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ABSTRACT An effective supply chain management system is indispensable for an enterprise with a supply
chain network in several aspects. Especially, organized control over the production and transportation of its
products is a key success factor for the enterprise to stay active without damaging its reputation. This case
is also highly relevant to garment industries. In this study, an extensive Deep Reinforcement Learning study
for apparel supply chain optimization is proposed and undertaken, with focus given to Soft Actor-Critic. Six
models are experimented with in this study and are compared with respect to the sell-through rate, service
level, and inventory-to-sales ratio. Soft Actor-Critic outperformed several other state-of-the-art Actor Critic
models in managing inventories and fulfilling demands. Furthermore, explicit indicators are calculated to
assess the performance of the models in the experiment. Soft Actor-Critic achieved a better balance between
service level and sell-through rate by ensuring higher availability of the stocks to sell without overstocking.
From numerical experiments, it has been shown that S-policy, Trust Region Policy Optimization, and Twin
Delayed Deep Deterministic Policy Gradient have a good balance between service level and sell-through
rate. Additionally, Soft Actor-Critic achieved a 7%, 41.6%, and 42.8% lower inventory sales ratio than the
S-policy, Twin Delayed Deep Deterministic Policy Gradient, and Trust Region Policy Optimization models,
indicating its superior ability in making the inventory stocks available to make sales and profit from them.

INDEX TERMS Deep reinforcement learning, inventory management, markov decision process, supply
chain management, soft actor critic.

I. INTRODUCTION
The introduction section contains two subsections: 1) moti-
vation of the study and 2) contribution of the study. The
illustration of this section is given as follows:

A. MOTIVATION
Supply Chain Management (SCM) is practically the back-
bone of the success of enterprises, especially with growing
global trade competition staying intact. In fact, enterprises
need to continuously ensure their SCM operations are effi-
cient so they gain the competitive advantage in the market-
place [1], and inventory management (IM) is an essential
determinant for a successful SCM operation. Inventory man-
agement refers to a task through which an enterprise must
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make ordering decisions periodically to meet the demands of
its product. A competitive inventory management is also cru-
cial in the apparel industry. Various approaches for this task
were oftentimes made with mathematical approaches such as,
linear programming, dynamic programming, and heuristics
models. In case of heuristics policy, it was recently applied
to cash-constrained inventory management [2]. In this study,
a cash-constrained small retailer intermittently purchases a
product and offers it to clients with non-stationary demand
on its way. Heuristics method was also applied to an intermit-
tent review multi-item stock framework with exogenous lot
sizes and backordering [3]. These approaches can optimize
small, discrete-based settings. Unfortunately, they suffer from
considerable drawbacks. Heuristics policies, for instance, are
not scalable enough to large problem instances. In addition,
these policies require significant domain knowledge, relying
on restrictive modelling assumptions at times. Same is the
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case for linear and dynamic programming methods. Curse
of dimensionality is problematic for these as the scale of the
problem becomes larger, making the solution intractable [4].
In order to circumvent this difficulty, deep neural networks
(DNN) started to receive wider consideration for supply chain
inventory management (SCIM) problems. Particularly, Deep
Reinforcement Learning (DRL) became notable for supply
chain management due to its feasibility in solving problems
that do not particularly require specific data distribution infor-
mation or restrictive assumptions. Demand is highly criti-
cal in inventory management. Demand varies as customers’
tastes and preferences change, making it challenging for
inventory managers to plan the right storage to minimize
costs emanating from overstocking and stockouts. Various
works were undertaken for inventory optimization with DRL
recently. However, there is a considerable lack of research
of data-driven inventory control with DRL [5]. In fact, most
of previous works utilize demands with explicit pattern from
the sinusoidal function or those sampled from fundamental
statistical distributions, such as Normal or Poisson distribu-
tion. In addition, to the best of one’s knowledge, all the DRL
methods used for this task were discrete-based DRL, limiting
the scope of its application to problems that involve large
action spaces. Another problem with these works is that they
focus on demonstrating their results based on reward values,
without considering key performance indicators (KPIs) that
indicate how effectively a given inventory management sys-
tem is functioning.

B. CONTRIBUTION
These are the gaps that will be filled by utilizing an advanced
DRL model called Soft Actor Critic [6] that will make data-
driven decisions for proper inventory management. Further-
more, the approach to the problem is more practical by
considering as many retailers as the number of regions is
present in the dataset, addressing the need to consider SCIM’s
realistic number of entities [7]. Particularly, Soft Actor-Critic
(SAC) is a suitable model for handling demands with inex-
plicit pattern and distribution and its extensive exploration
of actions allows it to readily deal with those demands for a
profitable inventory management system. The contributions
of this study are summarized as follows:
• A make-to-stock (MTS) inventory management for
apparel products is designed to ensure product traceabil-
ity from the manufacturer to customers.

