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ABSTRACT The traveling salesman problem (TSP) is one of the most extensively studied problems in
the combinatorial optimization area and still presents unsolved challenges due to its NP-hard attribute.
Although many real-coded algorithms are available for TSP, they still have some performance challenges
in the switch from continuous space to discrete space and perform at low convergence speed. This paper
proposes a real-coded carnivorous plant algorithm with a heuristic decoding method (CPA-HDM) to solve
the traveling salesman problem (TSP), which exhibits good convergence speed and solution accuracy. In this
improved method, a new heuristic decoding method (HDM) is designed, which helps to map continuous
variables to discrete ones without losing information, maintain population diversity, and enhance the solution
quality after decoding. To balance the algorithm’s search capability and enhance the probability of preferable
individuals generated, an adaptive attraction probability (AAP), an improved growth model of carnivorous
plants (IGMOCP), and a position update method of prey (IPUMOP) are developed. Aiming to reduce the
probability of premature and prevent search stagnation, an improved reproduction strategy (IRS) and an
adaptive combination perturbation are reconstructed. Finally, a local search algorithm is employed to improve
the exploitation capability. To verify its validation, CPA-HDM is compared with six algorithms, for solving
28 TSP instances. The simulation results and statistical analyses demonstrate the superior performance of
the proposed algorithm.
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INDEX TERMS Real-coded carnivorous plant algorithm, traveling salesman problem, heuristic decoding
method, adaptive combination perturbation.

I. INTRODUCTION19

Optimization problems can be divided into continuous and20

combinatorial optimization problems, and mostly belong to21

combinatorial ones in the real world. As one of the classi-22

cal discrete combinatorial optimization problems, the TSP,23

aims to find the shortest route by traveling m cities with24

minimum distance, each city travels exactly once and can25

be visited in any order, finally returning to the start city.26

The practical applications involve logistics distribution [1],27

AGV path planning [2], UAV route optimization [3], [4],28
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production scheduling [5], [6], and drilling holes in printed 29

circuit boards [7] can be ascribed to TSP. Generally, a minor 30

enhancement of solutions or a reduction in execution time 31

can economize millions of dollars or a significant increase in 32

productivity for enterprises. Besides, TSP has been verified 33

as an NP-hard problem [8], which means that with the city 34

number growing, it is difficult to find an optimal or even 35

suboptimal solution within a polynomial time. Hence, it is 36

of considerable practical and scientific significance to study 37

TSP, and it is still an active research direction in artificial 38

intelligence. 39

Methods for solving TSP can be summarized into 40

three categories: exact algorithms, heuristic algorithms, and 41
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meta-heuristic algorithms. The exact algorithms such as42

dynamic programming [9], branch and bound [10], and inte-43

ger linear programming [11] are not practical due to their44

exponential time cost. Heuristic algorithms such as near-45

est neighbor [12] and local search algorithm [13], [14] can46

acquire optimal or near-optimal value in an acceptable time47

when solving TSP with relative medium-scale, whereas it48

tends to get trapped into a local optimum.49

The meta-heuristic algorithm is easy to implement, and50

only the information about the fitness function is needed in51

the optimization process. Exploration and exploitation ability52

play a significant role in the meta-heuristic algorithm, the53

former enables the algorithm to explore areas with better54

solutions in the search space and escape from local optimum,55

and the latter improves the possibility of achieving preferable56

solutions. The algorithm which combines these two abilities57

nicely can refrain itself from converging prematurely in the58

early stages and quickly converges to the global optimal59

at the end of optimization. In consequence, meta-heuristic60

algorithms perform better in TSP with less computation time61

compared with exact algorithm and heuristic algorithm, it can62

be summarized into three categories: (1) evolution-based63

which consists of the genetic algorithm [15], [16]; differen-64

tial evolution [17]; (2) physics-based which consists of the65

water cycle algorithm [18], randomized gravitational emu-66

lation search algorithm [19]; (3) swarm intelligence-based67

which consists of ant colony optimization algorithm [20],68

particle swarm optimization [21], bat algorithm [22], grey69

wolf optimizer [23], etc.70

CPA is a swarm intelligence-based optimization algorithm71

inspired by the survival skills of carnivorous plants, first72

proposed in 2021 [24], and has been proven to be effective and73

robust in addressing continuous problems and engineering74

design problems. Then Mukherjee and Roy [25] presented75

an improved binary CPA, which exhibits strong exploration76

and exploitation ability and address the optimal micro-PMU77

placement problem in the distribution network successfully.78

To the best of our knowledge, CPA in the existing literature79

applied to solve TSP has not been detected. The method80

for algorithms suitable for continuous problems to solve81

TSP can be classified into two categories: (1) the algorithm82

employs permutation-coded, and the new solutions, in this83

type, are generatedwithout changing their discrete properties;84

(2) the algorithm introduces a decoding method to generate85

the legal solution. In the first class, Akhand et al. [26] and86

Khan et al. [27], [28] employed swap sequence and swap87

operator to keep the discrete format by swapping the positions88

of two genes, although the above algorithms do not need to89

be decoded, they play a minor role in the offspring quality90

improvement of its heuristic insufficiency and exhibit low91

convergence speed. The literature [18], [23], [29] employed92

hamming distance to redesign the individual generation oper-93

ator according to the characteristics of TSP. Although these94

methods above can improve the solution quality and have95

strong search ability, they are prone to stick to local optimum96

and the algorithm design idea is changed. In the second class,97

the order-based arrangement [30], [31] and rounding method 98

[32], [33] are commonly employed for decoding, which is 99

easy to implement but plays a negative role in the solution 100

quality of its randomicity. The limitations of the decoding 101

method for TSPs, the lack of CPA in addressing combi- 102

natorial optimization problems, and the promising results 103

achieved by CPA in continuous problems have severed as the 104

main motivation of this paper. 105

Considering the above problems, a new decoding method 106

HDM, which both considers the distance between cities and 107

the continuous variables of individuals, is designed at first. 108

For one thing, it can extract the outstanding features of parent 109

individuals, for another, it can diversify the population. Thus, 110

HDM can play a positive role in the convergence rate of the 111

algorithm. 112

Themain effort of the proposed algorithm is to improve the 113

convergence rate and the search precision on TSP instances of 114

different sizes. To achieve it, CPA has been further optimized. 115

Firstly, in the existing literature, the growth of carnivorous 116

plants or the update of prey depends on attraction proba- 117

bility, and attraction probability is a constant, which cannot 118

well balance the exploration and exploitation ability. Thus, 119

an AAP based on distance and city size is proposed, the 120

distance between the carnivorous plant and prey determines 121

whether the prey can be successfully attracted. Secondly, 122

the attraction may approach 0 in the growth phase, result- 123

ing in a slow convergence speed. Then the CPA-HDM adds 124

the guidance of the best individual in the growth model of 125

carnivorous plants and the subgroup’s best individual in the 126

position update rule of prey, which can improve the quality 127

of offspring. Thirdly, the reproduction phase only allows 128

the optimal individual to reproduce, which may enhance 129

the probability of the algorithm falling into the local opti- 130

mum. Therefore, the IRS is proposed, and all carnivorous 131

plants are allowed to reproduce, which is helpful to increase 132

the information interaction among subgroups. Fourthly, the 133

2-opt exchange is generally used to detect a better solution, 134

however, the edges involved in the standard 2-opt exchange 135

are chosen at random, and the low probability of excellent 136

individuals is generated, which causes unnecessary search 137

times in the iteration. To address this problem, the neigh- 138

borhood 2-opt and double-bridge exchange are presented 139

in this paper. Finally, to improve the search accuracy, the 140

2-Opt algorithm is adopted. Thus, the proposed algorithm 141

can both possess exploration and exploitation capabilities, 142

which obtain high-quality solutions and high convergence 143

speed. 144

The key contributions of this paper can be summarized as 145

follows: 146

• A new decoding method HDM is designed to improve 147

the solution quality and population diversity; 148

• The AAP is presented to balance the exploration and 149

exploitation ability. 150

• The IGMOCP & IPUMOP are developed to extend the 151

search space and increase the probability of producing 152

better offspring. 153
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• The IRS is proposed to reduce the probability of154

