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ABSTRACT The concept of processing biomass materials into charcoal briquettes is a viable solution for
every developing nation’s energy crisis. However, the important properties of each biomass material must
first be considered to find suitable biomass materials for processing into charcoal briquettes. Sometimes
these qualities are measured with imprecise values, making it exceedingly challenging to rank biomass
materials’ decision-making units (DMUs). This problem is one of the interval data envelopment analysis
(IDEA) ranking issues that make it difficult to calculate and rank all DMUs. In this paper, the concepts
of the Game IDEA cross-efficiency method and Boolean possibility degree were utilized to solve the IDEA
ranking problems. Unlike existing IDEA ranking models, a new multi-objective Game IDEA cross-efficiency
(MO-G-IDEA-CE) method was used to obtain the Game interval cross-efficiency (GICE) scores of each
DMU simultaneously. After that, the Boolean possibility degree was used to transform GICE scores into
crisp values for ranking all DMUs. Three numerical examples, including a simple numerical example of
China’s primary schools and seven biomass materials problems, are provided to demonstrate and validate
the effectiveness of the proposed model. For the case study of seven biomass materials, after the Spearman
correlation test, the correlation coefficients (ry) for the proposed method and Wang’s method, and Wu et al.’s
method are calculated as r; = 1.000 and 0.964, respectively. In addition, it is worth noting that the proposed
MO-G-IDEA-CE method has a very high correlation with the other ranking methods for all three numerical
examples.

INDEX TERMS Multi-objective game cross-efficiency method, Boolean possibility degree, biomass,
interval data envelopment analysis.

I. INTRODUCTION

Energy is essential to every nation’s sustainable development
and quality of life. Urbanization and industrialization in mod-
ern cities are connected to high energy demand. Currently,
fossil fuels are employed to supply the growing need for
energy. However, the availability of fossil fuels continues to
decline. There is a significant increase in the price of con-
ventional fuels, and the combustion of these fuels generates
air pollution, such as unburned carbon, oxides of nitrogen,
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and sulfur. Therefore, an alternative fuel is required to address
these issues. Renewable energy sources are one of the most
effective solutions to these issues. Biomass energy is one of
the cheapest and most accessible kinds of renewable energy
that may be produced from decomposing organic waste.
Biomass is a fuel obtained from organic waste products. It is
a renewable and sustainable energy source that can produce
electricity or other forms of energy, like heat energy.

Forest debris, scrap lumber, manure, some crops, and
agricultural waste leftovers are all examples that can be
used to create biomass fuels. As biomass is abundantly
available, renewable, and environmentally beneficial, it is
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gaining increasing attention [1]. The concept of processing
biomass materials into charcoal briquettes is one good idea
for resolving the energy shortage problem and is found almost
everywhere, particularly in agricultural nations. Agricultural
resources can be used to manufacture biomass briquettes
for cooking and heating in impoverished nations. Thailand
is one of the farming countries in Southeast Asia with an
abundance of unexploited biomass [2], [3]. Several policies
and regulations are implemented to encourage and promote
the research sector’s pursuit of renewable energy sources. The
government encourages and supports processing agricultural
waste into charcoal briquettes for domestic cooking as one of
its most critical issues. To find suitable materials for process-
ing into charcoal briquettes, it is necessary first to analyze the
essential properties of each category of agricultural waste.

The choice of agricultural biomass influences the quality of
the manufactured fuel briquettes. In contrast, the selection of
residues for briquette production depends on their properties
(low moisture, low ash content, high calorific value, high den-
sity, and medium fixed carbon) [4], [5]. Therefore, these prop-
erties must be considered when selecting biomass sources
for manufacturing charcoal briquettes. This is, therefore,
one of the multi-criteria decision-making problems (MCDM
problems) that all of these criteria must be considered con-
currently. Furthermore, selecting suitable biomass materials
requires identifying effective and reliable methods to measure
and rank the biomass materials, which will provide helpful
information for further use. In addition, if the values of
biomass attributes are ambiguous or imprecise, measuring
and ranking biomass materials becomes more complicated.

The two most well-known operations research and man-
agement science approaches are data envelopment analysis
(DEA) and MCDM. These two approaches are interrelated
and can be used to solve MCDM problems [6]. Hwang
and Yoon [7] classified the MCDM processes as Multiple
Attribute Decision-making (MADM) and Multiple Objective
Decision-making (MODM).

MADM is utilized for assessing discrete variables. Experts
participate in the initial phase of the process by assigning
weights to the criteria for evaluating alternatives. MODM
enables the acquisition of a continuous collection of solutions
for two or more criteria, known as the Pareto front. Many
methods can be used for MADM problems. Nevertheless,
the classic MADM approaches can be divided into distinct
groups based on their shared characteristics [8]: (I) Scoring
methods such as Simple additive weighting (SAW) and Com-
plex proportional assessment (COPRAS); (IT) Distance-based
approaches such as Goal programming (GP), Compromise
programming (CP), Technique for order of preference by sim-
ilarity to ideal solution (TOPSIS), Multi-criteria optimization
and compromise solution (VIKOR) and Data envelopment
analysis (DEA); (III) Pairwise comparison methods such as
Analytic hierarchy process (AHP), Analytic network pro-
cess (ANP) and Measuring Attractiveness by a Categorical
Based Evaluation Technique (MACBETH); (IV) Outranking
methods such as the Preference ranking organization method
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for enrichment of evaluations (PROMETHEE) and Elimi-
nation and choice expressing reality (ELECTRE); (V) Util-
ity/Evaluate methods such as Multi-attribute utility theory
(MAUT) and Multi-attribute value theory (MAVT); and (VI)
others such as Quality function development (QFD). DEA
is a distance-based approach that is widely used in solving
MADM problems. In the decision matrix, criteria can be
viewed as inputs and outputs for DEA, and alternatives can
be considered decision-making units (DMUs). The DEA can
be regarded as one of the MCDM tools because it can be
used to generate optimal weights of each criterion for ranking
alternatives/DMUs. Recently, the DEA is still being used as
an MCDM tool in various fields, such as the case of irrigation
management [9], the supplier’s selection [10], and the solar
PV power plant site selection [11]. According to the relevant
literature review [12], despite the wide range of applications
of the DEA concept in renewable energy applications, there
has been no research using the multi-objective Game interval
data envelopment analysis (MO-G-IDEA-CE) approach for
evaluating charcoal briquettes.

DEA is a popular mathematical method used to measure
the performance of a set of DMUs with multiple inputs and
outputs. The relative efficiency of each DMU can be obtained
by calculating the ratio of the weighted sum of outputs to the
weighted sum of inputs. If a DMU has a relative efficiency
score of 1, it is defined as efficient. Otherwise, it is specified
as inefficient. Over the past several decades, various forms of
DEAs, the Charnes-Cooper-Rhodes (CCR) model [13] and
Banker-Charnes-Cooper (BCC) model [14], have been used
in a wide range of fields, such as banking [15], engineering
[16], education [17], agriculture [18], and corporate adminis-
tration [19]. The main advantages of DEA are that it does not
require any possible assumptions related to the structure of
the production function, and the values of inputs and outputs
can have different measurement units [20], [21], [22]. The tra-
ditional DEAs can estimate the relative efficiencies of DMUs
with precise values of inputs and outputs. If the values of the
inputs or outputs of DMUs are imprecise, such as interval
data, the existing DEAs fail to measure the performance of
the DMUs. Hence, many researchers [23], [24], [25] have
offered various Interval Data Envelopment Analysis models
(IDEA models) to solve this weak point. Cooper et al. [26]
first offered the IDEA model to measure the performance
of a set of DMUs with inaccurate data. Subsequently, this
theoretical approach has contributed to further development
by a group of scholars. Despotis and Smirlis [27] converted
the DEA-CCR model into the IDEA —CCR model to solve
DMUs with interval data, and outcomes were obtained as
the lower and wupper values of efficiency scores.
Entani et al. [28] offered a pair of IDEA models, called
the optimistic IDEA and pessimistic IDEA models, to solve
IDEA ranking problems for DMUs with interval data of
inputs and outputs. However, Wang ef al. [29] noted that
Despotis and Smirlis’ model [27] employed two different
production frontiers to calculate the efficiencies of DMUs,
which may result in the incomparability of DMU efficiencies.
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To address this issue, Wang et al. [29] suggested new
IDEA models based on a common frontier to determine
each DMU’s interval efficiency. A minimax regret-based
technique was used to rank the interval efficiencies of each
DMU.

