
Received 14 July 2022, accepted 6 September 2022, date of publication 12 September 2022, date of current version 19 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3205723

An Optimized Straggler Mitigation Framework
for Large-Scale Distributed Computing Systems
SAMAR A. SAID 1, SHAHIRA M. HABASHY1, SAMEH A. SALEM 1,2, AND ELSAYED M. SAAD 1
1Department of Computer and Systems Engineering, Faculty of Engineering, Helwan University, Cairo 11792, Egypt
2Egyptian Computer Emergency Readiness Team (EG-CERT), National Telecom Regulatory Authority (NTRA), Cairo 12577, Egypt

Corresponding author: Samar A. Said (samar_said@h-eng.helwan.edu.eg)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

ABSTRACT Nowadays, Big Data becomes a research focus in industrial, banking, social network, and
other fields. In addition, the explosive increase of data and information require efficient processing solutions.
Therefore, Spark is considered as a promising candidate of Large-Scale Distributed Computing Systems for
big data processing. One primary challenge is the straggler problem that occurred due to the presence of
heterogeneity where a machine takes an extra-long time to finish execution of a task, which decreases the
system throughput. To mitigate straggler tasks, Spark adopts speculative execution mechanism, in which the
scheduler launches additional backup to avoid slow task processing and achieve acceleration. In this paper,
a new Optimized Straggler Mitigation Framework is proposed. The proposed framework uses a dynamic
criterion to determine the closest straggler tasks. This criterion is based on multiple coefficients to achieve a
reliable straggler decision. Also, it integrates the historical data analysis and online adaptation for intelligent
straggler judgment. This guarantees the effectiveness of speculative tasks by improving cluster performance.
Experimental results on various benchmarks and applications show that the proposed framework achieves
23.5% to 30.7% execution time reductions, and 25.4 to 46.3% increase of the cluster throughputs compared
with spark engine.

15 INDEX TERMS Spark, straggler, speculative execution, cluster throughput.

I. INTRODUCTION16

In the last decade, the huge amount of digital data becomes17

a key issue to be stored, managed and analyzed. As a con-18

sequence, Large-Scale Distributed Computing Systems is19

a promising solution in many fields [1], [2], [3], [4], [5],20

[6], [7]. Many companies believe that these computing sys-21

tems are the most effective and fault-tolerant method to22

store and handle enormous volumes of data [8]. Hadoop [9]23

and Spark [10] are two popular distributed computing sys-24

tems that are widely used in the industry and academia.25

Hadoop is an open-source software framework for handling26

massive volumes of data, providing comprehensive process-27

ing and analytical capabilities. Hadoop core composed of a28

distributed file system storage and a MapReduce process-29

ing [11]. This data processing computing system consists of30

three stages: Map phase, Shuffle phase and Reduce phase.31

The associate editor coordinating the review of this manuscript and

approving it for publication was Daniel Grosu .

In this system, huge files are decomposed into several little 32

pieces of similar size and distributed on the cluster for stor- 33

age. Spark is an alternative distributed computing technol- 34

ogy that is open-source and free to use. It is implemented 35

on top of the Hadoop and its goal is to build a general- 36

purpose programingmodel faster andmore fault-tolerant than 37

MapReduce. Resilient Distributed Dataset (RDD) [12] is a 38

technology introduced by Spark that provides application 39

program interfaces (APIs) that enable transformations and 40

parallelization of data which can be adapted by users on 41

basis of their applications. As a result, the performance of 42

the batch, interactive, streaming and iterative computations 43

can be increased by persisting RDD in memory. Furthermore, 44

Spark offers a variety of sophisticated modules which are 45

built on top of the Spark core including Spark Streaming [13], 46

Spark SQL [14], GraphX [15] andMLlib [16]. Spark Stream- 47

ing module allows Spark to build streaming applications, 48

while Spark SQL module used for structured data process- 49

ing. Also, GraphX is a graph API that allows you to do 50

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 97075

https://orcid.org/0000-0003-4129-1214
https://orcid.org/0000-0002-7553-4002
https://orcid.org/0000-0002-4662-3874
https://orcid.org/0000-0003-2340-5433

