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ABSTRACT Mobile cloud computing and edge computing-based solutions provide means to offload
tasks for resource-limited mobile devices. Mobile cloud computing provides remote cloud solutions while
edge computing provides closer proximity-based solutions. Remote cloud solutions suffer from network
latency and limited bandwidth challenges due to distance and dependency on the Internet. However, these
challenges are addressed by edge-based solutions since the edge node is available in the same network.
The use of Internet of Things-based solutions considering future Information Communication Technology
infrastructure is on the rise resulting in the massive growth of digital equipment increasing the load at edge
devices. Hence, some load balancing mechanism is required at the edge level to avoid resource congestion.
The load balancing at the edge must consider the user’s preferences about edge resources such as personal
computers or mobile devices. A user must declare which resources can be spared for other devices to
avoid overprovisioning essential resources. We present Load Balancing for Resource Optimization (LBRO),
a collaborative cloudlet platform to address load balancing challenges in edge computing considering users’
preferences. A comparative analysis of the proposed approach with the conventional edge-based approach
yields that the proposed approach provides significantly improved results in terms of CPU, memory, and
disk utilization.
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INDEX TERMS Mobile cloud computing, mobile edge computing, fog computing, cloudlet computing,
Internet of things, cloud federation.

I. INTRODUCTION18

Mobile devices have limited resources including a central19

processing unit (CPU), memory, energy, and network. Due20

to the development of resource-intensive applications more21

resources are required magnifying the resource constraint22

problem at the mobile end. The cloud computing paradigm23

offers a resource-rich environment to these mobile devices24

for resource sharing and load balancing. The concept of25

virtualization is used to share the resources of a physical26

machine. Various service-oriented architectures are offered27

The associate editor coordinating the review of this manuscript and

approving it for publication was Huaqing Li .

by the cloud computing paradigm namely, Infrastructure as 28

a Service (IaaS), Platform as a Service (PaaS), and Software 29

as a Service (SaaS) [1]. This paper considers the use case of 30

the IaaS model where a task is bundled as a virtual machine 31

(VM) and is placed on a physical server (cloudlet). 32

The mobile cloud computing (MCC) model is used to 33

offload a compute-intensive task from a mobile device to 34

a cloud environment, thus addressing resource shortage [2]. 35

In the MCC model, a mobile device directly communicates 36

with the remote server using wireless Internet services [3]. 37

However, the challenges of latency, limited bandwidth, and 38

seamless connectivity pose a major hindrance to the usage 39

of this model. Edge-based solutions such as mobile edge 40
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computing (MEC), fog computing, and cloudlet computing41