Wang et al. [30] presented a virtual anti-ideal DMU into
an IDEA model to combine optimistic and pessimistic view-
points. Later, Azizi and Jahed [31] pointed out a disadvantage
of Wang’s model [28] when determining the range of interval
efficiency of each DMU, and they offered a pair of improved
IDEA models to overcome this disadvantage. Toloo et al. [32]
developed the pessimistic IDEA and optimistic IDEA models
for identifying the specific states of each imprecise dual
role factor. Sun et al. [33] offered alternative IDEA models
with common weights for evaluating and ranking all DMUs.
Wu et al. [34] presented an IDEA cross-efficiency model
based on secondary goals and a new TOPSIS to evaluate and
rank DMUs with interval data. Wang et al. [35] proposed a
cross-efficiency IDEA model based on entropy for assessing
and ranking DMUs with interval data. In this model, inter-
val cross-efficiency values are firstly generated. After that,
an entropy formulation is used to obtain the criteria weights
of interval efficiency. Finally, the relative Euclidean distance
from the positive solution is used to rank all DMUs.

Although there are several DEA cross-efficiency meth-
ods, the Game cross-efficiency method presented by
Liang et al. [36] is one of the most popular and effective tech-
niques for solving DEA ranking problems. Liang et al. [36]
demonstrated the existence of equivalence between the
value of the game cross-efficiency and Nash equilibrium
for the game with a specific continuous concave payoff.
This approach can produce a unique efficiency value in a
pair-wise game between competing DMUs, without affect-
ing the efficiency of other DMUs. Based on the concept
of game cross efficiency, this method is widely accepted
and utilized in numerous applications, such as the supplier
selection problem [37], urban public infrastructure invest-
ment [38], survey of ecological efficiency of the area [39],
energy efficiency [40] and land utilization efficiency [41].
Therefore, this research is worth extending the concepts of a
cross-efficiency method to the Game IDEA cross-efficiency
concepts for finding other effective ways to rank charcoal
briquettes with interval data.

There are many ranking methods for interval numbers.
However, the possibility degree method is a popular method
for ranking them. The principle of the possibility degree
method can be described as follows. Let a and b be two
interval numbers; the possibility degree of a > b is defined
as p (@ > b). The higher value of p (a > b) means that
the possibility degree of a over b is a greater value [42].
Nakahara et al. [43] and Nakahara [44] first developed the
possibility degree, and the formula was utilized to tackle a
fuzzy mathematical model. Facchinetti e al. [45] proposed
the alternative possibility degree formula for comparing two
fuzzy triangular numbers. Wang et al. [46] offered new pos-
sibility degree formulae for generating weights from interval
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comparison matrices. Li et al. [47] proposed a new possibility
degree formula that is easy to use but powerful. They also
presented the Boolean matrix to overcome previous studies’
disadvantages for ranking interval numbers. Based on this
ranking method [47], this paper should use the possibility
degree formula and Boolean matrix to rank DMUs with
interval efficiency.

The main contributions of this research are in the following
ways:

1) Based on the idea of Wang et al. [29], we formulated a
new multi-objective interval data envelopment analysis CCR
model (MO-IDEA-CCR) for measuring the interval efficien-
cies of DMUs with interval data.

2) Based on the idea of Liang et al. [36], we formulate
a new multi-objective Game IDEA cross-efficiency method
(MO-G-IDEA-CE) to evaluate the Game interval cross-
efficiency (GICE) scores of each DMU.

3) Based on the idea of Li et al. [47], we also apply a
Boolean possibility degree formula, a combination of the
possibility degree formula and Boolean matrix, to transform
the lower and upper values of GICE scores into Boolean
possibility degree scores for ranking all DMUs, which is
simple but effective.

4) We apply the proposed method to a real case of the fuel
briquette problem; this will be extremely valuable for study
in this field in most, especially farming, nations.

The rest of this paper is structured as follows: In Section II,
we first offer existing IDEA-CCR models, IDEA cross-
efficiency method, and IDEA cross-efficiency method based
on secondary goals. Next, Section III provides a new solution
for measuring and ranking DMUs with interval data. Then
three examples, a simple numerical example, China’s primary
schools, and a biomass materials problem, are provided to
illustrate the idea proposed in Section IV. Finally, Section V
is the conclusion.

Il. BACKGROUND

A. IDEA-CCR MODELS

Consider a set of n observed DMUs to be measured,
DMUs: {DMU; / j = 1,2,3,...,n}. Each DMU; con-
sumes m different inputs and produces s different outputs,
denoted as y,; and x;;, respectively. Due to the ambiguity,
only their bounding intervals [xl.lj, x;;] and [ylrj, y’r‘j], with
xfj > (Qand ylrj > (), are identified. To solve the IDEA problem,
Wang et al. [29] offered two linear programming models to
obtain the bounded interval efficiency [E ,ﬂk, E ,?k], as follows:

N
l _ !
Max Ekk = Z”’k Yk
r=1
s m
s.t. Zurk~yj’k—2vik -xilij, Vi,j=1,2,...,n
r=1 i=1

m
Dovixly =1, Yk k=1,2....n
i=1
Vik’ ui‘k Z 07 Vlv Vr? Vk (1)
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N
u u
Max Ekk = Zurk Ve
r=1
N m
1 ..
s.t. Zurk Vi —Zvik <X <0, Vj,j=12,...,n
r=I1 i=1

m

l
Zv,-k X = 1
i=1

Vik, uk > 0, Vi, Vr, Vk )

In Equations (1) and (2), DMUy is to be measured. Let v
and u,« be the weights of the input i and output r, respectively.
Then, E,ék and E}, are the lower and upper efficiencies for
each DMUy, respectively. In the above two models, it is clear
that DMUy can be defined as an efficient DMU if its optimal
solution is E}j = 1, or it is inefficient if £}, < 1.

B. IDEA CROSS-EFFICIENCY METHODS

After solving the IDEA-CCR models in Equation (1) and
Equation (2), let ulrz and u’f; be the lower and upper bound of
the optimal output weights for a specific DMUy, respectively.
If vf:, and vﬁg are the lower and upper bound of optimal
input weights for a particular DMUy, respectively, then the
small cross-efficiency scores of each DMU; peer-evaluated
by DMUy, are provided by

S
* .1
[ rglurkyrj
Ekar_nT, k,j=1,2,...,n 3)
Zlvikxi’;.
=

As a result, the average cross-efficiency (ACE!) score of
DMU; is defined as

_ 1<
El= - N"EL. Kk, j=1,2,..., 4
J n}; G ke n @

Similarly, the values of large cross-efficiency can be
defined as

ol k

u u

Z WY,

u __ =

Ek] - —m 3

u* xl

ik *ij

k,j=1,2,....n 5)

i=1

As aresult, from Sexton et al. [38], the ACE" of DMU; can
be defined as

N «

r=1 u’:kyruj

u
Ekj _— m )
Z vu*xl
2. Vig Xjj
i=1

k,j=1,2,....n ©6)

After computing all cross-efficiency scores, an interval
cross-efficiency matrix (ICEM) can be generated according
to Table 1. It is noted that the elements on the main diag-
onal are self-assessed limits that can be computed using
IDEA-CCR models, Equation (1) and Equation (2).
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TABLE 1. An interval cross-efficiency matrix (ICEM).

Target DMU;
DMU;
1 2 n
1 [EL, EY]  [Ely E) [Edn Efh]
[E4y, EX]  [Eso B3] [EL,, EX]
3 [EElilv Eéll] [EéZJEélZ] [Eal‘n: E;‘n]
n [Erll.lv Erllll] [E‘rllZ' E#Z] [Erlmv E;zln]

C. IDEA CROSS-EFFICIENCY METHOD BASED ON
SECONDARY GOALS

To enhance its efficiency ratio, the DMU under assessment
considers the inputs and outputs of a few favorable DMUs,
while ignoring the rest. In addition, optimal weights deter-
mined with models (1) and (2) are not typically unique.
As a result, the calculating software may give varying
ideal weights, rendering the cross-efficiency scores arbitrary.
To address this deficiency, an interval cross-efficiency eval-
uation method is employed. DEA’s cross-efficiency process
uses peer evaluation rather than self-evaluation. It can define
the cross-efficiency ratings of DMUs based on their inter-
val [29]. Some choices of weights in the traditional cross-
efficiency approach may result in a lower cross-efficiency for
some DMUs and a higher cross-efficiency for others. To alle-
viate the ambiguity, a secondary goal function is introduced.
Model (7), proposed by Wu ef al. [34], can calculate the
values of small cross-efficiency for interval data.

N
I _ ! !
Max E,, = Z”rk Vi
r=1
S m
! u ) I L.
s.t. Z”rk Yk —Zvik - Xjj <0, Vj,j=1,2,...,n
r=I1 i=1

m
Sovhox =1, Vk k=1,2....n
i=1

K m
Do e =EL Y =12
r=1 i=1
Vi, by >0, Vi, Vr, Vk @)

Similarly, the values of large cross-efficiency can be cal-
culated using model (8).