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

graph-parallel computations. But, MLlib Spark’s is a scal-51

able machine learning library. However, Spark is extremely52

recommended for data analytics, the appearance of Straggler53

tasks and performance deterioration in parallel systems may54

occur [17], [18]. In this context, a task is considered straggler55

when a machine has a significant delay to finish the execution56

of that task compared with other tasks at the similar stage57

[19], [20]. This delay causes a degradation of the system58

throughput. Many studies introduced a speculative execution59

to overcome this problem, this leading to enhance the execu-60

tion efficiency and the cluster performance [21], [22], [23],61

[24]. In this context, late tasks can run on another nodes62

using speculative execution. A speculative execution can be63

categorized into two prevalent techniques [21] named as the64

Cloning technique and Straggler Detection technique. The65

first technique [25] suggests full cloning of small jobs. In this66

technique, when the calculation of jobs’ costs are predictable67

to be minimal as well as the system resources are available,68

the clones run concurrently with original tasks. Accordingly,69

the clones are launched in incidentally and rapacious manner.70

So, it is suitable only and most appropriate for clusters with71

light loads. But, in the latter technique [26], [27] the system72

observes the completion of each task and only commences73

backup copies whenever a straggler is found. Consequently,74

the straggler detection is more comprehensive and applicable75

for low and high cluster loads. In this paper, a new Optimized76

Straggler Mitigation Framework is proposed. The proposed77

framework introduces a dynamic criterion to evaluate the78

most suitable tasks for speculation. The proposed criterion is79

based on multiple coefficients to obtain the optimal straggler80

decision. In addition, it guarantees the effectiveness for spec-81

ulative tasks by improving cluster performance. The proposed82

framework is composed of two modules. The first module83

named a Straggler Decision EngineModule that collects tasks84

execution logs to perform initial calculation and identifies85

an appropriate straggler detection threshold based on four86

weighted coefficients. The latter module is named as Strag-87

gler Alleviation Module that guarantees the effectiveness88

for speculative tasks for more efficient straggler mitigation.89

We can summarize the major contributions of that paper as90

follows:91

(1) We propose a new Optimized Straggler Mitigation92

Framework that presents dynamic criterion to predict the93

tasks that suffer from straggler in an efficient manner.94

(2) The proposed framework criterion is based on multi-95

ple coefficients which lead to finding the optimum straggler96

decision.97

3) We evaluate the job execution and the improvement in98

the cluster throughput using several benchmarks.99

4) We improve the cluster performance and guarantee the100

effectiveness of detecting andmanipulating speculative tasks.101

This paper is organized as follows: Section II describes the102

background and motivation. Section III demonstrates the sys-103

temmodel and problem formulation. Section IV describes the104

implementation details of the proposed framework. Section V105

examines the complexity analysis. Section VI shows an106

illustrative example. Section VII explores the performance 107

evaluation and detailed results. In section VIII, the paper is 108

concluded with the main findings. 109

II. BACKGROUND AND MOTIVATION 110

This section presents a concise overview of Spark computing 111

system.After that, the straggler problem aswell as its solution 112

in spark will be explored. 113

A. SPARK 114

Apache Spark [10] is a promising candidate in large scale 115

distributed computing systems. Spark is intended to improve 116

application execution as well as fulfill scalability and fault 117

tolerance by using resilient distributed dataset (RDD) [12]. 118

RDD is a read-only collection of objects partitioned among 119

a number of machines that can be reconstructed when losing 120

one of the partitions. Each Spark application launches a single 121

master process known as the driver, which is in charge of task 122

scheduling. It employs a hierarchical scheduling procedure 123

that includes jobs, stages, and tasks, where the term ‘‘stages’’ 124

refers to smaller groups of tasks that are separated from 125

interdependent jobs. As shown in Fig. 1, A Spark cluster is 126

made up of only master node as well as many slave nodes 127

known as workers. Every Worker is handled on an execution 128

node, which may incorporate one or many executors. Each 129

executor has the ability to use many cores and execute tasks 130

at the same time. In case of a Spark application is submitted, 131

the master calls the resource manager for getting computing 132

resources based on the application’s needs. Once the resource 133

is ready, tasks are assigned to all executors in parallel through 134

Spark scheduler. Then, the master node will track the sta- 135

tus of executors and gathers the results from worker nodes 136

throughout this process. In this paper, Spark is used as the 137

target framework to determine and predict the tasks that will 138

suffer from straggler in an efficient manner. 139

FIGURE 1. Spark architecture [28].

97076 VOLUME 10, 2022

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

B. STRAGGLER PROBLEM140

In Spark, a job is broken down into one or more stages. After-141

wards, stages are divided into separate tasks. A task is con-142

sidered as a unit of execution that runs on the Spark worker143

in the cluster. When a task in execution becomes slower than144

other tasks in the same job, this task is called a ‘‘straggler145

task’’ which prolong the entire job and the cluster throughput146

will be affected. There are numerous causes that make a task147

take a long time in execution and turned into a straggler148

[29], [30]. These causes like hardware heterogeneity, over-149

awedmachines, network congestion, bad code and contention150

of resources between tasks running on the straggler machine.151

This problem solution is the speculative execution [31].152

Although it seems that speculative execution mechanism is153

a simple matter. It allows you to restart the straggler tasks on154

another machine, in actuality it is a complicated issue because155

speculative tasks consume resources which may affect other156

running tasks. As a consequence, if a straggler task is not157

detected correctly or a backup task is finished earlier than158

the original task, this will consumes resources with no use.159

Also it is leading to increase the job execution time and160

degrading the cluster throughput [32]. Speculative execution161

algorithms faces some challenges like their methodology162

for correctly detecting straggler tasks, and stragglers should163

be identified as early as possible to save resources. Also,164

the choice of nodes for run backup tasks is very important165

factor to avoid unnecessary resource consumptions. In this166

context, if these factors are not met, the system will perform167

poorly. It should be noted that the Spark computing system168

allows the speculation by default. The default speculation169

implements simple technique to deal with stragglers. Initially,170

the speculation parameter ‘‘spark.speculation’’ should be set171

by true. This helps in identifying slower running tasks in172

a stage according to a precalculated threshold that is based173

on the average number of successful tasks multiplied by174

‘‘spark.speculation.multiplier’’. After that, a copy of specu-175

lative tasks is ready to run on idle nodes. It is worth not-176

ing that the parameter ‘‘spark.speculation.quantile’’ identifies177

slow tasks when a certain amount of tasks are completed.178

Also, it is continuously applied based on an interval through179

‘‘spark.speculation.interval’’ parameter. Despite the fact that180

spark’s default speculation has improved performance in a181

heterogeneous environment, but it has many defects. The182

speculation decision becomes less accurate since it is based183

on a fixed time as well as it does not consider the processing184

capacity of various nodes. Furthermore, it may be unneces-185

sary to launch clones of speculation tasks across the cluster.186

III. SYSTEM MODEL AND PROBLEM FORMULATION187

This section introduces the architecture of the proposed188

Straggler Mitigation Framework. The purpose of the intro-189

duced framework is to minimize job execution time by elim-190

inating the impact of the straggler. This boosts the cluster191

throughput by applying the speculative execution mecha-192

nism. To achieve this goal, the proposed framework uses193

a dynamic criterion to evaluate the most suitable tasks for 194

speculation. This criterion is based on multiple coefficients 195

to achieve a reliable straggler decision. Four coefficients 196

are used by the proposed framework, namely job quality 197

of service limitation, stage proceeding behavior, processing 198

bandwidth, and cluster utilization level. 199

The Proposed Mitigation Framework Architecture: The 200

proposed framework is designed to work in conjunction with 201

Spark parallel data processing platform. The main modules 202

of the proposed framework include a Straggler Decision 203

Engine Module and Straggler Alleviation Module. The strag- 204

gler decision engine Module is constructed from two compo- 205

nents; the initial historical calculator component that collects 206

tasks execution logs to perform initial calculations, and the 207

Dynamic Weighted Straggler Decision component that deter- 208

mines the best threshold for identifying stragglers. After that, 209

the decision for straggler is made based on four weighted 210

coefficients. The latter module, Straggler AlleviationModule, 211

foresees the machine performance to provide further and 212

effective straggler mitigations. Additionally, it guarantees the 213

effectiveness to speculative tasks. Figure 2 shows the archi- 214

tecture of the proposed straggler mitigation framework. 215

IV. THE IMPLEMENTATION DETAILS OF THE PROPOSED 216

FRAMEWORK 217

A. STRAGGLER DECISION ENGINE MODULE 218

1) THE INITIAL HISTORICAL CALCULATION 219

The straggler decision engine module include the initial his- 220

torical component that used to gather the information of task 221

execution logs and preliminary calculations. In Spark, the 222

lifetime of an executed task is comprised into three time peri- 223

ods (TP1,TP2, and TP3). These periods are deserialization 224

of task period, running task period, and serialization of task 225

results period respectively. The deserialization of task period 226

(TP1) is the elapsed time spent to deserialize the task object 227

and data. Also, the running task period (TP2) is the elapsed 228

time that spent running this task. This includes the time of 229

fetching the shuffle data.While TP3 is the serialization of task 230

result period which is the elapsed time spent in serializing the 231

task result. It should be noted that the information of tasks’ 232

execution is collected for each node n. So, the mean execution 233

time of each period for a node n is recorded as TP1n,TP2n, 234

and TP3n. Therefore, the total time of each task for all periods 235

can be computed as follows in (1) 236

Task time =
∑3

j=1
TPn(j) (1) 237

where j is the period id and n is the node id. 238

Also, the total time for all completed and successful tasks 239

on node n is defined asMT n. In this context, the average total 240

time of all successful tasks is (MT). 241

2) DYNAMIC WEIGHTED STRAGGLER DECISION CRITERION 242

According to the proposed framework, the judgment of a task 243

to be a straggler or not is dynamically identified. To increase 244

the speculation efficiency, the straggler decision criterion is 245

VOLUME 10, 2022 97077

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

FIGURE 2. The architecture of the proposed straggler mitigation framework.