seem to offer closer proximity-based solutions eliminating42

these limitations [4], [5]. The cloudlet-based solution is more43

adaptable as it offers rich computational resources, diversi-44

fied features, and higher bandwidth without being dependent45

on specialized equipment as compared to other solutions such46

as MEC and fog computing [6]. Cloudlet is a mini cloud hav-47

ing rich computing resources and a stable Internet connection48

available in the same local area network (LAN) to provide49

services to nearby devices [7]. The cloudlet-based solutions50

are considered more viable for the Internet of Things (IoT)51

and smart cities on a bigger scale due to their faster response52

than MCC [8]. However, the number of devices communicat-53

ing with the cloudlets has increased lately resulting in more54

workload which is beyond the capability of the cloudlets.55

In this situation, the cloudlets forward the exceeded number56

of requests to a remote cloud to manage the workloads thus57

mimicking a conventional MCC model voiding the benefits58

of edge computing [3]. Hence, there is a need to resolve this59

problem in such a way that a maximum number of requests60

are entertained without being forwarded to the remote cloud.61

Existing cloudlet-based solutions consider the locality of62

information and closer proximity, and hence are unable63

to provide an optimized and scalable solution focusing on64

resource scarcity challenges [9], [10], [11], [12], [13], [14],65

[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],66

[26], [27], [28], [29], [30]. Moreover, existing edge-based67

solutions do not consider users’ resource preferences which68

are very vital for the node’s performance. These preferences69

include resource priority and percentage to spare for sharing.70

Especially in edge-based solutions where a single personal71

computer or mobile device is playing a role in the edge72

device, the user’s preferences are very important to clearly73

define the extra resources that can be shared to avoid the74

overprovisioning of essential resources. Every resource in75

this situation does not hold equal weight for the user and76

hence every edge device may offer a different capacity of77

resources to entertain only a specific set of requests that78

meet the resource requirements. In a broader sense, an opti-79

mal solution must consider resource sharing, load balancing,80

and workload placement considering edge devices’ resource81

conditions.82

To address the aforementioned challenge including the83

availability of global information, scalability, and user pref-84

erences, a broker-based centralized federated cloudlet model85

has been proposed. Broker has the responsibility to man-86

age all the resource information of member cloudlets and87

use it for resource sharing, load balancing, and place-88

ment decisions. The contributions of this paper are as89

follows:90

• Provides the solution for resource shortage at the91

cloudlet level.92

• Provides an edge-level federated solution having more93

resources to spare than a standalone cloudlet node.94

• Provide the user with ease to select essential and extra95

resources to avoid the overprovisioning problem.96

This paper is structured as follows. Section II contains the 97

discussion of important works related to this study. Section III 98

follows the collaborative model, and the design of the pro- 99

posed LBRO framework while Section IV provides perfor- 100

mance analysis. Lastly, the conclusion and future directions 101

are given in Section V. 102

II. LITERATURE REVIEW 103

This section provides insight into state-of-the-art edge com- 104

puting techniques. The related work is reviewed from the 105

perspective of load balancing and resource optimization in 106

an edge federated environment. 107

A queuing network scheme has been proposed in [9] using 108

a multi-edge and user-based model. This scheme efficiently 109

works on user-to-edge devicemapping and edge device place- 110

ment. The target of this scheme is constantly moving mobile 111

users and the scope is limited to a Metropolitan Area Net- 112

work (MAN). The scheme proposed in [10] has considered 113

load balancing in the form of a VM to an edge device with 114

adequate resources. The proposed scheme is more focused 115

on total migration time rather than download time. The min- 116

imum total time is achieved by adapting to Wide Area Net- 117

work (WAN) bandwidth and loading on the edge device. The 118

state of the VM on the destination edge device is compared 119

with the source edge device and the difference is calculated 120

to maintain the same state before the source VM can be shut 121

down. Delta encoding scheme is used to calculate the dif- 122

ference that is de-duplicated and compressed before transfer. 123

The user VM is moved in closer proximity to the source edge 124

device to minimize latency. An SDN-based solution named 125

MobiScud has been proposed in [11]. Amini cloud in the core 126

of Radio Access Network (RAN) is established to host users’ 127

Virtual Machines (VMs). These VMs assist users to execute 128

compute-intensive tasks and control messages from mobile 129

devices that are monitored by MobiScud to keep the VM 130

moving along user to keep it in closer proximity. MobiScud 131

also optimizes the flow rules for migrating VM to keep the 132

transition phase smooth with less disruption of services to 133

users. However, users tend to use WiFi more often when 134

indoors, and RAN services are thus needed to be adjusted 135

accordingly. 136

An ad hoc scheme is proposed in [13] that allows peer 137

devices to lend and acquire resources from each other. 138

Two devices in communication are called master and slave 139

devices. A device offering free resources to others is treated 140

as a slave device and the other device borrowing resources 141

is treated as a master device. This cooperative scheme also 142

supports a smaller scale network assuming there is no inter- 143

ruption in task offloading. Another ad hoc scheme is proposed 144

in [14] using short-range radio communication technology to 145

form a peer-to-peer (P2P) network of mobile devices. Mobile 146

devices participating in the proposed scheme are divided 147

into two categories i.e. a computational service provider 148

that has ample resources to offer and a client who requires 149

resources. An opportunistic approach is used by devices to 150

find appropriate peers and lend services. This scheme is 151
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useful for a smaller-scale network with a short span of service152