• Extensive study with various DRL models is con-
ductedwith explicit inventorymanagement performance
illustration.

• Data-driven DRL study is conducted with SAC for an
optimal inventory management. To the best of one’s
knowledge, no other study has been undertaken on
inventory management with SAC.

C. ORGANIZATION OF STUDY
The remainder of this study is organized as follows. Related
works on multi-echelon-based inventory management and

the application of DRL to inventory control systems are
discussed in Section II. Section III explains the problem
statement and the supply chain model. Section IV explains
the SAC method that is used for approaching the problem.
In Section V, experiments and numerical results are shown to
demonstrate the comparative performance of SAC and how it
establishes a well-balanced inventory management. VI con-
tains the experimental results and subsequent graphs. Finally,
section VII concludes the study with potential future work.

II. LITERATURE REVIEW
Various previous works addressed inventory control with
non-RL and RL techniques, which includes DRL techniques.

A. INVENTORY MANAGEMENT WITH MULTI-ECHELON SC
Various mathematical studies for inventory management
with multi-echelon SC have been undertaken. Qian et al. [8]
developed a joint inventory and emission optimization frame-
work for a multi-echelon SC under stochastic demands.
Effective operation of a supply chain system can also be influ-
enced by certain regulatory actions. Liu et al. [9] addressed
the effect of such actions by conducting a new multi-echelon
SC viability problem, which is exposed to limited interven-
tion budget. The method involved combination of multiple
mathematical approaches. In SC, demand can be formulated
under various assumptions. Xiang et al. [10] solved a nonsta-
tionary stochastic inventory problem using ‘‘off-the-shelf’’
mixed integer linear programming solvers, which proved to
be highly robust to demands under such assumptions. A lit-
erature gap has been found in these studies where the model
is first proposed and validated through data. No work has yet
been done in synchronizing the dynamic nature of an apparel
supply chain environment with reinforcement learning (RL).

B. REINFORCEMENT LEARNING IN
INVENTORY MANAGEMENT
RL is a sub-area in ML in which the decision is made
sequentially following the Markov Decision Process (MDP),
requiring no explicit mathematical or statistical assumptions.
RL has successfully been applied to various problems asso-
ciated with SCM. Such problems range from scheduling,
manufacturing, to inventory management. This application
became prominent due to the limited scalability of tradi-
tional methods to larger scale problems, calling the need
for AI techniques for this task. In particular, RL techniques
have been considered to optimize ordering decisions in SC.
[11] conducted a study on RL for optimal ordering deci-
sion in the beer distribution game, which consisted of a
serial supply chain network. Researchers also discovered the
importance of the state configuration as the input to address
additional aspects. [12], for instance, discovered the impor-
tance of age information for inventory control of perishable
products using Q-learning [13], and SARSA [13]. Unfortu-
nately, such algorithms can only handle problems of limited
state and action space sizes, encouraging researchers to use
DRL algorithms, which uses deep learning models as the
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policy approximators. Reference [4] performed joint replen-
ishment under full-truckload transportation method using
PPO [14]. [15] developed an agri-food SCM optimization
system using Q-learning and DQN. Both algorithms outper-
form the ‘‘heuristics’’ method, achieving highest convergence
in reward values during the training phase. DRL methods
were also considered for inventory control of multiple prod-
ucts. In order to drive such problem effectively, [16] utilized
multi-agent reinforcement learning (MARL)method to effec-
tively replenish the products without giving unfair treatment
to certain products. In a recent study by [17], the reference
price was found to be influential for pricing and ordering
decisions, and DRL model achieved the highest profit. Most,
if not all studies of DRL in inventory control assume that the
uncertainty or value of demand is known in advance. Hardly
any study was made with demand represented as real-case
data. Boute et al. [5] addressed this as one of the avenues for
future research, claiming that most papers exploring DRL in
inventory management neglects the influence of using data
in the decision-making process. This literature gap has been
fulfilled in the present study with the application of DRL
using the raw data of product demand.

TABLE 1. Notations and their corresponding descriptions in the model.