premature.155

• An adaptive combination perturbation is added to pre-156

vent search stagnation.157

• 28 instances are adopted to verify the validation of158

CPA-HDM, the experiment results and statistical analy-159

ses indicate that the proposed algorithm is performance160

superior to its competitors.161

The remainder of this paper is done as follows: the knowl-162

edge of standard carnivorous plant algorithm and TSP are163

introduced in Section II; the details of CPA-HDM for solving164

TSP are presented in Section III; the experimental analyses165

are conducted in Section IV; the conclusion and the future166

work are proposed in Section V.167

II. RELATED WORKS168

This section introduces the meta-heuristics algorithms for169

solving TSP, the standard carnivorous plant algorithm, and170

the TSP. The survey of recently meta-heuristics for the TSP171

is briefly introduced in Section A. The details of the standard172

carnivorous plant algorithm are introduced in Section B. The173

TSP and its goal are described in Section C .174

A. META-HEURISTIC ALGORITHMS FOR TSP175

Many meta-heuristics algorithms have been proposed for176

solving TSP, which can be broadly divided into the meta-177

heuristic algorithms with decoding method and without178

decoding method for TSP.179

1) ALGORITHMS WITHOUT DECODING METHOD FOR TSP180

Various meta-heuristic algorithms adopt permutation-coded,181

which need to alter updating methods to keep the discrete182

properties of TSP. Osaba et al. [29] presented a discrete bat183

algorithm (DBA) with hamming distance, two well-known184

operators 2-Opt and 3-Opt are employed to improve the185

solution quality. Khan and Maiti [28] proposed a swap186

sequence based artificial bee colony algorithm (ABC) to187

update the solution without changing its discrete proper-188

ties, then the 3-Opt operator is introduced to improve the189

stagnant solution in the scout bee phase, and at the end of190

the search process. Wang et al. [34] proposed a discrete191

symbiotic organism search with excellent coefficient and192

self-escape (ECSDSOS) by the new calculation method of193

position update rules. The excellent coefficient strategy helps194

to enhance the exploitation capability and the self-escape195

strategy helps to keep population diversity. Akhand et al.196

[26] adopted a discrete spider monkey optimization (DSMO).197

In DSMO, all the spider monkey was represented as TSP198

solution. To find a better individual, the swap sequence and199

swap operator were employed to make interaction among200

monkeys. A discrete water cycle algorithm (DWCA) was201

proposed by Eneko et al. [18]. Three strategies are employed202

to improve the performance of the algorithm, which are:203

(1) the Hamming distance is introduced to measure the204

difference between two individuals; (2) the insert mutation205

operator is adopted to emulate the evaporation and raining 206

process in the discrete solution space; (3) an adaptive mod- 207

ification parameter is proposed to choose movement opera- 208

tors. Kóczy et al. [35] presented a discrete bacterial memetic 209

evolutionary algorithm (DBMEA) with the local search 210

algorithm, which employed the nearest neighbor, secondary 211

nearest neighbor, alternating nearest neighbor heuristic, and 212

random creation method to generate the initial population, 213

combined gene transfer operation to improve the solution 214

quality. Zhang et al. [36] presented a whale optimization 215

algorithm with several effective components. The Gaussian 216

disturbance helps to maintain population diversity, and the 217

variable neighborhood search strategy helps to improve the 218

solution quality. Panwar and Deep [23] presented a dis- 219

crete grey wolf optimizer (DGWO) by introducing the 2-Opt 220

operator and hamming distance in the grey wolf optimizer. 221

Wu et al. [37] designed a new sparrow search algorithm with 222

a greedy algorithm. In this method, several components are 223

employed to enhance the performance of the algorithm. First, 224

the greedy algorithm helps to keep population diversity. Sec- 225

ond, a sine and cosine search strategy is employed to update 226

the solution. Finally, the genetic operators are employed to 227

balance the search capability. Saji and Barkatou [38] pre- 228

sented a discrete bat algorithm with Lévy Flight (DBAL) by 229

improving the velocity updating formula of the bat algorithm. 230

To avoid trapping into a local optimal and enhance the popu- 231

lation diversity, the improved uniform crossover operator and 232

neighborhood search are employed to solve TSP. Gunduz and 233

Aslan [39] reconstructed a discrete Jaya algorithm (DJAYA) 234

with different swap, shift, and symmetry exchange operator 235

combinations, and finally, the 2-Opt algorithm is employed 236

to enhance the quality of the optimal individual in the pop- 237

ulation. Huang et al. [40] proposed a discrete shuffled frog- 238

leaping algorithm (DSFLA). In DSFLA, four strategies are 239

incorporated to enhance its performance. First, an improved 240

roulette selection is proposed to maintain the population 241

diversity; Second, the independent set is proposed to increase 242

the exploration ability; Third, the local optimum mutation 243

operator is presented to reduce the probability of stagnating; 244

Finally, the local search algorithm is employed to improve the 245

solution accuracy. 246

Some algorithms employ mathematical formulas suit- 247

able for the continuous problem and need to adopt the 248

decoding method to generate legal TSP paths. Ezugwu and 249

Adewumi [33] adopted the rounding method and restruc- 250

tured symbiotic organisms search by incorporating swap, 251

insert, and inverse operators to form a discrete symbi- 252

otic organisms search (DSOS). Three mutation operators 253

are employed to improve its initial population. Zhang and 254

Han [30] applied the order-based arrangement to map contin- 255

uous variables as discrete ones in the discrete sparrow search 256

algorithm (DSSA), the roulette wheel selection, Gaussian 257

mutation, and swap operator are introduced in DSSA to 258

increase the probability of jumping out of the local opti- 259

mum, the 2-Opt algorithm is adopted to enhance the solution 260

quality. 261
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2) ALGORITHMS WITH DECODING METHOD FOR TSP262

