IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 14 July 2022, accepted 6 September 2022, date of publication 12 September 2022, date of current version 19 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3205723

== RESEARCH ARTICLE

An Optimized Straggler Mitigation Framework
for Large-Scale Distributed Computing Systems

SAMAR A. SAID ', SHAHIRA M. HABASHY', SAMEH A. SALEM "2, AND ELSAYED M. SAAD !

! Department of Computer and Systems Engineering, Faculty of Engineering, Helwan University, Cairo 11792, Egypt
2Egyptian Computer Emergency Readiness Team (EG-CERT), National Telecom Regulatory Authority (NTRA), Cairo 12577, Egypt

Corresponding author: Samar A. Said (samar_said @h-eng.helwan.edu.eg)

ABSTRACT Nowadays, Big Data becomes a research focus in industrial, banking, social network, and
other fields. In addition, the explosive increase of data and information require efficient processing solutions.
Therefore, Spark is considered as a promising candidate of Large-Scale Distributed Computing Systems for
big data processing. One primary challenge is the straggler problem that occurred due to the presence of
heterogeneity where a machine takes an extra-long time to finish execution of a task, which decreases the
system throughput. To mitigate straggler tasks, Spark adopts speculative execution mechanism, in which the
scheduler launches additional backup to avoid slow task processing and achieve acceleration. In this paper,
a new Optimized Straggler Mitigation Framework is proposed. The proposed framework uses a dynamic
criterion to determine the closest straggler tasks. This criterion is based on multiple coefficients to achieve a
reliable straggler decision. Also, it integrates the historical data analysis and online adaptation for intelligent
straggler judgment. This guarantees the effectiveness of speculative tasks by improving cluster performance.
Experimental results on various benchmarks and applications show that the proposed framework achieves
23.5% to 30.7% execution time reductions, and 25.4 to 46.3% increase of the cluster throughputs compared
with spark engine.

INDEX TERMS Spark, straggler, speculative execution, cluster throughput.

I. INTRODUCTION

In the last decade, the huge amount of digital data becomes
a key issue to be stored, managed and analyzed. As a con-
sequence, Large-Scale Distributed Computing Systems is
a promising solution in many fields [1], [2], [3], [4], [5],
[6], [7]. Many companies believe that these computing sys-
tems are the most effective and fault-tolerant method to
store and handle enormous volumes of data [8]. Hadoop [9]
and Spark [10] are two popular distributed computing sys-
tems that are widely used in the industry and academia.
Hadoop is an open-source software framework for handling
massive volumes of data, providing comprehensive process-
ing and analytical capabilities. Hadoop core composed of a
distributed file system storage and a MapReduce process-
ing [11]. This data processing computing system consists of
three stages: Map phase, Shuffle phase and Reduce phase.

The associate editor coordinating the review of this manuscript and

approving it for publication was Daniel Grosu

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

In this system, huge files are decomposed into several little
pieces of similar size and distributed on the cluster for stor-
age. Spark is an alternative distributed computing technol-
ogy that is open-source and free to use. It is implemented
on top of the Hadoop and its goal is to build a general-
purpose programing model faster and more fault-tolerant than
MapReduce. Resilient Distributed Dataset (RDD) [12] is a
technology introduced by Spark that provides application
program interfaces (APIs) that enable transformations and
parallelization of data which can be adapted by users on
basis of their applications. As a result, the performance of
the batch, interactive, streaming and iterative computations
can be increased by persisting RDD in memory. Furthermore,
Spark offers a variety of sophisticated modules which are
built on top of the Spark core including Spark Streaming [13],
Spark SQL [14], GraphX [15] and MLIib [16]. Spark Stream-
ing module allows Spark to build streaming applications,
while Spark SQL module used for structured data process-
ing. Also, GraphX is a graph API that allows you to do

97075

https://orcid.org/0000-0003-4129-1214
https://orcid.org/0000-0002-7553-4002
https://orcid.org/0000-0002-4662-3874
https://orcid.org/0000-0003-2340-5433

IEEE Access

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

graph-parallel computations. But, MLIlib Spark’s is a scal-
able machine learning library. However, Spark is extremely
recommended for data analytics, the appearance of Straggler
tasks and performance deterioration in parallel systems may
occur [17], [18]. In this context, a task is considered straggler
when a machine has a significant delay to finish the execution
of that task compared with other tasks at the similar stage
[19], [20]. This delay causes a degradation of the system
throughput. Many studies introduced a speculative execution
to overcome this problem, this leading to enhance the execu-
tion efficiency and the cluster performance [21], [22], [23],
[24]. In this context, late tasks can run on another nodes
using speculative execution. A speculative execution can be
categorized into two prevalent techniques [21] named as the
Cloning technique and Straggler Detection technique. The
first technique [25] suggests full cloning of small jobs. In this
technique, when the calculation of jobs’ costs are predictable
to be minimal as well as the system resources are available,
the clones run concurrently with original tasks. Accordingly,
the clones are launched in incidentally and rapacious manner.
So, it is suitable only and most appropriate for clusters with
light loads. But, in the latter technique [26], [27] the system
observes the completion of each task and only commences
backup copies whenever a straggler is found. Consequently,
the straggler detection is more comprehensive and applicable
for low and high cluster loads. In this paper, a new Optimized
Straggler Mitigation Framework is proposed. The proposed
framework introduces a dynamic criterion to evaluate the
most suitable tasks for speculation. The proposed criterion is
based on multiple coefficients to obtain the optimal straggler
decision. In addition, it guarantees the effectiveness for spec-
ulative tasks by improving cluster performance. The proposed
framework is composed of two modules. The first module
named a Straggler Decision Engine Module that collects tasks
execution logs to perform initial calculation and identifies
an appropriate straggler detection threshold based on four
weighted coefficients. The latter module is named as Strag-
gler Alleviation Module that guarantees the effectiveness
for speculative tasks for more efficient straggler mitigation.
We can summarize the major contributions of that paper as
follows:

(1) We propose a new Optimized Straggler Mitigation
Framework that presents dynamic criterion to predict the
tasks that suffer from straggler in an efficient manner.

(2) The proposed framework criterion is based on multi-
ple coefficients which lead to finding the optimum straggler
decision.

3) We evaluate the job execution and the improvement in
the cluster throughput using several benchmarks.

4) We improve the cluster performance and guarantee the
effectiveness of detecting and manipulating speculative tasks.

This paper is organized as follows: Section II describes the
background and motivation. Section III demonstrates the sys-
tem model and problem formulation. Section I'V describes the
implementation details of the proposed framework. Section V
examines the complexity analysis. Section VI shows an

97076

illustrative example. Section VII explores the performance
evaluation and detailed results. In section VIII, the paper is
concluded with the main findings.

Il. BACKGROUND AND MOTIVATION

This section presents a concise overview of Spark computing
system. After that, the straggler problem as well as its solution
in spark will be explored.