N
u __ u u
Max Ekk = Z“rk Yk
r=1
s m
u u u I P
s.t. Zu,k Yk _Z"ik - Xjj <0, Vj,j=12,...,n
r=1 i=1

m
vak-xszl, Vk, k=1,2,...,n
i=1

N

m
u u _ u u 1
Z Uy * Ve = Eg, Zvik “ Xjj

r=1 i=1

Vi, wy >0, Vi, Vr, Vk )

Vi,j=1,2,....n
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Compute interval CCR scores of DMUs using the MO-
IDEA-CCR models

]

I
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Stage 1 + !
Compute interval ACEs of all DMUs i
I
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]

I

I

]

I

|

v

Compute GICE scores for all DMUs using the MO- G-
IDEA-CE method

Compute Boolean possibility degree

1

|

1

| Stage 2

| Stag v
|

1

1

1

Rank all DMUs

FIGURE 1. The proposed framework.

After solving Equation (7) to Equation (8), ACE
scores of each DMU can be generated according to
Equations (3) to (6).

lll. THE PROPOSED METHOD

This section offers a new multi-objective Game DEA-CE
method (MO-G-IDEA-CE method) based on the possibility
degree of the Gibbs interval entropy model for ranking a
group of homogeneous DMUs with interval data. The frame-
work proposed in this paper appears in Fig.1.

A. MULTI-OBJECTIVE IDEA-CCR MODEL
In this section, we provide the multi-objective IDEA-CCR

model (MO-IDEA-CCR model) based on the combination

of Equation (1) and Equation (2), with added constraints of

v > vﬁk, Uy > ulrk, Vi, Vr, Vk, for obtaining interval CCR

scores, [E,ik, E,?k] as shown in Equation (9).
_ ol u
Max =E, +E;
N N
_ ! 1 u u
= Zurk Ve t Zurk Yk
r=1 r=1

S m
s.t. Zulrk SV — Zvﬁk xll] <0

r=1 i=1

N m

u u u l

Z”rk Yk — Zvik - x; =0,

r=1 i=1

m
> =
Vik ik = 1

i=1

m
Zv?k ‘x;k =1,

i=1

Vi,j=1,2,...,n
Vi,j=1,2, ..., n
Vk, k=1,2, ..., n
Vk, k=1,2,...,n

w, > uly, Vi, ¥r, vk
u >0, Vi, Vr, Vk ©)

u )

Vik Z Vigs

) ! Y
Vik> Upks Viks> U
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B. MULTI-OBJECTIVE GAME IDEA CROSS-EFFICIENCY
METHOD

In this section, we formulate the multi-objective Game
IDEA cross-efficiency method (MO-G-IDEA) for ranking
all DMUs with interval data. Based on the concept of
a traditional Game cross-efficiency method presented by
Liang et al. [36], the MO-G-IDEA method can be defined
as

Max _El +E”

_Z Upg - yrk+Z Upy - yrk

! u ) I

S.l‘. Zurk ‘yrk - Zvlk '.xl'j S 0

r=1 i=1
K m

u u u l
Zurk Ve — Zvik Xy =
r=1 i=1
m

! u _1

Vik  Xig = L
i=1
m

u
Zvik'
Old X Zvlj'xld

r=1
K
ud l ud . u

g % Z =2 v =0

Vi,j=1,2,...,n

xh=1, Vk,k=1,2,...,n

id.l
Ui Vrg = 0

r=1
] .
Vz‘k > Vi ”rk > Mrk’ Vi, Vr, Yk
) ! .
Vi Upgs Vi, Ui =0, Vi, Vr, Vk (10)

n N
If [oz},oz]’-‘] = |:% dZ] X:lui;lylrj, - Z Z u',fjdy?ji| then
—1r=
[a} , a}‘J is called the Game interval cross—eff1c1ency (GICE)
score of DMU; (j =1, 2, ..., n). Based on Equation (10), the
iteration algorithm leading to Nash-equilibrium is:

Step I: To obtain the GICE scores, the MO-IDEA-CCR
model in Equation (9) must be computed first. For each
DMU;j, let t = 1 and [afi, al] = [ozfil, al ] = [Ecl,, EY].

Step II: Solve Equation (10). Let

2w
[ o 7]

1 n N
= [; ui,d (C( )yr/7 ZZ” (adl)yr]:|

=1r=1 dlrl

QU

or
1 n s
It+1 ut+1| _ | 2 ld* 41\ 1
I:a] saj :I_ [}’l ur ( )yrj7
d

=1r=1
n S
- ur'
n )

d=1r=1

ut+1 )y i|
1

VOLUME 10, 2022



N. Wichapa, S. Sodsoon: Novel MO-G-IDEA-CE Method Based on Boolean Possibility Degree

IEEE Access

Id* ¢ It d* t : .
where [urj (cry), u’r’j (ory )] represents an optimal solution of

ld | ud 1 ul _ It ut
[”rj’“rj ] when [y, aj] = o, ajf].
&@IMIfkf“—aﬂ
for some j, where ¢ is a specified small positive value,
1

u —
then let [a), ak] =
+1 It
If ‘aj o o

stop. [a}t + aj”t‘H] is the GICE score given to DMU;.

> ¢ and ’aj’.”“ —a;” > ¢

It+1  ut+1
h - &

ut+1 _ ut
: o

] and go to step IL

< ¢ and

< ¢ for all j, then

C. BOOLEAN POSSIBILITY DEGREE

Based on the solutions of the MO-G-IDEA method, GICE
scores of all DMUs can be utilized for ranking all DMUs
using the Boolean possibility degree. Li et al. [47] offered
a ranking method of interval numbers based on the Boolean
matrix. A higher Boolean possibility degree value means a
better DMU ranking. The possibility degree formula can be
described as follows. Let ®G; = [x], x¥] and ®G, =
[x}, x4]. Then the possibility degree of ®G; > ®G is
determined by:

p(®G = ®Gy)

U __ U 1
=050 |1+ ”(? wf”gﬁ)
|(f = )] + | (] = xD)| + I 86,

(1)
where

max {xi‘ — max {x{,xé} , O}, }

I = mi
®G1®G, = Mmin < max {x'24 — max {xi’ xé} ’ O}

leG,®G, 1s the length of ®G1 N RGL. If ®G1 N QG = ¢,
then lgG,96, = 0. In the following, the Boolean possibility
degree was proposed to rank a set of grey numbers. For grey
numbers @Gy, ®Ga, .. ., ®Gy, the ranking algorithm can be
described as follows.

Comparing any two grey numbers®G;, ®Gj, we generate
pii = P(®G; > ®Gj) and establish the possibility degree
matrix P = (pjj)uxn, i»j = 1, 2, .., n. Establish the Boolean
matrix Q = (gjj)nxn, Where

1, pij=>0.50

D=0, pj <050

Q is the ranking matrix of the grey numbers. Let
n

A; = ) qj we have the ranking vector A’ =
j=1
(M My ML),

Rank the grey numbers based on the value A}; a higher
value A; is better.

D. CHARCOAL BRIQUETTE MANUFACTURING PROCESS

This study aims to make compressed charcoal from seven
biomass resources, including Bagasse, Incense reed, Water
hyacinth, Rice husk, Coconut shell, Sawdust, and Sensitive
plant, in the form of 100 percent weight charcoal briquettes.
The manufacture of charcoal briquettes can be broken down
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TABLE 2. The data set of the simple numerical example.