Several heuristic decoding methods [41] [42] have been263

proposed to tackle job shop problems, however, the decod-264

ing methods commonly used in TSP lack heuristic. Some265

algorithms employ mathematical formulas suitable for the266

continuous problem and need to adopt the decoding method267

to generate legal TSP paths. Ezugwu et al. [32] adopted268

the rounding method and restructured symbiotic organisms269

search by incorporating swap, insert, and inverse operators to270

form a discrete symbiotic organisms search (DSOS). Three271

mutation operators are employed to improve its initial popu-272

lation. Osaba et al. [29] applied the order-based arrangement273

to map continuous variables as discrete ones in the discrete274

sparrow search algorithm (DSSA), the roulette wheel selec-275

tion, Gaussian mutation, and swap operator are introduced276

in DSSA to increase the probability of jumping out of the277

local optimum, the 2-Opt algorithm is adopted to enhance the278

solution quality.279

Meta-heuristic algorithms with the real-coded need to280

introduce a decoding method to map continuous variables281

of solutions to discrete legal solutions when solving TSP.282

Samanlioglu et al. [43] proposed a random-key genetic algo-283

rithm (RKGA) with the ranked-order value decoding to solve284

multi-objective TSP. RKGA combined the 2-Opt algorithm to285

improve the solution quality. Ezugwu et al. [32] proposed a286

simulated annealing-based symbiotic organisms search opti-287

mization algorithm (SOS-SA) with the rounding method.288

The SA in SOS-SA can help to reduce the probability of289

getting stuck into the local minimum and increase the pop-290

ulation diversity. Ali et al. [44] presented a novel discrete291

differential evolution (NDDE) with the ranked-order value292

and best-matched value decoding method, and several strate-293

gies are incorporated to enhance the performance of the294

NDDE. Among them, the k-means clustering is used to295

improve the quality of the initial population, and a com-296

bined mutation is introduced to heighten the exploration297

ability. Finally, the 3-Opt and double-bridge are employed298

to enhance the exploitation ability. Kanna et al. [45] con-299

structed a new hybrid algorithm named earthworm-based300

deer hunting optimization algorithm (EW-DHOA) to address301

large-scale TSP.302

B. STANDARD CARNIVOROUS PLANT ALGORITHM303

Unlike most plants that absorb nutrients through photosyn-304

thesis, carnivorous plants are autotrophic plants that capture305

and digest animals to obtain nutrients. They usually grow306

in harsh environments lacking nutrients, trapping insects,307

frogs, small lizards, birds, and other small animals through308

color or secretions to supplement additional nutrients such as309

nitrogen and phosphorus needed for growth and reproduction.310

The CPA is a meta-heuristic algorithm proposed by imitating311

the whole predation process of carnivorous plants attracting,312

preying, and digesting. Four stages are comprised in the313

algorithm, which are classification and grouping, growth,314

reproduction, and recombination. The details are described315

as follows.316

FIGURE 1. The grouping process at size 12 in CPA.

1) CLASSIFICATION AND GROUPING 317

The population size of CPA is nn, individuals in the pop- 318

ulation are sorted from the smallest to largest according to 319

their fitness values for the minimization problem, the best 320

n individuals are regarded as carnivorous plants, and the 321

remaining n1 individuals are regarded as prey (n1 > n, n1 322

is divisible by n). The group number is n, individuals in each 323

group are comprised of one carnivorous plant and n1/n prey. 324

The best prey is attracted by the best carnivorous plant, the 325

second-best prey is attracted by the second-best carnivorous 326

plant, the process is repeated, and the nth best prey is attracted 327

by the nth best carnivorous plant. It is noted that the (n+ 1)th 328

best prey is attracted by the best carnivorous plant, and the 329

(n+2)th prey is attracted by the second-best carnivorous plant, 330

and the process is repeated until the nth1 prey is attracted by 331

the nth carnivorous plant. 332

The grouping process is depicted by an example in Fig. 1, 333

where population size nn = 12, the number of carnivo- 334

rous plants n = 3, the number of prey n1 = 9, X = 335

(X1, X2, . . . ,X12) before sorting and it becomes X ′ = 336

(X ′1,X
′

2, . . . ,X
′

12) after sorting, the objective function values 337

satisfied F (X ′1) ≤ F (X ′2) ≤ · · · ≤ F (X ′12). 338

2) GROWTH PHASE 339

The carnivorous plant lured prey by its scent, but prey may 340

successfully escape from the plants or not be attracted. Hence, 341

an attraction probability γ is introduced in CPA, if γ (γ = 342

0.8) is greater than a random number λ (λ is generated in the 343

range [0,1]), the carnivorous plant successfully lures the prey 344

to growth, and the model can be formulated as: 345

newxpi = piv + α ⊗ (xpi − piv) (1) 346

α = gr ∗ rand (2) 347

where ⊗ represents multiplying the variables at the same 348

position in two vectors, xpi is the carnivorous plant in group 349

i, piv is the vth prey in group i, rand is the random vector in 350

the range [0,1], gr is the growth rate, usually equals to 2. 351

If γ is less than λ, which stands for the prey escapes from 352

the trap or not being attracted by the plant and the growth 353

model of prey can be expressed as: 354

newpij = piv + α ⊗ (piu − piv) (3) 355
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α =

{
gr ∗ rand f (piu) < f (piv)
1− gr ∗ rand f (piv) < f (piu)

(4)356

where ⊗ represents multiplying the variables at the same357

position in two vectors, piu and piv are the uth and vth prey in358

group i, respectively. rand is the random vector in the range359

[0, 1], f (piv) and f (piu) are the fitness value of the vth and uth360

prey in group i, respectively.361

3) REPRODUCTION PHASE362

The best carnivorous plant is allowed to perform the363

reproduction operation, and the mathematical model is364

summarized as:365

newxpi =
{
xp1 + β ⊗ (xpj − xpi) f (xpj) < f (xpi)
xp1 + β ⊗ (xpi − xpj) f (xpi) < f (xpj)

(5)366

β = µ ∗ rand (6)367

where ⊗ represents multiplying the variables at the same368

position in two vectors, xp1 is the best individual in the369

population, xpi, xpj are the carnivorous plant in group i and370

group j, respectively, rand is the random vector in the range371

[0, 1], µ is the reproductive rate, usually equals to 1.8, f (xpi)372

and f (xpj) are the fitness value of the carnivorous plant in373

group i and group j, respectively.374

4) RECOMBINATION PHASE375

First, the newly generated individuals and the previous pop-376

ulation are combined into a new population. Second, individ-377

uals in the new population were ranked in order of fitness378

value from small to large. Finally, select nn best individuals to379

maintain the same population size as the previous population.380

This process is called recombination, which ensures that fitter381

individuals can be selected for the later generation.382

The pseudo-code of standard CPA is presented in383

Algorithm 1.384

Algorithm 1 CPA
Input: the population size nn; the population size of
carnivorous plants xp: n, the population size of prey
p: n1, growth_rate, reproduction_rate, Maximum iteration:
Maxgen;
Output: Best solution and the optimal value;
1: Generate nn initial individuals in the population;
2: Calculate the fitness value and sort based on the fitness

value;
3: While gen< Maxgen
4: Set n best individuals as carnivorous plants, the

remaining n1 individuals as prey, and sort a group as
depicted in Fig.1;