A. SPARK

Apache Spark [10] is a promising candidate in large scale
distributed computing systems. Spark is intended to improve
application execution as well as fulfill scalability and fault
tolerance by using resilient distributed dataset (RDD) [12].
RDD is a read-only collection of objects partitioned among
a number of machines that can be reconstructed when losing
one of the partitions. Each Spark application launches a single
master process known as the driver, which is in charge of task
scheduling. It employs a hierarchical scheduling procedure
that includes jobs, stages, and tasks, where the term “stages”
refers to smaller groups of tasks that are separated from
interdependent jobs. As shown in Fig. 1, A Spark cluster is
made up of only master node as well as many slave nodes
known as workers. Every Worker is handled on an execution
node, which may incorporate one or many executors. Each
executor has the ability to use many cores and execute tasks
at the same time. In case of a Spark application is submitted,
the master calls the resource manager for getting computing
resources based on the application’s needs. Once the resource
is ready, tasks are assigned to all executors in parallel through
Spark scheduler. Then, the master node will track the sta-
tus of executors and gathers the results from worker nodes
throughout this process. In this paper, Spark is used as the
target framework to determine and predict the tasks that will
suffer from straggler in an efficient manner.

Master Node
Driver Program

Spark Context

Cluster Manager

Sla\'é Node Slave ;\'ode

Slave Node
Executor e Executor e Executor
Task Task Task Task Task Task

FIGURE 1. Spark architecture [28].

VOLUME 10, 2022

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

IEEE Access

B. STRAGGLER PROBLEM

In Spark, a job is broken down into one or more stages. After-
wards, stages are divided into separate tasks. A task is con-
sidered as a unit of execution that runs on the Spark worker
in the cluster. When a task in execution becomes slower than
other tasks in the same job, this task is called a “straggler
task’ which prolong the entire job and the cluster throughput
will be affected. There are numerous causes that make a task
take a long time in execution and turned into a straggler
[29], [30]. These causes like hardware heterogeneity, over-
awed machines, network congestion, bad code and contention
of resources between tasks running on the straggler machine.
This problem solution is the speculative execution [31].
Although it seems that speculative execution mechanism is
a simple matter. It allows you to restart the straggler tasks on
another machine, in actuality it is a complicated issue because
speculative tasks consume resources which may affect other
running tasks. As a consequence, if a straggler task is not
detected correctly or a backup task is finished earlier than
the original task, this will consumes resources with no use.
Also it is leading to increase the job execution time and
degrading the cluster throughput [32]. Speculative execution
algorithms faces some challenges like their methodology
for correctly detecting straggler tasks, and stragglers should
be identified as early as possible to save resources. Also,
the choice of nodes for run backup tasks is very important
factor to avoid unnecessary resource consumptions. In this
context, if these factors are not met, the system will perform
poorly. It should be noted that the Spark computing system
allows the speculation by default. The default speculation
implements simple technique to deal with stragglers. Initially,
the speculation parameter ‘“‘spark.speculation” should be set
by true. This helps in identifying slower running tasks in
a stage according to a precalculated threshold that is based
on the average number of successful tasks multiplied by
“spark.speculation.multiplier”. After that, a copy of specu-
lative tasks is ready to run on idle nodes. It is worth not-
ing that the parameter “‘spark.speculation.quantile” identifies
slow tasks when a certain amount of tasks are completed.
Also, it is continuously applied based on an interval through
“spark.speculation.interval”” parameter. Despite the fact that
spark’s default speculation has improved performance in a
heterogeneous environment, but it has many defects. The
speculation decision becomes less accurate since it is based
on a fixed time as well as it does not consider the processing
capacity of various nodes. Furthermore, it may be unneces-
sary to launch clones of speculation tasks across the cluster.

Ill. SYSTEM MODEL AND PROBLEM FORMULATION

This section introduces the architecture of the proposed
Straggler Mitigation Framework. The purpose of the intro-
duced framework is to minimize job execution time by elim-
inating the impact of the straggler. This boosts the cluster
throughput by applying the speculative execution mecha-
nism. To achieve this goal, the proposed framework uses

VOLUME 10, 2022

a dynamic criterion to evaluate the most suitable tasks for
speculation. This criterion is based on multiple coefficients
to achieve a reliable straggler decision. Four coefficients
are used by the proposed framework, namely job quality
of service limitation, stage proceeding behavior, processing
bandwidth, and cluster utilization level.

The Proposed Mitigation Framework Architecture: The
proposed framework is designed to work in conjunction with
Spark parallel data processing platform. The main modules
of the proposed framework include a Straggler Decision
Engine Module and Straggler Alleviation Module. The strag-
gler decision engine Module is constructed from two compo-
nents; the initial historical calculator component that collects
tasks execution logs to perform initial calculations, and the
Dynamic Weighted Straggler Decision component that deter-
mines the best threshold for identifying stragglers. After that,
the decision for straggler is made based on four weighted
coefficients. The latter module, Straggler Alleviation Module,
foresees the machine performance to provide further and
effective straggler mitigations. Additionally, it guarantees the
effectiveness to speculative tasks. Figure 2 shows the archi-
tecture of the proposed straggler mitigation framework.

IV. THE IMPLEMENTATION DETAILS OF THE PROPOSED
FRAMEWORK

A. STRAGGLER DECISION ENGINE MODULE

1) THE INITIAL HISTORICAL CALCULATION

The straggler decision engine module include the initial his-
torical component that used to gather the information of task
execution logs and preliminary calculations. In Spark, the
lifetime of an executed task is comprised into three time peri-
ods (TPy, TP, and TP3). These periods are deserialization
of task period, running task period, and serialization of task
results period respectively. The deserialization of task period
(TP)) is the elapsed time spent to deserialize the task object
and data. Also, the running task period (7P3) is the elapsed
time that spent running this task. This includes the time of
fetching the shuffle data. While 7P3 is the serialization of task
result period which is the elapsed time spent in serializing the
task result. It should be noted that the information of tasks’
execution is collected for each node n. So, the mean execution
time of each period for a node n is recorded as TP1,, TP2,,
and TP3,,. Therefore, the total time of each task for all periods
can be computed as follows in (1)

3
Task ime = E . ITPn(j) e
j:

where j is the period id and n is the node id.

Also, the total time for all completed and successful tasks
on node 7 is defined as Wn. In this context, the average total
time of all successful tasks is (MT).

2) DYNAMIC WEIGHTED STRAGGLER DECISION CRITERION

According to the proposed framework, the judgment of a task
to be a straggler or not is dynamically identified. To increase
the speculation efficiency, the straggler decision criterion is

97077

IEEE Access

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

/., Job O
-\ L —

Spark Driver

e
Stage 0 Stage n— 1

R

Straggler Decision Engine Module

4 Initial Historical Calculation

F/ ‘ Dynamic Weighted Straggler Decision

Criterion

Straggler Allev iation Module

Backup Straggler Taskon
Proner Node

Z .\- 3

Speculative Execution
E fficiency

FIGURE 2. The architecture of the proposed straggler mitigation framework.

taken according to four weighted coefficients. These coeffi-
cients are the job quality of service limitation (Cp), the stage
proceeding behavior (Cp), the processing bandwidth (Cpy),
and the cluster utilization level (Cy). Afterwards, on the basis
of the system administrator preferences, the priorities of the
above parameters are determined through the weights Wy,
W1, W, and W3. The Straggler decision (Dg) can be computed
in Eq. (2).

Ds = WyCg + W1Cp + WCpw + W3Cyy (2)

The straggler decision depends on the residual time to
complete a task (Rt) as in Eq. (3).