taken according to four weighted coefficients. These coeffi-246

cients are the job quality of service limitation (CQ), the stage247

proceeding behavior (CP), the processing bandwidth (CBW),248

and the cluster utilization level (CU). Afterwards, on the basis249

of the system administrator preferences, the priorities of the250

above parameters are determined through the weights W0,251

W1,W2 andW3. The Straggler decision (DS) can be computed252

in Eq. (2).253

DS = W0CQ +W1CP +W2CBW +W3CU (2)254

The straggler decision depends on the residual time to255

complete a task (Rt) as in Eq. (3).256

Rt = TimeFactorn (p)×
3∑
j=p

TPn (j) (3)257

where the TimeFactorn (p) is computed as the ratio of the258

running time at this period of that task to the mean value259

of the running time within that period. Finally, if the total260

running time of a task is greater than DS × MT . then, the261

task is added to a speculation queue. The pseudo-code for the262

Dynamic Weighted Straggler Decision Module is illustrated263

in Algorithm 1.264

The coefficients calculations can be illustrated as follows:265

The job quality of service limitation coefficient (CQ):266

This coefficient is one of the crucial considerations for a267

straggler decision. This coefficient depends on the appli-268

cation nature, where some jobs’ deadline could not be269

caught. These jobs lead to poor application performance. So,270

it is preferable to execute such tasks rather than preserve271

resources on the cluster. The following Algorithm computes272

the value of the coefficient considering the limitation time for273

a job quality of service as defined in Eq. (4). 274

CQ =


QT
MT

if (QT ≥ max (Task time))

min(Task time)
MT

otherwise
(4) 275

whereQT is the required time for a task and considered as the 276

quality of service coefficient. When QT value is more than 277

the maximum Task time, this indicates a long limitation time 278

for quality of service. Therefore, there is no need to make a 279

large number of clones because there are no risks of inten- 280

sive performance implications. In this case, the coefficient is 281

computed as the division between the quality of service time 282

limitation (QT) and the mean time (MT). When QT value is 283

less than the maximum Task time, the coefficient is set to the 284

minimal Task time divided by themean time (MT) as in Eq. (4). 285

The pseudo-code for calculating the job quality of service 286

limitation coefficient (CQ) is illustrated in Algorithm 2. 287

The stage proceeding behavior coefficient (CP): Ideally, 288

a speculation should preferably be detected early in the job 289

lifecycle. This saves cluster resources and that reflects on the 290

job completion time. As a consequence, it is vital to examine 291

the stage proceeding behavior to get effective straggler detec- 292

tion. The proceeding behavior in the stage can be computed as 293

the ratio between the number of completed tasks in the stage 294

(n) and the total number of tasks in that stage (m) as follows 295

in (5). 296

Proceeding =
n
m

(5) 297

Then, the average proceedingProceedingavg for all stages can 298

be computed, which indicates the present proceeding in the 299

entire job lifecycle. After that, the computation of the stage 300

proceeding behavior coefficient (CP) at time t is given in (6) 301

CP = Proceedingavg − Pth (6) 302

97078 VOLUME 10, 2022

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

Algorithm 1 Dynamic Weighted Straggler Decision Module
Input:
• TP1n : Mapping between node and the mean deserial-
ization of task period

• TP2n : Mapping between node and the mean running
task period

• TP3n : Mapping between node and the mean serializa-
tion of task result

• Parallel jobs in Spark J = {J1, J2,, J i}
• The list of nodes in spark cluster n = {n1, n2,, nx}
• W0, W1, W2 and W3: The coefficients weights can be
specified by system administrator

• MT : The average total time of all successful tasks
• Rt: The residual time for a task to complete
• CQ : The job quality of service limitation coefficient //
defined in Algorithm 2

• CP: The stage proceeding behavior coefficient // defined
in Algorithm 3

• CBW : The proceeding bandwidth coefficient // defined
in Algorithm 4

• CU : The cluster utilization level coefficient // defined
in Algorithm 5

Output: find speculation task
1. Get_CQ () //as in Algorithm 2
2. Get_CP () //as in Algorithm 3
3. Get_CBW () //as in Algorithm 4
4. Get_CU () //as in Algorithm 5
5. DS = W0CQ +W1CP +W2CBW +W3CU
6. For (τ = 0 to k − 1) do
7. If τ is not completed then
8. GetMT [τ]
9. If τ in the first period

10. Rt = Run time(τ)
TP1n

× (TP2n + TP3n)
11. Else if τ is in the second period
12. Rt = Run time(τ)

TP2n
× (TP3n)

13. End if
14. End if
15. If (Run time+ Rt > DS ×MT)
16. If (Spark − speculation (τ) == false)
17. AddInSpeculationQueue(τ)
18. End if
19. End if
20. End if
21. End for
22. /∗ end of Dynamic Weighted Straggler Decision

Algorithm∗/

where Pth is the proceeding threshold that indicates the303

specified maximum point during the lifespan, which eligible304

for straggler decisions. The value of Pth is variable ∈ [0:1]305

as the administrator preference. As a result, when a task306

slows down at its final stages, the created replica has less307

chances of finishing before the straggler. As a consequence,308

to avoid ineffective speculation, it is reasonable to raise the309

Algorithm 2 The Job Quality of Service Limitation Coeffi-
cient (CQ)
Input:

QT : Quality of service limitation time
Output:The job quality of service limitation coefficient (CQ)

Get_CQ ()
1. GetMT
2. Get max (Task time)
3. Get min (Task time)
4. If (QT ≥ max (Task time)
5. CQ =

QT
MT

6. Else
7. CQ =

min (Task time)
MT

8. End if
9. /∗ end of job quality of service limitation

coefficient∗/

Algorithm 3 The Stage Proceeding Behavior Coefficient
(CP)
Input:

• Parallel jobs in spark app J = {J1, J2,, J i}
• A job decomposed into single or multiple stages S ={

S1, S2,Sj
}

• n : the number of completed tasks in the stage.
• m : the total number of tasks in that stage

