IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 11 July 2022, accepted 31 August 2022, date of publication 12 September 2022, date of current version 26 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3205618

==l survey

A Comprehensive Survey on the Process,
Methods, Evaluation, and Challenges
of Feature Selection

MD RASHEDUL ISLAM"'!, (Member, IEEE), AKLIMA AKTER LIMA2,
SUJOY CHANDRA DAS “2, M. F. MRIDHA 2, (Senior Member, IEEE),
AKIBUR RAHMAN PRODEEP“2, AND YUTAKA WATANOBE 3, (Membesr, IEEE)

! Department of Computer Science and Engineering, University of Asia Pacific, Dhaka 1205, Bangladesh
2Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh
3Department of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu 965-8580, Japan

Corresponding author: M. F. Mridha (firoz@bubt.edu.bd)

ABSTRACT Feature selection is employed to reduce the feature dimensions and computational complexity
by eliminating irrelevant and redundant features. A vast amount of increasing data and its processing
generates many feature sets, which are reduced by the feature selection process to improve the performance
in all types of classification, regression, clustering models. This study performs a detailed analysis of
motivation and concentrates on the fundamental architecture of feature selection. This study aims to
establish a structured formation related to popular methods such as filters, wrappers and, embedded into
search strategies, evaluation criteria, and learning methods. Different methods organize a comparison of the
benefits and drawbacks followed by multiple classification algorithms and standard validation measures.
The diversity of applications in multiple domains such as data retrieval, prediction analysis, and medical,
intrusion, and industrial applications is efficiently highlighted. This study focuses on some additional feature
selection methods for handling big data. Nonetheless, new challenges have surfaced in the analysis of such
data, which were also addressed in this study. Reflecting on commonly encountered challenges and clarifying
how to obtain the absolute feature selection method are the significant components of this study.

INDEX TERMS Feature selection, dimension reduction, optimization, search strategy, evaluation criteria,
learning methods, data mining, machine learning.

I. INTRODUCTION

Humans has become increasingly dependent on electronic
devices such as mobile phones, and computers. Thus, the use
of real-world applications is increasing, which include vast
amounts of data with high dimensions. This dimensionality
is responsible for making data analysis a time-consuming
and challenging task. To solve this problem and handle
datasets with noisy and redundant data, various dimension
reduction techniques are used. Dimensionality reduction is
used in the preprocessing phase to address feature reduction
problems. The goal of the feature reduction challenge is to
reduce the size of the original datasets while maintaining
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accuracy. The most commonly used dimensionality reduction
processes are Feature extraction (FE) and feature selection
(FS). A feature is a unique quantified characteristic of the
observation process. Not all features are required to extract
relevant information from datasets. Several features may be
redundant or irrelevant for various machine learning, deep
learning and data science approaches. Some may mislead
clustering results, thus decreasing the quality of the model.
Throughout this instance, selecting a subset of the original
features will almost always result in improved performance.
Feature selection algorithms in supervised learning optimize
some function of predicted accuracy. Unsupervised learning,
on the other hand lacks class labels, and runs the risk of
retaining all or only a subset of significant attributes. Limiting
the number of features also improves readability. It relieves
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the problem that specific unsupervised learning algorithms
under-perform when dealing with high-dimensional data.

In Figure 1, the upper portion of feature space depicts an
example of a non-essential or irrelevant feature. It’s important
to remember that feature dimension 2 seems to have no
consequence on cluster discrimination. When used indepen-
dently, feature dimension 2 produced an unremarkable single
cluster structure. It is worth noting that irrelevant features can
skew clustering results. The concept of feature redundancy is
illustrated in the lower portion of Figure 1. It is important to
remember that the data can be sorted in the same way using
only the feature dimensions of 1 or 2. As a result, feature
dimensions 1 and 2 are believed to be redundant.
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FIGURE 1. The figure shows how the feature dimensions select the
redundant and irrelevant features from different classes.

With adequate information about irrelevant and rele-
vant features, dimensionality reduction can be achieved.
In Figure 2, three different classes are indicated in different
shapes and colors (red, black, and blue). In the above part of
Figure 2, Feature 1, set on a one dimensional space, shows
that classes 2 and classes 3 overlap whether classes 1 is sepa-
rable. Feature 2, same as Feature 1, shows that classes 1 and 2
overlap. Finally, in Feature 3, the three classes overlap with
each other and are merely inseparable. The lower-left section
of Figure 2 depicts a combination of Feature 1 and Feature 2.
In this combination, classes 1 and 2 overlap in terms of
Feature 2. From the standpoint of Feature 1, it is debatable
whether Class 1 remains distinct from Classes 2 and 3. The
lower-left section of Figure 2 shows the combination of fea-
tures 1 and 2. In terms of Feature 2, classes 1 and 2 overlap
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FIGURE 2. The figure illustrates the comparison between several classes
within two dimensional and three dimensional feature spaces.

in this combination. Whether Class 1 remains separable from
Classes 2 and 3 from the perspective of Feature 1 is debatable.
In two-dimensional space, the combination reveals that each
of the three classes is easily distinguishable. Combining these
three features allows for easier differentiation of classes in the
three-dimensional space depicted in the lower-left section of
Figure 2. However, three-dimensional space is not required
as in two-dimensional space, all three classes are separable if
one dimension space is insufficient. Using two features rather
than three is an example of both dimensionality reduction,
and feature selection. Furthermore, the motivations and goals
of feature selection were purposefully made more visible.
An expeditious review of feature selection’s goal points to
reduce computational complexity and, as a result, improve
system performance parameters such as accuracy. It also aims
to reduce large dimensionality, in which some dimensions of
some instances interfere with each other and affect the perfor-
mance. It also aims to extract meaningful rules from the clas-
sifier and remove redundant features to reduce complexity.
Furthermore, in some cases, these feature reduction chal-
lenges or activities can be named classification, clustering,
regression of data, and search strategy. These activities have
been developed formed very recently with an increasing num-
ber of studies of feature selection. However, these activities
or challenges started with a regression problem that identi-
fies the formation of the FS history. In 1924 R. A. Fisher
introduced a trial of variable selection for regression while
discussing an article [1] presented by A. J. Miller to the
Royal Statistical Society. Later in the 1940s, with limited
computing power available, the trial faced some advance-
ments. A study on the rationale for variable selection by
Hotelling [2] illuminated previous approaches to solve this
problem. Advancements in computing power in the early
1960s provided significant impetus for research in this area.
The majority of early research was conducted by statisti-
cians and focused on linear regression, such as Hocking [3],
who conducted a literature review on variable selection for
linear regression. Variable selection research has expanded
to include classification and clustering issues as well. This
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growth has fascinated a wide range of artificial intelligence,
machine learning, and data mining experts. As a result, phrase
variable selection is gradually being phased out in favor of
feature selection.

With the evolution of time, feature selection has become
more structured and usable. This structure offers the basic
architecture of the FS. The FS process is divided into four
stages: subset generation or search, subset evaluation, stop-
ping criterion, and result validation. Figure 3 depicts how
the original set of documents searches for a relevant subset
and then evaluates the subset to determine its quality. The
evaluated subset must perform the stopping criterion step,
which is known as over-fitting removal. In the validation
phase, the process results in a relevant subset of features.

Original Feature
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Subset

Stopping
Criterion

Optimal Feature
Set
Result
Validation

FIGURE 3. The basic architecture of Feature subset Selection shows how
the feature subsets are selected from the original set of features.
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o Subset generation or search: The original sets of doc-
uments go through the subset generation phase. In this
phase, each state provides a candidate subset for the
evaluation [4]. However, two concerns dictate the nature
of the subset generation process- successor generation
determines the search beginning point, which affects
the search direction. A search can begin with an empty
set, entire set, or a completely random subset [5].
Forward, backward, compound, weighted, and random
approaches can be used to determine the search begin-
ning points for each state. Search organization is respon-
sible for selecting features using a specific strategy, such
as, sequential, exponential, or random searches.

« Subset Evaluation: The candidate feature subsets must
be examined using specific criteria to find the optimal
feature subset based on the goodness measure. Addi-
tional evaluation criteria might not agree with an optimal
feature subset determine through one measure. There are
two widely used evaluation criteria based on the algo-
rithms’ reliance and independence [4]. One type of cri-
terion is the criterion that is independent of one another
and is commonly used in filter algorithms. It focuses on
measuring the fundamental features of a dataset without
using a data mining technique. The most common cri-
teria for determining dependence are the probability of
errors and information measurements. Another type of
criterion that wrapper models use is the criterion that is
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dependent on one another. A unique mining algorithm
was used to determine the criterion. The performance
of the mining algorithm performance determines the
quality of the feature subset. For a predefined mining
algorithm, the dependent criterion typically outperforms
an independent criterion. However, the selected feature
subset may not be suitable for other mining techniques,
and the computational cost is high. Unidentified instance
forecasting accuracy is commonly used to identify a
feature subset that yields high testing accuracy for clas-
sification problems [6].

« Stopping criteria: After the previous phase, the FS pro-
cess requires a stopping criterion [4]. A suitable stopping
criterion reduces the time it takes to locate the best
feature subset and eliminates over-fitting. The decisions
made in the preceding steps influence the selection of
the stopping criterion. The following are among the most
regularly used stopping criteria-

- - Based on the evaluation function.

- - Predetermined number of features.

-- Number of iterations and the proportion of two
successive iteration steps.

o Optimal feature set: A subset of a specified fea-
ture set is the optimal feature set. The optimal subset
minimizes a user-defined cost function (information-or
performance-related, depending on the application). The
optimal feature set reduces the number of inadvertently
selected features by half while maintaining constant true
positive rates. It is more efficient in selecting appropriate
variables, resulting in a model that is more straightfor-
ward, understandable, and accurate.

o Result validation: The results must be ambiguously
validated. Experimenting with the entire feature set,
rather than just a subset, is a common strategy. To
validate the results, the efficiencies of the before-and-
after feature selection trials were compared. Cross-
validation [7], [8], Confusion matrix [9], Jaccard
similarity-based measure [10], Rand Index [11], and
other validation methods have been widely used.

Different subset evaluation and subset search techniques
are floating around numerous research points in the taxonomy
of FS. Furthermore, data mining and machine learning tasks
such as classification, regression, clustering, and association
necessitate the use of FS methods. Among these tasks, feature
selection improves readability and interpretability. Based on
these scenarios, FS can be divided into three categories based
on its criteria, as depicted in Figure 4: search strategy, evalu-
ation criteria, and learning methods. Furthermore, FS can be
divided into evaluation criteria, search strategies, and learning
methods.

Apart from a broad discussion on classification and taxon-
omy, this study presents some challenges in the field of fea-
ture selection. Furthermore, this study shows different aspects
and the usefulness of feature selection. The contributions of
this study are described as follows:
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FIGURE 4. A taxonomy of feature selection shows the three criteria by
which one can select relevant features.
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« This paper precisely focuses on a standard architecture
of feature selection that regulates the study’s flow.

o The paper illustrates a broader taxonomy of feature
selection and elaborates on various search, evaluation,
and learning criteria.

o The paper shows several primarily used result validation
and performance measure techniques as well.

« This paper then demonstrates the application of feature
selection and classifies them into known sectors.

« In addition, this paper investigates the challenges of FS
by applying the methods and exploring them to find a
better way to handle them.

The rest of the paper is organized as follows: Section II
shows the broad discussion of search categories from the
taxonomy of FS. Section III focuses on methods that are
classified based on evaluation criteria. A subset classification
based on various learning methods is presented in Section IV.
Different performance measurement and result validation
techniques are described in Section V. Section VI presents a
feature selection analysis for big data. Section VII presents
the popular applications of FS. Some common challenges
encountered during the evolution of FS are mentioned in
Section VIII. Finally, Section IX brings the paper to a close.

Il. FEATURE SUBSET SEARCH CATEGORIZATION

A search strategy aims to discover a feature subset containing
2" where n is the number of features that maximizes the
measurement function in the feature subset space [12]. Before
starting the search strategy, there is a requirement to deter-
mine the search direction and starting point. There are several
search directions: forward, backward, compound, weighted,
and random approaches [4].

o Forward: Forward search is a phenomenon in which the
search process begins with an empty set. New features
were added recursively in each iteration.

o Backward: The backward elimination search begins
with a complete set of features. It removes them indi-
vidually until the required set of features is obtained.

o Compound: Compound search is a hybrid of forward
and backward search mechanisms. Performing forward
or backward steps based on corresponding values is
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an intriguing method. This permits novel interactions
between features to be discovered.

o Weighted: The search space in weighted operators is
a continuous process. All features were present in the
solution to some extent. The successor has a different
weight than that of the parent state. This is typically
accomplished by selecting the available set of iterative
instances.

« Random: The feature subset is constructed through
a random search process, which involves repeatedly
adding and removing features.

A search strategy can be implemented when the search
direction is determined. Figure 4 depicts several search strate-
gies that can be classified into three categories: Exponential
algorithms [13], Sequential algorithms [14], and Randomized
algorithms [15].

A. EXPONENTIAL ALGORITHM

Exponential algorithms evaluate a number of subsets that
grow exponentially with the dimensionality of the search
space also known as complete search. The most widely
utilized and representative algorithms in this category are
discussed below -

1) EXHAUSTIVE ALGORITHMS

Exhaustive searches are NP-hard [16], and sub-optimal meth-
ods such as forward selection [17] start small and make
additions to improve performance. The other method is
backward selection [18], which starts with all features and
removes them to improve performance and is frequently uti-
lized. An exhaustive search, such as the forward selection
method, begins by obtaining the best one-component subset
of the input features. It continues to search for the best
two-component feature subset that can be composed of any
combinations of input features. It is also the greedy-algorithm
because it tries every possible feature combination and
chooses the best. Figure 5 illustrates the exhaustive search.