III. PROBLEM STATEMENT
In this section, the characteristics of the apparel inventory
management problem has been identified. In addition, the
procedure bywhich the algorithms follow to establish optimal
emission policies has been incorporated. The present inven-
tory management problem involves a two-echelon supply
chain with single manufacturer and multiple retailers. The
product category is apparel, and it is single-type and non-
perishable. The Manufacturer follows MTS system, where it
continuously produces and sells Q quantity of finished goods
to the retailers at every time cycle t. The upcoming demands
at each timestep is highly volatile and due to this instabil-
ity, shortages and surplus tend to occur. These are critical
problems in inventory management because its main con-
cern lies on minimizing total inventory cost while satisfying
demands [18]. The policies are identified as the production
and transportation quantities of goods, which are decided by
the RL agent, which is the manufacturer in this case. The
agent continuously interacts in the IM environment to opti-
mize its policy by learning to take better actions. Such actions,
if suboptimal, lead to costs associated with overstocking

FIGURE 1. Scenario of SCM environment.

and stockouts. In order to minimize these incidences, the
aforementioned actions must be made adequately so the man-
ufacturer is ready to emit sufficient amounts for retailers to
fulfill demands without incurring unnecessary storage costs.
The proposed model is visualized in Figure (1). Descrip-
tion of every notation involved in the model is included in
Table (1). The MDP formulation of the problem has been
discussed. The configurations of the input state, action, and
reward functions are demonstrated for a clear picture. The
manufacturer and retailers are each assigned their capacities
CapF and Capwi , where ∀ε{1, 6}. The interaction process of
the agent begins with the initial inventory levels sF,0 and
swi,0, of which values are sampled from their corresponding
ranges: sF,0 ∼ [0,CapF ] and swi,0 ∼ [0,Capwi ]. In addi-
tion to these, demand history is given as additional state
information for the agent to anticipate upcoming demands.
This demand history consists of each regional demand values
of previous seven timesteps from each successive current
timestep. Using these values, the agent performs its initial
actions and continues to learn to perform actions with new
current inventory levels and successive demand history at
each successive timestep:

st = {Inventory levels, Demand history}. (1)

Inventory levels= {sF,t , swi,t }. (2)

Demand history= {di,t−n}, nε{1, 7}. (3)

After production and transportations take place, the manufac-
turer obtains its next state as the leftover storage amounts.
The retailers, on the other hand, obtain their next state as
the leftover storage after receiving their orders and selling
as much as the customers’ demand or the amount they are
holding:

at = {pt , awi,t }. (4)

sF,t+1 = sF,t + pt −
R∑
i=1

awi,t . (5)

swi,t+1 = swi,t + awi,t − min{swi,t + awi,t , di,t }. (6)

These transitions to new states deliver immediate rewards
as rt . The cycle continues throughout the timesteps at each
episode, leading to total expected returns that the agent
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FIGURE 2. Sample regional demand plots.

receives to update its parameters and make its policy optimal.
Due to the high volatility in the demands, it is critical for the
agent to vastly explore the action space. Demands from two
regions are illustrated in figure 2. The agent needs to learn to
adapt to a wide variety of scenarios given by the dynamic
environment as the one in the current study. SAC is the
model which particularly encourages extensive exploration of
actions for the agent prior to finding the optimal policy.

At each timestep, the agent receives different reward value
depending on how well the agent minimizes over-storage
and stockouts. Firstly, the agent is penalized if each ware-
house’s opening storage levels, which are stock levels after
the manufacturer’s warehouse receives produced amounts
and retailers’ warehouse receive transported amounts, exceed
the capacities:

ct ← ct − 1 if CapF > sF,t + pt (7)

ct ← ct − 1 if Capwi > swi,t + awi,t (8)

In case the capacities are not exceeded, the opening storage
levels in the retailers’ warehouses are taken and compared to
the demands at current timestep. The operation of storage in
the retailers follows the opening storage method in order to
prevent scenario of uniform sales since the clients’ visits can
occur at different hours during the day. For every opening
storage level that is less than the demands, stockout costs
are incurred as additional penalty for failing to meet partial
demands:

ct ← ct − 1 if di,t > swi,t + awi,t (9)

After this comparison, closing storage amounts are obtained
by calculating the leftovers in the warehouses. In case of the

manufacturer, the leftovers are the storage amounts after total
emission takes place and every retailer obtains leftover after
it makes sales to the customers:

Manufacturer closing storage: SF,t+1
Retailer closing storage: swi,t+1

Manufacturer storage cost=
(sF,t + pF )+ sF,t+1

2× CapF
. (10)

Retailer storage cost=
(swi,t + awi,t )+ swi,t+1

2× Capwi,t
. (11)

rt = storage cost+ stockout cost

(12)

Figure (3) illustrates the present model in diagrammatic form.