5: Newxp, Newp is updated with (1) and (3);
6: Newxp is updated with (5);
7: Newxp,Newp, xp, and p combined a new population;
8: Calculate the fitness of the population;
9: Sort according to the fitness value and select nn best

individuals;
10: End While

C. THE TRAVELING SALESMAN PROBLEM 385

TSP is usually described as a merchant who traversesm cities 386

to sell goods. In this process, one must pass through all the 387

cities, each city can only pass through once and finally return 388

to the original city. TSP can be represented as a weighted 389

graph G = (V , E), which goal is to find a Hamilton loop 390

with the smallest weights. V is the set of vertices, and E is 391

the set of edges. The vertices of the graph represent cities, the 392

edges denote the path between cities, and the weight of an 393

edge indicates the Euclidean distance between two cities. 394

Although the definition of TSP is simple, as the number 395

of cities increases, the number of possible tours increases 396

dramatically. The challenge is to solve this problem in an 397

acceptable time with the lowest travel costs. Until now, there 398

is still no effective way to solve this problem, and it can be 399

divided into symmetric and asymmetric TSP. If the distance 400

from city i to city j equals from j to i, it is considered 401

a symmetric problem, otherwise, an asymmetric problem. 402

Mathematically, the problem with m cities can be expressed 403

as: 404

Min f (D) =
m−1∑
i=1

d(ti, ti+1)+ d(tm, t1) (7) 405

where f (D) is the distance traveled by the merchant in TSP, 406

ti denotes ith city, d (ti, ti+1) represents the distance between 407

the ith city and (i+ 1)th city, which is calculated as 408

d(ti, ti+1) =
√
(xi − xi+1)2 + (yi − yi+1)2 (8) 409

where (xi, yi) and (xi+1, yi+1) are the coordinate of the ith city 410

and (i+ 1)th city. 411

III. THE PROPOSED ALGORITHM CPA-HDM FOR 412

SOLVING TSP 413

The CPA divides the population into several subgroups 414

according to the fitness of individuals. In each subgroup, 415

carnivorous plants and prey are applied to guide the pop- 416

ulation to explore the solution space in various directions, 417

so that the algorithm has strong global searchability. The 418

optimal individual is allowed to reproduce in the reproduction 419

stage, which helps the convergence speed of the algorithm. 420

However, CPA is real-coded, and the solutions may with 421

decimal and repetitions, which are infeasible for solutions of 422

TSP. Therefore, it is necessary to find a suitable decoding 423

method to map continuous variables as legal TSP paths. 424

In addition, to enhance the performance of CPA, several 425

improvements are proposed to effectively balance the explo- 426

ration and exploitation capabilities, and further improve the 427

convergence speed and solution quality. These improvements 428

will be discussed in the following subsections. 429

A. INITIALIZATION 430

Let the initial population X0
= (X0

1 ,X
0
2 , . . . ,X

0
i , . . . ,X

0
nn), 431

X0
i = (x1, x2, . . . , xm), and the upper and lower bounds of 432

variable values are b and a, respectively, where nn is the 433
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TABLE 1. The distance between five cities.

TABLE 2. The example of HDM.

population size,m is the city size, a = 0, b = m. The variables434

can be randomly and uniformly generated between a and b.435

Therefore, the ith individual X0
i in the initial population can436

be initialized as437

X0
i = m ∗ rand(1,m) i = 1, 2, . . . , nn (9)438

where rand (1, m) is an m dimensional random vector in the439

range [0, 1].440

B. HEURISTIC DECODING METHOD441

The decoding method plays a vital role in the solution quality442

and the population diversity of the algorithm with real-coded443

on solving TSP. The commonly used decoding methods444

include order-based arrangement and rounding [30], [32]. For445

the former, the rank of each continuous variable of an indi-446

vidual represents an index of a city, a legal path is obtained447

according to the sorting result. The latter is to round the448

corresponding real value of each individual and processed449

the repetition integer to make a feasible solution. However,450

the above two methods only consider the continuous vari-451

ables, and the distance between cities is ignored, which may452

play a negative role in the solution quality after decoding for453

its randomicity.454

Based on the above problems, a new decoding method that455

both considers the distance between cities and continuous456

variables is designed, which is heuristic and beneficial to457

keeping population diversity. This method is suitable for real-458

coded meta-heuristics and has broad applicability. The TSP459

with population size nn, city size m, and the k th individual460

Xk = (x1, x2, . . . , xm) are set as an example, the specific steps461

are as follows:462

Step 1: A uniformly distributed random integer µ is gener-463

ated between [1, m], µ is set as a home city;464

Step 2: The µth variable value of Xk is removed, which465

is recorded as X ′k , X
′
k = (x1, x2, . . . , xµ−1, xµ+1, . . . , xm),466

the distance between city µ and the rest of the cities are467

found, which is recorded as d , d = (dµ,1, dµ,2, . . . , dµ,µ−1, 468

dµ,µ+1, . . . , dµ,m). Then, Tp is calculated according to (10). 469

Tp = d ⊗ (X ′k )
0.5 (10) 470

where ⊗ represents multiplying the variables at the same 471

position of vector d and vector (X ′k )
0.5; 472

Step 3: The minimum value in the vector Tp is determined, 473

and take the city i corresponding to the minimum value as the 474

next city to be visited; 475

Step 4: Let µ = i. Step 2 and Step 3 are repeated until the 476

order of visits for all cities is determined. 477

To facilitate an understanding of HDM, city size m = 5, 478

µ = 2, and Xk = (1.3575, 4.5155, 3.4863, 0.7845, 0.0637) 479

are set as an example, the distance between each city is 480

defined in Table 1. The main steps of the HDM are shown 481

in Table 2. 482

Table 2 shows that when µ = 2, Xk = (1.3575, 4.5155, 483

3.4863, 0.7845, 0.0637), and the route after HDM is 2 → 484

5→ 3→ 4→ 1. 485

It can be seen from (10) that Tp is both related to the dis- 486

tance between cities and continuous variables of individuals. 487

For TSP, if the distance between the city i (i = 1, 2, . . . ,m− 488

1) and city i+1 is small, the probability that the route could be 489

small will be increased, and the decoding integrates with the 490

greedy idea of the nearest neighbor, which helps to enhance 491

the solution quality. However, it may result in an increment in 492

the probability of premature convergence, thus the continuous 493

variables are incorporated in decoding. Therefore, the HDM 494

applies in TSP helps to improve the solution quality and 495

maintain population diversity. 496

C. GROWTH PHASE 497

The attraction probability γ of prey by carnivorous plants 498

is constant at 0.8 in CPA. However, the concentration of 499

scent released by carnivorous plants decreases with distance. 500

Therefore, the closer the distance between prey and carnivo- 501

rous plant, the greater the attraction and vice versa. 502

Thus, an adaptive attraction probability γ based on dis- 503

tance and number of cities is proposed, which is calculated 504

as: 505

γ = e
−r0.6
1.4∗m (11) 506

where m is the city number, r is the distance between xpi and 507

piv, r is calculated as 508

r = ‖xpi − piv‖ 509

=

√√√√ m∑
j=1

(xpji − p
j
iv )2 i = 1, 2, · · · , n; v = 1, 2, · · · n1/n 510

(12) 511

where n is the number of carnivorous plants, n1 is the number 512

of prey, xpi is the carnivorous plant in group i, piv is the vth 513

prey in group i, xpji and p
j
iv are the j

th components of xpi and 514

piv, respectively. 515
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FIGURE 2. The trend of the attraction probability γ with distance r .