requirements. A scheme named DRAP is proposed in [15]153

that uses middleware between mobile and edge devices. The154

devices with resources can form a group and will be treated155

as edge devices whose resources can be acquired by any other156

mobile device. The operations of DRAP include resource157

discovery, calculation of unused resources, and control of158

the role of edge devices and mobile devices. The proposed159

scheme is very robust as no single device is acting as an160

edge device and is capable of dynamically reconfiguring itself161

upon joining or leaving nodes. However, a log is maintained162

by some buddy nodes to ensure continued services in case163

of failure. To attract users an incentive-based approach is164

employed. The scheme proposed in [17] uses a combination165

of mobile devices, edge devices, and remote cloud for task166

offloading. A mobile device requiring resources may contact167

the edge device present in closer proximity or remote cloud168

for task offloading. In case the service is provided by the169

edge device available in the vicinity, the latency is minimized,170

and internet bandwidth is not required. However, in case171

the services are acquired from the remote cloud, the model172

simply becomes a standard MCC Model where the task is173

offloaded to the remote cloud using internet bandwidth with174

increased latency as compared to the edge device. An edge-175

based scheme is proposed in [18] that uses predefined VM176

templates to fulfill user requirements that are received by177

the edge device and a predefined template is selected that178

matches closely to the requirements. Furthermore, infrastruc-179

ture level customizations are performed before use which is180

reverted upon completion of the task to ensure the steady state181

of the infrastructure. The use of VMs is to isolate changes at182

the infrastructure level from the changes at the guest operat-183

ing system (OS) level. Workload sharing and load balancing184

among tenant VMs and otherwise are not reported.185

A P2P scheme addressing the selfish behavior of the par-186

ticipating devices is proposed in [19]. The proposed scheme187

introduces a point-based incentive model. There are two188

kinds of devices participating in the collaboration. A device189

can earn points by offering free resources to other devices.190

On the other hand, a device in need of resources can spend191

the points to acquire resources from other devices. This192

scheme also employs the concept of social responsibility193

of the community group built on a pre-trust-based model194

that ensures that the devices taking part in the collaboration195

are trusted. A middleware platform is proposed in [20] to196

optimize the average CPU load for Augmented Reality (AR)197

applications. The proposed scheme offers software services198

for AR applications having the capability to deploy or remove199

any software component at runtime. Only those customized200

software components are employed that fulfill the need of201

the applications. This removes extra load from the CPU. The202

scope of the scheme is limited to AR applications only.203

An interactive edge computing application based on infras-204

tructure as a service using three-tier mobile cloud computing205

architecture has been proposed in [23]. The proposed scheme206

considers two assumptions, 1) the edge nodes are static207

and 2) the maximum distance between any two edge nodes 208

is 2 hops. The objective of this scheme is to achieve higher 209

throughput with minimum delay time. The proposed scheme 210

assumes that nodes are static, and the maximum number of 211

cloudlet hops is two formobility. It has also been reported that 212

if these assumptions are not fulfilled, the proposed scheme 213

will provide poor results as compared to any standard cloud 214

computing solution. So, as a remedy to the challenge of 215

meeting the assumptions a combination of edge-based and 216

cloud-based schemes is recommended. The experimentation 217

is performed only on interactive mobile applications. 218

A centralized Enterprise Cloud (EC) based scheme is pro- 219

posed in [24]. All the participating edge devices are reg- 220

istered with EC which maintains complete information of 221

all the edge devices. Moreover, any mobile device requiring 222

resources is also registeredwith EC. The request for resources 223

first goes to EC which is responsible for allocating an appro- 224

priate edge device. The advantage of this scheme is that a 225

mobile device moving away from an edge device may resume 226

the same task on any of the edge devices registered under the 227

same EC thus saving cost, time, and energy. However, this 228

scheme is highly dependent upon internet bandwidth since 229

EC is not a part of the local network. A similar approach 230

using a centralized root server is proposed in [25]. The root 231

server maintains all sorts of information including connected 232

edge devices and services provided by them. A request is 233

forwarded to the root server that routes it to a suitable edge 234