3
Rt = TimeFactor, (p) X Zﬁ”)] 3)

J=pr

where the TimeFactor, (p) is computed as the ratio of the
running time at this period of that task to the mean value
of the running time within that period. Finally, if the total
running time of a task is greater than Dg x MT. then, the
task is added to a speculation queue. The pseudo-code for the
Dynamic Weighted Straggler Decision Module is illustrated
in Algorithm 1.

The coefficients calculations can be illustrated as follows:

The job quality of service limitation coefficient (Cg):
This coefficient is one of the crucial considerations for a
straggler decision. This coefficient depends on the appli-
cation nature, where some jobs’ deadline could not be
caught. These jobs lead to poor application performance. So,
it is preferable to execute such tasks rather than preserve
resources on the cluster. The following Algorithm computes
the value of the coefficient considering the limitation time for

97078

a job quality of service as defined in Eq. (4).

or
_]l MT
Co = min(Task sime)
MT

where Q7 is the required time for a task and considered as the
quality of service coefficient. When Qr value is more than
the maximum 7ask ., this indicates a long limitation time
for quality of service. Therefore, there is no need to make a
large number of clones because there are no risks of inten-
sive performance implications. In this case, the coefficient is
computed as the division between the quality of service time
limitation (Q7) and the mean time (MT). When Q7 value is
less than the maximum 7ask e, the coefficient is set to the
minimal 7ask iy, divided by the mean time (MT) as in Eq. (4).
The pseudo-code for calculating the job quality of service
limitation coefficient (Cp) is illustrated in Algorithm 2.

The stage proceeding behavior coefficient (Cp): Ideally,
a speculation should preferably be detected early in the job
lifecycle. This saves cluster resources and that reflects on the
job completion time. As a consequence, it is vital to examine
the stage proceeding behavior to get effective straggler detec-
tion. The proceeding behavior in the stage can be computed as
the ratio between the number of completed tasks in the stage
(n) and the total number of tasks in that stage (m) as follows
in (5).

if (Qr = max (Taskqime))
“4)

otherwise

Proceeding = % (@)

Then, the average proceeding Proceeding,,,, for all stages can
be computed, which indicates the present proceeding in the
entire job lifecycle. After that, the computation of the stage
proceeding behavior coefficient (Cp) at time ¢ is given in (6)

Cp = Proceeding,, — Py, (6)

VOLUME 10, 2022

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

IEEE Access

Algorithm 1 Dynamic Weighted Straggler Decision Module
Input:

o TP1, : Mapping between node and the mean deserial-
ization of task period

o TP2, : Mapping between node and the mean running
task period

o TP3, : Mapping between node and the mean serializa-
tion of task result

o Parallel jobs in Spark J = {J1, J2,, J;}

o The list of nodes in spark cluster n = {ny, na,, ny}

o Wy, Wi, W, and W3: The coefficients weights can be
specified by system administrator

o MT: The average total time of all successful tasks

o Rt: The residual time for a task to complete

e Cp : The job quality of service limitation coefficient //
defined in Algorithm 2

o Cp: The stage proceeding behavior coefficient // defined
in Algorithm 3

e Cpw: The proceeding bandwidth coefficient // defined
in Algorithm 4

e Cy : The cluster utilization level coefficient // defined
in Algorithm 5

Output: find speculation task

1. Get_Cp ()
. Get_Cp ()

/las in Algorithm 2

2 /fas in Algorithm 3

3. Get_Cgw () /fas in Algorithm 4

4. Get_Cy () //as in Algorithm 5

5. Ds = WoCp + W1Cp + WrCpyw + W3Cy
6 For(t =0tk —1)do

7 If T is not completed then

8

) Get MT [t]
9. If T in the first period
10. Re = Bee) (TP2, + TP3,)
11. Else if 7 is In the second period
12. Rt = ’% x (TP3,)
13. End if
14. End if
15. If (Run time + Rt > Dg x MT)
16. If (Spark — speculation (t) == false)
17. AddInSpeculationQueue(t)
18. End if
19. End if
20. Endif
21. End for
22. /* end of Dynamic Weighted Straggler Decision
Algorithm*/

where Py, is the proceeding threshold that indicates the
specified maximum point during the lifespan, which eligible
for straggler decisions. The value of Py, is variable € [0:1]
as the administrator preference. As a result, when a task
slows down at its final stages, the created replica has less
chances of finishing before the straggler. As a consequence,
to avoid ineffective speculation, it is reasonable to raise the

VOLUME 10, 2022

Algorithm 2 The Job Quality of Service Limitation Coeffi-
cient (Cg)

Input:
QOr : Quality of service limitation time
Output: The job quality of service limitation coefficient (Cp)
Get_Cop ()
Get MT
Get max (Task sime)
Get min (Task ime)
If (Qr > max (Taskime)
Co = 31
Else sk
CQ — min SK time
End if M
/* end of job quality of service limitation
coefficient*/

WXk wh =

Algorithm 3 The Stage Proceeding Behavior Coefficient
(Cp)
Input:

« Parallel jobs in spark app J = {J1,J2,, J;}

« A job decomposed into single or multiple stages S =
{S], So,Sj}

« n: the number of completed tasks in the stage.

« m : the total number of tasks in that stage

Output: The stage proceeding behavior coefficient (Cp)

Get_Cp ()
1 For (§ =0toj—1)do
2 Proceeding[s] = .
3. Proceedingsym+ = Proceedingls]
4. End for
5 Proceedingsum
6.
7.

Proceeding,,, = 5

Cp = Proceedingavg — Py,
/% end of job quality of service limitation coefficients/

*Proceeding,,,: The average proceeding for all stages.
#Py,: The proceeding threshold

threshold value in response to late progress. Also, it is accept-
able to reduce the threshold value early in the task lifecycle
to motivate replica generation. This is because the replica
should have a greater chance of surpassing the original task.
In such situations, it is preferable to run these tasks instead
of conserving resources on the cluster. The pseudo-code for
calculation the stage proceeding behavior coefficient (Cp) is
illustrated in Algorithm 3.

The processing bandwidth coefficient (Cgw): This coef-
ficient measures a job’s process speed in order to identify
slow tasks more quickly. The amount of processed data for
a given time period is used to calculate the process speed.
The processing bandwidth (Processingpgy,) for a stage can be
computed as the ratio between processed data size in the stage

97079

IEEE Access

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

Algorithm 4 The Proceeding Bandwidth Coefficient (Cpw)
Input:

« Parallel jobs in spark app J = {J1,J2,, J;}
o A job decomposed into single or multiple stages S =
{S1. 82,5j}
Output: The proceeding bandwidth coefficient (Cpw)
Get_Cpw()

1. For(§=0tj—1)do ‘

2. Processinggy [5] =-—1D ;fr‘:csjfgzgt’l“;lfe

3. Rategyy[s] = Zreccosincny

4. Rateg,,+ = Rategw [s]

5. End for

6. Rateyy, = B4

7. Cgw = Rateyyg — Ratey,

8. /* end of job the proceeding bandwidth coefficient
*/

* Processingpw: The processing bandwidth
* Ratepw: The processing bandwidth rate
* Rates,: The processing bandwidth rate threshold

to the processing time in that stage as in Eq. (7).

. Processed data size
Processinggy = - - (7)
Processing time

After that, the processing bandwidth rate (Rategw) can be
computed by dividing Processinggy to the size of data to be
processed (data) as in Eq. (8).