2) COMPLETE SEARCH

A complete search is a strategy to find a solution to a prob-
lem by traversing the entire search space. It ensures that an
optimal result is obtained based on the evaluation criteria
employed. The exhaustive search part of the exponential
search was regarded as complete. The fact that a search is
complete does not imply that it is exhaustive. Various heuris-
tic functions can be used to narrow the search space without
decreasing the probability of obtaining the best solution.
Consequently, even though the order of the search space is
0(2V), fewer subsets are explored [19]. Two examples are
branch and bind [13] and beam search [20].

« Branch and Bound (BnB): Branch and bound (BnB)
solves discrete and combinatorial optimization issues
and mathematical optimization problems [21]. The algo-
rithm investigates the components of the tree, that are
subsets of the optimal solution. It is applied to determine
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FIGURE 5. This flowchart illustrates exhaustive algorithm.

the best solution for combinatorial, discrete, and funda-
mental mathematical optimization problems. Given an
NP-Hard problem, a branch and bound method investi-
gates the search space of possible solutions and deter-
mines the best solution [22]. Several studies [23], [24],
[25], [26] used the BnB algorithm in their works.

« Beam Search: Beam search is a heuristic search strategy
that expands the most intriguing node in a restricted
collection to explore a graph. It utilizes the optimization
of the breadth-first search [27].

B. SEQUENTIAL ALGORITHM

Sequential algorithms are employed to add or remove fea-
tures sequentially. This algorithm tends to be trapped in local
minima. Several sequential algorithms which have been uti-
lized for decades. Some of these issues are discussed in the
following sections.

1) SEQUENTIAL FORWARD SELECTION (SFS)

Sequential forward selection (SFS) is a technique in which
features are sequentially assigned to empty candidates until
the criterion is not altered [28]. Sequential feature selection
techniques used to minimize an initial dimensional feature
space to another dimensional feature subspace are included
in a group of greedy search algorithms. The goal is to select
a subset of features that are most relevant to the purpose,
resulting in optimal computational performance while reduc-
ing overfitting by removing irrelevant information. The SFS
performs best when the optimal subset has a small number of
features. SFS has been utilized in some of the articles [29],
[30], [31], [32].

2) SEQUENTIAL BACKWARD SELECTION (SBS)

The sequential backward selection approach intends to
reduce the dimensionality of the initial feature subspace
from N to K features with a minimum reduction in system
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FIGURE 6. The graph shows how the thick lines in the search space
identified by Sequential Forward Searching narrow as the algorithm
approach the whole feature set.

performance [33]. This improves computational efficiency
and reduces overfitting. The main goal is to eliminate features
from the provided feature list of N features one by one
until they reach the list of K-features. At each stage of the
process, the feature that caused the least performance loss
was removed. The feature approach is based on a combina-
torial search method, in which a subset of features from a
combination is chosen.The score for the subset was calculated
and compared with other subsets. Several studies have been
conducted using the SBS algorithm [32], [34], [35], [36].

3) SEQUENTIAL FORWARD FLOATING SELECTION (SFFS)

The Sequential Forward Floating Selection (SFFS) pro-
cess involves counting backward steps after each forward
step [37]. This process repeats the steps as long as the gen-
erated subsets are preferable to those initially considered
at that level. Consequently, if the intermediate result at the
actual level (of the relevant dimensions) cannot be increased,
there are no backward steps. The same is true for the reverse
counterpart of the procedure. Both algorithms support "self-
controlled backtracking,” allowing them to obtain effective
results by dynamically altering the trade-off between the for-
ward and backward steps. In this manner, they evaluated what
they required without using any parameters [38]. Recently,
the SFFS algorithm has been proposed [32], [39], [40], [41].

4) SEQUENTIAL BACKWARD FLOATING SELECTION (SBFS)
The whole set is used to begin the sequential floating back-
ward selection (SFBS). As long as the objective function

advances, SFBS takes forward steps after each backward
step [32], [33], [41].

5) PLUS-L MINUS-R SELECTION (L MINUS R)

LRS (Plus-L. Minus-R Selection) is a combination of SFS
and SBS [42], [43]. The algorithm has two versions: one
that starts with an empty set, and adds L features in each
round before eliminating R features until the metric evalua-
tion value is optimal. Conversely, the algorithm starts with the
universal set, eliminates R features in each round, and then
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adds L features to achieve the best value for the evaluation
metric. The selection of L and R is crucial in this algo-
rithm. This algorithm has been utilized in some studies like
[44], [45], [46].

6) BIDIRECTIONAL SEARCH (BDS)

Bidirectional Search (BDS) substitutes a single search graph
with two smaller subgraphs, starting from the beginning and
the destination vertices. In addition, the search closes when-
ever two graphs intersect. BDS employs both SFS and SBS in
feature selection and terminates searching when both locate
the same feature subset [47], [48].

C. RANDOM SEARCH ALGORITHM

Random search algorithms were employed to escape the local
minima. These algorithms are known as heuristic search algo-
rithms. It incorporates randomness into its search process.
Several random search algorithms have been introduced over
the years, some of which are discussed in the following
section.

1) METAHEURISTIC ALGORITHMS

Optimization methods that aim to find the optimal (or near-
optimal) solution to an optimization problem are called meta-
heuristic algorithms. These algorithms are derivative-free
methods that are simple, flexible, and capable of avoiding
local optima [49]. Metaheuristic algorithms exhibit stochastic
behavior, as they begin their optimization process by pro-
ducing random solutions. Unlike gradient search approaches,
it does not require the derivative of the search space to
be calculated. Metaheuristic algorithms are versatile and
straightforward owing to their simple principle and easy
implementation. The notable feature of metaheuristic algo-
rithms is the extraordinary ability to prevent algorithms from
converging prematurely. A flowchart of metaheuristic algo-
rithm is illustrated in Figure 7. Metaheuristic algorithms can
be classified into four types [50]:

1) Evaluation based: It is based on natural evolution, and
begins with a population of randomly produced solu-
tions. The best solutions are combined into these algo-
rithms to produce new persons. Mutation, crossover,
and optimum solution are used to create new individu-
als. Differential search [51], Stochastic fractal search
algorithm [52], Backtracking search [53], and Syn-
ergistic fibroblast optimization [54] are examples of
evaluation based algorithms.

2) Swarm intelligence-based algorithms: These algo-
rithms are based on the social behaviors of insects,
animals, fish, and birds. Particle Swarm Optimization
(PSO), invented by Kennedy and Eberhart [55], is a
prominent approach. It is based on the behavior of a
flock of birds that fly across the search space to find an
ideal site for them (position).

3) Physics based algorithms: The rules of physics were
inspired by these algorithms. Search based algorithms
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FIGURE 7. This flowchart illustrates metaheuristic algorithm.

such as, Gravitational search [56], Charged system
search [57], Galaxy based search [58], Optimization
algorithm such as, Electro magnetism [59], Spiral
[60], Curved space [61], Ray [62], Gases Brownian
Motion [63], Kinetic gas molecule [64], Colliding bod-
ies [65], Water vaporization [66], Thermal exchange
optimization [67] are some example of physics based
algorithms. In addition, the black hole algorithm [68],
Water cycle [69], Mind blast algorithm [70], Sine
cosine algorithm [71], and Electro search algorithm
[72] are physics based algorithms.

4) These methods are based on human behavior. Every
person has a unique way of carrying out activities,
that influences their overall success. League champi-
onship [73], Exchange market algorithm [74], Social
emotion [75], Brain storm optimization [76], Jaya algo-
rithm [77], Gaining sharing knowledge based algo-
rithm [50] are examples of human behavior algorithms.

2) RANDOM GENERATION PLUS SEQUENTIAL

SELECTION (RGSS)

Random search algorithms produce a subset of features
at random and then apply additional algorithms to that
subset [78]. Random generation plus sequential selection
(RGSS) performs SFS and SBS on a randomly chosen subset
of features to break free from the local optimum. Random
search methods, however, rely on random parameters, making
it difficult to replicate the experimental results [79]. This
study utilized RGSS search algorithms [80], [81].

3) SIMULATED ANNEALING

A set of features was selected randomly to begin the sim-
ulated annealing process [82]. It is also possible to specify
the number of iterations and obtain the model’s prediction
performance [83]. The existing feature set is then randomly
included or excluded from a small fraction (1-5) of the fea-
tures, and predicted performance of the new batch is deter-
mined. If the new features increase efficiency, the new set of
features is maintained. If the new feature set under-performs,
the acceptance probability is calculated using the equation
for higher performance with greater values. The likelihood
is a function of time and performance change, as well as
a parameter c that controls how quickly the features are
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perturbed. Following the calculation of acceptance proba-
bility, a random uniform value was generated. If the initial
feature set was used when the random value was greater than
the acceptance probability, the new feature set was rejected
and preserved. Simulated annealing can be helpful as it avoids
local optimums in its search for the global optimum owing to
the supply of randomness. It allows movements to state the
error rates on a probabilistic basis illustrated in Figure 8. The
recent utilized simulated annealing studies were [84], [85],
[86], [87].

Normalize
data
Select feature subset

Train the classifier

Implement Hlde and
seak SA algorithm

Terminate
are satisfies

Evaluate the
accuracy rate

Output the feature
subset

FIGURE 8. The graph illustrates how simulated annealing avoided local
minima by allowing movements to develop state error rates on a
probabilistic basis.

4) RANDOM HILL CLIMBING

Hill climbing is a type of heuristic search used to solve
problems involving mathematical optimization [88]. It uses
a set of inputs and suitable heuristic function. It aims to pro-
vide a decent solution to the problem. This search algorithm
may not find the optimal solution; however, it employs a
greedy strategy. At any position in the state space, the search
continues only in the direction that optimizes the cost of
the function in the hopes of eventually discovering the best
answer [89]. The study successfully utilized the random hill
climbing algorithm [90], [91], [92], [93].

5) MEMETIC ALGORITHM (MA)

An extension of the standard genetic algorithm is a memetic
algorithm (MA). To minimize the chances of premature con-
vergence, it employs a local search strategy. The crossover
operator is a crucial component of the MA operation. The
significant similarity between highly suited strings can guide
a search [94]. Memetic algorithms are rapidly growing in the
field of evolutionary computation studies [95], [96], [97].

6) LAS VEGAS ALGORITHM (LV's)
The Las Vegas algorithm make probabilistic decisions
to assist in obtaining the correct answer quickly [98].
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Randomness is used by one type of Las Vegas algorithm to
lead their search so that a correct answer is ensured even if
poor choices are made. Heuristic search methods are vul-
nerable to datasets with high order correlations. The LV’s
approach mitigates this concern by balancing the time spent
on different cases [99].

7) DIFFERENTIAL EVOLUTION (DE)

Differential evolution (DE) is an evolutionary approach for
generating real-valued multi-modal functions that are power-
ful and easy [100]. This is a population-based metaheuris-
tic algorithm that iteratively improves a proposed solution
through an evolutionary process. The parameters of the pro-
cedure are stored as floating-point variables that change when
an essential mathematical operation is performed. During
the mutation process, the modified most exemplary param-
eter values are merged into actual population vectors via a
variable-length for each crossover procedure. These algo-
rithms make few assumptions regarding the underlying opti-
mization problem and can quickly explore enormous design
spaces. The primary feature of the standard DE is that it has
three control parameters that must be adjusted. The sample
vector generation scheme and control parameter selection sig-
nificantly impact effectiveness of DE in a specific optimiza-
tion task [101]. To achieve good optimization results, trial
vector generation strategy is selected and the system param-
eters for the optimization process is optimized. Choosing an
appropriate control parameter is not always easy, and it can be
time-consuming and difficult, especially for implementation.
A flowchart illustrating differential evolution is shown in
Figure 9.

Initialization of
Vectors

-

Difference vector|_
N <
based mutation

Crossover/ Selection
Recombination

FIGURE 9. This flowchart illustrates differential evolution.

8) PARTICLE SWARM OPTIMIZATION (PSO)

Particle swarm optimization (PSO) algorithm is a metaheuris-
tic algorithm founded on the principle of swarm intelligence
capacity to resolve complicated mathematical problems in
engineering [102], [103]. It is a computerized method for
optimizing a challenge by constantly attempting to enhance
a candidate solution for a particular quality measure [104].
A population (or swarm) of the initial solutions is used in
the PSO method (particles). With a quick convergence time,
a PSO may execute a global search across the entire search
space. The movement of particles is determined by their
well-known position in space and the orientation of the entire
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swarm. This enables real-time modification of the inertia
weight, acceleration coefficients, and other computational
factors, thereby increasing the effectiveness of the search.
The PSO algorithm is notable for its simple concept, straight-
forward implementation, robustness with control parameters,
and high computational efficiency [105].

9) GENETIC ALGORITHM (GA)

A genetic algorithm (GA) is a heuristic search strategy used
to solve challenges involving search and optimization [106].
This is a strategy for dealing with restricted and unrestricted
optimization problems that rely on a biologically inspired
natural selection process. This algorithm is a subset of evolu-
tionary algorithms used for computings. The GA uses genetic
and natural selection principles to solve problems [107]. The
parameters used in the GA are shown in the Figure 10. Recent
studies have been conducted on the GA algorithm [108],
[109], [110], [111], [112]. A concise tabulation of advantages
and disadvantages of different search strategies are illustrated
in Table 1.

N

Initialize population
g " —\
—> Fitness Assignment
Selection
( Crossover & )
Mutation
[
© Final
= Stopping feature

Criteria
set

FIGURE 10. The graph illustrates overall working flow of the genetic
algorithm.