Output: The stage proceeding behavior coefficient (CP)
Get_CP ()
1. For (S = 0 to j− 1) do
2. Proceeding[s] = n

m
3. Proceedingsum+ = Proceeding[s]
4. End for
5. Proceedingavg =

Proceedingsum
j

6. CP = Proceedingavg − Pth
7. /∗ end of job quality of service limitation coefficient∗/

∗Proceedingavg: The average proceeding for all stages.
∗Pth: The proceeding threshold

threshold value in response to late progress. Also, it is accept- 310

able to reduce the threshold value early in the task lifecycle 311

to motivate replica generation. This is because the replica 312

should have a greater chance of surpassing the original task. 313

In such situations, it is preferable to run these tasks instead 314

of conserving resources on the cluster. The pseudo-code for 315

calculation the stage proceeding behavior coefficient (CP) is 316

illustrated in Algorithm 3. 317

The processing bandwidth coefficient (CBW): This coef- 318

ficient measures a job’s process speed in order to identify 319

slow tasks more quickly. The amount of processed data for 320

a given time period is used to calculate the process speed. 321

The processing bandwidth (ProcessingBW) for a stage can be 322

computed as the ratio between processed data size in the stage 323

VOLUME 10, 2022 97079

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

Algorithm 4 The Proceeding Bandwidth Coefficient (CBW)
Input:

• Parallel jobs in spark app J = {J1, J2,, J i}
• A job decomposed into single or multiple stages S ={

S1, S2,Sj
}

Output: The proceeding bandwidth coefficient (CBW)
Get_CBW ()
1. For (S = 0 to j− 1) do
2. ProcessingBW [s] = Processeddatasize

Processingtime

3. RateBW [s] = ProcessingBW
data

4. Ratesum+ = RateBW [s]
5. End for
6. Rateavg =

Ratesum
j

7. CBW = Rateavg − Rateth
8. /∗ end of job the proceeding bandwidth coefficient
∗/

∗ ProcessingBW : The processing bandwidth
∗ RateBW : The processing bandwidth rate
∗ Rateth: The processing bandwidth rate threshold

to the processing time in that stage as in Eq. (7).324

ProcessingBW =
Processed data size
Processing time

(7)325

After that, the processing bandwidth rate (RateBW) can be326

computed by dividing ProcessingBW to the size of data to be327

processed (data) as in Eq. (8).328

RateBW (t) =
ProcessingBW

data
(8)329

Then, the average bandwidth rate Rateavg for all stages can330

be computed and indicates the present bandwidth rate for331

the entire job lifecycle. The computation of the processing332

bandwidth coefficient is defined in Eq. (9).333

CBW (t) = Rateavg − Rateth (9)334

where Rateth is the processing bandwidth rate threshold that335

indicates the specified maximum point during the lifespan336

eligible for straggler decision. The value of Rateth is variable337

∈ [0:1] as the system administrator preference. The pseudo-338

code for computing the processing bandwidth coefficient339

(CBW) is illustrated in Algorithm 4.340

The cluster utilization level coefficient (CU): The over-341

head incurred by speculations is considered as a significant342

factor while dealing with stragglers. It should be noted that343

the creation of replicas in high resource utilization cluster344

may increase straggler occurrence. While in low cluster uti-345

lization levels, an additional speculation might be needed346

for enhancing the job execution time. Therefore, the cur-347

rent cluster utilization level should be considered for getting348

efficient dynamic straggler calculations. Many parameters349

are considered by cluster utilization level coefficient such as350

CPU utilization, Memory utilization, Disk I/O utilization and351

Network bandwidth utilization as in Eqs. (10), (11), (12) and 352

(13) [17]. 353

• CPU utilization (n) is defined as the ratio of CPU busy 354

time to the time interval for a node n. 355

cpuutil =
cpu_busy

time_interval
(10) 356

• Memory utilization (n) is the ratio of the maximum 357

memory accessed during the time interval by tasks to 358

the size of physical memory for a node n. 359

memutil =
max_mem_accessed
physical_mem_size

(11) 360

• Disk I/O utilization (n) is the ratio of the disk’s 361

read/write volumes consumed by tasks during the time 362

interval to the effective maximum bandwidth of disc I/O 363

for a node n. 364

diskutil =
read_vol + write_vol
max_disk_bandwidth

(12) 365

• Network bandwidth utilization (n) is the ratio of receiv- 366

ing/sending tasks’ traffic over a given period of time to 367

the effective maximum bandwidth for a node n. 368

netutil =
rec_vol + send_vol
max_bandwidth

(13) 369

The calculation of cluster utilization level coefficient (CU) at 370

time t is given as in Eq 14. 371

CU (t) = avg


(
Sumcpu
n
− cputh

)
,

(
Summem

n
− memth

)
,(

Sumdisk
n
− disk th

)
,

(
Sumnet
n
− net th

)
 372

(14) 373

where cputh is the CPU utilization threshold, memth is the 374

memory utilization threshold, disk th is the disk utilization 375

threshold, net th is the network bandwidth utilization thresh- 376

old and n is the total number of cluster nodes. The values 377

of cputh, memth, disk th, and net th are variable ∈ [0:1] as 378

the administrator preference. When the average utilization 379

parameter exceeds the utilization thresholds specified by the 380

user, this leads having positive CU values. The pseudo-code 381

for computing the cluster utilization level coefficient (CU) is 382

illustrated in Algorithm 5. 383

B. STRAGGLER ALLEVIATION MODULE 384

1) BACKUP STRAGGLER TASK ON PROPER NODE 385

One of the major challenges of speculative execution is the 386

backup of tasks at appropriate nodes. Since every node’s 387

capability may vary, it is essential to have an appropriate 388

metric to measure the performance of heterogeneity nodes. 389

Therefore, the capability of a node can be obtained through 390

the amount of tasks completed and total tasks processed as 391

in (15) [33]: 392

capabilitynode =
Number of Completed Tasks
Number of Processed Tasks

(15) 393

97080 VOLUME 10, 2022

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

TABLE 1. The time and space complexity analysis for the proposed Algorithms.