For a clearer understanding of AAP, m = 48, m = 299,516

and m = 783 are set as an instance, and the trend of γ with r517

is depicted in Fig. 2.518

It can be observed in Fig. 2 that the farther the distance519

between carnivorous plants and prey, the less γ , the greater520

probability of prey performing position updating, the more521

search directions for the population, and the strong explo-522

ration ability of the algorithm; the closer prey to carnivorous523

plant, the more γ , the greater probability of carnivorous plant524

to grow, and the strong exploitation ability. Since the initial525

population is randomly generated and evenly distributed in526

the solution space, the distance between individuals is rela-527

tively far in the early iterations and close in the later iterations.528

Therefore, the prey is selected to update with high probability529

and the exploration ability of the CPA is strong in the early530

stage, the carnivorous plant is selected to grow with high531

probability and the exploitation ability is strong in the late532

stage.533

The value of α is related to the search space of CPA, when 534

α is close to 0, the xpi - piv and piu - piv do not work at all, 535

and the global search ability of the algorithm becomes weak. 536

To address the above problems, the IGMOCP& IPUMOP are 537

proposed as follows: 538

newxpi = piv + α ⊗ (xpi − piv)+ σ ⊗ (xp1 − piu) (13) 539

newpi =


piu + α ⊗ (piv − piu)+ σ ⊗ (xpi − piw)

if f (piv) < f (piu)
piv + α ⊗ (piu − piv)+ σ ⊗ (xpi − piw)

if f (piu) < f (piv)

(14) 540

α =
m ∗ gr ∗ rand(1,m)

r
(15) 541

σ = (1− (
t

tmax
)0.8) ∗ rand1(1,m) (16) 542

where ⊗ represents multiplying the variables at the same 543

position in two vectors, xpi is the carnivorous plant in group 544

i, xp1 is the best individual in the population, piv, piu, piw are 545

the vth, uth, wth prey in group i, respectively. rand (1, m) is an 546

m dimensional random vector in the range [0.2, 1], rand1(1, 547

m) is anm dimensional random vector in the range [−1, 1], gr 548

is the growth rate, m is the city size, r in (13) is the distance 549

between xpi and piv, r in (14) is the distance between piv and 550

piu, tmax is the maximum runtime, t is the current runtime. 551

The implementation method of (13) and (14) is: 1) λ is 552

randomly and uniformly distributed generated in the range 553

[0, 1]; 2) if λ ≤ γ , the (13) is selected as the carnivorous plant 554

growth method; else the (14) is selected as the prey position 555

update method. 556

It can be observed from (13) that the attractiveness of 557

the optimal carnivorous plant to the prey is added in the 558

carnivorous plant growthmodel, which helps tomake the prey 559

move to the potential direction of the search space, improve 560

the probability of the excellent offspring, and strengthen the 561

exploitation ability. From (14), it can be known that the 562

attractiveness of the carnivorous plant to the prey in the same 563

group is added in the prey position update method, which 564

not only helps to enhance the exploration ability but also 565

improves the probability of the excellent offspring generated. 566

An optimization problem in 2 dimensions is taken as an 567

example to compare the difference between the basic and 568

improved updatemethods. Suppose the best carnivorous plant 569

xp1 = (1.7, 2)T , the carnivorous plant in ith group xpi = 570

(1, 1)T , the prey in ith group piu = (0.2, 0.2)T , piv = (2.2, 571

0.5)T , and piw = (0.1, 0.1)T , 1000 numbers of α in (1) 572

and (3) are randomly generated, 1000 numbers of α and σ 573

in (13) and (14) are generated according to (15) and (16), 574

respectively. The individuals’ distribution in the search space 575

obtained according to (1) and (13) is shown in Fig. 3(a) and 576

Fig. 3(b), respectively. The individuals’ distribution in the 577

search space obtained according to (3) and (14) is shown in 578

Fig. 4(a) and Fig. 4(b), respectively. 579

As is depicted in Fig. 3, the range of the abscissa of the 580

offspring produced by (1) is [−0.2, 2.2], and the range of 581

the ordinate is [0.5, 1.5], all newly generated individuals are 582

far away from the best carnivorous plant. However, the range 583
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FIGURE 3. The individuals’ distribution in the search space by the
carnivorous plant growth model.

FIGURE 4. The individuals’ distribution in the search space by the prey
position update.

of the abscissa of the offspring produced by (13) is [−1.1,584

3.1], and the range of the ordinate is [0.6, 3.4]. Compared585

with Fig. 3(a), the number of individuals near the optimal586

individual is increased in Fig. 3(b). In Fig. 4, the range of the 587

abscissa of the offspring produced by (3) is [−1.4, 2.2], the 588

range of the ordinate is [−0.05, 0.45], and all newly generated 589

individuals are far away from the carnivorous plant in the ith 590

group. However, the range of the abscissa of the offspring 591

produced by (14) is [-2.7, 2.3], and the range of the ordinate 592

is [-0.21, 1.2]. Compared with Fig. 4(a), the number of indi- 593

viduals near the carnivorous plant is increased in Fig. 4(b). 594

The analyses above show that the number of outstanding 595

offspring increases and the search space is expanded with the 596

IGMOCP & IPUMOP. 597

D. REPRODUCTION PHASE 598

Every carnivorous plant can prey and absorb nutrients for 599

growth and reproduction in real-life. However, CPA only 600

allowed the best carnivorous plant to reproduce, which is 601

inconsistent with the law in nature. Besides, the range of β 602

in CPA is [0, 1.8], when β is close to 0, the xpi − xpj does 603

not work at all, then the reproduction is difficult to generate 604

excellent offspring, and the algorithm is prone to stick in 605

the local optimal. In response to the above problems, the 606

reproduction strategy is improved as each carnivorous plant 607

is allowed to reproduce, and the reproduction of the best 608

carnivorous plant is different from that of other carnivorous 609

plants. The IRS is as follows 610

newxpi =
{
xp1 + β ⊗ (xpj − xpi) f (xpj) < f (xpi)
xp1 + β ⊗ (xpi − xpj) f (xpi) < f (xpj)

(17) 611

newxpi = xpi + β ⊗ (xp1 − xpj) (18) 612

where ⊗ represents multiplying the variables at the same 613

position in two vectors, xpi and xpj are the carnivorous plants 614

in groups i and j, respectively, xp1 is the best individual in 615

the population, β is an m dimensional random vector in the 616

range [0.5, 1.8]. 617

The implementation method of IRS is: 1) δ is randomly 618

and uniformly distributed generated in the range [0, 1]; 2) if 619

δ ≤ 0.6, the (17) is selected as the reproduction method; else 620

the (18) is selected. 621

The analysis of IRS shows that (17) has more exploitation 622

ability than (18), when the reproduction method with strong 623

exploitation capability is executed, the CPA can effectively 624

balance the exploration and exploitation abilities. When the 625

reproduction method with exploration capability is executed, 626

the CPA can decrease the probability of falling into the local 627

optimum. 628

E. ADAPTIVE COMBINATION PERTURBATION STRATEGY 629

The neighborhood 2-opt exchange and double-bridge 630

exchange are employed as perturbation methods in this paper 631

to find better individuals around nn∗rr best individuals locally 632

(nn is the population size and rr is the selection ratio), and 633

the local search algorithm 2-Opt is adopted to improve the 634

quality of neighborhood solutions, if the new individual is 635

better, it will replace the original solution. To avoid expensive 636

computing, the maximum number of neighborhood solutions 637

is limited to 10 in this paper, and the nn∗rr best individuals 638
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FIGURE 5. 2-opt exchange.