Ill. FEATURE SUBSET EVALUATION CRITERIA

An evaluation criterion is a process that aims to find the
relevant feature from the feature sets by utilizing various
methods. Feature selection has four evaluation criteria: fil-
ter, wrapper, embedded, and hybrid. The following section
discussed these methods along with their advantages and
disadvantages.
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A. FILTER METHOD

Filter methods are commonly employed as independent pre-
processing methods. Instead, features were selected based on
their correlation scores with the outcome variable in various
statistical tests. The term “‘correlation” refers to a purely
subjective concept. Furthermore, the classification algorithm
does not influence the evaluation of the subsets. To calculate
features, several parameters - such as correlation, gain Ratio,
Euclidean distance, and others are utilized. These parameters
are discussed in the following section and the structure of the
filter method is Illustrated in Figure 11.

Set of all
features

v

[ Selecting the > [

best subset Algorithm

v

[ Performance ]

Learning ]

FIGURE 11. The general Structure of filter method.

1) MUTUAL INFORMATION (MI)

Mutual Information (MI) is a statistical technique employed
in FS. From equation 1, MI is a metric for determining how
two variables (a, b) are interdependent [113]. It assesses the
“measure of data” collected on a random variable through
the other random variable.

pla, b)
b 1
2D pla b)log (p( )p(b)) W

beB acA

I(A, B) =

where p(a, b) is the joint probability function of A and B. P(a),
and P(b) are the marginal probability distribution functions of
A and B respectively. This equation is used to determine the
MI between two discrete random variables, a and b. The sum-
mation is performed using a double integral for continuous
random variables.

p(a, b)
I(A, B b)1 dadb 2
@, B) = //”(“ )°g<p< )p(b)) “ @

Statistical measures were used to assign scoring values to
each feature in the filter technique. The features were sorted
in descending order according to their rankings. A subset of
features was selected based on the threshold values. Using
the filter approach to select the best features requires less
computational time. Because the connection between inde-
pendent variables is not considered when selecting features,
irrelevant features are chosen. Recent studies have utilized MI
techniques in their research [114], [115], and [116].
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TABLE 1. Advantages and disadvantages of various search strategies.

Category Algorithms Advantages Disadvantages
Exhaustive Less computational time Unsuitable for big dataset
. Algorithms
Exponential . . . . .
Algorithm Complete Reduce computational time | Face difficulties to reach opti-
Search and consume less memory mal goals
SES Less computational time and | Presence of redundant features
simple implement process and nesting effect
Less computational time and | Presence of redundant features
SBS . . .
simple implement process and nesting effect
SFFS Reduce nesting issues and re- Hard to find all subsets
dundant features
SBFS Reduce nesting issues and re- Hard to find all subsets
Sequential dundant features .
Algorithm LminusR Overcome nesting issues gard to predict values of I, and
BDS Reduce requiring time and less | Goal state should be known be-
memory capacity fore search
RGSS Apply additional algorithms Relies on random parameters
] Deal with arbitrary svstems Expensive cost function and
Simulated : y sy few local minima decline per-
Annealing and assure optimal solution formance
. 1 o Tendency to become stuck at
Random Hill | Can 1 solve pure optimization Local maxima or foothills, a
Climbing problems plateau or a ridge
Avoids getting trapped in lo- .
GA cal optimal solution like tradi- Clael)l:ilto t perform well with com-
tional methods prexity
Random MA Reduce the premature conver- It is an extension framework
gence
Search Can determine the correct an-
Algorithm LV’s . Vulnerable to large datasets
swer rapidly
BnB Less computational time Cannot perform better in a
large dataset

2) PEARSON'’s CORRELATION (PC)
Pearson’s Correlation (PC) is a filter-based method. PC is
used to detect the linear relationship between the two contin-

uous variables, X and Y. Its value varies from —1 to +1 [117],
[118].

Xy =—"— 3

3) CORRELATION COEFFICIENT

The features that show redundancy are dealt with using
correlation-based feature selection [119]. The correlation
coefficient is used to select features that are highly related to
the target variable but have minimal inter-correlation between
them [120]. The correlation of each set of features determines
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the highest correlation coefficient value and immediately
selects a feature [121].

4) INFORMATION GAIN (IG)

Information Gain (IG) is filter feature selection method uti-
lized to determine essential qualities from a group of features.
When the value of the feature is unknown, IG reduces the
risks associated with selecting a class attribute [122]. It is
primarily concerned with information theory. It is used to
rank and select top features before the learning process begins
to reduce the feature size. The entropy value of the distri-
bution was calculated by ranking to estimate the uncertainty
of each feature based on its significance in defining separate
classes [123]. The entropy of the distribution, sample entropy,
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and predicted model entropy of the dataset determines the
ambiguity [124]. The information gain about X provided by
Y is calculated as:

IGX |Y)=HX)-HX|Y) “

where,

k
H(X)= =P (x)log, P (xi) )

i=1

is the entropy of variable X and,

HX|Y)=— ZP ) ZP (xi 1 ;) logs (P (xi ] 3))
(6)

is the entropy of X after observing another variable Y.

5) GAIN RATIO

The gain ratio is required to improve the IG’s bias towards
features with high diversity values [125]. The gain ratio is
significant when the data were evenly distributed. It is low
if all data are directed to only one branch of the property.
The gain ratio is an attribute determined by the number and
length of the branches. It attempts to correct IG by taking
intrinsic information into consideration [126]. The entropy
distribution of the instance value can be used to estimate the
intrinsic information of a specific feature.

. . Information Gain (y, x)
Gain Ratio (y, x) = — @)
Intrinsic Value (x)

where,

S |Si]

— %1 — 8
5] *logy — (®)

Here, |S| is the number of possible values that feature x can
take, while |S;| is the number of actual values of feature x.

Intrinsic Value (x) = — Z

6) LAPLACIAN SCORE (LS)
The Laplacian score [127] is a prominent unsupervised fea-
ture selection method that estimates features based on loca-
tion preservation. In other words, a conventional feature is
identified if two data points are confined to the present
dimension similar to the original space. Consequently, a good
feature maintains the local geometrical formation of the data.
The Laplacian score (L,) is expressed as:

o

L =2t ©)

f. Df,
where a diagonal matrix is denoted by D, Laplacian matrix
defined as L = D — S and f; is determined as follows:

. D1
=t — 5o (10)
where 1 = [1,...,1]7. The relevant features were sorted

in ascending order of L, after the Laplacian score for each
feature was calculated [128].
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7) FISHER SCORE

Fisher score is a popular supervised method for selecting fea-
tures that compute individualized Fisher scores over the data
space [129]. Fisher’s criterion does not recognize combined
effects or handle the similar features but provides optimal
predictors [130] under certain orthogonality assumptions.
The fundamental premise of the Fisher score is to increase
the distances between data samples in different classes while
decreasing the distances within the same class. Several recent
studies utilized the fisher score filter method for feature
selection [131], [132], [133].

8) CHI-SQUARED

The chi-squared (X 2y statistic was used to evaluate the
independence of two variables by calculating a score that
indicated the independence they are. X% measures the inde-
pendence of the features for the class in feature selection.
Before calculating a score, X relies on the assumption that
feature and classes are independent [134]. A substantial score
value indicates a highly dependent connection.

NI[P(r,c)P(F, &) = P(r,c) P (7, c)I’
P(r)P(r)P (ci) P (ci)

x> (rc) =
(11)

where N signifies the complete dataset, r indicates the pres-
ence of a feature (r its absence), and ci refers to the class.
Where P(r, ci) is the probability that feature r occurs in class
ci. P(r) is the likelihood that a feature resembles the dataset.
Some researchers have used the chi-squared filter method for
feature selection [135], [136].

9) CORRELATION-BASED FEATURE SELECTION (CFS)
Correlation-based Feature Selection (CFS) is an essential
filtering technique that ranks feature subsets using a heuristic
evaluation function based on correlation [6]. The evaluation
function favors subsets with attributes that are substantially
correlated with the class but uncorrelated with one another.
This technique avoids the irrelevant features because of its
low correlation with the class. The Redundant features should
be filtered otherwise, they will be substantially associated
with one or more of the remaining features. The validation
of a feature is determined by how well it anticipates classes
in portions of the instance space where other characteristics
have not yet been indicated.

10) FAST CORRELATION-BASED FILTER (FCBF)

The fast correlation-based filter (FCBF) begins with a com-
prehensive set of characteristics. The fast correlation-based
filter computes the feature dependency by employing sym-
metrical ambiguity and eliminates superfluous features using
the backward selection approach [137]. This technique
includes an internal criterion that prevents features removal.
Different approaches to feature selection are slower than
rapid correlation-based filters. The FCBF method algorithm
was developed in [124].
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11) CONSTRAINT SCORE

The constrain score is a supervised feature selection approach
that evaluates features using paired constraints [138]. The
features with the highest constraint-preserving ability were
selected using this strategy. If it is necessary for two data sam-
ples to be linked, they must be close to each other on an excel-
lent feature. If there is a constraint on a good feature between
two data samples, the samples must be far apart. A recent
study based on the constraint score was conducted [139].

12) RelieF

The fundamental RelieF algorithm [140] calculates the
attribute performance by focusing on how well its values
distinguish between samples that are close in proximity.
RELIEF searches for two nearest neighbors: one from the
same class and another from another class. Based on the val-
ues, the performance estimate for all features is then updated.
RELIEF can deal with both discrete and continuous features,
but it is only useful for two-class issues. ReliefF [141] is an
enhancement that not only handles multi-class problems but
is also more resilient and capable of dealing with missing and
noisy data. The ReliefF method [142] was developed when
ReliefF was used for continuous class (regression) problems.
The Relief family of techniques is particularly appealing
because it can be used in a variety of situations. It has low
bias, incorporates feature interaction, and can capture local
dependencies that other approaches overlook.

13) MINIMAL-REDUNDANCY-MAXIMAL-RELEVANCE
(MRMR)

Minimal-redundancy-maximal-relevance (mRMR) is a mul-
tivariate filter method that uses a relevant criterion to
choose features with the maximum dependency on the tar-
get class [143]. A measure is used to eliminate redundancy
between the characteristics, which is specified as follows:

mRMR (Fj) = max

1
A 1(Fj; Ce) = —— > 1 (Fj: Fi)

F,'ES
(12)

where, I(Fj; Ci) is the mutual correlation between feature
X; and class Ci, and I(Fj; F;) is the correlation between
features F; and F;. S stands for the selected feature set, and m
represents its size (i.e., m = |S]). Several studies have utilized
the mRMR process [144], [145].

Filter methods instantly select the most consistent features
from the data. Features were evaluated based on intrinsic
data attributes rather than a clustering algorithm to guide the
search for relevant features in the filter method. The filter
method is also classified into two ways [146].

1) Univariate Filter method: Ranking-based unsuper-
vised feature selection approaches are known as uni-
variate methods. Univariate techniques employ criteria
to evaluate each feature individually, resulting in an
ordered ranking list of features from which the final
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feature subset is selected. These approaches success-
fully identify and remove unnecessary features. How-
ever they cannot remove the same features because
they do not account for the possible feature depen-
dencies. Alternatively, univariate filter techniques only
assess the characteristics separately, ignoring redun-
dancy [147], [148], [149].

2) Multivariate Filter method: Multivariate techniques
consider feature correlation in their analysis and can
therefore manage both irrelevant and duplicated data.
Consequently, they identify more than two-way cor-
relations within the feature set these techniques are
considered more generic. Multivariate filtering meth-
ods evaluate the significance of the characteristics col-
lectively rather than individually. Learning algorithms
that use a subset of attributes picked using multivari-
ate techniques are more accurate than others in many
instances, but they are computationally wasteful [150],
[151], [152].

Table 2 represents different Studies using filter method to

select features.

B. WRAPPER METHOD

Wrapper methods evaluate the relative utility of feature sets
based on the prediction performance of a learning machine.
Classification error rate estimation and theoretical perfor-
mance constraints are frequently used to evaluate a model’s
performance. The lower the error rate of feature subset the
better the result. An exhaustive search can be conducted
when the number of features is small. However, examining
all subsets is NP-hard and is subject to overfitting. Sequential
forward selection or backward elimination, best-first, branch-
and-bound, simulated annealing, and genetic algorithms are
just a few of the greedy search strategies that can be imple-
mented [162]. Several of the are very common in the sequen-
tial search included in section II. The structure of the wrapper
method is shown in Figure 12. The other wrapper methods are
discussed in the following section.

Set of all
features

Y

2

Learning Algorithm ’

Generate the
subset

Selecting the best subset

Y

Performance

FIGURE 12. The illustration shows the Structure of the wrapper method.
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TABLE 2. A table of different works under filter method.

Algorithm Dataset Results Limitation
When 40 relevant | Adequate selection of features is must to
. . features are used, | improve accuracy and efficiency of classifier
EéléelginiBFS’ ]SS};;;E::;C CFS success rate | methods. The datasets need to be more de-
INTERACT [153] was higher than | fined. This system needs to be testified in a
others. benchmark dataset.
Svnthetic In clustering, a wrapper method evaluates
y ’ the candidate feature subsets by a clustering
benchmark, and | 93433.9 clusters . .
K-means : algorithm. The result evaluation can be de-
real datasets | found with filter . . . .
lustering [154] . scribed in other calculations. A comparison
¢ g shows its | method. . .
. table of other algorithms will be good to
effectiveness

understand the difference.

Discretizer + filter
[155]

DNA microarray
data

95% on binary
data, 87.50% on
multiclass data.

High number of gene expression contained
and the small sample sizes which is a chal-
lenging issue. This system needs to be testi-
fied in a large dataset.

High dimensional datasets with a relatively

RFS [156] 12 medical | 19.25+6.78 for | small number of Instances need to be solved.
datasets one class. The supervised discretization and selection

procedures need to be developed.
Multi-criteria tuning needs to be performed
16 high dimen- with respect to all performance criteria at the
22 filter methods sional classifica- | 4% of features. drawback of a much more complicated ag-
[157] tion datasets gregation of the results. This approach could

be transferred to model selection.

e, 5 public domain Accuracy . 2™ | The result should be counted in average from
Entropic Filtering . three  different .