Processinggy

Ratepwy () = Jata

®)
Then, the average bandwidth rate Rate,,, for all stages can
be computed and indicates the present bandwidth rate for
the entire job lifecycle. The computation of the processing
bandwidth coefficient is defined in Eq. (9).

Cpw(t) = Rateyyg — Ratey,)

where Ratey, is the processing bandwidth rate threshold that
indicates the specified maximum point during the lifespan
eligible for straggler decision. The value of Ratey, is variable
€ [0:1] as the system administrator preference. The pseudo-
code for computing the processing bandwidth coefficient
(Cpw) is illustrated in Algorithm 4.

The cluster utilization level coefficient (Cy/): The over-
head incurred by speculations is considered as a significant
factor while dealing with stragglers. It should be noted that
the creation of replicas in high resource utilization cluster
may increase straggler occurrence. While in low cluster uti-
lization levels, an additional speculation might be needed
for enhancing the job execution time. Therefore, the cur-
rent cluster utilization level should be considered for getting
efficient dynamic straggler calculations. Many parameters
are considered by cluster utilization level coefficient such as
CPU utilization, Memory utilization, Disk I/O utilization and

97080

Network bandwidth utilization as in Egs. (10), (11), (12) and
(13) [17].
o CPU utilization (n) is defined as the ratio of CPU busy
time to the time interval for a node n.
cpu_busy

cpu,,; = ——————— 10
Plluil time_interval (10)

e Memory utilization (n) is the ratio of the maximum
memory accessed during the time interval by tasks to
the size of physical memory for a node n.

max_mem_accessed

memyi] = - A (1 1)
physical_mem_size

e Disk 1/O utilization (n) is the ratio of the disk’s
read/write volumes consumed by tasks during the time
interval to the effective maximum bandwidth of disc I/O
for a node n.

. read_vol + write_vol
disk i1 = - - (12)
max_disk_bandwidth
o Network bandwidth utilization (n) is the ratio of receiv-
ing/sending tasks’ traffic over a given period of time to

the effective maximum bandwidth for a node n.

, rec_vol + send_vol (13)
net i) =
util max_bandwidth

The calculation of cluster utilization level coefficient (Cy) at
time t is given as in Eq 14.

Sumpy

Sumyem
— CpUy,), " — memyj, |,

Cy(t) =avg s n) N
(umdisk _ diskth>, < UNipet _ netth>
n n

(14)

where cpuy, is the CPU utilization threshold, memyy, is the
memory utilization threshold, disk,, is the disk utilization
threshold, net, is the network bandwidth utilization thresh-
old and n is the total number of cluster nodes. The values
of cpuy,, memy,, disky,, and nety, are variable € [0:1] as
the administrator preference. When the average utilization
parameter exceeds the utilization thresholds specified by the
user, this leads having positive Cy values. The pseudo-code
for computing the cluster utilization level coefficient (Cy) is
illustrated in Algorithm 5.

B. STRAGGLER ALLEVIATION MODULE

1) BACKUP STRAGGLER TASK ON PROPER NODE

One of the major challenges of speculative execution is the
backup of tasks at appropriate nodes. Since every node’s
capability may vary, it is essential to have an appropriate
metric to measure the performance of heterogeneity nodes.
Therefore, the capability of a node can be obtained through
the amount of tasks completed and total tasks processed as
in (15) [33]:

Number of Completed Tasks

bili = 15
Capabiiilynode Number of Processed Tasks (15

VOLUME 10, 2022

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

IEEE Access

TABLE 1. The time and space complexity analysis for the proposed Algorithms.

Module Name Algorithm No. Time Complexity Space Complexity
Algorithm 2 30(k) + 0(1) 40(1)
Algorithm 3 0() +20(1) 0() +40(1)
Algorithm 4 0@y)+200) 20(j) +80(1)
Straggler Decision
Engine Module Algorithm 5 0(x) +20(1) 100(x) + 100(1)
“Algorithm 17
B 2
Overall 300 +20() +30(0) + 70(1) + 0 (k%) 03k) X [30() + 100(x) + 260(1)]
. +40(1)
Algorithm
1
Approx. 0(k?» Vk>»jk>»x 0k x (j +x))
2
Straggler Alleviation . Overall 0(k*) +30(1) 60(1)
Algorithm
Module 6
“Algorithm 6”
gortim Approx. 0(k?) 0(1)

Algorithm 5 The Cluster Utilization Level Coefficient (Cy)

Algorithm 6 Speculative Execution Efficiency Algorithm

Input:

The list of nodes in spark cluster n = {n, na,, ny}
Output: The cluster utilization level coefficient (Cy)

1. Get_Cy()

For (n =11tox)do
_ cpu_busy[n]
SumCP“+ ~ time_interval[n] i
__ max_mem_accessed[n
Summem+ " physical_mem_size[n]
read_vol[n]+write_vol[n]

2
3
4
5. Sumdisk-i_ = Tmax disk_bandwidthﬂn]
6
7
8

rec_vol[n]+send_vol[n

Summpe;+ = max_bandwidth[n]
End for
avguiil s
UMcpy Sum
— Cp“th)’ (Xmem - memth)v
= ay,

Sumgisk R 5 Sumper _
(—x dlsk,h), (—x net,h)

9. Cu =avgy
10. /x end of the cluster utilization level coefficient %/

It should be noted that the completed tasks are the tasks
that successfully finished execution, while failed tasks and
the tasks lost by speculative execution are included in the
processed tasks.

2) SPECULATIVE EXECUTION EFFICIENCY

It is preferable to develop an efficient method for determining
whether backup tasks should be started or not. Therefore for
each task in the straggler tasks queue, we compute the benefit
of having backup and the benefit of not having backup and
picking up a task which give maximum benefit. In [34], the
cost parameter is considered as the busy time for computing
resources. But, when the speculative execution saves time,

VOLUME 10, 2022

Input:
« Parallel jobs in spark app J = {J, J2,, J;}
o A job decomposed into single or multiple stages S =
{S1. 82,5j}
Output:

1. For each task in the straggler task queue
2. Get_Rt() /las in Eq. 3

3. Get_Bt() /las in Eq. 16
4, If (Rt < Bt)
5. Ignore this task
6. End if
7. Get profit of backup and profit of not backup
8. Select the task which will do the maximum profit
and assign it on the highest node capability //as in
Eq. 15
9. If (the cluster is overloaded && Rt > 2% Bt) then
10. Delete the original task
11. End if
12. End for
13. /* end of Speculative Execution Efficiency
Algorithm */

itis considered as a benefit parameter. The benefit of backing
up a task will be measured with taking into account assigning
another slot for back up task. Since both the original and
the backup must continue to run till the task is completed.
While conserving one slot is equal to the difference between
the residual time and the backup time. The residual time to
complete a task can be computed as referred in (3). The mean
execution time of three periods of all tasks is adjusted by

97081

IEEE Access

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

TABLE 2. lllustrative example for the straggler decision criteria in low and high state.