Algorithm 5 The Cluster Utilization Level Coefficient (CU)
Input:

The list of nodes in spark cluster n = {n1, n2,, nx}
Output: The cluster utilization level coefficient (CU)

1. Get_CU ()
2. For (n = 1 to x) do
3. Sumcpu+ =

cpu_busy[n]
time_interval[n]

4. Summem+ =
max_mem_accessed[n]
physical_mem_size[n]

5. Sumdisk+ =
read_vol[n]+write_vol[n]
max_disk_bandwidth[n]

6. Sumnet+ =
rec_vol[n]+send_vol[n]

max_bandwidth[n]
7. End for
8. avgUtil

= avg


(
Sumcpu
x − cputh

)
,
(
Summem

x − memth
)
,(

Sumdisk
x − disk th

)
,
(
Sumnet
x − net th

)


9. CU = avgUtil
10. /∗ end of the cluster utilization level coefficient ∗/

It should be noted that the completed tasks are the tasks394

that successfully finished execution, while failed tasks and395

the tasks lost by speculative execution are included in the396

processed tasks.397

2) SPECULATIVE EXECUTION EFFICIENCY398

It is preferable to develop an efficient method for determining399

whether backup tasks should be started or not. Therefore for400

each task in the straggler tasks queue, we compute the benefit401

of having backup and the benefit of not having backup and402

picking up a task which give maximum benefit. In [34], the403

cost parameter is considered as the busy time for computing404

resources. But, when the speculative execution saves time,405

Algorithm 6 Speculative Execution Efficiency Algorithm
Input:

• Parallel jobs in spark app J = {J , J2,, J i}
• A job decomposed into single or multiple stages S ={

S1, S2,Sj
}

Output:
1. For each task in the straggler task queue
2. Get_Rt() //as in Eq. 3
3. Get_Bt() //as in Eq. 16
4. If (Rt < Bt)
5. Ignore this task
6. End if
7. Get profit of backup and profit of not backup
8. Select the task which will do the maximum profit

and assign it on the highest node capability //as in
Eq. 15

9. If (the cluster is overloaded && Rt ≥ 2∗Bt) then
10. Delete the original task
11. End if
12. End for
13. /∗ end of Speculative Execution Efficiency

Algorithm ∗/

it is considered as a benefit parameter. The benefit of backing 406

up a task will be measured with taking into account assigning 407

another slot for back up task. Since both the original and 408

the backup must continue to run till the task is completed. 409

While conserving one slot is equal to the difference between 410

the residual time and the backup time. The residual time to 411

complete a task can be computed as referred in (3). The mean 412

execution time of three periods of all tasks is adjusted by 413

VOLUME 10, 2022 97081

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

TABLE 2. Illustrative example for the straggler decision criteria in low and high state.

Data factor to compute the backup time. Data factor denotes414

the proportion of the task’s input size to the mean input415

size of all tasks. The backup time is computed as follows in416

Eq. (16)417

Bt = Data factor ×
3∑

p=1

TPn (p) (16)418

Otherwise, the cost of not backing will be one slot of residual 419

time which is consumed with no benefit. Eqs. (17) and (18) 420

show the benefitbackup and benefitnot_backup as follows: 421

benefitbackup = α × (Rt − Bt)− β × 2× Bt (17) 422

benefitnot_backup = ∝ ×0− β × Rt (18) 423

97082 VOLUME 10, 2022

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

where α and β are benefit and cost weights respectively.424

Similraly, Rt and Bt are the residual and backup times425

respectively. When the benefitbackup is greater than the426

benefitnot_backup, the task is considered as a slow task as in427

Eq. (19).428

benefitbackup > benefitnot_backup ↔
Rt
Bt
>
∝ +2β
α + β

(19)429

when replacing β
α
with γ, we can obtain:430

Rt
Bt
>

1+ 2γ
1+ γ

(20)431

where432

γ = loadfactor =
numberpending tasks
numberfree slots

(21)433

When there are a lot of pending tasks, γ gives higher values434

close to two. Consequently, fewer tasks will be backed up.435

But, when the cluster contains multiple free slots converges436

to zero, resulting in no cost for speculative execution. As a437

result, the use of the load factor γ conforms and meets438

the requirements. As a consequent, the original task will be439

deleted in case of the cluster is overloaded and there are no440

free slots. Also, when the residual time is large enough for441

safe restart, the residual time is at least double the backup442

time as in Eq. (22).443

Rt ≥ 2 ∗ Bt (22)444

Algorithm 6 illustrates the pseudo-code for Speculative Exe-445

cution Efficiency Algorithm.446

V. COMPLEXITY ANALYSIS447

In this section, we examine the time and space complexity448

analysis for the proposed algorithms from Algorithm 1 to 6.449

As demonstrated, the main modules of the proposed frame-450

work include a Straggler Decision Engine Module and Strag-451

gler Alleviation Module. For a Straggler Decision Engine452

Module which is represented by Algorithm 1, where it uses453

algorithms 2 to 5 as in lines 1 to 4 in addition to the decision454

criterion in lines 5 to 21 as in Algorithm 1. As a consequence,455

Table 1 shows the Straggler Decision EngineModule requires456

O
(
k2
)
and O (k × (j+ x)) for the time and space complexity457

respectively. Similarly, Straggler AlleviationModule requires458

time complexity of O
(
k2
)
and space complexity of O (1)459

where k the number of tasks, j the number of stages and x460

the number of nodes.461

VI. AN ILLUSTRATIVE EXAMPLE462

For further clarification, an illustrative example is introduced463

to demonstrate the key idea of the proposed framework. This464

example shows the proposed criterion for changing the strag-465

gler decision threshold based on different coefficients for dif-466

ferent scenarios. One scenario clarifies the straggler decision467

threshold when the job at a low state, where Proceedingavg,468

Rateavg or avgUtil are less than 0.25. Another scenario shows469

TABLE 3. Cluster configurations.

TABLE 4. Software configurations.

TABLE 5. Benchmark applications, and Workload types and sizes.

the straggler decision threshold for high states, where the 470

values for Proceedingavg, Rateavg or avgUtil are more than 471

0.75. For clarification purpose, we consider a particular job 472

having five tasks T1,T2,T3,T4 and T5, and the values 473

of the weights W0, W1, W2 and W3 are ∈ [0:1] based on 474

the administrator preferences in such a way that
∑

iWi = 1. 475

In this case study, we use equal weights set to 0.25. Also, 476

the threshold parameters as Pth, Rateth, cputh, memth, disk th 477

and net th are set to 0.5. These settings characterize a common 478

configuration for the two scenarios, and can be customized 479

for different purposes. Then, the coefficients of the stage 480

proceeding behavior (CP), the processing bandwidth (CBW), 481

and the cluster utilization level (CU)can be computed as in 482

Eqs. (6), (9) and (14). Therefore Straggler decision (DS) can 483

be obtained as in Eq. 2. In this context, we can denote each 484

task to be either a straggler task (S) or a none straggler task 485

(N). Table 2 shows the straggler decision (DS) for low and 486

high states with QT = 8 and 14 respectively. For low states, 487

the proposed criterion encourages replica creation in early 488

stages of the life cycle by generating smaller coefficients 489

while ensuring that the quality of service. While in high 490

states, the proposed criterion creates fewer replicas to avoid 491

overload of the system. Also, it guarantees the realization of 492

quality of service requirement. 493

VOLUME 10, 2022 97083

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

FIGURE 3. The execution time of TeraSort at workload: (a) 3 GB, (b) 6 GB,
and (c) 12 GB.