IV. SOLUTION METHODOLOGY
The solution is benchmarked using multiple popular DRL
algorithms, mainly SAC. Orders are placed for the agent to
carry out production and transportation to ultimately fill the
inventories in the retailers. The apparels are replenished and
sold with short lead time, with initially stored products being
sold to meet demands. In case there are insufficient stocks to
meet demands, there are no backorders. Instead, the unful-
filled demands are considered to be lost sales. Otherwise,
the inventory leftovers and opening storages are observed
to see whether there are stocks that are remaining and must
be handled. These inconvenient scenarios are the ones that
the agent attempts to prevent, and it is represented by SAC.
During its learning process, SAC follows the soft Markov
Decision Process (soft-MDP), a different version ofMDP that
regular RL models follow.

A. BASELINE POLICY AND ACTOR CRITIC ALGORITHMS
S-Policy is the baseline traditional inventory management
policy in this study. In this policy, the inventory level is
periodically observed and if this level drops below the reorder
point, a reorder amount Q is made to fill the stocks. The
production and transportation amounts are optimized with
Bayesian Optimization [19], a widely known global opti-
mizer of black-box functions.

Other baseline models are various ‘‘state-of-the-art’’
(SOTA) actor critic models, including ‘‘Advantage Actor
Critic’’ (A2C) [20], Trust Region Policy Optimization
(TRPO) [21], and Twin Delayed Deep Deterministic Policy
Gradient (TD3) [22]. TD3 is the extended version of ‘‘Deep
Deterministic Policy Gradient’’ (DDPG) [23] model which,
even though it maintains its deterministic action selection,
learns to improve the expected returns from the policy by
using the Double Q-Learning trick [22], which will be further
discussed later on. As a sanity check, the uniformly random
policy, which only takes actions randomly, was experimented
with as well.

B. SOFT ACTOR CRITIC MODELING
SAC, like other SOTA DRL models, is an actor-critic model
that includes Policy Network (φ) and Critic Network (θ),
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each structured as Multilayer Perceptron (MLP) having two
hidden layers. Each of these layers holds 256 hidden nodes.
The soft-MDP process allows the agent to learn effectively by
considering the entropy of the policy to be maximized along
with the episodic expected returns, as shown in equation (13),
where H (π (at |st )) is the policy entropy. Such inclusion of
the entropy encourages extensive exploration and robustness
to data. By establishing a tradeoff between rewards and pol-
icy entropy, the algorithm learns to optimize its policy on
an offline basis by using previous interaction experiences.
Doing so allows the algorithm to generalize across various
experiences and not overfit to new ones and hence, becoming
robust to new scenarios. Its successful performance in various
Mujoco environments already reinforce its superior function-
ality in various tasks [6].

J (π ) =
T∑
t=0

E(st ,at )∼pπ [R(st , at )+ aH (π (at |st ))]. (13)

The policy network determines the policy to iterate and opti-
mize whereas the critic network determines the state-action
values Qθ (st , at ), which evaluates the policy of the agent by
approximating the total expected returns obtained by taking
an action at in state st . In case of the Critic Network, there
are two current networks (θ ) and two target networks (θ−).
Outputs from each hidden layer is activated with the ‘‘ReLU’’
function. Every network is parameterized with different
weights. In the training phase, the networks’ parameters
are updated with mini-batch gradient descent using sampled
mini-batches of experience tuples (st , at , rt , st+1) from the
experience replay D. The hyperparameters of the neural net-
works and training setup are shown in table 2. Such parame-
ters are updated with the aim to minimize the policy and critic
loss values. The Critic loss function is defined in equation
(14) as the total mean squared error (MSE) between each
current-Q, Qθ (st , at ) and yt (15). yt is the future expected
total rewards. Clipped Double Q-learning trick from TD3 is
applied. This technique enforces the usage of the lower of the
two target Q-values, Qθ−i (st+1, at+1), each given by separate
target networks, to form yt . The purpose of using such trick
is to prevent Q-value overestimation and minimize the effect
of positive bias when improving the policy, stabilizing the
learning process.