Inputs Outputs
DMU; Interval CCR
®x, B®x, ®y Oy,
1 [1,2]  [2,3] [23,24] [22,24] [0.6389,1.0000]
2 [2,3]  [3.4] [2022] [20,21] [0.4167,0.6111]
3 [3.4] [5.6] [18,21] [19,19] [0.2500,0.3500]
4 [3.4]  [57] [16,17] [15,18] [0.1905,0.2881]
5 [3,51 [57] [14,17] [13,15] [0.1667,0.2833]
6 [4,51 [6,7] [10,15] [10,14] [0.1190,0.2083]

into six steps: Step I: Collection of biomass materials.
Agricultural biomass is collected, sorted, diced into smaller
pieces, and then dried in the sun. Step II: Biomass car-
bonization. The collected biomass materials are burned in
an oil drum. After burning, the carbonized biomass mate-
rials must be collected and weighed. Step III: Preparation
of binder. The binding substance strengthens the charcoal
briquettes. For every 10 kilograms of complete carbonized
charcoal powder, combine 0.5 to 0.6 kilograms of starch or
cassava flour with 5 to 10 liters of water to create a binder.
Step IV: Mixing. Ensure that the binder is uniformly dis-
tributed throughout the carbonized charcoal’s particles. It will
enhance the adhesion of the charcoal and produce uniform
briquettes. Step V: Briquetting. A briquetting machine is
used to turn the charcoal mixture into charcoal briquettes.
To manufacture briquettes of the same size, pour the mixture
immediately into the briquetting machine. Step VI: Drying.
Each charcoal briquette is air-dried outdoors. For the bri-
quette quality test, important properties (moisture content,
ash content, heating value, and fixed carbon) are analyzed
using ASTM D3173, ASTM D3174, ASTM D5865, and
ASTM D3172, in that order. These properties can be con-
sidered inputs and outputs of each charcoal briquette/DMU
in terms of DEA. The selection of suitable biomass materials
from agricultural products for processing into fuel briquettes
is a complicated decision-making problem due to the multiple
interval qualities that must be considered simultaneously.
Consequently, the proposed approach is utilized to evaluate
each biomass material.

IV. NUMERICAL EXAMPLES

A. THE SIMPLE NUMERICAL EXAMPLE

Wau et al. [34] proposed a simple numerical example. There
are six DMUs with two inputs and two outputs. The data set
of the simple numerical example is shown in Table 2.

The calculation procedure is as follows. Firstly, by solv-
ing Equation (9) (MO-IDEA-CCR model), the interval CCR
scores are obtained as in the last column of Table 2. After
that, the optimal weights of inputs and outputs are utilized to
calculate the interval ACE scores of each DMU, according to
Equations (3) to (6). As a result, the interval ACE scores for
each DMU are achieved, as shown in Table 3.
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TABLE 3. Interval cross-efficiency scores for the simple numerical
example.

Target DMU
aree Interval

ACE

DMU;
1 2 3 4 5 6

[0.6389,[0.6389, [0.6389, [0.6389, [0.6389, [0.6389, [0.6389,
1.0000] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000]

[0.4167,[0.4167, [0.4167, [0.4167, [0.4167, [0.4167, [0.4167,

2 0.6111]0.6111] 0.6111] 0.6032] 0.6111] 0.6111] 0.6098]
,  [0.2500,00.2500, [0.2500, [0.2500, [0.2500, [0.2500, [0.2500,
0.3500] 0.3500] 0.3500] 0.3405] 0.3500] 0.3500] 0.3484]
, 10190501905, [0.1905, [0.1905, [0.1905, [0.1905, [0.190s,
0.2833]0.2833] 0.2833] 0.2881] 0.2833] 0.2833] 0.2841]
s [0.16670.1667, [0.1667, [0.1667, [0.1667, [0.1667, [0.1667,
0.2833]0.2833] 0.2833] 0.2738] 0.2833] 0.2833] 0.2817]
g [0.11900.1190, [0.1190, [0.1190, [0.1190, [0.1190, [0.1190,

0.2083] 0.2083] 0.2083] 0.2044] 0.2083] 0.2083] 0.2077]

TABLE 4. The GICE scores of the simple numerical example.

Tteration
DMU;
1 2 3 4 5 6 7*
1 [0.6343, [0.6381, [0.6362, [0.6365, [0.6363, [0.6364, [0.6364,
1.0000] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000]
3 [0.4167, [0.4167, [0.4167, [0.4167, [0.4167, [0.4167, [0.4167,
0.6065] 0.6103] 0.6091] 0.6095] 0.6093] 0.6094] 0.6094]
3 [0.2523, [0.2581, [0.2571, [0.2576, [0.2575, [0.2576, [0.2576,
0.3444] 0.3491] 0.3475] 0.3480] 0.3479] 0.3479] 0.3479]
4 [0.1885, [0.1901, [0.1893, [0.1895, [0.1894, [0.1894, [0.1894,
0.2861] 0.2907] 0.2892] 0.2897] 0.2895] 0.2896] 0.2896]
5 [0.1647, [0.1663, [0.1655, [0.1656, [0.1656, [0.1656, [0.1656,
0.2778] 0.2824] 0.2809] 0.2814] 0.2812] 0.2813] 0.2812]
6 [0.1190, [0.1190, [0.1190, [0.1190, [0.1190, [0.1190, [0.1190,

0.2060] 0.2079] 0.2073] 0.2075] 0.2074] 0.2075] 0.2075]

Table 3 shows that the main diagonal elements are
self-assessed limits computed using Equation (9) (MO-
IDEA-CCR models). In this paper, the interval ACE score
of arbitrary strategy is set as the initial solution for itera-
tion 1, while ¢ is set to 0.001. Then, using Equation (10)
through three ranking steps of the MO-G-IDEA-CE method
in Section B, the GICE scores for all iterations are shown in
Table 4.

Table 4 shows that the final GICE scores for all DMUs
were achieved at Iteration 7. After obtaining the GICE
scores of all DMUs, the possibility degree formula, Equation
(11), was used to generate the possibility degree matrix,
P = (pij)exe- For example, the possibility degree score when
®DMU; > ®DMU; is

pP(®G1 > ®G?)

(& —x) + (o]~ )
|(xf‘ _x2u)| + |(x{ —xé)| + l9G106,
p(®DMU; > ®DMU>)

=050 |1+

=0.50 |1+ (1.0000 — 0.6094) + (0.6364 — 0.4167)
N |(1.0000—0.6094)| +1(0.6364—0.4167)[+-0
=0.50[1+1]=1.

Details of P are shown in Table 5.
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TABLE 5. The possibility degree matrix (P) for the simple numerical
example.

1 2 3 4 5 6
1 0.500 1.000 1.000 1.000 1.000  1.000
0.000  0.500 1.000 1.000 1.000  1.000
0.000  0.000  0.500 0.899  0.935 1.000
0.000  0.000  0.109 0.500  0.630  0.947
0.000  0.000  0.065 0370  0.500 0.871
0.000  0.000  0.000 0.053  0.129  0.500

(o NV I LV N S ]

TABLE 6. The Boolean matrix (q) for the simple numerical example.

J
! 1 2 3 4 5 6 ﬂlf Rank
1 1 1 1 1 1 1 6 1
2 0 1 1 1 1 1 5 2
3 0 0 1 1 1 1 4 3
4 0 0 0 1 1 1 3 4
5 0 0 0 0 1 1 2 5
6 0 0 0 0 0 1 1 6

TABLE 7. Ranking comparisons of the proposed method and the other
techniques for the simple numerical example.

IDEA-CCR [29] W‘E;j]“l' Proposed method
DM ,

Eff. MRA  Rank RED Rank GICE 4 Rank
! [?8333] 00000 1 6 1 [1006030661'] 6 !
2 [(;)64]11617] 05833 2 5 2 [(;)64019647] 5 2
3 [5’32560309] 07361 3 4 3 [00_'3257796]’ 4 3
4 [831333] 08095 4 3 4 %)218899:] 3 4
5 [855237] 08333 5 2 5 %)21;1526] 2 5
6 %’_‘2101;30]’ 08810 6 1 6 [00_‘21017950]’ 1 6

After obtaining Table 5, the possibility degree matrix (P)
was transformed into the Boolean matrix (Q). If the possibil-
ity degree score of DMU; vs DMU; (p;;) > 0.50, the Boolean
value of DMU; vs DMU; (¢;;) = 1. Otherwise, g; = 0.
Details of Q are shown in Table 6.

n

After that, the ranking vector (1)), A} = ) g;j, was cal-

j=1
culated. For example, A| = 1 +14+1+14+141 = 6.
After obtaining the A/, A’ = {6, 5, 4, 3, 2, 1}, DMUs were
ranked in descending order following the value of the higher
value of A}, so we have DMU; > DMU; > DMU3; > DMUy
> DMUs > DMUg. In addition, ranking comparisons of the
proposed method and the other methods for all DMUs, are

shown in Table 7.
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FIGURE 2. The Convergence procedure of the MO-G-IDEA-CE method for
lower values of GICE scores.
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FIGURE 3. The Convergence procedure of the MO-G-IDEA-CE method for
upper values of GICE scores.

Table 7 shows that the proposed method was compared
with the IDEA-CCR model [29] and Wu et al.’s method [34].
Wang’s model [29] proposed the minimax regret approach
(MRA) for IDEA ranking problems. The lower value of the
smallest maximum loss of efficiency means better ranking.
Wu et al.’s method [34] used the distance model based on
TOPSIS to generate the relative Euclidean distance (RED)
from the positive solution. The lower value of the RED means
better rankings. It is noticeable that all methods have the same
ranking. After the Spearman correlation test, the correlation
coefficients (r;) for the proposed method and IDEA-CCR
model [29] and Wu et al.’s method [34] are calculated as
rg = 1.000 and 1.000, respectively.