device. A suitable edge device receiving the request from the 235

root server either executes the task by employing its resources 236

or can share resources with other edge devices. It also has 237

the capability to break the task into smaller proportions and 238

distribute it among various edge devices. Being a centralized 239

service model scalability can be an issue if a larger network 240

model is to be considered. 241

A cloning technique has been proposed in [26] that main- 242

tains a clone of the mobile device in the core of RAN. The 243

clone is based on a VM that is kept in closer proximity to 244

the mobile device and is migrated along the mobile device to 245

maintain minimum distance thus reducing latency. However, 246

these frequent migrations may result in increased network 247

traffic between various edge devices maintained in the core of 248

the RAN. SDNs are used to optimize andmanage these traffic 249

flows thus improving performance and energy consumption. 250

The implementation of this technique with the existing RANs 251

requires some fundamental changes in the core cellular net- 252

work. A mesh network-based solution named MeshCloud 253

using Wireless Mesh Networks is proposed in [27]. The fun- 254

damental property of a mesh network is high robustness due 255

tomultiple paths leading to a single destination. The proposed 256

scheme is highly dynamic as new edge nodes can be added 257

and removed at any time. Mesh topology lacks scalability and 258

is thus not suitable for larger networks. 259

A novel task offloading scheme is proposed in [28] that 260

caters to DDoS attacks and considers sustainability and secu- 261

rity issues of the cloudlet networks. A collaborative task 262

offloading mechanism for mobile cloudlet networks named 263
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TABLE 1. Summary of existing edge computing techniques.

CTOM is proposed in [29]. An online algorithm is proposed264

in [30] that finds the optimal computation offloading strat-265

egy with intertask dependency and adjusts the strategy in266

real-time when facing dynamic tasks.267

Table 1 summarizes the above-cited literature review with268

respect to their architectures, target areas, salient features, and269

performance parameters. The following conclusions can be270

drawn from the above discussion:271

• Techniques targeting load balancing are either central-272

ized or P2P and do not consider a hybrid approach.273

• The challenge of load balancing in an edge federated274

environment is not addressed.275

• No technique provides a customizable solution where276

users’ preferences for resources are considered.277

III. PROPOSED MODEL278

This section contains the design of the proposed collaborative279

model and its architectural details. In addition, the proposed280

algorithms are discussed in detail.281

A. COLLABORATIVE MODEL282

The proposed federated cloudlet model shown in Figure 1283

provides a solution for resource shortage problems at284

cloudlets and ensures minimum request forwarding to the285

remote cloud. The cloudlets may have different owners,286

and administrative domains, and may also belong to differ-287

ent Cloud Service Providers (CSPs). Every user owning a288

cloudlet node provides resource preferences to the broker289

available in the federation. Only the preferred resources con-290

sidering the priority and percentage are locked for sharing291

thus providing the cloudlet owner a sense of satisfaction292

that no resource can be overprovisioned compromising the293

performance of the owner’s tasks and services running on the294

cloudlet node.295

The broker keeps monitoring the resources and maintains296

an updated state of member cloudlets. When a request arrives297

FIGURE 1. Collaborative model.

at the broker containing the required resources, the broker 298

matches the requirements with all member cloudlets and 299

dispatches the request to the optimal cloudlet having adequate 300

resources with minimum latency, and updates the resource 301

state of that cloudlet. Similarly, when a VM is to be migrated 302

due to load or amore optimal location, the occupied resources 303

are released from the source server and an updated state of 304

resources is maintained. 305

Besides managing resource information of member 306

cloudlets, the broker performs various operations for cloudlet 307

federation such as cloudlet registration, keeping track of 308

resources, and optimal cloudlet selection. The resources 309

include CPU, memory, storage, and bandwidth, whereas opti- 310

mal selection includes decisions regarding cloudlet and VM 311

for migration [1]. 312

Existing cloudlet-based models support resource sharing 313

and load balancing based on local knowledge about the other 314

cloudlet nodes (fixed or mobile) in closer proximity, prefer- 315

ably within the same LAN. The proposed cloudlet federation 316

extends the range of closer proximity toMAN andWANwith 317
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FIGURE 2. LBRO data flow.