L(θ ) =
1
|B|

∑
(st ,at ,rt ,st+1)εB

(Qθi (st , at )− yt )
2. (14)

yt = Rt + γ
(
minQθ−i (st+1, at+1(st+1;φ))
−αlogπφ(at+1|st+1)

)
, i=1, 2

(15)

Another crucial aspect of the parameter update in the Critic
Networks is that, the target Critic Network’s parameters must
be updated in a stable manner. Hence, a soft update, in which
the target networks are updated towards current networks,
is made: θ−i ← τθi + (1 − τ )θ−i , where τ is the param-
eter value that defines the rate at which the soft update is

made, τε(0, 1). Meanwhile, the policy network outputs the
same quantity of mean µi and standard deviation σi as the
number of actions. This policy is modeled as Gaussian distri-
bution which, usingµn and σn, ultimately sample the actions.
The actions are sampled with the objective of ensuring that
the action distribution is proportional to the soft Q-function,
curtailing the KL-divergence between this and πφ(.|st ) as
illustrated in equation (16). This equation can be rewritten as
equation (17). Both the critic and policy network parameters
are optimized with Adam optimizer [24].

Est∼B[DKL(πφ(.|st )||
exp(Qθ (st,.))

Zθ (st )
)]. (16)

L(φ) =
1
|B|

∑
sεB

(Qθi (st , at )− αlogπφ(at |st )). (17)

The update of the networks’ parameters is made at a rate
determined by the learning rate αε(0, 1).

TABLE 2. Hyperparameters table.

V. NUMERICAL STUDY (EXPERIMENTS)
For the numerical study, the interaction of each baseline
model and SAC in the inventory management environment
was conducted. After the agent performs the actions, changes
and leftovers in the manufacturer and each retailer’s ware-
house stock levels are observed and compared to each
period’s demands to record the KPI values. The demand data
during the training phase belong to the sales taking place dur-
ing four-year span, ranging from January 1st , 2015 to Decem-
ber 31st , 2018. Themodels are each trained for 1000 episodes,
each episode having length of one year. Table (2) shows the
hyperparameter sets used to train SAC. All the DRL mod-
els were implemented in Pytorch 1.10.0 and ran with GTX
Ti-1080 GPU.

A. DATASET
The dataset used for the demand is a real-case data. Specif-
ically, it is a time-series sales data of Italian garments sold
in Korea. Both the name of the company and process through
which it was obtained are not disclosed due to confidentiality.

B. KEY PERFORMANCE INDICATORS
Stable convergence of the episodic rewards towards, higher
or lower values depending on the task, generally indicates
competitive performance of the DRL models. On the other
hand, due to the black-box nature of deep learning models,
such convergence cannot explicitly validate the quality of
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FIGURE 3. Framework of the apparel SAC-SCM method.

performance of the actions throughout the episodes. In other
words, explainability of the policy is limited. Therefore,
essential KPIs of inventory management were considered for
each of the model’s performance evaluation.
• Sell-through rate: Sell-through ratemeasures the amount
of inventory that is sold within a given period rel-
ative to the inventory receival amount within such
period

(
∑N

t=1
∑6

i=1min((swi,t + ai,t ), di,t ))∑N
t=1

∑6
i=1(swi,t + ai,t )

∗ 100

• Service level: Service levels measures the firm’s ability
to meet customer demands.

(
∑N

t=1
∑6

i=1min((swi,t + ai,t ), di,t ))∑N
t=1

∑6
i=1(di,t )

∗ 100.

• Inventory to Sales ratio: This KPI measures the firm’s
efficiency in clearing its inventories when it is meeting
demands
Beginning inventory: (swi,t1 + ai,t1 )
Ending inventory: max(swi,tN + ai,tN , di,tN )

Average inventory:
(swi,t1

+ai,t1 )+max(swi,tN
+ai,tN ,di,tN )

2
Net sales:

∑N
n
∑W

i [min(dwi,tn , swi,tn + ai,tn )]
Inventory to sales ratio: Average inventoryNet sales

VI. EXPERIMENTAL RESULTS
A. COMPARISON BETWEEN SAC AND
OTHER ALGORITHMS
For experimental results, the convergence of average training
rewards and KPI values were mainly considered to evaluate

FIGURE 4. Training reward (penalties) of DRL models.

the performance of every algorithm. In the case of this study,
downward convergence of training rewards towards zero is
ideal since the objective is to minimize total cost. Figure (4)
shows that the average training rewards of SAC converges
at a lower value in comparison to all other models. The
values for the S-policy were not included because this method
selects the optimal transportation strategy to maintain con-
stant storage levels during the training and testing phases.
The interpretation behind the disparities in the convergence
of the models will be discussed next. Figure (5) illustrates
how properly each model is ensuring that the total inventory
levels in the retailers are keeping up with the demands during
the testing phase. The demands in this case are the total daily
demand values during 2019. Out of all the models, SAC is
conducting a balanced storage overall. In fact, it is conducting
the distribution amounts much more appropriately, fulfilling
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FIGURE 5. Inventory management of each model during testing phase.