In addition, we demonstrate the Convergence procedure of
the MO-G-IDEA-CE approach, which utilizes the relevant
efficiency score from an arbitrary strategy. We set ¢ = 0.001,
and Fig. 2 and Fig. 3 demonstrate that after seven iterations,
all DMUs generated by the proposed method attain constant
GICE scores, which means the optimal solutions are the Nash
equilibrium points, as demonstrated in [36].

B. CHINA’S PRIMARY SCHOOLS
Wang et al. [35] proposed the data set of China’s primary
schools listed in Table 8. There are twenty-five primary

VOLUME 10, 2022

TABLE 8. The data set of China’s primary schools.

- Inputs Outputs Interval CCR
Qx, Qx, Qx; Qx, ®x;, ®y,
] [5437] 3964 8947  3.54 9.6 [3361%’ [00,'55709351’
) Ef(;’]’ 965 4247 204 341 [111002]’ [00,1114129]’
3 [7605]> 2222 8543 223 1207 [320603]’ [00..5581312?],
4 [543]’ 2316 7560 242 57 [227641]’ %)55757()73]
5 [;‘g]’ 3362 11,035 123 5.9 [32?22]’ [00.'667229%
6 [5499]’ 3273 6120 561 853 [22591]’ [09'6526;37]’
7 [3360]’ 1534 7439 255 573 [22;()6]’ [(;)66732713]
8 [5475] 1130 4043 225 10.07 [8713 1 [00,'32297429]>
9 [4358] 278 7306 151 7.6 [3219 13] [()(),56()6337()]’
10 [1120:1’ 7321 25218 1691 15.73 [11119259]’ [()97762230]’
1 1[?%)] 6218 11,552 10.86 13.95 T5150]’ [00.'5426528]’
12 [4-”5]’ 1878 4155 389 643 [21(?21]’ [00.'66;5885]’
13 [:62]’ 2649 6986 141 622 [22:32]’ [00,'6527:78]’
14 [5309]’ 2402 8623 2.8 725 ngf]’ [00"6536034]’
15 [5575] 2359 7200 5.06 857 [2262;]’ [()9?72;3()611>
16 [335?]’ 1328 6260 187 5.68 [212779] %)6551;77]
17 [113372]’ 11,922 53,840 828 20.07 [32162722] [355509]’
18 [‘f29]7 3552 11,674 676 82 ?()157]’ [09'6597(?;]7
19 [1197]’ 1666 3926 298 2.83 [114275]’ [00.'54450902]’
20 [113703]’ 23200 40,000 23.09 25.18 [3‘7’102626] [3,0950201],
21 [7743] 3271 21484 234 109 [33862]’ [00‘2‘525)63]’
» [7529] 4301 10300 226 10.14 [326930]’ [00.?762;]’
23 1[?‘;] 21,175 47,060 7.34 1435 [21391975]’ [10.'506&(?]’
24 [4-”15]> 1410 13,803 1.65 537 [223102]’ [00,2272492f
25 1[?)21 30,705 22,000 383  15.99 [11227562]’ [00-'96195520]7

schools (DMUs) with five inputs and one output. The number
of staff (®x1), building area (®x7), copies of books (®x3),
fixed assets (®x4), and budget (®x5) are inputs. The output
variable (®y1) is the number of students in each school.

The calculation procedure is the same as in Section A.
Firstly, by solving Equation (9), the interval CCR scores are
obtained as in the last column of Table 8. After that, the
interval ACE scores of each DMU are obtained according to
Equations (3) to (6). As a result, the interval ACE scores for
all DMUs are achieved as in the second column of Table 9.
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TABLE 9. The GICE scores of China’s primary schools. TABLE 10. The possibility degree matrix (P) for the primary schools.
Iteration i J
DMU, 1 2 3 4 5
1 5 3 4 5 6 7% 1 0.5000 1.0000 0.4987 0.3535 0.0000
[0.4416, [0.4615, [0.4750, [0.4804, [0.4822, [0.4828, [0.4829 2 00000 0.3000 0.0000 0.0000 0.0000
. > . 5 o > . 5 . 5 . 5 o )
I 0.5086] 0.5709] 0.5760] 0.5761] 0.5762] 0.5762] 0.5762] 3 05013 1.0000 0-5000 0.3437 0.0000
,  [03692, [0.3901, [0.3937, [0.3962, [0.3973, [0.3977, [0.3978, 4 0.6465 1.0000 0.6563 0.5000 0.0000
0.3976] 0.4390] 0.4408] 0.4411] 0.4413] 0.4413] 0.4414] 5 1000 1.000 1.000 1.000 0.500
,  [0.4670, [0.4725, [0.4804, [0.4845, [0.4858, [0.4862, [0.4864, 6  0.867 1.000 0.876 0.868 0.000
0.5325] 0.5647] 0.5706] 0.5718] 0.5727] 0.5729] 0.5730] 7 1.000 1.000 1.000 1.000 0.442
4 0250] 0.3587] 0.3635] 0.5645] 03655 0.565%] dagse]  ° 0P 0000 0000 000 0000
s 104172, [0.5971, [0.6211, [0.6227, [0.6227, [0.6227, [0.6227, o 1000 1000 1:000 1.000 0.762
0.4461] 0.6605] 0.6727] 0.6727] 0.6727] 0.6727] 0.6727) 10 1.000 1.000 1.000 1.000 1.000
¢ 04652, [05156, [0.5307, [0.5370, [0.5396, [0.5405, [0.5408, 110119 1.000 0.108 0.000 0.000
0.5159] 0.6034] 0.6149] 0.6156] 0.6158] 0.6159] 0.6160] 12 1.000 1.000 1.000 1.000 0.321
5 [0.5615, [0.6069, [0.6128, [0.6162, [0.6178, [0.6183, [0.6184, 13 0.905 1.000 0.914 0.921 0.000
02573, (03576, 0264, 02676, [026%, (02694 [oaews, ¢ 05 1000 o0& 0s0 0o
. N . N . 5 . 5 . 5 . > . ]
8 02802] 03160] 03219] 03228] 03231] 0.3232] 0.3233] 15029 0.973 0.293 0189 0.000
o [05897, [0.6180, [0.6315, [0.6352, [0.6364, [0.6368, [0.6370, 16 0771 1.000 0.776 0.710 0.085
0.6273] 0.6883] 0.6960] 0.6972] 0.6977] 0.6978] 0.6979] 17 1.000 1.000 1.000 1.000 1.000
1o [0:6349, [0.6552, [0.6726, [0.6791, [0.6813, [0.6821, [0.6823, 18 0.868 1.000 0.874 0.870 0211
0.6742] 0.7305] 0.7416] 0.7445] 0.7459] 0.7464] 0.7466] 19 0.160 0.989 0.151 0.025 0.000
11 Gros] 0.5039] 03123] 03178] 05130] 0s130] Garse] 2 L0 L0 Loto  Loo0 o Lowo
|, [0.5315, [0.5631, [0.5844, [0.5952, [0.5985, [0.5996. [0.6000, 2l 0.000 0.756 0.000 0.000 0.000
0.5614] 0.6552] 0.6695] 0.6685] 0.6692] 0.6694] 0.6695] 22 0334 0.994 0331 0.231 0.000
13 [04817, [0.5291, [0.5452, [0.5484, [0.5494, [0.5497, [0.5498, 23 1.000 1.000 1.000 1.000 1.000
0.5237] 0.6137] 0.6204] 0.6213] 0.6217] 0.6218] 0.6218] 24 0.920 1.000 0.929 0.941 0.000
14 [0:4622, [0.4640, [0.4723, [0.4756, [0.4768, [0.4772, [0.4773, 25 1.000 1.000 1.000 1.000 1.000
0.5993] 0.6281] 0.6352] 0.6372] 0.6380] 0.6382] 0.6383]
15 [0.4080, [0.4020, [0.4215, [0.4282, [0.4309, [0.4318, [0.4321, TABLE 10. (Continued.) The possibility degree matrix (P) for the primary
0.4868] 0.5630] 0.5678] 0.5686] 0.5689] 0.5691] 0.5691] schools.
16 [0:4628, [0.4898, [0.4939, [0.4967, [0.4981, [0.4985, [0.4986,
0.5890] 0.6490] 0.6518] 0.6521] 0.6522] 0.6522] 0.6523] , J
17 [0.8532, [0.8508, [0.8508, [0.8508, [0.8508, [0.8508, [0.8508, i 6 7 3 9 10
1.0000] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000] oD% 50000 0000 0000 50000
1g [0:5016, [0.4945, [0.5102, [0.5204, [0.5230, [0.5239, [0.5241, 5 00000 0.0000 L0000 0.0000 0.0000
0.6076] 0.6727] 0.6818] 0.6798] 0.6805] 0.6808] 0.6809] : : : : :
1o [0.3940, [0.4189, [0.4314, [0.4366, [0.4379, [0.4383, [0.4384, 301245 0.0000 1.0000 0.0000 0.0000
0.4644] 0.5206] 0.5259] 0.5259] 0.5267] 0.5270] 0.5271] 4 01316 0.0000 1.0000 0.0000 0.0000
5o [0-8741, [0.9700, [0.9790, [0.9810, [0.9813, [0.9813, [0.9813, 5 1.000 0.558 1.000 0.238 0.000
(03234, (04103, (04155, 04158, (04158, (04159, (04159 0 0300000 00 000 0000
3234, [0.4103, [0.4155, [0.4158, [0.4158, [0.4159, [0.4159,
21034717 0.4461] 0.4498] 0.4499] 0.4500] 0.4500] 0.4500] 7 1000 0.500 1.000 0.213 0.000
5, 03766, [0.4202, [04339, (04377, [0.4387, [0.4390, [0.4391, 8 0.000 0.000 0.500 0.000 0.000
0.4725] 0.5679] 0.5740] 0.5741] 0.5744] 0.5745] 0.5746] 9 1.000 0.787 1.000 0.500 0.071
53 [0.6007, [0.8433, [0.8516, [0.8519, [0.8519, [0.8519, [0.8519, 10 1.000 1.000 1.000 0.929 0.500
0.7018] 0.9926] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000] 11 0.000 0.000 1.000 0.000 0.000
% 3660] 04053] 06201] 0611] 0G21S] 06ne] oertm 2 0¥ 036l L0 oles 0000
55 [0.4042, [0.6766, [0.6917, [0.6934, [0.6938, [0.6939, [0.6940, 130592 0.014 1.000 0.000 0.000
0.4202] 0.8854] 0.9124] 0.9129] 0.9129] 0.9129] 0.9129] 140372 0.051 1.000 0.003 0.000
15 0.077 0.000 1.000 0.000 0.000
16 0.481 0.098 1.000 0.038 0.000
17 1.000 1.000 1.000 1.000 1.000
18 0.654 0.231 1.000 0.126 0.000
After obtaining the ACE scores of each DMU, the interval 19 0.000 0.000 1.000 0.000 0.000
ACE score of arbitrary strategy is set as the initial solution for 20 1.000 1.000 1.000 1.000 1.000
iteration 1, while ¢ is set as 0.001. Finally, using Equation (10) 21 0.000 0.000 1.000 0.000 0.000
through three ranking steps of the MO-G-IDEA-CE method 22 0.0 0.000 1.000 0.000 0.000
in Section B, the GICE scores for all iterations are shown in 23 1000 1.000 1.000 1.000 1.000
Table O 24 0617 0.014 1.000 0.000 0.000
able 5. 25 1.000 1.000 1.000 0.993 0.886