added features of user preferences based on resource sharing318

and load balancing.319

B. LOAD-AWARE RESOURCE ALLOCATION320

Since all the applications are placed on a cloudlet shared321

resource based on time thus an increased wait time is322

observed for the new applications and ultimately the poor323

resource availability degrades the performance of the over-324

all system and all applications running on it. The resource325

limitation not only affects the performance but also forces326

the cloudlet to forward the requests to the remote cloud to327

manage the load.328

The current implementations of cloudlets are only focused329

on addressing the distance, limited bandwidth, and latency330

challenges considering only a standalone cloudlet or group331

of cloudlets at the same location shared via LAN. Our pro-332

posed approach offers a load-aware collaborative scenario in333

which cloudlets share the user-preferred load and resources334

with peer cloudlets, managed by a centralized broker in the335

federation that may extend to a MAN or WAN.336

Enhancing the scope of federation geographically337

improves the possibility of getting more cloudlet nodes for338

resource sharing thus addressing scalability issues. The final339

decision about optimal cloudlet selection is made considering340

minimum latency as compared to the remote cloud. A remote341

cloud is referred to as a conventional cloud that comes into342

play when the whole federation is out of resources and is343

treated as a worst-case where the results of proposed and344

conventional approaches become equal. Figure 2 presents345

an overview of the information flow between cloudlets and346

brokers.347

The collaborative approach keeps track of resource utiliza-348

tion from the given preferences by the cloudlet owners for all349

member cloudlets and the one with adequate resources with350

minimum latency is selected. All the workloads are consid-351

ered in the form of VMs. In the case of load balancing, a VM352

is selected for migration based on the required resources to353

be released. The detailed work of the proposed collaborative354

approach is presented in the subsequent sections. Table 2355

contains the notations used in the paper.356

TABLE 2. Notations used in the study.

C. CALCULATION OF RESOURCE UTILIZATION 357

The problem of finalizing the optimal cloudlet is challenging 358

due to dependency on multiple variables including resources 359

such as CPU, memory, storage, and bandwidth. Weights are 360

assigned to each resource by the owner of the edge device to 361

segregate spare resources for sharing. For example, an owner 362

‘x’ wishes to spare 20% of the CPU, 30% of the memory, 363

10% of his disk storage, and 5% of the bandwidth to take 364

part in the sharing process for some other user ‘y’ to acquire 365

these resources for the execution of some task. The owner 366

can simply assign weights 2, 3, 1, and 5, respectively to each 367

available resource for sharing. 368

The resource calculation process can be divided into two 369

phases i.e., resource index calculation and resource level 370

calculation. The resource index calculation phase provides 371

a single cumulative value based on selected resources, their 372

quantities, and assigned weights that are used to rank the 373

cloudlets in the federation. LetW = {w1,w2,w3, . . . ,wn} be 374

set of weights assigned by the owner against each resource, 375

C = {s1, s2, s3, . . . , sn} be a set of cloudlets, A = 376

{b1, b2, b3, . . . , bn} and T = {r1, r2, r3, . . . , rn} represents 377

set of available and total resources at a cloudlet respectively. 378

The value of the total resource index can be calculated using 379

the following equation. 380

ITR(Si) =
n∑
i=1

bi
ri
× wi (1) 381

Algorithm 1 is designed for resource index calculation and 382

is presented below. 383

The resource level calculation phase helps to initiate load 384

balancing on a cloudlet having a critical resource level. 385

There are two levels of resources. One is ‘‘normal’’ and 386

the other is ‘‘critical’’. A cloudlet is considered in a normal 387

state if available resources are above the minimum thresh- 388

old level, whereas a cloudlet is considered in the critical 389

state if available resources are below the minimum threshold 390

level. The value of the threshold is identified by the resource 391

requirement of the host OS i.e. in our case the minimum 392
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Algorithm 1 Resource Index Calculation
Input: Set of cloudlets, available resource at each cloudlet,
resource weights assigned by the administrator, and resource
values
Output: Total resource index