Task Task time (s) coefficient Dg Decision
Low High Low High
2 Co Low 1.14 0.035 0.838 S N
T1 High 2
Cp Low -0.4
High 0.45
Cgw Low -0.25
High 0.42
Cy Low -0.35
High 0.48
T2 5 Co Low 1.14 0.035 0.838 S N
High 2
Cp Low -0.4
High 0.45
Cew Low -0.25
High 0.42
Cy Low -0.35
High 0.48
T3 4 Co Low 1.14 0.035 0.838 S N
High 2
Cp Low -0.4
High 0.45
Cpw Low -0.25
High 0.42
Cy Low -0.35
High 0.48
T4 6 Co Low 1.14 0.035 0.838 S N
High 2
Cp Low -0.4
High 0.45
Cpw Low -0.25
High 0.42
Cy Low -0.35
High 0.48
TS5 19 Co Low 1.14 0.035 0.838 S S
High 2
Cr Low 04
High 0.45
Cpw Low -0.25
High 0.42
Cy Low -0.35
High 0.48

Data factor to compute the backup time. Data factor denotes
the proportion of the task’s input size to the mean input
size of all tasks. The backup time is computed as follows in
Eq. (16)
3
Bt = Data factor X Zﬁ” »)

p=1

(16)

97082

Otherwise, the cost of not backing will be one slot of residual
time which is consumed with no benefit. Eqs. (17) and (18)
show the benefit cy,,, and benefit,; pycpp as follows:

7)
(18)

benefityqepy, = o X (Rt —Bt) — B x 2 X Bt

benefit =x x0— 8 xRt

not_backup

VOLUME 10, 2022

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

IEEE Access

where o and § are benefit and cost weights respectively.
Similraly, Rt and Bt are the residual and backup times
respectively. When the benefity,y,, is greater than the

benefit, s paciups the task is considered as a slow task as in
Eq. (19).
! Rt o +28
beneﬁtbackup > beneﬁtnot_backup hg E = a+ B (19)
when replacing g with ¢, we can obtain:
Rt 142
e ki 4 (20)
Bt 1+y
where
b .
y = loa dfactor _ NUMBErpending tasks Q1)

numberfree slots

When there are a lot of pending tasks, y gives higher values
close to two. Consequently, fewer tasks will be backed up.
But, when the cluster contains multiple free slots converges
to zero, resulting in no cost for speculative execution. As a
result, the use of the load factor y conforms and meets
the requirements. As a consequent, the original task will be
deleted in case of the cluster is overloaded and there are no
free slots. Also, when the residual time is large enough for
safe restart, the residual time is at least double the backup
time as in Eq. (22).

Rt > 2 % Bt (22)

Algorithm 6 illustrates the pseudo-code for Speculative Exe-
cution Efficiency Algorithm.

V. COMPLEXITY ANALYSIS

In this section, we examine the time and space complexity
analysis for the proposed algorithms from Algorithm 1 to 6.
As demonstrated, the main modules of the proposed frame-
work include a Straggler Decision Engine Module and Strag-
gler Alleviation Module. For a Straggler Decision Engine
Module which is represented by Algorithm 1, where it uses
algorithms 2 to 5 as in lines 1 to 4 in addition to the decision
criterion in lines 5 to 21 as in Algorithm 1. As a consequence,
Table 1 shows the Straggler Decision Engine Module requires
0 (kz) and O (k x (j + x)) for the time and space complexity
respectively. Similarly, Straggler Alleviation Module requires
time complexity of O (k?) and space complexity of O (1)
where k the number of tasks, j the number of stages and x
the number of nodes.

VI. AN ILLUSTRATIVE EXAMPLE

For further clarification, an illustrative example is introduced
to demonstrate the key idea of the proposed framework. This
example shows the proposed criterion for changing the strag-
gler decision threshold based on different coefficients for dif-
ferent scenarios. One scenario clarifies the straggler decision
threshold when the job at a low state, where Proceeding,,,,
Rategyg or avgy,; are less than 0.25. Another scenario shows

VOLUME 10, 2022

TABLE 3. Cluster configurations.

Cluster configurations
Node Main Memory CPU cores Storage
Master 16 G 12 100 G
Slave-1 12G 8 50 G
Slave-2 8G 4 50G
Slave-3 4G 4 50 G

TABLE 4. Software configurations.

Software configurations
Operating System Ubuntu 18.04
Spark 3.0.0
Hadoop 273
JDK 1.8
Scala version 2.12.10

TABLE 5. Benchmark applications, and Workload types and sizes.

L Benchmark Workload .
Application Workload size
category type
Micro CPU and I/O
TeraSort . . 3GB,6GB,12GB
Benchmark intensive
Micro CPU
‘WordCount . . 10GB,20GB,30GB
Benchmark intensive
Machine CPU and I/O 1K,10K,100K
K-means . . .
learning intensive samples

the straggler decision threshold for high states, where the
values for Proceeding,,,, Rateq,, or avgy,; are more than
0.75. For clarification purpose, we consider a particular job
having five tasks T1,7T2,73,T4 and TS5, and the values
of the weights Wy, Wi, W, and W3 are € [0:1] based on
the administrator preferences in such a way that), W; = 1.
In this case study, we use equal weights set to 0.25. Also,
the threshold parameters as Py, Ratey,, cpu,,, memy,, disk,y,
and net, are set to 0.5. These settings characterize a common
configuration for the two scenarios, and can be customized
for different purposes. Then, the coefficients of the stage
proceeding behavior (Cp), the processing bandwidth (Cpw),
and the cluster utilization level (Cy)can be computed as in
Egs. (6), (9) and (14). Therefore Straggler decision (Dg) can
be obtained as in Eq. 2. In this context, we can denote each
task to be either a straggler task (S) or a none straggler task
(N). Table 2 shows the straggler decision (Dg) for low and
high states with Q7 = 8 and 14 respectively. For low states,
the proposed criterion encourages replica creation in early
stages of the life cycle by generating smaller coefficients
while ensuring that the quality of service. While in high
states, the proposed criterion creates fewer replicas to avoid
overload of the system. Also, it guarantees the realization of
quality of service requirement.

97083

IEEE Access

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

(c)

FIGURE 3. The execution time of TeraSort at workload: (a) 3 GB, (b) 6 GB,
and (c) 12 GB.

VIi. PERFORMANCE EVALUATION

In this section, the performance of the proposed framework
is assessed on a spark cluster with a diverse set of nodes.
Also, the proposed framework is compared with Spark-
Default, Spark-Speculation and the work in [33] (marked as
Spark-ETWR) in various benchmarks at different input sizes.
The performance is evaluated in terms of the job execution
time that refers to the elapsed time from the beginning to
the end of the job in seconds. Also, the number of com-
pleted jobs per second for a cluster is denoted as the cluster
throughput. In the following sub-sections, we provide an
overview of the platform, and the benchmarks that are used
to evaluate the performance as in Section VI-A, Section VI-B
respectively. Finally, section VI-C illustrates the experimental
results.