- microarray all dataset together. Their performance can
Algorithm (EFA) datasets dataset 0.96, be extended by utilizing other algorithms
[158] 0.97, 0.90. y 8 8 '

Statistical dependence measures need to be
presented for selection in the context of clas-
. sification. The comparison with other ap-
PLS [159] DNA microarray | 95% Accuracy. proaches would help to understand the effi-
ciency. This system needs to be testified in a
large dataset.
One major problem in applying DNA mi-
croarrays for classification is the dimension
83.60% of obtained datasets. Multiclass selection
MWMR [160] PCMAC dataset Accuracy. problems need to be solved. This system
can extend their performance utilizing other
algorithms.
10 datasets which
are from  the High-dimensional feature vectors impose a
widely used . . . .
. L Accuracy is | high computational cost as well as the risk of
Filtered and University of 9 o, . )
. . . 99.3% on WDBC overfitting”. The computational complexity
supported SFS California, Irvine P
. dataset. needs to be reduced and the classifier’s gen-
[161] (UCI) repository

of machine
learning

eralization ability needs to be improved.
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1) RECURSIVE FEATURE ELIMINATION

Recursive feature elimination (RFE) is a well-known feature
selection algorithm. It is popular since it is simple to set up
while using, and good at identifying features in a training
dataset that are more relevant in determining the desired vari-
able [163]. It is a recursive procedure that sorts the features
based on feature importance and an underlying random forest
classification model. When using RFE, there are primarily
two configuration options: the number of features to choose
from and the algorithm used to assist in feature selection.
Both of these hyper-parameters can be investigated, but their
correct configuration has no significant effect on the per-
formance of the method. This method has been used in the
several recent studies [164], [165], [166], [167].

2) BORUTA ALGORITHM
The Boruta algorithm is a wrapper for the random forest
classification algorithm in the random forest R package [168].
The random forest classification process is fast, can typically
be performed without parameter modification, and provides
a numerical estimate of feature importance. It is an ensemble
method in which several unbiased weak classifiers, such
as, decision trees, vote on classification. These trees were
generated one at a time on different bagging samples from
the training set. The loss of classification accuracy caused by
the random permutation of attribute values between instances
is used to calculate an attribute’s relevance. It is calculated
separately for each tree in the forest and is classified using
a specific property. The average accuracy loss’ and standard
deviation were then calculated. Boruta was built using the
same principle as that of the random forest classifier. By intro-
ducing randomness to the system and gathering data from an
ensemble of randomized samples, the influence of random
fluctuations and correlations can be mitigated [169]. Studies
have suggested usingg the boruta algorithm for FS [170],
[171], [172], [173].

Table 3 presents different studies using the wrapper method
to select the features.

C. EMBEDDED METHOD

Feature selection is integral to the learning algorithm for the
embedded approach, which continuously develops a classi-
fier and selects a subset of features [182]. These methods
frequently function by introducing a sparsity-inducing reg-
ularization or prior into the objective function of the learning
algorithm, causing the weights assigned to a feature set to be
zero. Furthermore, embedded techniques are described as a
trade-off between wrappers and filters as well as embedded
feature selection in the process of the learning algorithm.
As a result, the wrapper and filter methods were used. Fur-
thermore, they like wrappers and, work in conjunction with
learning algorithms. Furthermore, they are far more effective
than wrappers since they do not need to repeat the learning
method. Embedded techniques are frequently unable to pro-
vide better learning results than wrappers [183]. The structure
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FIGURE 13. Structure of embedded method.

of the embedding method is illustrated in Figure 13. The
least absolute shrinkage and selection operator (LASSO) and
RIDGE regression are two popular implementations of this
approach. Both had built-in penalization factors to reduce
overfitting. Several studies have employed feature selec-
tion [184], [185], [186], [187], [188].

1) LASSO

The least absolute shrinkage and selection operator (LASSO)
was developed by Robert Tibshirani in 1996 [189]. This
is a beneficial technique because of its two characteristics:
regularizing and selecting features. The LASSO technique
requires that the sum of the absolute values of the model
parameters be less than a particular value (upper bound).
This approach penalizes the regression variable coefficients
by decreasing some of them to zero via a shrinking procedure
known as L1 regularization. Variables with non-zero coeffi-
cients after downsizing were selected as part of the model
during the FS stage. The goal of this approach is to minimize
prediction errors as much as possible [190]. The LASSO
system can produce a highly accurate forecast while reduc-
ing the variance without considerably increasing the bias by
shrinking and deleting coefficients. LASSO is useful, with a
limited number of instances and a wide variety of features.
Furthermore, LASSO reduces overfitting by removing exter-
nal variables that are not associated with the response vari-
able, thereby improving model interpretability [191]. Table 4
presents different studies using the embedded method to
select the features.

D. HYBRID METHOD

Hybrid feature selection methods have been a subject of great
interest in recent decades. The hybrid model attempts to com-
bine the strengths of the two models by utilizing their distinct
evaluation criteria in various phases of the search process.
Hybrid techniques aim to combine the benefits of wrappers
and filters. Two hybridization strategies are [201] commonly
used to combine the wrapper and filter methods. Jihong ef al.
[202] proposed a hybrid feature selection (HFS) technique
that uses both filter and wrapper models of feature subset
selection and focuses on selecting a sub-feature set where all
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TABLE 3. A table of different works under wrapper method.

Algorithm Dataset Results Limitation
The careful analysis of arguments for both
Mushroom methods was done to identify the best
BDSEFS [174] databases 98.01 £ 2.50. method. Their performance can be extended
by utilizing other algorithms on multiclass
problems.
The averace ac- Compound operators would be better to
curacy w fn t u change the topology of the search space dy-
Best-first search Real world from y87 01% tg namically to better utilize the information
[175] dataset 87 60% 'a 4.59 available from the evaluation of feature sub-
e ciuctioo’n in efro;) sets. This system needs to be testified in a
benchmark dataset.
The computational complexity needs to be
9825 + 20 reduced and the classifier’s generalization
Support Vector 3 5'70 N 5' 6, ability needs to improve. High-dimensional
Machines with Four real-world 7 5' 54 N 3' 6’ feature vectors impose a high computational
kernel functions, data sets 69.33 +_1 0 on cost a.nd a high cost of datg acquisition. A
sequential foﬁr dat_alseté low-dimensional representation reduces the
backward risk of overfitting. The datasets need to be
selection [176] balanced.
The various sources of nitrate pollution need
Comprehensive to be recognized and the system dynamics
P mmce = 0.12 and | need to be understood and fundamental need
SBS, SFS, SFFS, GIS database .
> | AUC =0.92 to be understood. Their performance can be
and SBFS [177] and NDVI o .
extended by utilizing other algorithms on
multiclass problems.
4  public ene B;Ijess Ch(ﬁzgiss;%e The main motive was to figure out the possi-
ex rlcjassion & 1%427891 > | ble combinations in between each procedure
BIRS (best daf)asets of | M31 523’ and search and each attribute measure with less
incremental ranked| colon, leukemia, M23197 among computa.ltlonal complexity .and .COSt’ redun-
subset) [178] lymphoma, and | the top 20 genes dant or irrelevant genes, estimation degrada-
GCM ’ of the rankin tion in the classification error. Their datasets
and M36652 & | need to be described.

Feature subset
selection (FSS)
[179]

16 datasets.

Accuracy on one
dataset 0.96.

Their focus was on the application of wrap-
per FSS to high-dimensional datasets, in par-
ticular datasets with a very large number of
variables and a small number of instances.
Their performance can be extended by utiliz-
ing other algorithms on multiclass problems
and on (semi) big data.

GSVM with
SBW FS
A publicly avail- performed The use of genetic algorithms in wrappers is
the best mean .
able dataset col- . that the output feature subset is not the same
SBW FS [180] . accuracy, i.e., N
lected for Chi- 79 55%.  amon when the approach is implemented several
nese FDI. 27 "€ | times. The datasets needs to be described.
all models with
various  feature
subsets.
The other methods work on overall charac-
teristics of the data regardless of the clas-
8 datasets with | Accuracy is | sifier selecting the valuable features. High-
Moth-flame . . - . -
Optimizati diverse character- 98.96% on dimensional feature vectors impose a high
ptimization

(MFO) [181]

istics

WDBC dataset.

computational cost and a high cost of data
acquisition. This system can extend their
performance utilizing other algorithms.
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TABLE 4. A table of different works under embedded method.

Algorithm Dataset Results Limitation
Relevant features need to be selected simul-
76.74 + 1.9, taneously during classifier construction by
kernel-penalized Four real-world 97.55 + 0.9, penali'zing each feature"s use in the dual for-
SVM (KP-SVM) benchmark 96.57 =+ 5.6, mulation of SVM. Their performance can be
datasets 99.73 £ 1.0 on extended by utilizing other kernel functions

[192]

four datasets.

like polynomial kernel or with weighted
SVM.

Infinite feature
selection (Inf-FS)
[193]

13 benchmarks of
cancer classifica-
tion and predic-
tion on genetic
data

91% on one
dataset

Filter-based feature selection has become
crucial in many classification settings, es-
pecially object recognition, recently faced
with feature learning strategies that originate
thousands of cues. The relations among the
feature needs details description.

Greedy Forward
Selection (GFS)
[194]

4 public gene ex-
pression datasets
for breast cancer
prognosis

AUC average
0.65(0.15)

Biomarker discovery from high-dimensional
data is a crucial problem with enormous
applications in biology and medicine. Their
performance can be extended by utilizing
other algorithms on multiclass problems.

MRMR [195]

6 gene expression
datasets

1-2% error rate

Need more balanced coverage of the space
and capture broader characteristics of phe-
notypes. The results can be defined in other
functions.

MRMR and
SVM-RFE [196]

4 public
expression
datasets of colon,
leukemia, hepato,
and prostate

gene

92.68 + 5.13,
99.75 + 1.31,
88.16 =+ 5.72,

98.67 £ 3.96 on 4
datasets.

Redundancy among the genes needs to be
solved. Figures can be utilized to describe
the method more easily. Multi-fault diagno-
sis in bearings. This system can extend their
performance utilizing other algorithms.

The Berlin

The complexity of the classifier parameters
adjustment during training increases expo-
nentially with the number of features. Too
many input features may lead to the so-

ESFS [197] emotional speech Accuracy called "curse of dimensionality". A hier-
72.80%. ; .
database. archical classifier can be used to separate
classes by first separating classes far away
from each other and then concentrating on
closer classes.,
6 ublicl Clustering
available p y results, The lack of label information, the vast major-
benchmark (ACC%=std) ity of these algorithms usually generate clus-
datasets for 6 datasets are ter labels via clustering algorithms and then
EUFS [198] ( ALL AML 73.6£0.00(100), formulate unsupervised feature selection as
COIL20 PiE]OP 63.4+5.47(100), sparse learning based supervised feature se-
TOX—17’1 ’ 46.4+2.69(50), lection with these generated cluster labels.

PIX10P, Prostate-
GE).

49.5+2.57(100),
76.8+5.88(150),
60.420.80(100)

In NMI results their work needs to be more
precise.

The statlog (lad-

Imbalanced data is one type of datasets that
are frequently found in real-world applica-

Weighted gini sat satellite) and c?;gzgets of 0 Sgg tions. For this type of datasets, improving the
index (WGI) [183] | letter recognition and 0.999 ’ accuracy to identify their minority class is
datasets : : a critically important issue. Determining the

optimal weight in GI-FSw remains unsolved.

The dataset sometimes exhibits significantly,

but sometimes they are extremely imbal-

12 highly imbal- anc.:ed: Data resampling.rebalancgs. a datas.et

KP-SVDD and AUC 995 on artificially by constructing a training set in

KP-CSSVM [199] ngsse tlsnlcroarray BHAT?2 dataset. which all classes can b.e shattered adequately
by standard classification approaches. Cost-
sensitive learning and one class learning are
also needed to take care of.

Relevant elements should be chosen all the
while during classifier development by pun-

Standard 2—_norm ‘“Tonosphere™ Error only rises to ishing each component’s utilization in the

SVM and linear Dataset 14% from 11%. double detailing of SVM. Their performance

I-norm SVM
[200]

can be reached out by using other part works
like polynomial bit or with weighted SVM.
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Set of all
features

Wrapper Method

Filter Method

Selecting the best subset

Performance

FIGURE 14. Structure of hybrid method.

the selected features are coalitional and significant. Hybrid
methods attempt to balance efficiency (computing effort)
and effectiveness by combining the benefits of the filter and
wrapper approaches (quality in the associated objective task
when using the selected features). The structure of the hybrid
method is shown in 14. Several recent studies have employed
a hybrid method [203], [204], [205].

Table 5 presents different studies using the hybrid method
to select the features.

IV. FEATURE SELECTION BASED ON

LEARNING METHODS

In machine learning, feature selection is also known as
attribute, variable, and feature subset selection. The feature
selection strategy tends to be grouped into three machine
learning categories based on the availability of class infor-
mation. The FS learning, supervised, unsupervised, and
semi-supervised methods are described below:

A. SUPERVISED LEARNING METHODS

The supervised technique finds a feature subset using labeled
data while considering predetermined criteria for determin-
ing the relevance of the features. By constrast, unsupervised
algorithms seek to discover the inherent data structure to
select the most important aspects without assuming prior
knowledge [57]. This function locates relevant features based
on class labels. This method almost always leads to an over-
fitting problem owing to the presence of imbalanced datasets.
Among the most frequently used supervised feature selection
methods are: the Fisher score [60], Hilbert-Schmidt Indepen-
dence Criteria (HSIC) [61], Fisher Criterion [62], Pearson
Correlation Coefficient [63], Trace ratio criterion [64], and
mutual information [38]. Several supervised learning meth-
ods are explained in section 3, and others are included in the
following section.