1: Begin:
2: Let resource index ITR be NULL
3: for each cloudlet si do

do
4: for each resource bi do

do
5: Get weights w assigned by administrator
6: Get available resource value bi
7: Get total resource value ri
8: Calculate resource percentage p
9: p =

(
w
wT

)
10: Calculate resource index IR
11: IR =

(
bi
ri
× p

)
12: ITR = Accumulate all values of IR
13: end for
14: end forreturn ITR end:

recommended resource requirement for UBUNTU 14.0.4393

LTE [3], [31] as presented in Table 3.394

TABLE 3. Minimum recommended resources for Ubuntu 14.0.4 LTE.

Let U = y1, y2, y3, . . . , yn be a set of utilized resources,395

D = x1, x2, x3, . . . , xn be set of demanded resources for396

load balancing, K = k1, k2, k3, . . . , kn be set of occupied397

resources by a VM, and M = z1, z2, z3, . . . , zn be set of398

minimum required resources for host Operating System (OS)399

of member cloudlets. The resource matrices used throughout400

the resource level calculation phase are listed in Table 4.401

TABLE 4. Resource metrics.

The criteria for resource-level calculation are as follows:402

TRM [rij] = ARM [bij]+ URM [yij]+MRM [zij] (2)403

DRM [xij] = ARM [bij]−MRM [zij] (3)404

Note: The negative value of the demand resource matrix405

shows fewer resources than the minimum required resources406

for the host OS. 407

f (x) =



1, if ARM < [bij] < MRM [zij]

∀



i = 1, j = 1, 2, 3, . . . n
i = 2, j = 1, 2, 3, . . . n
i = 3, j = 1, 2, 3, . . . n
...

i = n, j = 1, 2, 3, . . . n
0, Otherwise

(4) 408

The value of ‘‘1’’ represents a critical state and ‘‘0’’ repre- 409

sents otherwise. Algorithm 2 presents resource level calcula- 410

tion. 411

Algorithm 2 Resource Level Calculation
Input: Set of cloudlets and available resources at each
cloudlet
Output: Resource level

1: Begin:
2: Let resource level RL be NULL
3: for each cloudlet si do

do
4: for each resource bi do

do
5: Calculated resource level RL
6: if bi ≤ (zi) then
7: RL = "Critical"
8: else
9: RL = "Normal"
10: end if
11: end for
12: end forreturn RL end:

D. OPTIMAL CLOUDLET SELECTION FOR VM PLACEMENT 412

Two phases of the optimal cloudlet selection include filtration 413

of eligible cloudlets having enough resources to execute the 414

job that is identified by the following condition: 415

f (x) =



1(Eligible), if Rz[Zij] ≤ Rb[bij]

∀



i = 1, j = 1, 2, 3, . . . n
i = 2, j = 1, 2, 3, . . . n
i = 3, j = 1, 2, 3, . . . n
...

i = n, j = 1, 2, 3, . . . n
0(Non− eligible), Otherwise

416

(5) 417

In the second phase, the optimal cloudlet is selected 418

based on the resource index value calculated in algorithm 3. 419

The cloudlet with the maximum resource index value and 420

non-critical resource level is selected as optimal from the 421

eligible cloudlet list. The maximum value of the resource 422
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index indicates that the cloudlet has the maximum available423

resources in the federation. Let Q = q1, q2, q3, . . . , qn repre-424

sents the set of requests at the broker.425

Algorithm 3 Optimal Cloudlet Selection
Input: Requests received by Broker, required resources
for each request, available cloudlets and resources at each
cloudlet, indexes of cloudlets
Output: Optimal cloudlet