VII. PERFORMANCE EVALUATION494

In this section, the performance of the proposed framework495

is assessed on a spark cluster with a diverse set of nodes.496

Also, the proposed framework is compared with Spark-497

Default, Spark-Speculation and the work in [33] (marked as498

Spark-ETWR) in various benchmarks at different input sizes.499

The performance is evaluated in terms of the job execution500

time that refers to the elapsed time from the beginning to501

the end of the job in seconds. Also, the number of com-502

pleted jobs per second for a cluster is denoted as the cluster503

throughput. In the following sub-sections, we provide an504

overview of the platform, and the benchmarks that are used505

to evaluate the performance as in Section VI-A, Section VI-B506

respectively. Finally, sectionVI-C illustrates the experimental507

results.508

FIGURE 4. The throughput of TeraSort at workload: (a) 3 GB, (b) 6 GB, and
(c) 12 GB.

A. PLATFORM 509

The experimental big data cluster used in this work con- 510

sists of four virtual machines that are made up of a 511

master and three workers. The cluster classification and 512

the software configurations are demonstrated in Table 3. 513

The cluster applied with 28 cores and 40 GB memory 514

space. 515

The software configurations are illustrated Table 4. Also, 516

the block size of the Hadoop Distributed File System (HDFS) 517

used is 128 MB. 518

B. BENCHMARKS 519

There are many spark applications incur a lot of resources. 520

Based on many researches that conducted on spark 521

97084 VOLUME 10, 2022

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

FIGURE 5. The execution time of WordCount with data size: (a) 10 GB,
(b) 20 GB, and (c) 30 GB.

performance [35], the proposed framework is applied on522

three different benchmarks. In this paper, the benchmarks are523

applied with various workloads to deliver a comprehensive524

performance evaluation. Table 5 shows different benchmark525

applications with various workloads and sizes.526

1) TeraSort527

It is a common benchmark [36] that measures the time528

required to sort a given amount of randomly distributed data529

on a particular cluster. It consists of three functions as Ter-530

aGen, TeraSort and TeraValidate. The TeraGen function is531

written in Java that generates the input data. The TeraSort532

function uses MapReduce to sort the data, and the TeraVal-533

idate function verifies the sorted data output. The workload534

size we used in our experiments are 3, 6 and 12 GB text data.535

FIGURE 6. The throughput of WordCount at workload: (a) 10 GB,
(b) 20 GB, and (c) 30 GB.

2) WordCount 536

This application is a popular benchmark that counts the num- 537

ber of times eachword appears in the input data file. It has two 538

stages: stage 0 and stage 1. Stage 0 read data from the HDFS, 539

and performs map and reduce operations. Stage 1 read the 540

output data of stage 0 through shuffler, and performs reduce 541

operations. In our experiment, we use the real dataset, enwiki 542

dump progress [37] of size 10, 20 and 30 GB. 543

3) K-MEANS CLUSTERING ALGORITHM 544

It partitions a set of data point into K clusters. It is a com- 545

monly used on large data sets which automatically classifies 546

the input data points into K clusters. So, it is appropri- 547

ate candidate for parallelization. To generate the datasets, 548

VOLUME 10, 2022 97085

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

FIGURE 7. The execution time of K-means at samples of size: (a) 1K,
(b) 10K, and (c) 100K.

the scikit-learn python library is used to generate data549

points with clustering tendency, and sizes 1000, 10000, and550

100000 points. In addition, the experiments are conducted at551

K = 13, and maximum iterations = 50.552

C. EXPERIMENTAL RESULTS AND DISCUSSIONS553

In this section, the results obtained after running the554

benchmarks are evaluated based on Spark framework. Each555

experiment is performed 20 times and the average value556

was calculated. For the purpose of comparisons, the pro-557

posed framework is compared with Spark-Default, Spark-558

Speculation, Spark-ETWR. The performance is evaluated in559

terms of job execution time as well as the cluster through-560

put. We have conducted a number of experiments to exam-561

ine the total execution time. It is worth noting that the562

FIGURE 8. The throughput of K-means 100K at samples of size: (a) 1K,
(b) 10K, and (c) 100K.