97084

S0 01
80 0.09
614 0.08
=z @« 0.07
f 60 W Spark-Default §
- . 2 0.06 Spark-Default
= 50 - W Spark-Speculation =
- 40 | S R E, 0.05 M Spark-Speculation
3 SRafGEI % 0.04 7 m Spark-ETWR
S 30 m Proposed Framework .g 0.03 -
m Proposed Framework
20 0.02 -
10 0.01 -
0 - 0 -
Best Worst Average Best Worst Average
TeraSort 3G TeraSort 3G
(a) (a)
200 0.045
180 0.04
160 0.035
2140 =
o W Spark-Default = 0.03
E 120 ry 0,025 W Spark-Default
=] M Spark-Speculation i
; 100 g 002 M Spark-Speculation
= 80 W Spark-ETWR s
] 8 0015 = Spark-ETWR
5 60 m Proposed Framework -
i 001 m Proposed Framework
20 4 0.005
o] 0
Best Worst Average Best Worst Average
TeraSort 6G TeraSort 6G
(b) (b)
600 0.014
500 - 0.012
Y = 001
P 400 ™ Spark-Default % ™ Spark-Default
E 556 M Spark-Speculation ‘g‘ 0.008 M Spark-Speculation
&
'.g W Spark-ETWR £ 0.006 - W Spark-ETWR
o =
lg 200 m Proposed Framework E 0.004 ™ Proposed Framework
20054 0.002 -
0 0
Best Worst Average Best Worst Average
TeraSort 12G TeraSort 12G

(c)

FIGURE 4. The throughput of TeraSort at workload: (a) 3 GB, (b) 6 GB, and
(c) 12 GB.

A. PLATFORM
The experimental big data cluster used in this work con-
sists of four virtual machines that are made up of a
master and three workers. The cluster classification and
the software configurations are demonstrated in Table 3.
The cluster applied with 28 cores and 40 GB memory
space.

The software configurations are illustrated Table 4. Also,
the block size of the Hadoop Distributed File System (HDFS)
used is 128 MB.

B. BENCHMARKS

There are many spark applications incur a lot of resources.
Based on many researches that conducted on spark

VOLUME 10, 2022

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

IEEE Access

70
60
2 50
o
.—E 40 - W Spark-Default
5 B Spark-Speculation
= 30 A
=
H W Spark-ETWR
& 20
m Proposed Framework
10 4
V]
Best Worst Average
Word Count 10G
(a)
250
200 +
z
]
§ 1304 m Spark-Default
2 M Spark-Speculation
S 100 4
] m Spark-ETWR
&
50 - m Proposed Framework
o]
Best Worst Average
Word Count 20G
(b)
450
400
_. 350 -
°
© 300 -
é 250 ® Spark-Default
.§ 200 - M Spark-Speculation
% 150 + W Spark-ETWR
. 100 - m Proposed Framework
50
0 -
Best Worst Average
Word Count 30G

(c)

FIGURE 5. The execution time of WordCount with data size: (a) 10 GB,
(b) 20 GB, and (c) 30 GB.

performance [35], the proposed framework is applied on
three different benchmarks. In this paper, the benchmarks are
applied with various workloads to deliver a comprehensive
performance evaluation. Table 5 shows different benchmark
applications with various workloads and sizes.

1) TeraSort

It is a common benchmark [36] that measures the time
required to sort a given amount of randomly distributed data
on a particular cluster. It consists of three functions as Ter-
aGen, TeraSort and TeraValidate. The TeraGen function is
written in Java that generates the input data. The TeraSort
function uses MapReduce to sort the data, and the TeraVal-
idate function verifies the sorted data output. The workload
size we used in our experiments are 3, 6 and 12 GB text data.

VOLUME 10, 2022

0.03
0.025
% 0.02 M Spark-Default
= | rk- i
a iiE Spark-Speculation
.E. W Spark-ETWR
'g 0.01 m Proposed Framework
0.005

o

Best Worst
Word Count 10G

(a)

Average

W Spark-Default
M Spark-Speculation
W Spark-ETWR

Troughput(Job/S

m Proposed Framework

Best Worst
Word Count 20G

(b)

Average

0.004
0.0035
__ 0,003 -
U
go.oozs 1 m Spark-Default
E_ 0.002 - W Spark-Speculation
ig'a‘o.oms - m Spark-ETWR
£

0.001 - m Proposed Framework

0.0005 -

Best Worst
Word Count 30G

Average

(c)

FIGURE 6. The throughput of WordCount at workload: (a) 10 GB,
(b) 20 GB, and (c) 30 GB.

2) WordCount

This application is a popular benchmark that counts the num-
ber of times each word appears in the input data file. It has two
stages: stage 0 and stage 1. Stage O read data from the HDFS,
and performs map and reduce operations. Stage 1 read the
output data of stage 0 through shuffler, and performs reduce
operations. In our experiment, we use the real dataset, enwiki
dump progress [37] of size 10, 20 and 30 GB.

3) K-MEANS CLUSTERING ALGORITHM

It partitions a set of data point into K clusters. It is a com-
monly used on large data sets which automatically classifies
the input data points into K clusters. So, it is appropri-
ate candidate for parallelization. To generate the datasets,

97085

IEEE Access

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

& & 8

o wn
-

® Spark-Default
W Spark-Speculation

Execution Time (s)
NN W W
o wn

=
w
|

W Spark-ETWR

=
=]
|

m Proposed Framework

w
4

Best Worst Average

K-means 1K

(a)

140
120
100
z
g 80 W Spark-Default
= &0 M Spark-Speculation
=
2 W Spark-ETWR
3 40
3 ™ Proposed Framework
20 A
[}
Best Worst Average
K-meams 10K
(b)
800
700
600
2 500
] W Spark-Default
£ 400
: M Spark-Speculation
;: 300 - W Spark-ETWR
9
lg 200 - m Proposed Framework
100
o -
Best Worst Average
K-means 100K

(c)

FIGURE 7. The execution time of K-means at samples of size: (a) 1K,
(b) 10K, and (c) 100K.

the scikit-learn python library is used to generate data
points with clustering tendency, and sizes 1000, 10000, and
100000 points. In addition, the experiments are conducted at
K = 13, and maximum iterations = 50.

C. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, the results obtained after running the
benchmarks are evaluated based on Spark framework. Each
experiment is performed 20 times and the average value
was calculated. For the purpose of comparisons, the pro-
posed framework is compared with Spark-Default, Spark-
Speculation, Spark-ETWR. The performance is evaluated in
terms of job execution time as well as the cluster through-
put. We have conducted a number of experiments to exam-
ine the total execution time. It is worth noting that the

97086

0.04

0.035
. 0.03 A1
§ 0.025
] ® Spark-Default
=1
.E' 0.02 B Spark-Speculation
E)
§ 0.015 W Spark-ETWR
=

o
o
=

m Proposed Framework
0.005 -

Best Worst
K-means 1K

(a)

Average

W Spark-Default
M Spark-Speculation
W Spark-ETWR

m Proposed Framework

Best Worst
K-means 10K

(b)

Average

0.0035
0.003
~ 0.0025
L
=
é 0.002 W Spark-Default
2
-§ 0.0015 W Spark-Speculation
g W Spark-ETWR
= 0.001
m Proposed Framework
0.0005
o]
Best Worst Average
K-means 100K

(c)

FIGURE 8. The throughput of K-means 100K at samples of size: (a) 1K,
(b) 10K, and (c) 100K.

execution time is influenced by many parameters as the
benchmark category, the input data sizes and the assigned
node capability. Furthermore, the throughput is calculated
likewise, the job numbers over the execution time. In TeraSort
benchmark, Figure 3 shows the performance comparisons
with Spark-Default, Spark-Speculation, and Spark-ETWR at
workloads 3 GB, 6 GB and 12 GB.

