cases,679

the parallel-stream network exhibited excellent classification680

performance but required a long classification time and 681

numerous training parameters. 682

We also compared the classification performance achieved 683

when concatenating layers at different levels. When the 684

MFCC + CQCC feature set was used, better classification 685

results were obtained when concatenating layers at the flat- 686

tening level (F1 score of 99.30%) than at other levels. 687

Finally, the classification performance of the proposed 688

parallel-stream networkwas examined under four layermerg- 689

ing strategies: addition, multiplication, concatenation, and 690

maximization. These strategies were implemented at two 691

levels: the second convolutional level and flattening level. 692

Better classification results were obtained for all the layer 693

merging strategies, except the concatenation strategy, at the 694

second convolutional level than at the flattening level. The 695

best classification results were obtained with the maximiza- 696

tion and concatenation strategies at the second convolutional 697

and flattening levels, respectively. 698

In the future, we will develop a transfer learning algo- 699

rithm that can execute the spectrogram methods used in 700

this study. The performance of this algorithm will then be 701

compared with the parallel-stream network designed in this 702

study. Moreover, a novel method will be adopted to increase 703

the quantity of data, and this method will be compared with 704

the data enhancement method adopted in this study. 705
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