1) HILBERT-SCHMIDT INDEPENDENCE CRITERION (HSIC)
While reproducing kernel Hilbert spaces (RKHS) [214],
[215], an independent criterion called the Hilbert-Schmidt
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norm of the cross-covariance operator was proposed. Dif-
ferent applications including independent component anal-
ysis [216], sorting/ matching [217], supervised dictionary
learning [218], and multiview learning [219], have mentioned
the proposed measure known as the Hilbert-Schmidt inde-
pendence criterion (HSIC). According to HSIC, two random
variables, x, and y are independent if any bounded continuous
function of the two random variables is uncorrelated. HSIC
is one of the criteria for detecting non-linear connections that
do not require generalized eigenvalue problems or rely on
regularization parameters [220], [221].

B. UNSUPERVISED LEARNING METHODS

Unsupervised feature selection (UFS) approaches are exten-
sively used to analyze high-dimensional data. These tech-
niques use unlabeled data owing to the scarcity of promptly
available labels. The majority of existing UFS techniques
concentrate on the importance of features in preserving the
data structure while ignoring feature redundancy [222].

1) UFS WRAPPER METHOD

Wrapper approaches use the results of precise clustering
algorithms to evaluate the feature subsets. The discovery of
feature subsets distinguishes between these methods based on
the aforementioned approach. The quality of the results of the
clustering algorithm used for selection was improved in this
manner way.

1) Sequential methods: In these methods, the features are
sequentially added or removed. [223], [224], [225] are
profound works on this topic.

2) Bio-inspired methods: Bio-inspired methods attempt
to introduce unpredictability into the search process
in order to avoid local optima. Some studies on these
methods are presented in [226] and [227].

3) Iterative methods: Iterative approaches resolve the UFS
issue and reduce the need for combinatorial search by
redefining it as an evaluation problem. [228], [229],
[230] are some studies on these methods.

2) UFS HYBRID METHOD

Hybrid-based methods attempt to use the strengths of both,
filter and wrapper, to achieve a suitable balance of compu-
tational efficiency. It also demonstrates the productivity in
the associated objective task when the selected features are
used. Hybrid-based methods include a filter frame in which
features are ordered or chosen using a measure based on the
inherent attributes of the data.

C. SEMI-SUPERVISED LEARNING METHODS

Semi-supervised learning [231] studies a small amount of
labeled data and many unlabeled data. Semi-supervised based
feature selection methods are distributed into two groups
and explored in depth from two different prospectives [232],
[233]. FS taxonomy was initially centered on and classi-
fied into semi-supervised feature selection procedures based
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TABLE 5. A table of different works under hybrid method.

[208]

SPECTF Heart
dataset

Algorithm Dataset Results Limitation
Maximum Class Acoustic For all  Five Multi-fault diagnosis in bearings. This sys-
- . tem can extend their performance utilizing

separability (MCS)| Emission (AE) datasets approx .
feature distribution | signals 98.50%. other algorithms and can find the other pos-
analysis method sibilities.
[206]
Hybrid feature Fault diagnosis scheme from bearing data.
selection model Acoustic Relevant elements should be chosen all the
discriminant emission  (AE) | 95% accuracy while during classifier development by pun-
feature signals ishing each component’s utilization in the
distribution algorithm.
analysis-based
feature evaluation
method [204]

UCl Machine | Average Classifi- .. . .
Hybrid feature Learning cation Accuracy: Human activity recognition. This system
selection [207] Repository 96.92%. needs to be testified in a large dataset.

Breast Cancer

Wisconsin

gztljsgeri.ostlc) AUC of ROC High dimensionality in biomedical data clas-
Hybrid method Breast ’ Cancer 0.997 0.774 sification needs to be reduced. Wrapper
that combines Wisconsin 0'832’ on ) 3’ methods tend to have superior classification
the filter and (Prognostic) d'atase ¢ accuracy but require great computational
wrapper methods & . power.

dataset; and

MIM and
SVM-RFE [209]

5 different SNP
datasets

96%
classification
accuracy.

Achieving high classification accuracy in
such a high dimensional space is crucial for
successful diagnosis and treatment.

87.04% accuracy
on GCM dataset

A proper number of the most relevant genes
need to be selected for data analysis. Rele-

GADP and 6 different micro vant elements should be chosen all the while
and 100% accu-
X 2_test array datasets. racy on th:: rest of during classifier development by punishing
[210] 5 dztase ts each component’s utilization in the GADP
’ and X 2-test.
On Lung
DNA microarra Cancer datasets | To reduce redundant features effectively and
CFS and TGA data y 195.2+5.41 of | achieve superior classification accuracy.This
[211] genes were system needs to be testified in a large dataset.
selected.

F SSFS [212]

Taiwan
Economic
Journal database

87.3% accuracy.

The choice of feature variables has a critical
impact on the performance of the resulting
system. It is needed to investigate to develop
a structured method of selecting an optimal
value of the parameters in SVM for the best
prediction performance. It is also required to
to the generalization of SVM on the basis
of the appropriate level of the training set
size and gives a guideline to measure the
generalization performance.

The combination
of the filters

and the wrappers
[213]

DisProt database,
Protein Data
Bank

99.45% accuracy

Through the filters are very efficient in se-
lecting features, they are unstable when per-
forming on wide feature sets. For instance,
microarrays, transaction logs, and web data
are all very wide datasets with a huge amount
of features.
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TABLE 6. Advantages and disadvantages of filter, wrapper, embedded and hybrid method.

Algorithms Advantages Disadvantages
Filter Fast, scalable and independent of | Ignores dependency and classifier
classifiers interaction
Wrapper Interacts with classifier and features Overﬁttmg problem and high com-
putational cost
Avoids overfitting and considers de- | Consider dependency between fea-
Embedded - :
pendency between variables tures and classifier.
. Less overfitting problem and better COHSl.d " dependency  between
Hybrid . combination of features and
computational cost classifier

on their cooperation with the learning process. The sec-
ond section is based on a taxonomy of semi-supervised FS,
which is divided into many categories based on which the
semi-supervised learning algorithm is similar to the method
used.

1) SEMI-SUPERVISED FILTER METHOD
Semi-supervised filter feature selection approaches analyze
the process of learning tasks by examining the intrinsic
aspects of labeled and unlabeled data.

« Based on spectral graph theory and cluster assump-
tion: Zhao and Liu [234] suggested the spec-
tral graph theory and the cluster assumption for
the semi-supervised feature selection method. This
approach looks for a cluster with the best consistency
with the label information determined by the cluster
indicator. This method begins by generating n nodes
in a neighborhood graph, similar to the graph created
by the Laplacian score. Then, for each feature vector,
a cluster indicator was calculated and its significance
was assessed by determining two factors. One is whether
the indicator’s cluster structures are well-formed, and
the other is whether the indicator’s cluster structures are
consistent with the label information.

o Based on Fisher criterion: Using Fisher criteria
attributes, it selects features with the best discrim-
inant and context abilities. It uses of both labeled
and unlabeled data to determine the local structure
and distribution. The goal is to improve the ability
to distinguish between different classifications using
labeled data while maintaining the local structure of the
data using unlabeled data. Yang et al. [235] proposed a
Fisher score-based structure that incorporated a local
structure maintaining criterion and a variant strategy.
This method uses the local structure and vast distribution
information of the labeled and unlabeled data.

o Based on the Laplacian score: The principles of
the Laplacian criterion and the output of the infor-
mation for FS are combined into semi-supervised FS
methods depending on the Laplacian score [236], [237],
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[238], [239]. These approaches are graph-based because
they produce a neighborhood graph and analyze features
to preserve the local structure of the data. The structure
is circumscribed based on the learning method of data
based on the Laplacian score.

« Based on pairwise constraints: It evaluates the sig-
nificance of features based on their constraint and
locality-preserving power using both paired constraints
and the local qualities of labeled and unlabeled
data [240]. In addition, relevant characteristics must
adhere to the data’s local structure as well as user-created
paired constraints. These methods are classified as
graph-based methods since they create two graphs from
supervised and unsupervised data.

« Based on sparse models: The sparse feature process
selects the sparsest and most discriminative features
practicing a range of sparse models. The LI-norm
(lasso) model is a well-known sparse model. However,
the L1-norm model may not always select suitably
sparse features. Recent studies [241], [242], [243] have
observed that regarding the association between dis-
tinct features, grouping features from all data samples
together is beneficial. Specific sparse models, such as
the 12,1-norm and 12,p-norm, consider feature correla-
tion when selecting essential features from data samples.

2) SEMI-SUPERVISED WRAPPER METHOD

The semi-supervised wrapper FS method was used to forecast
the labels of the unlabeled data and examine the effectiveness
of the selected feature subset. It uses a single learner or
ensemble learning model.

« Based on a single learner: A single learner [244] is
used to choose a subset of features in a semi-supervised
wrapper FS method based on a single learner. It is used
to train a classifier that anticipate unlabeled data labels.
Subsequently, a subset of the unlabeled data, including
the predicted labels, was chosen at random and merged
with the labeled data to create a new training set. The
learning model and supervised feature selection method
select features from the new training set. Following
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TABLE 7. Advantages and disadvantages of supervised, Unsupervised and Semi-supervised learning method.

Methods Advantages Disadvantages
Better performance with labeled | Prerequisite knowledge is required,
Supervised data and produce general classifica- | Data diversity and the risk of over-
tion fitting.
) Gives ‘better performance without Avoids dependency and avoids cor-
Unsupervised any prior knowledge and decrease . !
. relation between unlikely features
the gap between input-output
Semi-supervised Better performance with both la- | Only a subset of the training set’s
p beled and unlabeled data output is presented.

random selection, subsets of features were generated
and the processes were repeated. The frequency of each
feature was evaluated in the feature subsets, and the
feature with the highest frequency was merged with the
specified feature subset to establish a new feature subset.
This procedure was repeated until the size of the feature
subset exceeded a predefined threshold.

o Based on ensemble learning: Semi-supervised FS
approaches choose the anticipated unlabeled data using
a confidence metric. The confidence measure is an
important factor for determining the success of the
semi-supervised FS method in ensemble learning.
In such methods, different classifiers are used depend-
ing on the training or feature sets. To create different
training sets, resampling methods such as bagging are
used. By contrast, random subspace methods (RSM) are
used to build alternative feature sets. To produce distinct
datasets, a blend of resampling and random subspace
can be utilized. Several classifiers were trained, and then
their output results were combined with ensemble learn-
ing methods [245]. Self-training or co-training-based
semi-supervised FS methods are based on ensemble
learning [246], [247].

- - In the self-training procedure, the fundamental idea
is to use labeled data to train a classifier. The clas-
sifier is then used to anticipate the labels of data
that have not been tagged. Subsequently, a subset
of the most confident unlabeled data is chosen and
included in the training set, along with its expected
labels. This technique is continued when the classi-
fier is retrained on the new training set. Self-training
occurs when a classifier uses its predictions to teach
itself [248], [249].

-- Co-training is a semi-supervised learning strategy
that requires two different feature sets from two dif-
ferent classifiers on the labeled data. Each classifier
was provided with features to train with reprocess-
ing to categorize unlabeled data. Other classifiers
continuously employ the most confident forecasts
of each classifier on unlabeled data as labeled train-
ing data [233], [250], [251].
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3) SEMI-SUPERVISED EMBEDDED METHOD
Semi-supervised embedded approaches use labeled and unla-
beled data to conduct FS during the training process.
Semi-supervised embedded feature selection approaches are
separated into two categories: those based on sparse mod-
els and graph Laplacian and those based on support vector
machines.

« Based on sparse models and graph laplacian: A range
of sparse models and graph-based semi-supervised
learning have been utilized to explore labeled, and unla-
beled data simultaneously [252]. The most well-known
procedure that relies on the graph Laplacian is manifold
regularization, which extends several algorithms to
semi-supervised approaches [253].

o Based on Support Vector Machines Support vector
machine-based methods choose features by optimizing
the classification margin between classes while utilizing
the local data structure. Many strategies, such as mani-
fold regularization, recursive feature removal, merging
LI-norm with L2-norm, and replacing L2-norm with
L1-norm can be used for SVM-based models [254].

The advantages and disadvantages of supervised, unsuper-
vised and semi-supervised learning method are listed in
Table 7 in a concise manner.

Another learning method known as the ensemble learn-
ing method, utilizes combination of several learning models.
The ensemble learning method is described in the following
section.

D. ENSEMBLE LEARNING METHOD

Ensemble learning is a powerful machine learning technique.
The basic concept is to improve learning outcomes by com-
bining several learning models [255]. Ensemble learning
methods outperform single machine learning models across a
variety of machine learning techniques. The rapid growth of
ensemble feature selection in recent decades has been based
on the concept of ensemble learning. Unlike other feature
selection techniques, only one optimal feature subset was
selected. The goal of the combination feature selection is
to obtain a large number of optimal features. The learning
outcomes re set based on several optimal feature subsets
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and then combined. The most difficult aspect of ensemble
learning is deciding which algorithms to use to construct
the ensemble and which decision or fusion function is used
to combine the results of these algorithms. It is simple to
add more algorithms to improve the fusion results. How-
ever, the computational cost of adding a new algorithm must
be carefully considered. A set of base classifiers must be
constructed during the creation process. During the combin-
ing phase, the findings of the base classifiers are combined
into one. The ensemble concept is at the heart of many
well-known machine learning techniques. Bagging, boosting,
and stacking are the three most commonly used ensemble
models [256]. Some of the most common algorithms are
used in these methods. The random forest algorithm is the
most commonly used bagging algorithm. There are several
algorithms for boosting methods, including AdaBoost [257],
the gradient boosting machine (GBM) [258], XGBoost [46],
and Light GBM [259]. Govindarajan et al. [260] proposed
a hybrid RBF-SVM ensemble classification using support
vector machine (SVM) and radial basis function (RBF) as
primary classifiers. The effectiveness and benefits of the
proposed model were demonstrated using NSLKDD datasets.
The results indicated that the proposed ensemble RBF-SVM
outperformed single-method approaches in terms of effec-
tiveness, with a score of 98.46 percent. Other studies included
the ensemble learning method for feature selection [261],
[262], [263], [264], [265].