On average, the proposed framework achieves 26.8% less
execution time than Spark- Default. Also, it gives 24.3%
execution time reduction against Spark-Speculation, and 14%
reduction compared with Spark- ETWR. Furthermore, show
that the cluster throughput increased by 46.3%, 42.8% and
15% with respect to the competitive methods respectively.

Similarly for WordCount benchmark as in Fig. 5, the
proposed framework achieves a reduction of 28.7% in the

VOLUME 10, 2022

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

IEEE Access

average execution time compared with Spark-Default. Addi-
tionally, it provides 21.5% execution time reduction com-
pared with Spark-Speculation and 13.6% reduction with
Spark- ETWR.

Also, Figure 6 is showing that the cluster throughput is
improved by 30.7%, 24.2% and 15.7% compared with other
competing methods.

For K-means clustering algorithm as in Fig. 7 and 8, the
results are consistent with TeraSort and WordCount bench-
marks, where, the proposed framework achieves 23.5%,
19.6% and 11% execution time reduction, and 25.4%, 22.2%
and 15.4% throughput improvements against Spark-Default,
Spark-Speculation and Spark-ETWR respectively.

As demonstrated, the proposed framework is clearly out-
performing compared with Spark-Default, Spark-Speculation
and Spark-ETWR, where the proposed framework uses a
dynamic criterion to determine the closest straggler tasks.
This criterion is based on multiple coefficients to achieve a
reliable straggler decision. It shows that the suggested crite-
rion gives an intelligent decision that can locate the straggler
more precisely. As a consequent it improves the throughput
and reduces the execution time.

VIIl. CONCLUSION

This paper has introduced a new Optimized Straggler Miti-
gation Framework. The proposed framework’s purpose is to
minimize job execution time through speculative execution to
reduce the impact of the straggler, and consequently boosting
cluster throughput. To achieve this goal, the proposed algo-
rithm uses a dynamic criterion to evaluate the most suitable
tasks for speculation. This criterion is based on multiple
coefficients to achieve a reliable straggler decision. As well
as, it guarantees the effectiveness of detecting and treating
speculative tasks to improve the cluster performance. As a
consequence, the consumed resources can be reduced by
restarting tasks to achieve the optimal goal. To examine the
reliability of the proposed framework, several experiments
have been carried out on various benchmarks having CPU
bound and I/O intensive with different workloads. Results
showed that the proposed framework achieved 25.4% to
46.3% higher cluster throughputs with lower applications’
execution time of 23.5% to 30.7% reduction compared with
Spark-3.0.0. In the future, further investigation will be car-
ried out to consider effective machine learning techniques
for enhancing the robustness and reliability of the proposed
framework.

REFERENCES

[1] Z. Chen, W. Huang, L. Ma, H. Xu, and Y. Chen, “Application and devel-
opment of big data in sustainable utilization of soil and land resources,”
IEEE Access, vol. 8, pp. 152751-152759, 2020.

[2] G. Mokhtari, A. Anvari-Moghaddam, and Q. Zhang, “A new layered
architecture for future big data-driven smart homes,” IEEE Access, vol. 7,
pp. 19002-19012, 2019.

[3] I. Kotenko, I. Saenko, and A. Branitskiy, ‘“Framework for mobile Internet
of Things security monitoring based on big data processing and machine
learning,” IEEE Access, vol. 6, pp. 72714-72723, 2018.

VOLUME 10, 2022

[4]

[51

[6

—

[71

[8

—

[9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

(25]

[26]

S. Sakr, Z. Maamar, A. Awad, B. Benatallah, and W. M. P. van der Aalst,
“Business process analytics and big data systems: A roadmap to bridge the
gap,” IEEE Access, vol. 6, pp. 77308-77320, 2018.

Y. Xu, Y. Sun, J. Wan, X. Liu, and Z. Song, “Industrial big data for
fault diagnosis: Taxonomy, review, and applications,” IEEE Access, vol. 5,
pp. 17368-17380, 2017.

S. K. Roy, R. Devaraj, A. Sarkar, and D. Senapati, “SLAQA: Quality-level
aware scheduling of task graphs on heterogeneous distributed systems,”
ACM Trans. Embedded Comput. Syst., vol. 20, no. 5, pp. 1-31, Sep. 2021.
S. K. Roy, R. Devaraj, A. Sarkar, K. Maji, and S. Sinha, “Contention-
aware optimal scheduling of real-time precedence-constrained task graphs
on heterogeneous distributed systems,” J. Syst. Archit., vol. 105, May 2020,
Art. no. 101706.

H. Isah, T. Abughofa, S. Mahfuz, D. Ajerla, F. Zulkernine, and S. Khan,
“A survey of distributed data stream processing frameworks,” IEEE
Access, vol. 7, pp. 154300-154316, 2019.

P. Mika and G. Tummarello, ‘““Web semantics in the clouds,” IEEE Intell.
Syst., vol. 23, no. 5, pp. 82-87, Sep./Oct. 2008.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proc. 2nd USENIX
Workshop Hot Topics Cloud Comput. (HotCloud), 2010, pp. 1-7.

J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica, “‘Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Proc. 9th
USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2012, pp. 15-28.
L. Jin, W. Fu, M. Ling, and L. Shi, “A fast cross-layer dynamic power
estimation method by tracking cycle-accurate activity factors with spark
streaming,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 30,
no. 4, pp. 353-364, Apr. 2022.

X. Li, B. Yu, G. Feng, H. Wang, and W. Chen, “LotusSQL: SQL engine
for high-performance big data systems,” Big Data Mining Anal., vol. 4,
no. 4, pp. 252-265, Dec. 2021.

J. Wang, X. Wang, C. Ma, and L. Kou, ““A survey on the development status
and application prospects of knowledge graph in smart grids,” IET Gener,
Transmiss. Distrib., vol. 15, no. 3, pp. 383-407, Feb. 2021.

E. Nagy, R. Lovas, I. Pintye, A. Hajnal, and P. Kacsuk, “Cloud-agnostic
architectures for machine learning based on apache spark,” Adv. Eng.
Softw., vol. 159, Sep. 2021, Art. no. 103029.

S. A. Said, M. S. El-Sayed, S. A. Salem, and S. M. Habashy, ““A speculative
execution framework for big data processing systems,” in Proc. Int. Conf.
Inf. Technol. (ICIT), Jul. 2021, pp. 616-621.

S. Deshmukh, K. T. Rao, and M. Shabaz, “Collaborative learning based
straggler prevention in large-scale distributed computing framework,”
Secur. Commun. Netw., vol. 2021, pp. 1-9, May 2021.

P. Garraghan, X. Ouyang, R. Yang, D. McKee, and J. Xu, ‘““Straggler root-
cause and impact analysis for massive-scale virtualized cloud datacenters,”
IEEE Trans. Serv. Comput., vol. 12, no. 1, pp. 91-104, Jan. 2019.

S. Lu, X. Wei, B. Rao, B. Tak, L. Wang, and L. Wang, “LADRA: Log-
based abnormal task detection and root-cause analysis in big data pro-
cessing with spark,” Future Gener. Comput. Syst., vol. 95, pp. 392-403,
Jun. 2019.