Table 9 shows that the final GICE scores for all DMUs
were achieved at Iteration 7. After obtaining the GICE
scores of all DMUs, the possibility degree formula, Equation P = (pjj)25%25. Details of the possibility degree matrix (P)
(11), was used to generate the possibility degree matrix, are shown in Table 10.
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TABLE 10. (Continued.) The possibility degree matrix (P) for the primary

TABLE 10. (Continued.) The possibility degree matrix (P) for the primary

schools. schools.
l. j . j
11 12 13 14 15 21 22 23 24 25
1 08813 0.0000 0.0952 0.3247 0.7011 1 1.0000 0.6660 0.0000 0.0802 0.0000
> 0000 0000 0000 00000 0027 2024000065 00000 00000 00000
3 0.8921 0.0000 0.0858 0.3254 0.7065 1 10000 0.7688 0.0000 0.0590 0.0000
4 1.0000 0.0000 0.0795 0.4096 0.8112 5 1.000 1,000 0.000 1,000 0.000
5 1.000 0.679 1.000 0.960 1.000 6 1.000 0.904 0.000 0.383 0.000
6 1.000 0.062 0.408 0.628 0.923 7 1.000 1.000 0.000 0.986 0.000
7 1.000 0.639 0.986 0.949 1.000 8 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 9 1.000 1.000 0.000 1.000 0.007
9 1.000 0.834 1,000 0.997 1.000 10 1.000 1.000 0.000 1.000 0.114
10 1.000 1.000 1.000 1.000 1.000 11 0.997 0311 0.000 0.000 0.000
1 0500 0,000 0,000 0,095 0359 12 1.000 1.000 0.000 0.906 0.000
13 1.000 0.932 0.000 0.472 0.000
12 1.000 0.500 0.909 0.900 1.000 14 1.000 0.756 0.000 0.313 0.000
13 1.000 0.091 0.500 0.674 0.949 15 0942 0.456 0.000 0.040 0.000
14 0.905 0.100 0.326 0.500 0.777 16 1.000 0.822 0.000 0.419 0.000
15 0.641 0.000 0.051 0.223 0.500 17 1.000 1.000 0.496 1.000 0.898
16 0.964 0.153 0.433 0.601 0.840 18 1.000 0.896 0.000 0.594 0.000
17 1.000 1.000 1.000 1.000 1.000 19 0.948 0.323 0.000 0.000 0.000
18 1.000 0.294 0.607 0.720 0.910 5(1) (1)'(5’88 (1) '8(3)2 8'83(7) (1)'888 é-ggg
19 0517 0.000 0.000 0.124 0.370 % 0966 0.500 0.000 0.056 0,000
20 1.000 1.000 1.000 1.000 1.000 23 1.000 1,000 0.500 1,000 0.900
21 0.003 0.000 0.000 0.000 0.058 24 1.000 0.944 0.000 0.500 0.000
22 0.689 0.000 0.068 0.244 0.544 25 1.000 1.000 0.100 1.000 0.500
23 1.000 1.000 1.000 1.000 1.000
24 1.000 0.094 0.528 0.687 0.960 . L
25 1.000 1000 1000 1,000 1000 TABLE 11. The Boolean matrix (q) for China’s primary schools.

TABLE 10. (Continued.) The possibility degree matrix (P) for the primary

schools.
; J
16 17 18 19 20
1 0.2291 0.0000 0.1315 0.8400 0.0000
2 0.0000 0.0000 0.0000 0.0114 0.0000
3 0.2243 0.0000 0.1257 0.8489 0.0000
4 0.2905 0.0000 0.1302 0.9748 0.0000
5 0915 0.000 0.789 1.000 0.000
6 0.519 0.000 0.346 1.000 0.000
7 0.902 0.000 0.769 1.000 0.000
8 0.000 0.000 0.000 0.000 0.000
9 0.962 0.000 0.874 1.000 0.000
10 1.000 0.000 1.000 1.000 0.000
11 0.036 0.000 0.000 0.483 0.000
12 0.847 0.000 0.706 1.000 0.000
13 0.567 0.000 0.393 1.000 0.000
14 0.399 0.000 0.280 0.876 0.000
15 0.160 0.000 0.090 0.630 0.000
16 0.500 0.000 0.352 0.934 0.000
17 1.000 0.500 1.000 1.000 0.063
18 0.648 0.000 0.500 0.994 0.000
19 0.066 0.000 0.006 0.500 0.000
20 1.000 0.937 1.000 1.000 0.500
21 0.000 0.000 0.000 0.052 0.000
22 0.178 0.000 0.104 0.677 0.000
23 1.000 0.504 1.000 1.000 0.063
24 0.581 0.000 0.406 1.000 0.000
25 1.000 0.102 1.000 1.000 0.000
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After obtaining Table 10, the possibility degree matrix
(P) was transformed into the Boolean matrix (Q). If the
possibility degree score of DMU; vs DMU; (p;) > 0.50,
the Boolean value of DMU; vs DMU; (g;;) = 1. Otherwise,
gij = 0. Details of Q are shown in Table 11.
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TABLE 12. Ranking comparisons of the proposed method and the other
methods for China’s primary schools.