1: Begin:
2: Let optimal cloudlet Co be NULL
3: for each request q at broker do

check status SD
4: if SD="Decision Pending" then
5: for each cloudlet si do
6: for each resource bi and zi do
7: if bi ≥ zi then
8: push cloudlet CE in eligible cloudlet list
9: end if
10: end for
11: end for
12: end if
13: end for
14: for each cloudlet in eligible cloudlet list do
15: Get resource level RL
16: if RL 6= "Critical" and ITR = Max with min L then
17: SO = SE
18: end if
19: end forreturn So end:

E. OPTIMAL VM SELECTION FOR MIGRATION426

In case a cloudlet is in a critical state, a load balancing427

mechanism is initiated that requires a VM to be migrated428

from the critical cloudlet to ease up the load. The problem of429

finalizing the optimal VM is challenging due to dependency430

onmultiple variables such as VM size and required resources.431

The selection process of optimal VM starts with the filtration432

of eligible VMs by comparing the utilized resource matrix433

(URM) with the demand resource matrix (DRM) using the434

following criteria:435

f (x) =



1(Eligible), if URM [uij] ≥ DRM [dij]

∀



i = 1, j = 1, 2, 3, . . . n
i = 2, j = 1, 2, 3, . . . n
i = 3, j = 1, 2, 3, . . . n
...

i = n, j = 1, 2, 3, . . . n
0(Non− eligible), Otherwise

436

(6)437

The load balancing mechanism is performed offline.438

A VM is considered eligible if by removing it from the439

cloudlet, the resource level becomes normal. In the second 440

phase, an optimal VM is selected from the list of eligi- 441

ble VMs. A VM occupying minimum resources and size 442

is selected as it can be migrated in a very short amount 443

of time having a larger solution space of eligible cloudlets. 444

Algorithm 4 presents the mechanism for optimal VM selec- 445

tion for migration. 446

Algorithm 4 Evaluation of Optimal VM for Migration
Input: Set of the occupied resource by each VM running
on the cloudlets, occupied resource indexes, demanded
resources list
Output: Optimal VM for migration

1: Begin:
2: Let optimal VM VMo be NULL
3: for each cloudlet si do
4: for each VM in running VM list do
5: for each resource ki do
6: if removing VM yields to normal level then
7: push eligible VM VME in eligible VM list
8: end if
9: end for
10: end for
11: end for
12: for each VM in eligible list do
13: if ITR = Min then
14: VMO = VME
15: end if
16: end forreturn VMo

end:

IV. PERFORMANCE EVALUATION 447

This section discusses performance metrics, experimental 448

setup, and testbed results. In these experiments, we record the 449

resource level of a cloudlet with and without the implemen- 450

tation of our proposed approach and present a comparative 451

analysis. Since we are using cold migration, there is no over- 452

head ofmemory pre-copying operation consumingmoreCPU 453

cycles and network bandwidth [32]. An Open Virtualization 454

Appliance (OVA) file is transferred from a heavily loaded 455

cloudlet to a light-loaded cloudlet having maximum available 456

resources. 457

A. PERFORMANCE METRICS 458

Several metrics such as CPU, memory, disk utilization, and 459

latency are considered for the evaluation of proposed algo- 460

rithms. The considered metrics reflect system resources that 461

are independent of application type and nature. The main 462

objective is to launch enough requests that the system is 463

forced to either forward the request to the remote cloud in 464

the case of the conventional cloudlet model or collaborate 465

with peer cloudlets in the case of the proposed approach. Real 466

load in terms of VMs has been used to exhaust the system’s 467

resources. 468
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FIGURE 3. CPU utilization.