V. RESULT VALIDATION AND PERFORMANCE

MEASURES OF FS

Prior knowledge of the underlying dataset’s is frequently
used to explicitly validate the outcome of an FS process.
The relevant and irrelevant feature subsets for a synthetic
dataset were identified. The validation result was estimated
by determining the relevant and irrelevant features from the
feature subset. Such an availability of background knowledge
is rare in actual employment. Therefore, researchers must rely
on indirect measures, such as observing changes in mining
performance as features improve. For example, using the
classification error rate as a performance indicator for a learn-
ing problem can enable a ‘“‘before-and-after’”’ investigation.
To analyze the error rate of the classifier learned on the
entire set of features to the classifier acquired on the selected
subset [14], [266].

A. CLASSIFICATION/CLUSTERING ALGORITHM

FOR VALIDATION

The evaluation of supervised classifiers such as kNN [267],
SVM [268], and Naive Bayes (NB) [269], among many oth-
ers, utilizes classification accuracy or error rate. Spectral Fea-
ture Selection, Statistic-based, and Bio-inspired approaches
all use this approach.

1) K-NEAREST Neighbor(KNN)
KNN classifiers using a majority vote of the K-nearest
instances, and a new sample is classified. To obtain a regular
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unweighted KNN algorithm, the parameter kernel must be
changed to rectangular. Several studies have utilized KNN
classifiers for model validation [270], [271], [272].

n

D i —yi)? (13)

i=1

d(x,y) =

2) SUPPORT VECTOR MACHINE (SVM)

As a decision boundary, Support Vector Machines use the
hyperplane in the optimal feature space in terms of the max-
imum margin concept. Kernel functions change the shape
of the hyperplane from linear to non-linear [273]. Support
vector machines are frequently used with the RBF kernel.
The two hyperparameters are the regularization parameter C
and the kernel width parameter. SVM classifiers have been
used in recent studies [274], [275], [276]. Other classifiers
have been used in recent studies, such as the random forest
classifier, Naive Bayes classifier, and c4.5 classifiers. Recent
studies that are utilized these classifiers [277], [278], [279],
[280], [281], [282].

3) NAIVE BAYES CLASSIFIER

The naive Bayes classifier is a simple and efficient classifi-
cation method that facilitates the development of a fast ML
algorithm’s ability to make rapid predictions. It is a proba-
bilistic classifier that generates forecasts based on an entity’s
probability. The existence of one feature in a class is assumed
to be independent of the presence of any other feature using
anaive Bayes classifier. The probabilities for each element in
the naive Bayes algorithm are determined separately from the
training dataset. A search technique is used to assess the effi-
cacy of combining the probabilities of several attributes and
forecasting the output variable. There is no built-in method
for determining the relevance of features in Naive Bayes
classifiers. Naive Bayes algorithms determine the conditional
and unconditional probabilities associated with the features,
that forecast the class with the highest probability. This can be
used to solve multi-class prediction problems. If the assump-
tion of feature independence is maintained, it can outperform
the other models while using significantly less training data.
For categorical input variables, Naive Bayes was better than
number.

4) RANDOM FOREST CLASSIFIER

A random forest comprises a massive set of discrete decision
trees that work together as an ensemble. The numerous trees
in the random forest individually spit out class prediction.
The class with the highest choice was the prediction of the
model. It employs bagging and feature randomization to cre-
ate an interconnected forest of trees, the aggregate prediction
of which is more accurate than that for a single tree. The
underlying premise of random forest is that many highly
interconnected models (trees) acting as a committee will
outperform any of the measurements of individual models.
Clustering algorithms such as k-means [283], EM [284], and
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COBWEB are used to evaluate the findings [285]. Measures
like Normalized Mutual Information (NMI) and Clustering
Accuracy (ACC) are often used to assess clustering quality.

5) K-MEANS CLUSTERING

K-means clustering is a type of unsupervised learning (data
without defined categories or groups). The purpose of the
algorithm is to locate groups in the data, where K represent
the quantity. The goal is to reduce the within-cluster sum of
squares (WCSS) while increasing the between-cluster sum
of squares (BCSS) [286]. The most recent work of k-means
clustering for feature selection [287], [288], [289].

6) EXPECTATION MAXIMIZATION CLUSTERING

The K-means technique is comparable to the EM (expectation
maximization) technique. Rather than allocating samples to
clusters to optimize the disparities in means for continuous
variables, the EM clustering technique computes the proba-
bilities of cluster membership based on one or more prob-
ability distributions [290]. If information is unavailable, the
EM technique is used to generate the maximum likelihood
parameter estimates. Furthermore, the EM technique can also
be used when there are latent data, which is data that was
never intended to be discovered in the first place and is hence
unseen. Recent studies on the task of feature selection have
been conducted [291], [292], [293]. Additional clustering
algorithms were employed for the validation of FS. The most
recent studies are [294], [295], [296], and [297].

B. VALIDATION MEASURES

Several evaluation measures are often used to evaluate the
performance characteristics of feature selection methods.
Specificity and sensitivity are frequently used in medical
classification, precision and recall in data classification in
computer science, as well as the area under the curve in radar
signals. Various metrics are used to assess the overall perfor-
mance of the algorithms. The most frequently used evaluation
measures were examined and provided in-depth [298].

e True Positive (TP) and True Negative (TN): True
positive (TP) is an outcome in which the model forecasts
the positive class correctly. The actual results come from
the positive classes, and are expected to be positive.
A true negative (TN) is an occurrence in which the model
correctly predicts a negative class. The actual findings
come from the negative class, which is predicted by the
model be negative.

o False Positive (FP) and False Negative (FN): False
positive is a binary classification error in which a test
result incorrectly shows evidence of a circumstance such
as a disease when it is not present. In contrast, a false
negative is the reversed error in which a test result incor-
rectly demonstrates the absence of a condition when it is
present [299], [300].

o True positive rate (TPR)/Recall/Sensitivity: TPR is
the percentage of all positive samples that are correctly
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classified [301], [302], [303]. This was calculated using
the following equation:
TP
~ TP+FN
Here, TP represents the number of correctly categorized
positive instances. In contrast, FN in the TP formula
represents the number of positive cases incorrectly clas-
sified as negative cases. The percentage of successful
cases was equal to the sum of TP and FN.
True Negative Rate (TNR)/ Specificity: TPR is the
proportion of actual negative choices to complete the
negative observations. TNR calculated as:
TN
- TN +FP
In the TN formula, TN stands for the number of correctly
identified negative instances. By contrast, FP represents
for the number of incorrectly categorized negative cases.
The number of negative instances is equal to the sum of
the TN and FP.
Accuracy: Accuracy is a widely applied metric for
assessing classifier performance in text applications.
This denotes the proportion of documents in a document
set that have been correctly classified. This indicates the
categorization model’s quality; the higher the number,
the better and specifies the percentage of samples that
are correctly classifieds. The formula for accuracy is as
follows:

TPR (14)

TNR 15)

IN + TP
Accuracy = (16)
TP + FP+ TN + FN

Precision: The proportion of relevant results is referred
to as precision. Actual positive observations divided by
the total significantly positive observations are indeed
the ratio [301], [304]. The precision is expressed as:

. P
Precision = ——— (17
TP + FP

F-score: This is a singular score derived from a com-
bination of recall and precision measurements [302],
[304]. The F-score is a harmonic mean of the recall and
precision metrics that is expressed as:

Precision * Recall
F Score =2 — (18)
Precision + Recall

Clustering Accuracy: The clustering accuracy can be
calculated by comparing the label derived via clustering
with the true label [198].

S 8 (map (1), i)
n

Acc =

19)

where, li and yi are xi's cluster and true class labels,
respectively, and n is the total number of data points.
(x,y) is the delta function that matches 1 if x = y
and equals 0 otherwise, and map(li) is the permutation
mapping function that outlines each cluster label ri to a
similar label from the data set.
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o Error rate estimation: The ratio of the number of inac-
curately predicted output to the total number of data can
be termed as the error rate [195], [200]. If the target value
is classified, the error is expressed as the error rate. If the
summation of two inaccurate predictions (FN + FP) is
divided by the summation of a dataset (P+ N), the result
is actually the error rate of that dataset. The following
formula for the error rate is as follows:

FN + FP
Error rate = v+ e (20)
P+N

o Mean misclassification error (MMCE): MMCE is cal-
culated using (1-Accuracy). The misclassification rate
ranges from zero to one [177]. The formula for MMCE
is as follows:

MMCE = PN+ FP (21)
TP + FP+TN + FN

o Mean absolute error (MAE): MAE estimates the dif-
ference between the predictions and differ the true prob-
ability. It is estimated as:

Y YN G — PG
M x N

o Area under the curve (AUC): The AUC is a traditional
measure used to estimate classification performance,
determined as the area under the ROC curve [183],
[194]. The AUC is a benefit standard. It calculates all
possible points underneath a curved line [208]. It divides
the curved line into several parts and calculates the AUC
by adding the areas of these parts [199].

o Leave One-Out Cross Validation (LOOCYV): The
LOOCYV is a procedure to evaluate the effectiveness of
those algorithms which are predicting depending on data
which are not used to train any model [211]. It works
similarly to cross validation.

o Normalized Mutual Information (NMI): NMI is a
measure that can be used to assess the quality of clus-
ters [176], [178]. The NMI can now be obtained from
the following equation given the clustering result.

c c B i
Dzt Zj:l njjlog i

\/ (X5 milog %) (X iylog %)

o Stability: Stability measures the robustness of a
feature-selection approach [305], [306]. When the train-
ing set evolves, robustness implies that the selected char-
acteristics remain stable. This was calculated by using
the following equation:

MAE =

(22)

NMI = (23)

2 m—1 m
Stability (§) = ———— Iy (S, S;) (24
ability (S) m(m_l);j:;lf(l i) (24)

« Runtime, training time, and test time: Runtime is
the amount of time it takes to select features. The time
required to generate feature weights, rank features using
feature weight, and select the top-N features is included
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in the runtime. Training time refers to the amount of
time required to train the classifier. The amount of time
required to test a trained classifier may vary owing to
differences in the operating, training, and test times of
classifiers using different FS methods. We chose these
three times to demonstrate efficiency from various per-
spectives, and these times were cost-dependent.

VI. FEATURE SELECTION ANALYSIS FOR BIG DATA

Big data are defined as “‘a dataset whose size exceeds the
capability of typical dataset management systems in gath-
ering, storing, processing, and analyzing.” It usually has
three characteristics: Huge volume, wide variety, and rapid
change [1-3]. The challenge posed by these 3V character-
istics, namely volume, type, and velocity, have become the
focus of learning methods when dealing with extensive data.
Furthermore, duplication and relatedness, which are essential
in massive datasets to avoid losing valuable content, fre-
quently make the mining procedure more critical. Feature
selection (FS) has improved data mining owing to its superior
performance in locating correlated features and removing
redundant or uncorrelated features from the original dataset
[13], [14]. Considering the 3V characteristics, classic feature
selection approaches confront three distinct issues in the
context of big data:

« Traditional feature selection methods typically require a
significant amount of learning time, making it difficult
for the processing speed to keep up with the changing of
large data;

o« In a broad sense, big data contains not only a
massive amount of irrelevant and/or redundant fea-
tures but also possible noises of varying degrees and
types, significantly affecting the performance of feature
selection;

o Some data are untrustworthy/forged as a result of var-
ied acquisition methods or even losses, considering the
complexity of feature selection.

1) SCALABLE GLOBAL MUTUAL INFORMATION-BASED
FEATURE SELECTION (SGMI)

SGMI is a distributed and scalable global MI-based fea-
ture selection framework that develops a similarity matrix
in a single pass and a scalable manner. Subsequently,
based on the similarity matrix, it employs a feature rank-
ing algorithm to discover a globally optimal solution. The
similarity matrix indicates the dependency among fea-
tures simultaneously, and it can be computed using the
MI or CMI, with the former having less complexity than
the latter. The SGMI framework employs three optimiza-
tion approaches. The first employs a MI similarity matrix,
whereas the others use a CMI similarity matrix. In this study,
three techniques are developed: SGMIQP, SGMI-SR, and
SGMI-TP. Consequently, these methods establish a feature
ranking to place informative characteristics at the top of the
ranking.
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2) DISTRIBUTED CORRELATION-BASED FEATURE
SELECTION (DiCFS)

Palma-Mendoza et al. Introduced DiCFS-VP and DiCF-
Shp, two parallel and distributed variants of the CFS
filter-based FS algorithm utilizing the Apache Spark pro-
gramming model. The first method distributes the data
by splitting 545 rows, whereas the second distributes
the information by splitting columns, as suggested by
Ramrez-Gallego et al. [32]. Both DiCFS-vp and DiCFS-hp
can handle larger datasets in significantly less time than the
traditional WEKA implementation. Furthermore, expensive
WEKA memory needs were sometimes the only viable solu-
tion for processing specific datasets. Overall, the horizon-
tal partitioning schemes version (DiCFS-hp) proved to be
the preferable option because of its better scalability and
natural partitioning mode, allowing the Spark framework to
use cluster resources better. For classification problems, the
benefits of distribution over the non-distribution version are
comparable to, if not superior, those already proven for the
regression domain [10].