execution time is influenced by many parameters as the 563

benchmark category, the input data sizes and the assigned 564

node capability. Furthermore, the throughput is calculated 565

likewise, the job numbers over the execution time. In TeraSort 566

benchmark, Figure 3 shows the performance comparisons 567

with Spark-Default, Spark-Speculation, and Spark-ETWR at 568

workloads 3 GB, 6 GB and 12 GB. 569

On average, the proposed framework achieves 26.8% less 570

execution time than Spark- Default. Also, it gives 24.3% 571

execution time reduction against Spark-Speculation, and 14% 572

reduction compared with Spark- ETWR. Furthermore, show 573

that the cluster throughput increased by 46.3%, 42.8% and 574

15% with respect to the competitive methods respectively. 575

Similarly for WordCount benchmark as in Fig. 5, the 576

proposed framework achieves a reduction of 28.7% in the 577

97086 VOLUME 10, 2022

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

average execution time compared with Spark-Default. Addi-578

tionally, it provides 21.5% execution time reduction com-579

pared with Spark-Speculation and 13.6% reduction with580

Spark- ETWR.581

Also, Figure 6 is showing that the cluster throughput is582

improved by 30.7%, 24.2% and 15.7% compared with other583

competing methods.584

For K-means clustering algorithm as in Fig. 7 and 8, the585

results are consistent with TeraSort and WordCount bench-586

marks, where, the proposed framework achieves 23.5%,587

19.6% and 11% execution time reduction, and 25.4%, 22.2%588

and 15.4% throughput improvements against Spark-Default,589

Spark-Speculation and Spark-ETWR respectively.590

As demonstrated, the proposed framework is clearly out-591

performing comparedwith Spark-Default, Spark-Speculation592

and Spark-ETWR, where the proposed framework uses a593

dynamic criterion to determine the closest straggler tasks.594

This criterion is based on multiple coefficients to achieve a595

reliable straggler decision. It shows that the suggested crite-596

rion gives an intelligent decision that can locate the straggler597

more precisely. As a consequent it improves the throughput598

and reduces the execution time.599

VIII. CONCLUSION600

This paper has introduced a new Optimized Straggler Miti-601

gation Framework. The proposed framework’s purpose is to602

minimize job execution time through speculative execution to603

reduce the impact of the straggler, and consequently boosting604

cluster throughput. To achieve this goal, the proposed algo-605

rithm uses a dynamic criterion to evaluate the most suitable606

tasks for speculation. This criterion is based on multiple607

coefficients to achieve a reliable straggler decision. As well608

as, it guarantees the effectiveness of detecting and treating609

speculative tasks to improve the cluster performance. As a610

consequence, the consumed resources can be reduced by611

restarting tasks to achieve the optimal goal. To examine the612

reliability of the proposed framework, several experiments613

have been carried out on various benchmarks having CPU614

bound and I/O intensive with different workloads. Results615

showed that the proposed framework achieved 25.4% to616

46.3% higher cluster throughputs with lower applications’617

execution time of 23.5% to 30.7% reduction compared with618

Spark-3.0.0. In the future, further investigation will be car-619

ried out to consider effective machine learning techniques620

for enhancing the robustness and reliability of the proposed621

framework.622

REFERENCES623

[1] Z. Chen, W. Huang, L. Ma, H. Xu, and Y. Chen, ‘‘Application and devel-624

opment of big data in sustainable utilization of soil and land resources,’’625

IEEE Access, vol. 8, pp. 152751–152759, 2020.626

[2] G. Mokhtari, A. Anvari-Moghaddam, and Q. Zhang, ‘‘A new layered627

architecture for future big data-driven smart homes,’’ IEEE Access, vol. 7,628

pp. 19002–19012, 2019.629

[3] I. Kotenko, I. Saenko, and A. Branitskiy, ‘‘Framework for mobile Internet630

of Things security monitoring based on big data processing and machine631

learning,’’ IEEE Access, vol. 6, pp. 72714–72723, 2018.632

[4] S. Sakr, Z. Maamar, A. Awad, B. Benatallah, and W. M. P. van der Aalst, 633

‘‘Business process analytics and big data systems: A roadmap to bridge the 634

gap,’’ IEEE Access, vol. 6, pp. 77308–77320, 2018. 635

[5] Y. Xu, Y. Sun, J. Wan, X. Liu, and Z. Song, ‘‘Industrial big data for 636

fault diagnosis: Taxonomy, review, and applications,’’ IEEE Access, vol. 5, 637

pp. 17368–17380, 2017. 638

[6] S. K. Roy, R. Devaraj, A. Sarkar, and D. Senapati, ‘‘SLAQA: Quality-level 639

aware scheduling of task graphs on heterogeneous distributed systems,’’ 640

ACM Trans. Embedded Comput. Syst., vol. 20, no. 5, pp. 1–31, Sep. 2021. 641

[7] S. K. Roy, R. Devaraj, A. Sarkar, K. Maji, and S. Sinha, ‘‘Contention- 642

aware optimal scheduling of real-time precedence-constrained task graphs 643

on heterogeneous distributed systems,’’ J. Syst. Archit., vol. 105,May 2020, 644

Art. no. 101706. 645

[8] H. Isah, T. Abughofa, S. Mahfuz, D. Ajerla, F. Zulkernine, and S. Khan, 646

‘‘A survey of distributed data stream processing frameworks,’’ IEEE 647

Access, vol. 7, pp. 154300–154316, 2019. 648

[9] P. Mika and G. Tummarello, ‘‘Web semantics in the clouds,’’ IEEE Intell. 649

Syst., vol. 23, no. 5, pp. 82–87, Sep./Oct. 2008. 650

[10] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, 651

‘‘Spark: Cluster computing with working sets,’’ in Proc. 2nd USENIX 652

Workshop Hot Topics Cloud Comput. (HotCloud), 2010, pp. 1–7. 653

[11] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data processing on 654

large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008. 655

[12] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, 656

M. J. Franklin, S. Shenker, and I. Stoica, ‘‘Resilient distributed datasets: A 657

fault-tolerant abstraction for in-memory cluster computing,’’ in Proc. 9th 658

USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2012, pp. 15–28. 659

[13] L. Jin, W. Fu, M. Ling, and L. Shi, ‘‘A fast cross-layer dynamic power 660

estimation method by tracking cycle-accurate activity factors with spark 661

streaming,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 30, 662

no. 4, pp. 353–364, Apr. 2022. 663

[14] X. Li, B. Yu, G. Feng, H. Wang, and W. Chen, ‘‘LotusSQL: SQL engine 664

for high-performance big data systems,’’ Big Data Mining Anal., vol. 4, 665

no. 4, pp. 252–265, Dec. 2021. 666

[15] J.Wang, X.Wang, C.Ma, and L. Kou, ‘‘A survey on the development status 667

and application prospects of knowledge graph in smart grids,’’ IET Gener., 668

Transmiss. Distrib., vol. 15, no. 3, pp. 383–407, Feb. 2021. 669

[16] E. Nagy, R. Lovas, I. Pintye, Á. Hajnal, and P. Kacsuk, ‘‘Cloud-agnostic 670

architectures for machine learning based on apache spark,’’ Adv. Eng. 671

Softw., vol. 159, Sep. 2021, Art. no. 103029. 672

[17] S. A. Said,M. S. El-Sayed, S. A. Salem, and S.M. Habashy, ‘‘A speculative 673

execution framework for big data processing systems,’’ in Proc. Int. Conf. 674

Inf. Technol. (ICIT), Jul. 2021, pp. 616–621. 675

[18] S. Deshmukh, K. T. Rao, and M. Shabaz, ‘‘Collaborative learning based 676

straggler prevention in large-scale distributed computing framework,’’ 677

Secur. Commun. Netw., vol. 2021, pp. 1–9, May 2021. 678

[19] P. Garraghan, X. Ouyang, R. Yang, D. McKee, and J. Xu, ‘‘Straggler root- 679

cause and impact analysis for massive-scale virtualized cloud datacenters,’’ 680

IEEE Trans. Serv. Comput., vol. 12, no. 1, pp. 91–104, Jan. 2019. 681

[20] S. Lu, X. Wei, B. Rao, B. Tak, L. Wang, and L. Wang, ‘‘LADRA: Log- 682

based abnormal task detection and root-cause analysis in big data pro- 683

cessing with spark,’’ Future Gener. Comput. Syst., vol. 95, pp. 392–403, 684

Jun. 2019. 685

[21] H. Xu and W. Cheong Lau, ‘‘Optimization for speculative execution in big 686

data processing clusters,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 2, 687

pp. 530–545, Feb. 2017. 688

[22] S. S. Gill, X. Ouyang, and P. Garraghan, ‘‘Tails in the cloud: A survey and 689

taxonomy of straggler management within large-scale cloud data centres,’’ 690

J. Supercomput., vol. 76, no. 12, pp. 10050–10089, Dec. 2020. 691

[23] Q. Liu, W. Cai, Z. Fu, J. Shen, and N. Linge, ‘‘A smart strategy for specula- 692

tive execution based on hardware resource in a heterogeneous distributed 693

environment,’’ Int. J. Grid Distrib. Comput., vol. 9, no. 2, pp. 203–214, 694

Feb. 2016. 695

[24] S. Deshmukh and K. T. Rao, ‘‘Straggler identification approach in large 696

data processing frameworks using ensembled gradient boosting in smart- 697

cities cloud services,’’ Int. J. Syst. Assurance Eng. Manag., vol. 13, no. S1, 698