B. EXPERIMENTAL SETUP469

For this study, we establish the setups of conventional and col-470

laborative cloudlet models. The conventional cloudlet model471

is configured with a single cloudlet, a single client, and a472

remote cloud. A client’s request to execute a task is forwarded473

to the remote cloud if the required resources exceed the avail-474

able resources of the cloudlet. The proposed collaborative475

cloudlet model is configured with three cloudlets, a single476

client, a broker, and a remote cloud, as shown in Figure 1.477

In this scenario, the client’s request is forwarded to the broker478

which selects an optimal cloudlet for the execution of the task,479

considering the load and available resources at a particular480

cloudlet. For both setups, at the start of the experimentation481

process, enough requests are launched at the cloudlets to482

exceed their resource limits. Amazon EC2 instance is used483

to mimic remote cloud. Cloudlet nodes of both conventional484

and proposed collaborative models are deployed on VMware485

ESX 6.0 server. The resources allocated to each cloudlet486

include a single CPU, 8GB of memory, and 30GB of HDD.487

The VM taken as a real load to be migrated between cloudlets488

consist of Tiny Core Linux (TCL). The physical servers on489

which the virtualization environment is deployed are a part490

of the data center having the following specifications as491

presented in Table 5.492

TABLE 5. Server specifications.

C. TESTBED RESULTS493

All the experiments are conducted in an isolated production494

environment. Each trial is repeated several times to obtain the495

values of various resource parameters for both conventional496

and proposed models.497

1) CENTRAL PROCESSING UNIT UTILIZATION 498

CPU is the primary resource of a computer system. Observa- 499

tions for both models have been shown in Figure 3. These 500

observations are recorded during a peak time, where peak 501

time refers to a system state in which it has the maximum 502

number of requests it can entertain. The results of the pro- 503

posed model show a stable CPU utilization as compared to 504

the conventional model due to load balancing features while 505

the conventional model suffers ups and downs regarding CPU 506

utilization and an increase is observed while the number of 507

trials is increased. 508

2) MEMORY UTILIZATION 509

Memory is considered a critical resource of a computer sys- 510

tem. Often this resource creates a bottleneck for the sys- 511

tem performance due to continuous read, write, and paging 512

operations. A comparative analysis of the memory utilization 513

trend for both models is shown in Figure 4. The results 514

clearly show an elevated level of memory utilization by the 515

conventional model completely utilizing the memory causing 516

performance degradation. The load balancing feature of the 517

proposed model admits limited requests according to avail- 518

able memory, thus avoiding the critical resource situation. 519

3) STORAGE UTILIZATION 520

Storage resource is not considered critical resource now a day 521

due to the availability of larger capacity at a low cost. How- 522

ever, the increased rate of reading and writing requests from 523

storage might cause performance degradation. The results of 524

storage utilization for both models are presented in Figure 5. 525

The results clearly show an elevated level of disk utilization 526

by the conventional model as compared to the proposed 527

model due to load balancing features. The load balancing 528

module admits a limited number of requests according to 529

available memory space. No request is admitted if there is 530

no free memory available avoiding page swapping between 531
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FIGURE 4. Memory utilization.

FIGURE 5. Disk utilization.

memory and disk drive. As a result, fewer memory contents532

are swapped or overwritten. As most of the required contents533

are already available in memory, it decreases the disk read534

and writes requests improving performance.535

The conclusion drawn from the above experimentation536

is very clear that the proposed load-aware system performs537

better than the conventional system in terms of resource538

preservation. The conventional model ends up overloading539

the system ignoring the minimum resources required for the540

host OS compromising the performance of all the applica-541

tions (VMs) running on a cloudlet. The independent design of542

the proposed system suggests that it can easily work with any543

type of application scenario and has the capability to scale.544

V. CONCLUSION AND FUTURE WORK545

The proposed approach plays an important role in the perfor-546

mance improvement of MCC. The proposed model not only547

addresses the resource scarcity of cloudlets but also resolves548

the under-provisioning of resources at peer cloudlets thus549

maximizing the resource utilization at the cloudlet level. The 550

experimental results show decreased load and stable resource 551

utilization at cloudlets without jeopardizing the performance 552

of applications running on them. 553

In future work, a software platform that supports resource 554

collaboration is to be developed for commercial purposes 555

considering cost and energy. This model will serve as a base 556

and other parameters such as latency, hop-count, throughput, 557

response time, execution time, and offload time will be incor- 558

porated as future enhancements to the presented algorithms. 559

Additionally, instead of manually assigning resource-specific 560

weights to segregate spare resources of a cloudlet for sharing, 561

optimal weights per resource will be dynamically predicted 562

using unsupervised learning methods and neural networks. 563
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