performing the perturbation are re-selected from the popula-639

tion in every I iterations.640

1) NEIGHBORHOOD 2-OPT EXCHANGE641

The idea of the 2-opt exchange [46] is to delete two non-642

adjacent edges randomly and connect the other two edges643

formed by the four points corresponding to the deleted edges,644

which can enhance population diversity. The 2-opt exchange645

is depicted in Fig. 5, where the initial path in Fig. 5(a) is646

X = (1, 2, 10, 9, 8, 7, 6, 5, 4, 3, 11,1), in Fig. 5(b) is X ′ = (1,647

2, 3, 4, 5, 6, 7, 8, 9, 10, 11,1).648

Suppose that the randomly selected cities in X are 2, 3, 10,649

and 11, the new route of X after reconnection is shown in650

Fig. 5(c), where d(2, 3)+ d(10, 11) is 41, d(2, 3) represents651

the Euclidean distance between city 2 and city 3. d(2, 10)652

+d(3, 11) in X is 96, it can be noticed that the path length653

after the 2-opt exchange is better than route X .654

However, suppose that the cities selected in X ′ are 1, 2,655

5, and 6, the new route of X ′ after reconnection is shown in656

Fig. 5(d), where d(1, 5) + d(2, 6) is 165, d(1, 2) + d(5, 6)657

in X ′ is 45, the new route of X ′ after reconnection is worse658

than the initial route. The edges involved in the standard 2-659

opt exchange are chosen at random, and the low probability of660

excellent individuals is generated, which causes unnecessary661

search times in iteration. A neighborhood 2-opt exchange is662

employed in this paper, and X = (x1, x2, . . . , xm) is set as an 663

example to illustrate this operation, where m is the city size. 664

The main steps are as follows: 665

Step 1: City a is randomly selected from m cities, a is the 666

center of the circle with radius r1 as the neighborhood, which 667

is recorded asU (a, r1). The calculation of r1 is shown in (19). 668

r1 =
2.5 ∗ Z
m

(19) 669

where Z is the path length of the best individual in the 670

population. 671

Step 2: The number of cities u contained in neighborhood 672

U (a, r1) needs to be determined. If u ≥ 2, aa1 and aa2 are 673

randomly selected in the neighborhood U (a, r1); if u = 1, let 674

aa1 = a, and aa2 is randomly selected in [1, 2, . . . , a − 1, 675

a+ 1, . . . ,m]; 676

Step 3: The city bb1 is found adjacent to aa1 in X , the city 677

bb2 adjacent to aa2, and bb1 6= aa2, bb2 6= aa1. If bb1 = bb2, 678

Step 1 and Step 2 are repeated until bb1 6= bb2; 679

Step 4: Delete edges (aa1, bb1) and (aa2, bb2), connect 680

edges (bb1, aa2) and (aa1, bb2). 681

The neighborhood 2-opt exchange is depicted in Fig. 6, 682

where the initial path in Fig. 6(a) is X = (1, 2, 10, 9, 8, 7, 683

6, 5, 4, 3, 11,1), in Fig. 6(c) is X ′ = (1, 2, 3, 4, 5, 6, 7, 8, 684

9, 10, 11,1). Suppose that city 3 in X is randomly selected 685

as the center of a circle and r1 as the radius, the cities in 686
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FIGURE 6. The neighborhood 2-opt exchange.

the neighborhood are 2 and 3. Thus, aa1 = 2, aa2 = 3,687

bb1 = 10, and bb2 = 11. The new route of X after Step688

4 is shown in Fig. 6(b), where d(2, 10) + d(3, 11) < d(2,689

3) + d(10, 11), it can be noticed that the path length after690

the neighborhood 2-opt exchange is better than route X . City691

6 in X ′ is assumed as the center of a circle, and the cities692

contained in the neighborhood with r1 as the radius are 5, 6,693

7, and 8. Suppose cities 6 and 7 are randomly selected from694

the neighborhood. Thus, aa1 = 6, aa2 = 7, bb1 = 5, and695

bb2 = 8. The new route after Step 4 is shown in Fig. 6(d),696

where d(5, 7) + d(6, 8) < d(5, 6) + d(7, 8). The new path697

after the neighborhood 2-opt exchange is better than the initial698

route X .699

It can be observed from the comparison of Fig. 5 and700

Fig. 6 that the two methods are likely to produce excel-701

lent individuals. However, the neighborhood 2-opt exchange702

improves the probability for it can reduce the probability of703

the long distance between the randomly selected cities.704

2) DOUBLE-BRIDGE EXCHANGE705

The idea of the double-bridge exchange [47] is to delete the706

four edges that are not adjacent in the current loop and then707

reconnect the edges. The double-bridge exchange can change708

the shape of the loop, which reduces the probability of search709

stagnation. The individual X = (x1, x2, . . . , xm) is taken as710

an example to illustrate the operator (m is the city size), the 711

main steps are as follows: 712

Step 1: A uniformly distributed random integer a1 is 713

generated in the range [2, m− 6]; 714

Step 2: A uniformly distributed random integer a2 is 715

generated in the range [2+ a1, m− 4]; 716

Step 3: A uniformly distributed random integer a3 is 717

generated in the range [2+ a2, m− 2]; 718

Step 4: A uniformly distributed random integer a4 is 719

generated in the range [2+ a3, m]; 720

Step 5: Let b1 = a1 − 1, b2 = a2 − 1, b3 = a3 − 1, 721

b4 = a4 − 1; 722

Step 6: a1, b1, a2, b2, a3, b3, a4, and b4 are the index of each 723

component in individual X . The cities aa1, bb1, aa2, bb2, aa3, 724

bb3, aa4, and bb4 corresponding to index a1, b1, a2, b2, a3, 725

b3, a4, and b4 are found in X ; 726

Step 7: The edges (aa1, bb1), (aa2, bb2), (aa3, bb3), (aa4, 727

bb4) are deleted, and edges (aa1, bb3), (aa2, bb4), (aa3, bb1) 728

and (aa4, bb2) are reconnected. 729

Fig. 7 illustrates the process of the double-bridge exchange, 730

where the initial path in Fig. 7(a) is X = (3, 2, 1, 6, 5, 4, 7, 10, 731

9, 11, 8, 3). Suppose that the four randomly generated integers 732

are a1 = 3, a2 = 5, a3 = 9, and a4 = 11, thus the cities are 733

aa1 = 1, aa2 = 5, aa3 = 9, and aa4 = 8 in X , bb1 = 2, 734

bb2 = 6, bb3 = 10, bb4 = 11 according to the Step 6. 735
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FIGURE 7. The double-bridge exchange.