3) DISTRIBUTED QUADRATIC PROGRAMMING-BASED
FEATURE SELECTION (DQPFS)

DQPFS, a feature ranking algorithm based on the Apache
Spark computing paradigm, is described as a distributed and
scalable redesign of the traditional QPFS technique that can
cope with Big Data with a considerable number of instances
and attributes simultaneously. The computational bottlenecks
in QPFS are the redundancy matrix and relevancy vector. The
suggested method is not affected by this issue, and it may
generate a matrix and vector using independent tasks and
indifferent worker nodes. It has a little better scale-out and
a slight worse speed-up than DiRelief; however, its execution
time is substantially shorter. DQPFS is scalable, and it can
analyze large datasets in a short period. In addition to speed-
up, scale-out, and execution time, the accuracy of the final
outputs of DQPFS and DiRelief were compared using the
Naive Bayes classifier. The findings did not reveal that the
accuracy of the classifier was generally superior to that of
DiRelief. However, they showed that DQPFS could be a
suitable choice for feature selection in an extensive dataset.

VIl. APPLICATION OF FS

Feature selection is trendy in various fields such as intru-
sion detection, bioinformatics, medicine, and industry. The
application of the FS domain are categorized into several
subsections: general, medical, representative, intrusion, and
industrial applications. The following section of the study is
explained the available applications of the FS domain.

A. GENERAL APPLICATIONS

The feature selection approach has many application
domains. Some areas are interrelated with others and some
areas have sub-areas. General applications are those where
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fields are not identified as a whole but are very often used.
These domains are categorized in the following subsections.

1) TEXT MINING

The bag-of-words model is a typical method for encoding a
document in text mining [307]. The purpose is to model each
text based on the number of words that appearing there in
it. Typically, feature vectors are built to indicate the count
of a single word; however, another option is to confirm the
presence or absence of a word without providing a count.
A lexicon is a collection of words whose occurrences have
been tracked. When a dataset requires expression, words from
the documents can be combined to form a vocabulary, which
is then reduced by feature selection. During feature selection,
it is possible to perform some preprocessing, such as remov-
ing rare words with very few instances, removing exces-
sively familiar terms (e.g. ““a,” “‘the,” ‘“‘and,” and similar),
and combining the various inflected forms of an expression
(lemmatization, stemming) [308].

1) Text classification: Text classification is the process
of categorizing text into a set of specified categories or
labels. This issue is crucial for spam detection devices
connected to the internet, retail and bidding websites.
Each word in the document is referred to as a feature.
However, this requires far more input features than
instances. A portion of the vocabulary must be cho-
sen to, allow the learning process to use less comput-
ing, storage, and/or bandwidth. A preprocessing stage
is commonly used in feature selection to eliminate
unusual terms and integrate them into the same term.
There are diverse ways to express feature values, such
as using a Boolean value to indicate whether a word
counts the number of times it resembles it. The range
of possible text documents may still be extensive after
this preprocessing stage; therefore, feature selection
is critical. In recent decades, several processes have
been proposed and applied for this purpose [308],
[309], [310].

2) IMAGE PROCESSING

The number of possible image attributes is almost endless;
therefore, expressing images is difficult [16]. The chosen
features are typically determined by the program working
on them. Histograms of oriented gradients, edge orientation
histograms, Haar wavelets, raw pixels, gradient values, edges,
color channels, etc. are samples of features [311].

1) Image Classification: Image classification has
become a prominent subject due to effective ways to
categorize images into categories. Image features are
frequently numerically examined to determine what
type of components they are. However, image pro-
cessing typically requires a significant computational
and processing power. Feature selection can reduce
the number of characteristics required to accurately
identify an image. Although a data explosion has
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demonstrated the ability of feature selection algorithms
to handle millions of images, the need to know which
features to extract from each pixel has existed for
decades. Some methods extract textural information
from a given image, including Markov random fields
and co-occurrence features, which is a prominent
issue in this field. For image categorization, several
researchers have used the FS method [312], [313],
[314]. Automatic image annotation can also benefit
from feature selection. Two weighted feature selec-
tion techniques [315], [316] have been presented to
assist clustering algorithms in dealing with several
data dimensions and scaling to highly targeted key-
words. Researchers have also attempted to develop
automatic feature extraction using image classifiers in
high dimensional feature spaces [317], [318].

2) Image Retrieval: Feature selection is applied to
content-based image retrieval to facilitate quick brows-
ing, searching, and recovery [319]. Content-based
image retrieval indexes images based on visual contents
by utilizing text-based keyword indexing. The large
number of images stored in the database poses the
most significant challenge for content-based picture
retrieval.

3) Face recognition: A complex image recognition task
involves recognizing a human face. With its multiple
legal and commercial possibilities, face recognition has
become one of the most emerging research topics in
recent decades. Analyzing selected facial features from
an image with features in a facial dataset can deter-
mine or authenticate the source. Determining which
visual elements are most useful for identification or
verification is a critical issue in this field. However,
this is a difficult process because object photos have
many duplications; additionally, facial datasets have
many attributes but few samples. Recently, face recog-
nition FS algorithms have been proposed as solutions
to these problems. The FS filter approach is popular
because it is computationally more expensive than the
wrapper or embedding methods. Some studies [320],
[321], [322] employed the FS method for face recog-
nition. Lee ef al. [323] published a new colored face
recognition approach that uses a sequential floating
forward search (SFFS) to find the best color features
for recognition. Also, it’s important to note that various
proposed solutions based on evolutionary computa-
tion techniques are effective [324], [325], [326], [327],
[328], [329].

3) SOFTWARE DEFECT PREDICTION

There are various software quality assurance attributes such
as reliability, functionality, fault proneness, reusability, and
comprehensibility [330]. Selecting the most appropriate soft-
ware metrics that are likely to indicate fault proneness is
critical.

99618

4) MASS SPECTRA ANALYSIS

Mass Spectrometry (MS) has established itself as a new
and appealing framework for diagnosing diseases and
protein-based biomarker analysis [331]. A mass spectrum has
thousands of possible mass/charge (m/z) ratios on the x-axis,
each with its signal intensity value on the y-axis. A typical
MALDI-TOF low-resolution proteomic profile can contain
up to 15,500 data points in the 500-20000 m/z range. With
higher resolution equipment, the number of points can be
increased even further. For data mining and bioinformatics
purposes, each m/z ratio can be regarded as a separate variable
whose value is the intensity.

5) STOCK MARKET ANALYSIS

A variety of stock index futures are available. Financial data,
especially stock market data, are too extensive to be searched
for [332]. The presence of significant volumes of continuous
data, in particular, may make explicit idea extraction from
raw data difficult because of the vast quantity of data space
governed by continuous features [333]. Consequently, when
searching, it is necessary to reduce the dimensionality of the
data and eliminate irrelevant components.

6) SENTIMENT ANALYSIS

Natural language processing is used in sentiment analysis to
capture variability. It is not merely a categorization based
on topics or the computational treatment of individuality,
sentiment, and judgment in the text. It can be used in recom-
mendation systems to provide answers to questions [334].The
positivity or negativity of an opinion is determined based
on many characteristics such as term presence, feature fre-
quency, feature presence, term location, POS tags, syntax,
topic, and negation. Not all features are required in every case.
Therefore, feature selection is necessary.

7) GENRE CLASSIFICATION

Filenames, authors, sizes, dates, track lengths, and genres
are frequently used to categorize and recall materials. Cat-
egorization is impossible based on these data; hence the fea-
ture selection process is intended. Feature selection in genre
classification, refers to the process of converting an audio
segment into compact numeric values [335]. Owing to the
increased dimensionality of the feature sets, feature selection
was used as a preprocessing step before classification to
reduce data dimensionality.

8) SEQUENCE ANALYSIS

Bioinformatics has a long history of sequence analysis. Two
types of concerns can be recognized in the domain of fea-
ture selection: content and signal analysis. The concerns are
explained in the following.

1) Content analysis: Content analysis explores a
sequence’s general properties, such as its affinity for
coding potential prediction and the capacity to per-
form a particular biological function. Forecasting of
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subsets that code for proteins has been a long-standing
problem in bioinformatics. Many different types of
Markov models have been developed, including the
Interpolated Markov model (IMM) [336], extended
IMM framework [337], and Markov blanket multivari-
ate filter method (MBF) [151].

2) Signal analysis: The discovery of significant motifs
in a sequence, such as gene structural components or
regulatory regions, is the objective of signal analysis.
Many sequence analysis methods rely on the detection
of small, almost conserved signals in the sequence,
primarily binding sites for different proteins or protein
complexes. A popular method for identifying regula-
tory motifs is to use regression methodology to link
patterns to gene expression levels. The motifs that max-
imize the fit of the regression model can subsequently
be found utilizing feature selection [282], [338]. Ben-
Dor [339] inspired another classification approach and
used a threshold number of misclassifications (TNoM)
to score the genes relevant to tissue classification.

B. REPRESENTATIVE APPLICATIONS

Feature selection is a critical knowledge discovery strategy
for data analysis. It has been used in a various fields. Fol-
lowing a discussion of some significant advances in feature
selection, we look at some representative applications of
feature selection, such as bioinformatics, social media, and
multimedia.

1) BIOINFORMATICS

Sequence analysis, microarray analysis, mass spectra anal-
ysis, single-nucleotide polymorphism analysis, and text and
medical literature mining have all used feature selection.
The high-dimensionality of data in bioinformatics [340],
for example, has resulted in a plethora of feature selec-
tion strategies that have been presented in the discipline.
In bioinformatics, feature selection is commonly used to
solve the problem of high dimensional small sample size
(HDSSS) data. An ensemble feature selection technique wass
used to identify biomarkers for cancer diagnosis. This study
examines ensemble feature selection strategies employing
linear SVMs and Recursive Feature Elimination (RFE) fea-
ture selection mechanism. In the first phase, distinct bootstrap
sub-samples of the training data are drawn. Then the RFE is
implemented in all of these bootstrap sub-samples, yielding
a diverse collection of feature evaluations.

2) SOCIAL MEDIA

In recent decades, social media sites such as Facebook and
Twitter have grown in popularity. These media also provide
a convenient means for people to communicate. The enor-
mous dimensionality of actual social media data creates new
challenges for data mining tasks. Feature selection is a way
method used to reduce the dimensionality of social media
data. Domain knowledge must be incorporated to qualify for
feature selection on social media. One of the domain pieces
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of knowledge considered in the social media world is the
link information between users or posts such as tweets, blogs,
or photos [341], [342]. However, using this knowledge, two
fundamental difficulties in feature selection must be inves-
tigated: (1) relation extraction from linked data, including
labeled and unlabeled data, and (2) mathematical represen-
tation for such relations [343].

3) MULTIMODAL RETRIEVAL

The quantity of multimedia data available on real-world mul-
timedia streaming websites, such as Flickr and YouTube is
rapidly increasing. We all are aware that multimedia, such
as photographs and movies, can provide us with a variety of
advantages. By contrast, the resulting characteristics are fre-
quently over-complete when describing specific semantics.
It is critical to improve the interpretability of multimedia data
by selecting from a limited set of features [344].

C. MEDICAL APPLICATIONS

People may generate and store data at an unprecedented rate
in the modern age. This surge in the amount of data accessible
for further analysis is evident in medicine and other fields.
Artificial intelligence technologies have been used to solve a
variety of medical problems and, automate time-consuming
and frequently subjective manual operations performed by
practitioners in various specialties.

1) MEDICAL IMAGING

Medical imaging has revolutionized health care, with bene-
fits such as better patient care and earlier diagnosis. Image
analysis approaches have been shown to be effective in a var-
ious of real-world circumstances. However, because medical
datasets typically have many features but only a few samples
of a specific condition, feature selection preprocessing is
almost always required. Medical images were retrieved using
technologies such as X-rays, computed tomography (CT)
scans, magnetic resonance imaging (MRI), retinographies,
and ultrasound images [345] are analyzed further with image
classification or segmentation methods. Many approaches
to screening [346], diagnosis [347], and treatment prepara-
tion [348] have been presented. These techniques are fre-
quently used in the extraction of features, or for the estimation
of image attributes such as, color, texture, or shape. How-
ever, some aspects may be redundant for a specific medical
conditions when general-purpose approaches are employed.
This method, combined with the high dimensionality of the
material, requires the use of feature selection algorithms.

2) BIOMEDICAL SIGNAL PROCESSING

Clinical medicine analyzes and measures biological signals
for their prevention, diagnosis, and monitoring. However,
feature selection methods have many applications in this
field because of the large volume of data and the rele-
vance of interpretation. Biomedical signal processing auto-
mates the monitoring and analysis of biological signals.
Biomedical signals have been automatically generated for
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diagnosis [349], tracking [350], and rehabilitation [351] pur-
poses. Throughout this sector, researchers have concentrated
on developing new signal processing techniques that pro-
vide practitioners with real-time data for medical decisions.
Depending on the application, these methods entail encoding
biological signals using Fourier and wavelet basis functions
and auto-regressive parameters. This representation can be
considered as a feature vector that can further determine the
most relevant attributes and lower the dimensionality of the
final dataset.

3) DNA MICROARRAY DATA

In recent decades, biomedicine has been a frequent topic
in machine learning because of the large amount of data
analyzed from genetic tissues. The proliferation of DNA
microarray datasets has aided the emergence of a vibrant field
of bioinformatics and machine learning research. Microarray
data, with a small number of samples but many features,
are typically treated as structured data for machine learning
applications. Researchers have been working with microarray
datasets using feature selection methods to minimize dimen-
sionality from the beginning. Filters are the most frequently
used FS methods because of their independence in the learn-
ing method. They are less computationally expensive than
the other methods. This is particularly critical when dealing
with microarray data. The minimum number of samples can
lead to data overfitting, making wrappers unnecessary. The
current methods include the minimum redundancy maximum
relevance (mRMR) algorithm [352], and temporal minimum
redundancy maximum relevance (TMRMR) [353].