Wang et al.’s Proposed method
DMU, method [35] :
RED Rank GICE V3 Rank
1 0.3445 18 [0.4829,.5762] 8 18
2 0.5383 24 [0.3978,0.4414] 2 24
3 0.3348 17 [0.4864,0.5730] 9 17
4 0.3097 16 [0.5206,0.5659] 10 16
5 0.2000 9 [0.6227,0.6727] 19 7
6 0.2671 12 [0.5408,0.6160] 13 13
7 0.1926 8 [0.6184,0.6708] 18 8
8 0.7852 25 [0.2695,0.3233] 1 25
9 0.1612 6 [0.6370,0.6979] 20 6
10 0.1030 5 [0.6823,0.7466] 21 5
11 0.4191 22 [0.4494,0.5130] 4 22
12 0.1783 7 [0.6000,0.6695] 17 9
13 0.2610 11 [0.5498,0.6218] 14 12
14 0.3031 15 [0.4773,0.6383] 11 15
15 0.3683 19 [0.4321,0.5691] 6 20
16 0.2880 14 [0.4986,0.6523] 12 14
17 0.0135 3 [0.8508,1.0000] 23 3
18 0.2250 10 [0.5241,0.6809] 16 10
19 0.4118 21 [0.4384,0.5271] 5 21
20 0.0000 1 [0.9813,1.0000] 25 1
21 0.5298 23 [0.4159,0.4500] 3 23
22 0.3839 20 [0.4391,0.5746] 7 19
23 0.0125 2 [0.8519,1.0000] 24 2
24 0.2681 13 [0.5539,0.6217] 15 11
25 0.1009 4 [0.6940,0.9129] 22 4

After that, the ranking vector (i) was calculated.
As a result, ranking comparisons of the proposed method
and the other methods for all DMUs, are shown in
Table 12.

Table 12 shows that the proposed method was compared
with Wang et al’s [35]. In the Wang ef al. method [35],
the distance model based on entropy and TOPSIS was used
to generate the relative Euclidean distance (RED) from the
positive solution. A lower value of the RED means better
rankings. After the Spearman correlation test, the ry for the
proposed method and Wang et al.’s method [35] were deter-
mined to be r; = 0.994 (Sig. = 0.000). It is worth noting that
the proposed ranking method has a very high correlation with
Wang et al.’s method [35]; see the correlation test presented
in Fig. 4.

In addition, we demonstrate the Convergence procedure of
the MO-G-IDEA-CE approach, which utilizes the relevant
efficiency score from an arbitrary strategy. We set ¢ = 0.001,
and Fig. 5 and Fig. 6 demonstrate that after seven iterations,
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FIGURE 5. The Convergence procedure of the MO-G-IDEA-CE method for
lower values of GICE scores.

all DMUs generated by the proposed method attain constant
GICE scores, which means the optimal solutions are the Nash
equilibrium points, as demonstrated in [36].

C. APPLICATION OF SEVEN BIOMASS MATERIALS

Thailand is an agricultural-based economy with various agri-
cultural residue resources that can be used for manufacturing
charcoal briquettes. In developing countries, biomass from
farm residues can be transformed into charcoal briquettes to
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FIGURE 7. A sample biomass charcoal briquette.

replace fossil fuels. The appearance of a biomass charcoal
briquette is shown in Fig. 7.

The moisture content (MC), ash content (AC), heating
value (HV), and fixed carbon (FC) are essential properties of
agricultural residues for manufacturing charcoal briquettes.
In the IDEA model, biomass residues can be viewed as
DMUs. The moisture and ash content can be viewed as
inputs because, according to IDEA principles, a lower value
is better. The heating value and fixed carbon can be defined
as outputs because the higher value, the better. The char-
acteristics of input data of charcoal briquettes are shown
in Table 13.

The properties of the seven biomass charcoal briquettes
are shown in Table 14, including seven agricultural residues
(DMUs) with interval data of inputs and outputs. Let moisture
content (%) and ash content (%) be input 1 (®x1) and input 2
(®x2), respectively. The heating value (kcal/kg) and fixed
catbon (%) are output 1 (®y;) and output 2 (Qy2),
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TABLE 13. The characteristics of input data of charcoal briquettes.

Data Characteristics

The biomass's moisture content can
substantially — affect its  combustion
characteristics. During combustion, the
moisture in biomass absorbs heat from the
burning fuel to form vapor due to the heat
of vaporization, reducing the heating value
of the wused fuel significantly. The
incomplete  combustion  of  volatile
substances and the deposition of unburned
carbon around stoves, vessels, and pans
make them challenging to clean. In
addition, high levels of humidity can make
ignition difficult. Therefore, the combustion
of a fuel with such high moisture content
will  produce numerous incomplete
combustion products. In the view of DEA,
this property is considered an input because
the lower the moisture content, the better
the fuel properties.

Ashes are  the  incombustible
component of biomass, and the greater the
fuel’s ash content, the lower its calorific
value. Ashes are known to cause problems
in combustion systems, mainly due to the
formation of slag and deposition on the
surface of metals, plus their tendency to
increase the corrosion rate of the system's
metal components. Therefore, in the view
of DEA, this property is considered an
input because the lower the ash content, the
better the fuel properties.

Moisture content (%)

(®x,)

Ash content (%)

(®x,)

The calorific value (or heating value) is
the standard unit of measurement for a
fuel's energy content. It is the heat produced
when one unit of fuel is completely burned.
Because of the DEA’s view, this property is
considered an output because the higher the
heating value, the better the fuel properties.

The percentage of fixed carbon is
typically determined by the difference
between the percentages of the total
biomass's other quantities, such as moisture,
volatile matter, and ash content. Essentially,
the fixed carbon of a fuel is the proportion
of carbon available for char combustion
following the removal of all volatile matter
from the biomass. This is not the same as
the total amount of carbon in the fuel (the
ultimate carbon) because a significant
amount is also released as hydrocarbons
from volatile matter. Fixed carbon provides
a substantial indication of the fraction of
char remaining after the phase of
volatilization. These carbons will combine
with oxygen to generate heat. In the view of
DEA, this property is considered an output
because the higher the heating value, the
better the fuel properties.

Heating value (kcal/kg)

(®y))

Fixed carbon (%)

(®y,)

respectively. The DMU;, DMU,, DMU3, DMU,4, DMUs,
DMUg, and DMU; are Bagasse, Incense reed, Water
hyacinth, Rice husk, Coconut shell, Sawdust, and Sensitive
plant, respectively.
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TABLE 14. The data set of the biomass charcoal briquettes.

TABLE 16. The GICE scores of biomass charcoal briquettes.

Inputs Outputs
Interval
DMU;

®x, ®x, ®y ®y, CCR
1 [6.18, [8.51, [4457, [17.35, [0.5833,
6.68) 8.92] 4465] 18.22] 0.6317]
5 [5.91, [24.29, [3244, [14.18, [0.4418,
6.42) 24.74] 3255] 15.01] 0.4815]
3 [6.48, [25.34, [3137, [14.42, [0.3918,
7.00] 25.82] 3151] 15.24] 0.4251]
4 [7.29, [20.67, [3875, [16.96, [0.4360,
7.771 21.18] 3893] 17.76] 0.4669]
5 [6.67, [3.05, [6757, [72.27, [0.9239,
7.191 3.59] 6764] 73.25] 1.0000]
6 [4.27, [1.09, [4870, [26.96, [0.8889,
4791 1.56] 4884] 28.16] 1.0000]
7 [9.93, [3.50, [4368, [24.31, [0.3640,
10.49] 4.00] 4385] 25.19] 0.3861]

TABLE 15. Interval cross-efficiency scores for biomass charcoal
briquettes.

DMU, Target DMU Interval

ACE

1 2 3 4 5 6 7

[0.5833,[0.5833,[0.5833, [0.5833, [0.5557, [0.5833, [0.5833,[0.5794,
0.6317] 0.6317] 0.6317] 0.6317] 0.5130] 0.6228] 0.6317] 0.6134]
[0.4418,[0.4418,[0.4418, [0.4418,[0.4262, [0.4418,[0.4418,[0.4395,
0.4815] 0.4815] 0.4815] 0.4815] 0.2958] 0.4769] 0.4815] 0.4543]
[0.3918,[0.3918,[0.3918,[0.3918, [0.3802, [0.3918,[0.3918,[0.3902,
0.4251] 0.4251] 0.4251] 0.4251] 0.2682] 0.4219] 0.4251] 0.4022]
[0.4360,[0.4360,[0.4360, [0.4360, [0.4207, [0.4360,[0.4360,[0.4338,
0.4669] 0.4669] 0.4669] 0.4669] 0.3253] 0.4622] 0.4669] 0.4460]
[0.8216,[0.8216,[0.8216, [0.8216,[0.9239, [0.8216,[0.8216,[0.8362,
0.8866] 0.8866] 0.8866] 0.8866] 1.0000] 0.9238] 0.8866] 0.9081]
[0.8889,[0.8889,[0.8889, [0.8889, [0.8837, [0.8889,[0.8889,[0.8881,
1.0000] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000]
[0.3640,[0.3640,[0.3640, [0.3640, [0.3622, [0.3640,[0.3640,[0.3638,
0.3861]0.3861] 0.3861] 0.3861] 0.3804] 0.3860] 0.3861] 0.3852]

~

The calculation procedure is the same as in Section A.
By solving the MO-IDEA-CCR model; the interval CCR
scores were obtained as in the last column of Table 14.
After getting the optimal weights of inputs and outputs from
the MO-IDEA-CCR model, the interval ACE scores were
calculated according to Equations (3) to (6). As a result, the
interval ACE scores achieved for each DMU are shown in
Table 15.