The new route after the double-bridge exchange is shown736

in Fig. 7(b).737

3) THE COMBINATION STRATEGY OF NEIGHBORHOOD738

2-OPT AND DOUBLE-BRIDGE EXCHANGE739

The double-bridge exchange [48] affects eight cities on the740

route, which exhibits strong perturbations than the neighbor-741

hood 2-opt exchange. To make a balancing algorithm, the742

double-bridge exchange at an early stage and neighborhood743

2-opt in the later phase should be selected, and an adaptive744

selection probability Ps is designed, which is calculated as745

Ps = Pmax − (Pmax − Pmin)
(

t
tmax

)
(20)746

where tmax is the maximum runtime, t is the current runtime,747

Pmin is the minimum selection rate, Pmax is the maximum748

selection rate, and Pmin = 0.25, Pmax = 0.7 in this paper.749

The implementation method of the two operators is as750

follows: 1)µ is randomly and uniformly distributed generated751

in the range [0, 1]; 2) if µ < Ps, the double-bridge exchange752

is selected; else the neighborhood 2-opt exchange is selected.753

F. LOCAL SEARCH ALGORITHM754

The 2-Opt algorithm [46] is an effective algorithm for solving755

TSP. The main idea is that for each route in the population,756

the two non-adjacent edges of a given route are exchanged757

in turn, and preserve the path which can improve solution758

quality. The 2-Opt algorithm can effectively eliminate the759

crossed edge in the solution, the probability of crossed path760

exists is high in the early stage and decreases with iteration.761

Therefore, the algorithm plays a higher role in the early stage762

than in the later phase, and the time complexity of 2-Opt is 763

O(n2), thus, an adaptive probability P is designed, which is 764

calculated as 765

P = 0.3+
0.6
et/tmax

(21) 766

where tmax is the maximum runtime and t is the current 767

runtime. 768

The implementation method of the combination exchange 769

strategy is as follows: 1) ε is randomly and uniformly dis- 770

tributed generated in the range [0, 1]; 2) if ε < P, the 771

2-Opt algorithm is executed; otherwise, do not execute the 772

algorithm. 773

As is shown in (21), the P is decreased with the iteration 774

time. Thus, the 2-Opt algorithm is executed in the early 775

stage with a higher probability, which helps to eliminate the 776

crossed path and significantly improve the solution quality, 777

and the algorithm is executed in the late phase with a smaller 778

probability, which helps to reduce the complexity of the 779

algorithm. 780

The adaptive combination perturbation and local search 781

algorithm are recorded as ACPLS, and the pseudo-code of 782

ACPLS is presented in Algorithm 2. 783

Algorithm 2 ACPLS
Input: nn∗rr best individuals X , the maximum number of
neighborhood solutions are 10;
Output: New nn∗rr individuals X ;
1: For i = 1: nn∗rr
2: If rand < Ps

3: Execute 2-opt exchange on Xi, record the new
individuals as X ′i ;

4: elseif
5: Execute double-bridge exchange on Xi, record

the new individuals as X ′i ;
6: End
7: If rand < P
8: Execute 2-Opt algorithm on X ′i , record

the new individuals as XX;
9: End
10: Calculate the fitness of XX, return the best XX to Xi;
11: End For

The CPA has strong exploration ability, and ACPLS 784

exhibits strong exploitation ability. A hybrid algorithm inte- 785

grating the ACPLS strategy into CPA can make a balance, 786

which can promote the convergence speed and enhance the 787

solution quality. 788

G. THE FRAMEWORK OF CPA-HDM 789

The flowchart of CPA-HDM is depicted in Fig. 8. It can be 790

seen that CPA-HDM mainly consists of classification group- 791

ing, growth phase, reproduction phase, recombination phase, 792

and ACPLS. Firstly, nn individuals are randomly generated 793

with (9); Secondly, the classification and grouping phase is 794

employed in Section II(B-1); Thirdly, the improved growth 795
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FIGURE 8. Flowchart of the CPA-HDM.

and reproduction phase are given in Sections III(C) and796

III(D); Fourthly, the recombination phase is carried out and797

its explanation is explained in Section II(B-4); Lastly, the798

ACPLS is employed and the detail is shown in Algorithm 2.799

The HDM that both considers the distance between cities800

and continuous variables is proposed to map continuous vari-801

ables as legal TSP paths, which helps to enhance the solution802

quality and population diversification. In the early phase of803

the iteration, the adaptive attraction probability γ with a804

small value is adopted, and the IPUMOP is selected with a805

high probability to reinforce the exploration ability of the806

algorithm; In the late phase, the IGMOCP is selected with807

a high probability because γ with a large value is adopted,808

which works for the exploitation ability; Then, the IRS is809

proposed in the reproduction phase to reduce the probability810

of sticking into the local optimum, and CPA integrates the811

ACPLS, which further amplifies the exploitation ability of the812

algorithm and reduces the probability of search stagnation.813

Finally, CPA-HDM evolutionary strategy can retain the best814

individuals in each iteration. Therefore, through the design815

of HDM, individuals’ update method, and ACPLS operation816

in the search process of the algorithm, CPA-HDM can both 817

possess exploration and exploitation capabilities. 818

The pseudo-code of CPA-HDM is shown in Algorithm 3. 819

Algorithm 3 CPA-HDM
Input: population size: nn; the population size of carnivorous
plants xp: n, the population size of preys p: n1, Maxruntime;
iteration times: t; I ; rr
Output: Best solution and the optimal value;
1: Randomly generate nn initial individuals by (9);
2: Do HDM in nn individuals to map the continuous

variables into discrete ones, the detail is depicted in
Section III(B);

3: Calculate the fitness value and sort from small to large
based on the fitness value;

4: While runtime < Maxruntime
5: t = t + 1;
6: Set the n best individuals as xp, the remaining

n1 individuals as p, and sort a group as depicted in
Section II(B-1));

7: Newxp and Newp are updated by (13) - (14);
8: Newxp is updated by (17) - (18);
9: Combined Newxp, Newp, and xp as a new popula-

tion, which is recorded as A;
10: Calculate the fitness value of A, and select nn best

individuals, which is recorded as B;
11: If t = 1
12: Select rr∗nn best individuals from B and record

as C;
13: elseif t mod I = 0
14: Select rr∗nn best individuals from B and record

as C;
15: End if
16: Do Algorithm 2on C;
17: Combined B and C, and select nn best individuals to

continue iteration;
18: Record the running time;
19: End while
20: Output the shortest route and its length;

IV. EXPERIMENTS AND ANALYSIS 820

To measure the performance of CPA-HDM and its improve- 821

ments, three sets of experiments were produced in this study. 822

The first set of experiments verifies the effectiveness of the 823

HDM, ACPLS, AAP, IGMOCP& IPUMOP, and IRS; the 824

second set of experiments applies to determine the optimal 825

parameters combination of n, n1, rr, and I ; the third set of 826

experiments discusses the superiority of CPA-HDM. 827

A. TERMINATION CONDITION OF THE EXPERIMENTS 828

The simulations of the involved algorithms were carried out 829

with Matlab R2019b on a desktop with a 3.4 GHz CPU, and 830

31.9 GB RAM. The experiments on benchmark instances 831

are taken from the TSPLIB. The termination conditions in 832
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TABLE 3. The maximum runtime of different city size.

CPA-HDM are as follows: 1) the maximum running time,833

which is fairer than the maximum iterations number and the834

maximum number of fitness evaluations [49]; 2) the optimal835

value obtained is less than or equal to the theoretical optimal836

value before the maximum running time reaches. If one of837

the two conditions is met, the iteration can be stopped. Each838

experiment was performed with 20 independent runs, record-839

ing the best solution for each run. Themaximum running time840

is shown in Table 3.841

B. ALGORITHM PERFORMANCE EVALUATION METRICS842

AND METHOD843

The minimum, maximum, average, and standard deviation844

values of the 20 shortest route lengths are recorded as Best,845

Worst, Mean, and SD, respectively. The deviation percentage846

of the Mean is recorded as PDavg, and the average time of 20847

independent runs is recorded as tav. The evaluation metrics848

mentioned above are adopted to measure the performance of849

the algorithm. PDavg is calculated as follows:850

PDavg =
Mean− BKS

BKS
× 100% (22)851

where BKS is the theoretical optimal solution of the instance.852

Friedman test [50], [51] is adopted in this paper to evalu-853

ate whether significant differences exist among participating854

algorithms. The results are computed using the following855

process.856

Step 1: For each instance j (j = 1, 2, . . . , n), rank theMean857

of l participating algorithms from 1 (the smallest) to l (the858

largest). Marked these ranks as rj i (1 ≤ i ≤ l, 1 ≤ j ≤ n).859

Step 2: For the ith algorithm, the average rank of all860

instance Ri is calculated as:861

Ri =
1
n

n∑
j=1

r ji , i = 1, 2, · · · , l (23)862

Step 3: The Ri of l algorithms are sorted from small to863

large, and the final rank of l algorithms from 1 to l is obtained.864

Step 4: Under the null hypothesis, the l participating algo-865

rithms perform similarly, The Friedman statistic χ2 is com-866

puted as:867

χ2
=

12
l∑
i=1

(
n∑
j=1

r ji )
2

nl (l + 1)
− 3n(l + 1) (24)868

TABLE 4. Experimental groups and details of algorithms.