H. Xu and W. Cheong Lau, “Optimization for speculative execution in big
data processing clusters,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 2,
pp. 530-545, Feb. 2017.

S. S. Gill, X. Ouyang, and P. Garraghan, ““Tails in the cloud: A survey and
taxonomy of straggler management within large-scale cloud data centres,”
J. Supercomput., vol. 76, no. 12, pp. 10050-10089, Dec. 2020.

Q. Liu, W. Cai, Z. Fu, J. Shen, and N. Linge, ‘A smart strategy for specula-
tive execution based on hardware resource in a heterogeneous distributed
environment,” Int. J. Grid Distrib. Comput., vol. 9, no. 2, pp. 203-214,
Feb. 2016.

S. Deshmukh and K. T. Rao, ““Straggler identification approach in large
data processing frameworks using ensembled gradient boosting in smart-
cities cloud services,” Int. J. Syst. Assurance Eng. Manag., vol. 13, no. S1,
pp. 146-155, Mar. 2022.

G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones,” in Proc. 10th USENIX Symp.
Netw. Syst. Design Implement. (NSDI), 2013, pp. 185-198.

G. Ananthanarayanan, M. C.-C. Hung, X. Ren, I. Stoica, A. Wierman,
and M. Yu, “GRASS: Trimming stragglers in approximation analytics,”
in Proc. 11th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2014,
pp. 289-302.

97087

IEEE Access

S. A. Said et al.: Optimized Straggler Mitigation Framework for Large-Scale Distributed Computing Systems

[27] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha,
and E. Harris, “Reining in the outliers in map-reduce clusters using
Mantri,” in Proc. 9th USENIX Symp. Oper. Syst. Design Implement.
(OSDI), 2010, pp. 1-14.

[28] S.Tang, B.He, C. Yu, Y. Li, and K. Li, “A survey on spark ecosystem: Big
data processing infrastructure, machine learning, and applications,” IEEE
Trans. Knowl. Data Eng., vol. 34, no. 1, pp. 71-91, Jan. 2022.

[29] C. Li, H. Shen, and T. Huang, “Learning to diagnose stragglers in dis-
tributed computing,” in Proc. 9th Workshop Many-Task Comput. Clouds,
Grids, Supercomput. (MTAGS), Nov. 2016, pp. 1-6.

[30] T.-D.Phan, G. Pallez, S. Ibrahim, and P. Raghavan, “A new framework for
evaluating straggler detection mechanisms in MapReduce,” ACM Trans.
Model. Perform. Eval. Comput. Syst., vol. 4, no. 3, pp. 1-23, Sep. 2019.

[31] H. Xu and W. C. Lau, “Speculative execution for a single job in a
MapReduce-like system,” in Proc. IEEE 7th Int. Conf. Cloud Comput.,
Jun. 2014, pp. 586-593.

[32] J. Mathew, “Cluster performance by dynamic load and resource-aware
speculative execution,” in Inventive Systems and Control. Singapore:
Springer, 2021, pp. 877-893.

[33] Z. Fu and Z. Tang, “Optimizing speculative execution in spark hetero-
geneous environments,” IEEE Trans. Cloud Comput., vol. 10, no. 1,
pp. 568-582, Jan. 2022.

[34] Q. Chen, C. Liu, and Z. Xiao, “Improving MapReduce performance using
smart speculative execution strategy,” IEEE Trans. Comput., vol. 63, no. 4,
pp. 954-967, Apr. 2014.

[35] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench bench-
mark suite: Characterization of the MapReduce-based data analysis,” in
Proc. IEEE 26th Int. Conf. Data Eng. Workshops (ICDEW), Mar. 2010,
pp- 41-51.

[36] O. O’Malley, “Terabyte sort on Apache Hadoop,” Yahoo, Sunnyvale,
CA, USA, Tech. Rep., 2008, pp. 1-3. [Online]. Available:
https://sortbenchmark.org/YahooHadoop.pdf

[37] Dataset of Enwiki Dump Progress. Accessed: May 2022. [Online]. Avail-
able: https://dumps.wikimedia.org/enwiki

SAMAR A. SAID received the B.Sc. and M.Sc.
degrees in electronics, communications, and
computer engineering from the Faculty of Engi-
neering, Helwan University, in 2010 and 2018,
respectively, where she is currently pursuing the
Ph.D. degree. She is also a Teaching Assistant in
the university and involved in many of its research
projects. Her research interests include big data
processing systems, machine learning, mobile
cloud computing, algorithms, cloud computing,
parallel programming, and data structure.

SHAHIRA M. HABASHY received the B.Sc.,
M.Sc., and Ph.D. degrees in communications
and electronics engineering from Helwan Uni-
versity, Cairo, Egypt, in 1997, 2000, and 2006,
respectively. She is currently a Professor with the
Department of Computer and Systems Engineer-
ing, Helwan University. She is also a Manager
of the Technology Innovation Commercialization
Office, Helwan University. Her research interests

. include clustering algorithms, parallel computing,
cloud computing, machine learning, and image processing.

97088

SAMEH A. SALEM received the B.Sc. and M.Sc.
degrees in communications and electronics engi-
neering from Helwan University, Cairo, Egypt,
in 1998 and 2003, respectively, and the Ph.D.
degree in electrical engineering and electronics
from the University of Liverpool, U.K., in 2008,
respectively. In 2014, he got an Honorary Research
Fellow Position at the Department of Electrical
Engineering and Electronics, University of Liver-

i pool. He was the Head of the Electronics, Com-
munications and Computer Engineering Department, and the Computer
and Systems Engineering Department, Helwan University. He is selected
to be a Co-ordinator and an Academic Advisor at the Department of
Communication and Information Technology, Uninettuno University, Italy,
incorporation with the Faculty of Engineering, Helwan University. Fur-
thermore, he is reviewing several proposals and research projects at the
National Telecommunication Regulatory Authority (NTRA), Egypt. Since
2018, he has been a Malware Analysis Consultant at the Egyptian Computer
Emergency Response Team (EG-CERT). He is currently a Professor of
cyber-security and the Director of Research and Technical Solutions at the
EG-CERT. His research interests include cyber-security, machine learning,
data mining, the Internet of Things (IoT), and parallel and cloud computing.

ELSAYED M. SAAD received the B.Sc. degree
in electrical engineering (communication section)

— from Cairo University, in 1967, the M.Sc. degree
- from the Electronic and Communication Engi-
- neering Department, Cairo University, in January

1974, and the Dip.-Ing. and Dr.-Ing. degrees in
electrical engineering from Stuttgart University, in
1977 and 1981, respectively. He has a Military
Service, from December 1969 to September 1972.
i He is currently a Professor of electronic circuit
with the Faculty of Engineering, Helwan University. He is an Inventor of
Saad’s single amplifier SC structure. He has been an Engineering Consul-
tant of the Supreme Council of Universities, since August 2002. He is an
International Scientific Member of the ECCTD, in 1983. He is a member of
the National Radio Science Committee. He is the author and/or coauthor of
190 articles. He is a member of the Egyptian Engineering Syndicate. He is
a member of the European Circuit Society (ECS). He is a member of the
Society of Electrical Engineering (SEE). He is a member of the Helwan
University Council for Award of Scientific Research. He is a Judge of the
National Scientific Award (Egypt National Level).

VOLUME 10, 2022