most of the periodic demands despite the abrupt changes in
the demand flow. A2C ismaking sales, but it has continuously
missed out on the vast majority of the demands with the
ongoing time span. TRPO shows better signs of attempting
to follow and meet the demands. However, it still failed to
fulfill a significant portion of the demand, particularly when
considering larger portion of the time span. TD3 outper-
formed TRPO in sell-through rate and service level. However,
it did not achieve optimal values and also obtained inferior
inventory-to-sales ratio than S-Policy, TRPO, and SAC. SAC,
on the other hand, leverages on its sample efficiency and
action exploration to generalize across the demand patterns
and perform proper allocation. In fact, SAC is ensuring that
the retailers’ inventory stock levels are keeping up with the
demand much more intelligently overall. Although its sell-
through rates throughout testing phase is lower than those
of A2C and service levels are lower than those of random
policy, SAC did not sacrifice one KPI for the other. Entropy
maximization allowed SAC to not overfit to the training
data and fit to the test data pattern much more effectively.

Table 3 demonstrates the KPI values for everymodel involved
in the experiment.

B. RESULTS AND DISCUSSION
Although imperfect, SAC outperformed other models in sev-
eral aspects, demonstrating its relevance and adequacy in
inventory management tasks. First of all, although it achieved
a lower sell-through rate than A2C, it ensured more customer
demands are fulfilled by achieving a much higher service
level, outperforming the one of A2C by 971.7%. Random
policy achieved higher service level than SAC. On the other
hand, SAC avoided overstocking that could incur troubling
inventory management exertions. It did so by achieving
272.7% higher sell-through rate. Additionally, SAC achieved
7% lower inventory-to-sales ratio than S-policy, doing a better
job ensuring that the total amount of sales is on par with the
inventory amounts present in the retailers. Overall, A2C and
random policy are the sole baseline models that outperformed
SAC in either sell-through rate or service level. This indicates
both model’s failure in learning from the overall reward
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TABLE 3. KPIs comparison table.

function, prioritizing on some components. SAC, on the other
hand, was able to consider every cost involved to achieve a
more profitable inventory management.

VII. CONCLUSION AND FUTURE WORKS
SC researchers had so far applied MDP-based DRL models
to solve inventory management problems. In a recent study
by Chen et al. [15], production and allocation decisions were
optimized by using Q-learning and DQN. Demand value
approximator was a sinusoidal function. In this study, a real-
case time series dataset for the demands were incorporated
for a soft-MDP based inventory management. The numerical
results in this study show that DRL can be a better tool
for prediction of product demand to conduct a relatively
large SCM system. Furthermore, explicit visualization of the
variations in the stock levels in comparison to demand flow
was provided, enhancing the reliability behind the results
of the experiments. Experimental results demonstrated the
importance of entropy optimization, which allowed the agent
to not suffer from the drastic fluctuations of the demand
history throughout the episodes. Figure (3), in particular,
demonstrated that SAC fulfilled higher portion of the cus-
tomer demands as compared to other DRL models while
maintaining appropriate storage amounts during the process.
From this study, the followings findings are illustrated:

1) SAC achieved the best service level and competitive
performance in other KPIs with extensive exploration
to stay in track of all the possible oscillations that
the demand values may bring to the agent. Results in
Table (3) show higher service level achieved by SAC
with the value near to 100 for each span during the test
phase.

2) The results in figure (5) reflect a more reliable illus-
tration of the performance of DRL than those con-
ducted by Chen et al. [15]. The study by such authors
only demonstrate the flow of the stock levels whereas
present study demonstrates such flow as well as the
demand flow. Hence, this study demonstrates whether
the models indeed perform the appropriate inventory
management.

The problem in this study can be extended to supply chain
with ML and soft computing (SC) as proposed by Arora and
Majumdar [25]. In particular, no study has been undertaken
bymergingRL and SC in inventorymanagement to the best of
one’s knowledge. In another view, the present study can also
be extended to fresh food waste reduction. Environmental
sustainability can be largely enhanced with such reduction
as suggested by Miguéis et al. [26]. The extension can also
branch out to minimization of refrigerated fruit waste based
on the temperature conditions and biochemical degradation
of fruits during storage as proposed by Defraeye et al. [27].
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