D. INDUSTRIAL APPLICATIONS

In industrial applications, where multiple redundant sensors
monitor the operation of a tool, feature selection is critical for
defect identification. Liu et al. [354] demonstrated a method
to improve the accuracy of identifying a failure (i.e., solving
a binary classification problem of the machine state as faulty
vs. regular). They envisioned using a global geometric model
and a similarity metric to select features in fault diagnostics.
The goal is to identify feature subsets that are geometrically
related to the original feature set. These three alternative simi-
larity measures were tested and compared, angular similarity,
mutual information, and structural similarity index against FS
methods based on distance and entropy and SVM and neural
network wrappers.

E. INTRUSION DETECTION

Signature-based, anomaly-based, specification-based, and
hybrid intrusion detection methods are divided into four
categories depending on the detection mechanism utilized
in the system. Signature-based intrusion detection systems
are effective and productive for detecting existing threats,
and their operation are simple. Signature-Based IDS include
the Artificial Immune System (AIS) [355], the Collabora-
tive Block Chained Signature-Based IDS (CBSigIDS) [356],
and the IPFIX-based IDS (FIXIDS) [357]. Anomaly-based
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detection aims to anticipate the system’s “ordinary” pattern
and generate an anomaly alert whenever the discrepancy
between an immediate occurrence and the regular pattern
reaches a predefined threshold. Hybridized Feature Selection
Approach (HFSA) [358], Hybrid Anomaly Detection Model
(HADM) [359], and Unsupervised Heterogeneous Anomaly
Based IDS [360] are several anomaly-based IDSs. A profes-
sional manually build the required pattern, which consists of a
sequence of guidelines that compare different valid behaviors
of a device, for the specification-based detection approach.
If the specifications are sufficiently precise, the pattern may
be able to detect illegal patterns of activity. The Finite
State Machine (FSM) methodology appears to be appropri-
ate for modeling network protocols [361]. Hybrid detection
exploited the strengths of each intrusion detection method
while minimizing its flaws and constructing a solid schema to
detect the intrusion. A key feature of hybrid detection is the
use of a key signature-based detection system in conjunction
with an additional anomaly-based model. Signature-Based
Anomaly Detection Scheme (SADS) [362], Artificial Bee
Colony and Artificial Fish Swarm (ABC-AFS) [363].

VIil. CHALLENGES OF FS

As stated at the commencement of this article, continuous
advancements in computer-based technology have revolu-
tionized researchers and engineers to gather information at an
ever-increasing rate. To deal with the complexities of study-
ing big data, feature selection is a necessary preprocessing
step that must be altered and improved to accommodate high-
dimensional data. We discussed the significance of feature
selection and recent developments in a variety of application
domains. However, dozens of new issues have emerged in the
emerging big data environment, indicating current research
areas in feature selection.

A. SCALABILITY

Most of the existing learning algorithms are created when
dataset sizes were significantly smaller. However, today’s
small and large-scale learning challenges require distinct
solutions. The typical approximation-estimation trade-off
applies to small-scale learning. Furthermore, in the case of
large-scale learning issues, this trade-off is more complicated
not only for accuracy but also for the computing complexity
of the learning algorithm. The most serious issue is that,
as a result of the big data trend [364], data is becoming
increasingly large. This issue can arise in any method, includ-
ing both supervised and unsupervised feature selection. Cur-
rently, the number of characteristics in many fields, such as
gene analysis, can easily exceed thousands, if not millions.
This raises the cost of calculation and necessitates advanced
search algorithms, but these features have their issues. Thus
the problem cannot be handled solely by increasing com-
puting capacity. Therefore, it is necessary to develop new
approaches and algorithms for this purpose. Scaling up is not
only about the dataset. There are additional circumstances in

VOLUME 10, 2022



M. R. Islam et al.: Comprehensive Survey on the Process, Methods, Evaluation, and Challenges of FS

IEEE Access

which a researcher can determine the magnitude of a machine
learning endeavor intimidating [365], such as

o Model and algorithm complexity: Many high-accuracy
learning algorithms use either sophisticated, non-linear
models or computationally intensive subroutines.

o Time restrictions for inference: Sensing-based appli-
cations, such as robot navigation or speech recognition,
require real-time forecasts.

o Prediction cascades: The joint output space for appli-
cations that demand consecutive, interdependent predic-
tions is exceptionally complex.

o Parameter sweeps and model selection: Various
instructional executions are required to adjust the learn-
ing algorithm hyperparameters and evaluate their statis-
tical significance.

Scaling up learning algorithms is an essential topic for
all these objectives. The influence of increasing the train-
ing sample size on the computing results of an algorithm
in terms of accuracy, training time, and assigned mem-
ory is known as scalability. As a result, the goal is to
establish a compromise between these objectives, in other
words, to obtain ‘“good enough” answers as ‘“‘quickly”
and “‘effectively” as necessary [366]. Large-scale feature
selection issues [205], [367], [368], [369], [370], [371],
[372], where the dimensionality approaches have been sug-
gested by researchers. One of the most common meth-
ods for dealing with the scalability issue is to distribute
the data across multiple processors. Tan ef al. [373] pre-
sented a new adaptable feature-scaling method that has
been applied to a large number of synthetic and natural
datasets and allows scalability to massive data scenarios.
It is based on feature selection in groups and multiple kernel
learning.

B. STABILITY

This is the sensitivity of the selection to data distur-
bance [374]. In the realm of bioinformatics, experts want to
obtain the same or comparable set of genes selected each
time they acquire new samples with a small amount of dis-
turbance. Domain experts, however, would be hesitant to
recognize these algorithms if they were given drastically dif-
ferent feature sets with minor data disruption. The underlying
properties of the data have also been discovered to have an
impact on the stability of FS algorithms, suggesting that the
stability problem may be data-dependent. These criteria also
include the dimensionality of features and, the number of data
instances. However, according to Li et al. [375], studying the
stability of unsupervised FS is far more difficult than studying
stability for supervised methods. Unsupervised methods do
not have adequate advanced knowledge regarding the cluster
structure of data [376]. A few recent attempts have been made
to analyze the stability of feature selection approaches in
unsupervised scenarios. Much work remains to be done in
this area [374].
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C. COMPUTATIONAL COST VS PERFORMANCE

Most feature selection approaches are computationally ineffi-
cient, which is a critical issue in feature selection because they
frequently involve many assessments. Although research has
shown that filter approaches are typically more efficient than
wrapper approaches, this has not always been the case [377].
Therefore, proposing efficient and effective solutions to fea-
ture selection challenges remains a challenge. To reduce
computing costs, two primary factors must be considered:
an effective search technique and quick assessment mea-
sure [78]. As the assessment procedure consumes most of the
computing cost in the existing approaches, a quick evaluation
criterion may have a higher impact than the search technique.
It should be emphasized that the parallelizable nature of Evo-
lutionary Computation makes it suitable for grid computing,
graphics processing units, and cloud computing. This nature
makes it ideal for grid computing, graphics processing units
(GPU), and cloud computing, all of which can be employed
to speed things up.

D. DISTRIBUTED FEATURE SELECTION

A feature selection method was employed to address an
issue in the past, and a single learning model was used.
However, for large-scale data, a single learning model is not
recommended because the dataset can be split across multiple
processors, each running the same feature selection technique
and combining the results. A never-ending stream of large
amounts of data can in real-time. If the data are all streamed
into a single processor, different parts of the data can be
handled by other processors working in parallel. If data are
streamed into many processors, it also can be handled in the
same way. Although the dataset is not very large, several fea-
ture selection approaches must be used to learn unseen cases
and aggregate the results. The entire dataset can be stored in a
single processor, with equivalent or distinct feature selection
methods that allow access to all or portions of it. This strategy
known as ensemble learning, has recently received consider-
able attention [378]. This technique derives is motivated by
the fact that, because significant variance is a problem with
feature selection methods, one potential solution is to use
an ensemble approach by combining methods [379], [380].
Several existing feature selection approaches are unlikely to
scale well. However, when dealing with millions of features,
they can be redundant. Distributing the data, making feature
selections on each split, and combining the results could be
one method. In the past decade, several frameworks for dis-
tributed learning have been developed. In the last decade, new
models for executing distributed learning have been devel-
oped, including MapReduce [381], Hadoop [382], Apache
Spark [383], and MLib [384]. Another unexplored area of
research is the use of graphics processing units (GPUs) to
distribute and, accelerate calculations in FS algorithms. The
ultimate goal is to use GPU resources to modify the existing
state-of-the-art FS methods so that they can handle millions
of features quickly and accurately.
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E. REAL-TIME PROCESSING

Batch learning algorithms cannot deal with continuously
flowing data streams and, require the use of online methods.
In recent years, incorporating new data on-demand, online
learning [385] has been the practice of rewriting and updat-
ing models. It has also become an exciting topic because it
acknowledges the critical challenges of activities. The map-
ping process was monitored in real-time when new samples
were received. Because learning data in a sequential manner
may be an option for large datasets, online learning may be
effective. The same emphasis has not been placed on the
selection of online features as it is on online learning. Despite
this, a few articles have described strategies for selecting rele-
vant features in a setting that includes both fresh samples and
new features. Zhang ef al. [386] presented an incremental
feature subset selection algorithm based on a Boolean matrix
that efficiently identifies valuable features for a given data
purpose. However, a complete machine learning technique
was not used to verify the effectiveness of the FS method.
Most online feature selections have been made individually,
either by pre-selecting features in a phase separate from the
online machine learning phase or by performing an online FS
without subsequent online categorization. Consequently, per-
forming real-time analysis and prediction on portable devices
for high-dimensional data remains a challenge for artificial
intelligence. The challenge is to create dynamic feature selec-
tion methods that can change the subset of characteristics
chosen when new training instances appear. These techniques
should also be implemented in a dynamic feature set that
begins empty but fills up as new data are received.

F. EVALUATION MEASURES

One of the main variables in the evolution computation for
the FS is the evaluation measure, which generates the fit-
ness function. It has a significant impact on the computing
time, classification performance, and search space landscape.
For wrapper approaches and many filter approaches, the
evaluation procedure consumes the majority of computing
time [377], [387], [388]. Although other efficient evaluation
measures exist, such as mutual information [389], [390],
[391], [392], they only analyze individual features instead
of a group of features. Finding complicated feature interac-
tion, on the other hand, is extremely difficult, and only a
few studies have been conducted in this area [393]. Rough
set-based measures [394], [395] can analyze groups of fea-
tures [394], [395], [396], [397]; however, they are frequently
expensive. Furthermore, numerous studies have shown that
filter approaches do not scale well beyond thousands, if not
millions of characteristics [364]. As a result, new measures
for feature selection are still needed, especially when working
with enormous challenges. Multiple distinct solutions to FS
challenges may have the same fitness values. A slight (signif-
icant) modification in the solution can result in a significant
(slight) divergence in the fitness value. This refers to the
difficulty level of the challenge. As a result, establishing new

99622

measures to smooth the fitness landscape will significantly
lower the difficulty of the task and aid in the development of
appropriate search algorithms.

G. SPECIFICATION OF HYPER-PARAMETERS

The majority of unsupervised FS methods (filter, wrapper,
and hybrids) demand the definition of hyper-parameters such
as the set of features, cluster size, and other parameters rel-
evant to the FS methodology utilized by each method. Such
knowledge does not exist in reality. It is nearly impossible to
determine the ideal parameter values for each dataset. As a
result, selecting ideal parameter values automatically is still
a work in progress.

H. VISUALIZATION AND INTERPRETABILITY

Several dimensionality reduction strategies for data visual-
ization and preprocessing have been introduced in the last
few years. Although the goal may be improved visualization,
most solutions have the drawback: that the characteristics
being represented are changes in the original features [398],
[399], [400]. When model interpretability is crucial, FS is the
dimensionality reduction strategy. They performed because
the model was only as good as its features. They will con-
tinue to play an important role in the model interpretation.
Users can choose between the two criteria for the FS and
model creation processes. More interactive model visual-
izations can change the input parameters in response to
model challenges and visualize future events. The other is
a more interactive feature selection process where they are
encouraged to iterate utilizing interactive visualizations. The
goal was to make the results more interpretable by allow-
ing user-friendly visualization. The complexities of big data
applications highlight the importance of minimizing visual
complexity. Although most studies have focused on FS and
visualization separately, the display of data features may
play an important role in real-world high dimensionality con-
texts. While visualization tools are constantly used to analyze
and make complex data understandable, the quality of the
corresponding decision-making is frequently compromised.
Because the tools refused to acknowledge the role of heuris-
tics, biases, and other factors in human-computer interac-
tion situations, interactive tools such as those suggested by
Krause et al. [401] are intriguing research topics.

IX. CONCLUSION

Feature selection is a dimensionality reduction strategy that
separates important feature subsets from irrelevant and redun-
dant ones. The importance of FS for data processing has
grown significantly with the increease in the number of avail-
able FS methods. In addition to well-known FS approaches,
this study presents a strategic categorization. Different search
strategies, and standard learning methods for improving
learning performance are discussed. A good representation
of a wide range of algorithms based on the evaluation criteria
is also presented. These FS approaches, on the other hand,
have gained usability but still have potential. This potentiality
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is presented systematically, and some challenges in retriev-
ing this potential are also illustrated. In this study, several
result validation and performance measurement methodolo-
gies were also highlighted to quantify the efficiency and
effectiveness of feature selection. In addition, various of
application categories have been added to demonstrate the
breadth of feature availability.
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