After obtaining the interval ACE scores for each DMU,
the GICE scores were calculated using the MO-G-IDEA-CE
method. As a result, GICE scores were achieved, as shown in
Table 16.

Table 16 shows that the final GICE scores for all
DMUs were achieved at Iteration 10. After obtaining the
GICE scores of all DMUs, the possibility degree formula,
Equation (11), was used to generate the possibility degree
matrix, P = (p;j)7x7, as shown in Table 17.

After obtaining Table 17, the Boolean possibility degree
matrix (Q) was generated using Equation (11). Details of Q
are shown in Table 18.
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Iteration
DMU;
1 2 3 4 5
, [0.5794, [0.5811, [0.5812, [0.5812, [0.5812,
0.6134] 0.6250] 0.6295] 0.6306] 0.6307]
5 [0.4395, [0.4389, [0.4390, [0.4389, [0.4388,
0.4543] 0.4711] 0.4783] 0.4811] 0.4815]
3 [0.3902, [0.3894, [0.3894, [0.3893, [0.3892,
0.4022] 0.4168] 0.4228] 0.4249] 0.4251]
4 [0.4338, [0.4336, [0.4336, [0.4333, [0.4331,
0.4460] 0.4584] 0.4642] 0.4666] 0.4669]
5 [0.8362, [0.9098, [0.9204, [0.9229, [0.9232,
0.9081] 0.9886] 1.0000] 1.0000] 1.0000]
6 [0.8881, [0.8879, [0.8879, [0.8879, [0.8878,
1.0000] 1.0000] 1.0000] 1.0000] 1.0000]
7 [0.3638, [0.3635, [0.3635, [0.3635, [0.3635,
0.3852] 0.3858] 0.3860] 0.3860] 0.3860]

TABLE 16. (Continued.) The GICE scores of biomass charcoal briquettes.

Iteration
DMU;
6 7 8 9 10*
1 [0.5811, [0.5811, [0.5811, [0.5811, [0.5811,
0.6307] 0.6307] 0.6307] 0.6306] 0.6306]
3 [0.4388, [0.4388, [0.4387, [0.4387, [0.4387,
0.4815] 0.4815] 0.4815] 0.4815] 0.4815]
3 [0.3892, [0.3891, [0.3891, [0.3891, [0.3891,
0.4251] 0.4251] 0.4251] 0.4251] 0.4251]
4 [0.4331, [0.4330, [0.4330, [0.4330, [0.4330,
0.4669] 0.4669] 0.4669] 0.4669] 0.4669]
5 [0.9233, [0.9233, [0.9233, [0.9233, [0.9233,
1.0000] 1.0000] 1.0000] 1.0000] 1.0000]
6 [0.8878, [0.8878, [0.8878, [0.8878, [0.8878,
1.0000] 1.0000] 1.0000] 1.0000] 1.0000]
7 [0.3634, [0.3634, [0.3634, [0.3634, [0.3634,
0.3860] 0.3860] 0.3860] 0.3860] 0.3860]

TABLE 17. The possibility degree matrix (P) for the biomass charcoal
briquettes.

1 2 3 4 5 6 7
0.50 1.00 1.00 1.00 0.00 0.00 1.00  0.50
0.00 0.50 1.00 0.71 0.00  0.00 1.00  0.00
0.00 0.00 0.50 0.00 0.00 0.00 1.00  0.00
0.00 029 1.00 0.50 0.00 0.00 1.00  0.00
1.00 1.00 1.00 1.00 0.50 0.66 1.00 1.00
1.00 1.00 1.00 1.00 034 0.50 1.00 1.00
0.00  0.00 0.00 0.00 0.00 0.00 050 0.00

~N N W N =

After obtaining the A, A" = {5, 4, 2, 3, 7, 6, 1}, ranking
DMUs in descending order in accordance with the higher
value of 1}, we have DMUs > DMUg > DMU; > DMU, >
DMU,4 > DMU3; > DMUJy. In addition, Wang et al.’s method
[29] and Wu et al.’s method [34] were used to solving this
problem for ranking comparisons. The ranking comparisons
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TABLE 18. The Boolean matrix (q) for the biomass charcoal briquettes.

_ J

l 1 2 3 4 5 6 7 A Rank
1 1 1 1 1 o 0 1 5 3

2 0 1 1 1 0 0 1 4 4

3 0 0 1 0 0 0 1 2 6

4 0 0 1 1 0 0 1 3 5

5 1 1 1 1 1 11 7 1

6 1 1 1 1 0 1 1 6

7 0 0 0 0 0o 0 1 1 7

TABLE 19. The ranking comparisons of the proposed method and the
other techniques for the biomass charcoal briquettes.

Wu et al.

IDEA-CCR [29] (34] Proposed method
DMU; -
Eff. MRA Rank RED Rank GICE /ll_ Rank
[0.5833, [0.5811,
1 0.6317] 0.4167 0.0484 3 0.6306] 5 3
[0.4418, [0.4387,
2 0.4815] 0.5582 0.0880 4 0.4815] 4 4
[0.3918, [0.3891,
3 0.4251] 0.6082 0.1056 6 0.4251] 2 6
[0.4360, [0.4330,
4 0.4669] 0.5640 0.0913 5 0.4669] 3 5
[0.9239, [0.9233,
5 1.0000] 0.0761 0.0062 2 1.0000] 7 1
[0.8889, [0.8878,
6 1.0000] 0.1111 0.0027 1 1.0000] 6 2
[0.3640, [0.3634,
7 0.3861] 0.6360 0.1170 7 0.3860] 1 7
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FIGURE 8. The Convergence procedure of the MO-G-IDEA-CE method for
lower values of GICE scores.

of the proposed method and the other techniques for all
DMUs are shown in Table 19.

After the Spearman correlation test, the r, for the proposed
MO-G-IDEA-CE method and the IDEA-CCR model [29] and
Wau et al.’s method [34] are evaluated as r; = 1.000 and 0.964,
respectively.
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Fig. 8 and 9 demonstrate that after ten iterations, all
DMUs generated by the proposed method attain constant
GICE scores, which means the optimal solutions are the Nash
equilibrium points, as demonstrated elsewhere [36].

V. CONCLUSION

In developing countries, agricultural residuals can be used to
make biomass charcoal briquettes for cooking and heating.
This idea is one good idea to solve the energy shortage
problem of almost every agricultural country. However, the
important properties of each biomass material must first
be considered to find suitable biomass for processing into
charcoal briquettes. Sometimes these qualities are measured
with imprecise values, making it exceedingly challenging
to rank biomass materials (DMUs). To solve this problem,
this paper offers the new MO-G-IDEA-CE method based
on the Boolean possibility degree to tackle the IDEA rank-
ing problems, including seven biomass materials with inter-
val properties and a simple numerical example. Unlike the
existing IDEA models, the proposed models can be used to
generate the lower and upper bounds of interval efficiencies
for all DMUs simultaneously. The optimal weights of inputs
and outputs from the proposed models satisfy the entire
IDEA, but the optimal weights of inputs and outputs from
the existing models do not. Through three examples, we find
that the proposed method has a very high correlation with
the other methods and provides a new direction for IDEA
ranking problems based on the ideas of the traditional Game
cross-efficiency method and the Boolean possibility degree.
In particular, for the case study of seven biomass materials,
after the Spearman correlation test, the correlation coeffi-
cients (ry) for the proposed method and Wang’s method, and
Wu et al.’s method are calculated as r; = 1.000 and 0.964,
respectively.

Although three numerical examples have illustrated our
method’s advantages, potential, and applications, the limi-
tation of the proposed method is that using it for solving
more significant IDEA problems or other IDEA problems
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with various data may be more challenging to calculate the
equilibrium point, or it may take a more significant number of
calculation iterations. However, for future work, we believe
the proposed method can be extended or adapted to tackle
other complicated IDEA problems in real-world situations.
In addition, it is hard to develop the proposed method with the
fuzzy cross-efficiency evaluation method to measure DMUs
with fuzzy or missing data, but this direction is worth further
investigation.
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