pp. 146–155, Mar. 2022. 699

[25] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, ‘‘Effective 700

straggler mitigation: Attack of the clones,’’ in Proc. 10th USENIX Symp. 701

Netw. Syst. Design Implement. (NSDI), 2013, pp. 185–198. 702

[26] G. Ananthanarayanan, M. C.-C. Hung, X. Ren, I. Stoica, A. Wierman, 703

and M. Yu, ‘‘GRASS: Trimming stragglers in approximation analytics,’’ 704

in Proc. 11th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2014, 705

pp. 289–302. 706

VOLUME 10, 2022 97087

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

[27] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha,707

and E. Harris, ‘‘Reining in the outliers in map-reduce clusters using708

Mantri,’’ in Proc. 9th USENIX Symp. Oper. Syst. Design Implement.709

(OSDI), 2010, pp. 1–14.710

[28] S. Tang, B. He, C. Yu, Y. Li, and K. Li, ‘‘A survey on spark ecosystem: Big711

data processing infrastructure, machine learning, and applications,’’ IEEE712

Trans. Knowl. Data Eng., vol. 34, no. 1, pp. 71–91, Jan. 2022.713

[29] C. Li, H. Shen, and T. Huang, ‘‘Learning to diagnose stragglers in dis-714

tributed computing,’’ in Proc. 9th Workshop Many-Task Comput. Clouds,715

Grids, Supercomput. (MTAGS), Nov. 2016, pp. 1–6.716

[30] T.-D. Phan, G. Pallez, S. Ibrahim, and P. Raghavan, ‘‘A new framework for717

evaluating straggler detection mechanisms in MapReduce,’’ ACM Trans.718

Model. Perform. Eval. Comput. Syst., vol. 4, no. 3, pp. 1–23, Sep. 2019.719

[31] H. Xu and W. C. Lau, ‘‘Speculative execution for a single job in a720

MapReduce-like system,’’ in Proc. IEEE 7th Int. Conf. Cloud Comput.,721

Jun. 2014, pp. 586–593.722

[32] J. Mathew, ‘‘Cluster performance by dynamic load and resource-aware723

speculative execution,’’ in Inventive Systems and Control. Singapore:724

Springer, 2021, pp. 877–893.725

[33] Z. Fu and Z. Tang, ‘‘Optimizing speculative execution in spark hetero-726

geneous environments,’’ IEEE Trans. Cloud Comput., vol. 10, no. 1,727

pp. 568–582, Jan. 2022.728

[34] Q. Chen, C. Liu, and Z. Xiao, ‘‘Improving MapReduce performance using729

smart speculative execution strategy,’’ IEEE Trans. Comput., vol. 63, no. 4,730

pp. 954–967, Apr. 2014.731

[35] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, ‘‘The HiBench bench-732

mark suite: Characterization of the MapReduce-based data analysis,’’ in733

Proc. IEEE 26th Int. Conf. Data Eng. Workshops (ICDEW), Mar. 2010,734

pp. 41–51.735

[36] O. O’Malley, ‘‘Terabyte sort on Apache Hadoop,’’ Yahoo, Sunnyvale,736

CA, USA, Tech. Rep., 2008, pp. 1–3. [Online]. Available:737

https://sortbenchmark.org/YahooHadoop.pdf738

[37] Dataset of Enwiki Dump Progress. Accessed: May 2022. [Online]. Avail-739

able: https://dumps.wikimedia.org/enwiki740

SAMAR A. SAID received the B.Sc. and M.Sc.741

degrees in electronics, communications, and742

computer engineering from the Faculty of Engi-743

neering, Helwan University, in 2010 and 2018,744

respectively, where she is currently pursuing the745

Ph.D. degree. She is also a Teaching Assistant in746

the university and involved in many of its research747

projects. Her research interests include big data748

processing systems, machine learning, mobile749

cloud computing, algorithms, cloud computing,750

parallel programming, and data structure.751

SHAHIRA M. HABASHY received the B.Sc.,752

M.Sc., and Ph.D. degrees in communications753

and electronics engineering from Helwan Uni-754

versity, Cairo, Egypt, in 1997, 2000, and 2006,755

respectively. She is currently a Professor with the756

Department of Computer and Systems Engineer-757

ing, Helwan University. She is also a Manager758

of the Technology Innovation Commercialization759

Office, Helwan University. Her research interests760

include clustering algorithms, parallel computing,761

cloud computing, machine learning, and image processing.762

SAMEH A. SALEM received the B.Sc. and M.Sc. 763

degrees in communications and electronics engi- 764

neering from Helwan University, Cairo, Egypt, 765

in 1998 and 2003, respectively, and the Ph.D. 766

degree in electrical engineering and electronics 767

from the University of Liverpool, U.K., in 2008, 768

respectively. In 2014, he got an Honorary Research 769

Fellow Position at the Department of Electrical 770

Engineering and Electronics, University of Liver- 771

pool. He was the Head of the Electronics, Com- 772

munications and Computer Engineering Department, and the Computer 773

and Systems Engineering Department, Helwan University. He is selected 774

to be a Co-ordinator and an Academic Advisor at the Department of 775

Communication and Information Technology, Uninettuno University, Italy, 776

incorporation with the Faculty of Engineering, Helwan University. Fur- 777

thermore, he is reviewing several proposals and research projects at the 778

National Telecommunication Regulatory Authority (NTRA), Egypt. Since 779

2018, he has been a Malware Analysis Consultant at the Egyptian Computer 780

Emergency Response Team (EG-CERT). He is currently a Professor of 781

cyber-security and the Director of Research and Technical Solutions at the 782

EG-CERT. His research interests include cyber-security, machine learning, 783

data mining, the Internet of Things (IoT), and parallel and cloud computing. 784

ELSAYED M. SAAD received the B.Sc. degree 785

in electrical engineering (communication section) 786

from Cairo University, in 1967, the M.Sc. degree 787

from the Electronic and Communication Engi- 788

neering Department, Cairo University, in January 789

1974, and the Dip.-Ing. and Dr.-Ing. degrees in 790

electrical engineering from Stuttgart University, in 791

1977 and 1981, respectively. He has a Military 792

Service, from December 1969 to September 1972. 793

He is currently a Professor of electronic circuit 794

with the Faculty of Engineering, Helwan University. He is an Inventor of 795

Saad’s single amplifier SC structure. He has been an Engineering Consul- 796

tant of the Supreme Council of Universities, since August 2002. He is an 797

International Scientific Member of the ECCTD, in 1983. He is a member of 798

the National Radio Science Committee. He is the author and/or coauthor of 799

190 articles. He is a member of the Egyptian Engineering Syndicate. He is 800

a member of the European Circuit Society (ECS). He is a member of the 801

Society of Electrical Engineering (SEE). He is a member of the Helwan 802

University Council for Award of Scientific Research. He is a Judge of the 803

National Scientific Award (Egypt National Level). 804

805

97088 VOLUME 10, 2022