Step 5: The χ2
α(l−1) is checked from the chi-square distri- 869

bution table with the significance level α and k − 1 degrees 870

of freedom. If χ2 > χ2
α(l−1), the null hypothesis (H1) is 871

accepted, and the l participating algorithms are significantly 872

different; otherwise, hypothesis (H0) is accepted, and the l 873

participating algorithms are similar. 874

To better verify the difference between the involved algo- 875

rithm, Iman and Davenport [51] presented a better statistic 876

FID, which is calculated as: 877

FID =
(n− 1) χ2

n (l − 1)− χ2 (25) 878

where n represents the number of benchmark instances, and 879

l represents the number of participating algorithms. 880

The F[(l−1),(l−1)(n−1)] is checked from the F distribution 881

table with l − 1 and (l − 1)(n − 1) degrees of freedom. 882

If FID > F[(l−1),(l−1)(n−1)], H0 is rejected, and the l partic- 883

ipating algorithms are significantly different; otherwise, H1 884

is rejected, and the l participating algorithms are similar. 885

The Friedman tests only can detect significant differences 886

over the whole multiple comparisons, being unable to find 887

the concrete pairwise comparisons which produce significant 888

differences. Thus, if the Friedman test shows that significant 889

differences exist in l algorithms, the post hoc test needs to 890

be employed to find out the concrete pairwise comparisons 891

which produce significant differences. Holm’s procedure is 892

adopted in this paper and it can be divided into multiple com- 893

parisons with a control algorithm and multiple comparisons 894

among all algorithms [52]. 895

1) MULTIPLE COMPARISONS WITH A CONTROL ALGORITHM 896

The significant difference of the control algorithm will be 897

contrasted against the rest of the l − 1 participating algo- 898

rithms in this situation. Suppose the control algorithm is the 899

algorithm1 (Al1), the adjusted p-value between Alg1 and vth 900

algorithm (Alv) is recorded as the APVv (v is the rank value 901

corresponding to the p-values sorted from small to large, 1 ≤ 902

v ≤ l − 1, the p-value of each hypothesis obtained through 903

the conversion of the results by the Friedman rank test by 904

adopting a normal approximation [53]), Holm’s procedure 905

determines whether the two algorithms are significant by 906

comparing the APVv and the significance level α. If APVv < 907

α, the Al1 and Alv are significantly different. The APVv is 908
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TABLE 5. Experiment results of ICPA, Variant 1, and Variant 2. TABLE 5. (Continued.) Experiment results of ICPA, Variant 1, and
Variant 2.

calculated as follows: 909

APVv = min {R, 1} v = 1, 2, · · · , l − 1 (26) 910

R = max {(l − u) ∗ pu} 1 ≤ u ≤ v, 911

p1 ≤ p2 ≤ · · · ≤ pv ≤ · · · ≤ pl−1 (27) 912

2) MULTIPLE COMPARISONS AMONG ALL ALGORITHMS 913

In this situation, the significant difference of each algorithm 914

will be contrasted against the rest of the l − 1 algorithms 915

participating in the comparison, the possible pairwise com- 916

parison between algorithms isM , andM = l ∗ (l−1) / 2. The 917

algorithm x is recorded as Alx , the algorithm y is recorded 918

as Aly (1 ≤ x ≤ l,1 ≤ y ≤ l). Suppose the rank of 919

the p-value sorted from small to large between Alx and Aly 920

among all pairwise comparisons is v (1 ≤ v ≤ M ), and the 921

adjusted p-value between Alx and Aly is recorded as APVv. 922

If APVv < α, the Alx and Aly are significantly different. The 923

APVv is calculated as follows: 924

APVv = min {R, 1} v = 1, 2, · · · ,M (28) 925

R = max {(M − u+ 1) ∗ pu} 1 ≤ u ≤ v, 926

p1 ≤ p2 ≤ · · · ≤ pv ≤ · · · ≤ pM (29) 927

C. COMPARISONS AND ANALYSIS 928

1) VALIDATION OF THE IMPROVEMENT 929

For a better description, the CPA with order-based arrange- 930

ment (OBA) decoding method [30] is recorded as Variant 1; 931

the CPA with rounding method [33] is recorded as Variant 2; 932

the CPA with HDM is recorded as ICPA; the ICPA with 933

ACPLS is recorded as ICPA-1; the ICPA-1 with AAP is 934

recorded as ICPA-2; the ICPA-2 with IGMOCP & IPUMOP 935

is recorded as ICPA-3; the ICPA-3 with IRS is recorded 936

as CPA-HDM. 937

Variant 1, Variant 2, and ICPA are adopted to verify the 938

validation of HDM, which is marked as Experiment 1; ICPA, 939

ICPA-1, ICPA-2, ICPA-3, and CPA-HDM are adopted to 940

verify the validation of ACPLS, AAP, IGMOCP & IPUMOP, 941

and IRS, which is marked as Experiment 2. The experimen- 942

tal groups and details are shown in Table 4. Y represents 943
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TABLE 6. Experiment results of ICPA and its different versions.

that method is contained in the algorithm, and N repre-944

sents that method is not contained in the algorithm. The945

maximum runtime and the details of the participating algo-946

rithms are shown in Table 3, the Best, Worst, Mean, SD,947

and PDavg (%) are adopted as measurements in the following948

comparison.949

FIGURE 9. The rank of the five participating algorithms.

TABLE 7. The results of Friedman statistic when the algorithms number
l = 5 and standard instances number n = 10.

TABLE 8. Four-factor four-level orthogonal experiment.

The ICPA, Variant 1, and Variant 2 are adopted with 20 950

instances fromTSPLIB to compare the performance ofHDM. 951

To achieve a fair comparison, the same parameters are set in 952

the participating algorithms. The population size nn = 120, 953

the number of carnivorous plants n = 20, and the number of 954

carnivorous prey n1 = 100. The performance of HDM and 955

the other two decoding methods considered for comparison 956

are displayed in Table 5. 957

It can be observed from Table 5 that the Best, Mean, SD, 958

and PDavg (%) values obtained by ICAP are all better than 959

Variant 1 and Variant 2 in 20 instances, which verified that 960

the HDM can direct the produced discrete solutions towards 961

optimality compared with the other two decoding methods. 962

To show the effect of the ACPLS, AAP, IGMOCP & 963

IPUMOP, and IRS on the overall performance of the proposed 964

algorithm, several self-comparisons between different ver- 965

sions of ICPA are conducted with 20 instances. The parame- 966

ters nn = 120, n = 20, n1 = 100, rr = 0.2, I = 5, the MSD 967
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TABLE 9. Results of orthogonal experimental design.

FIGURE 10. The rank of each experiment scheme.

is the average of SD, and the MPDavg (%) is the average of968

PDavg (%). The results are displayed in Table 6.969

The results fromTable 6 can be observed that the ICPA per-970

forms poorly with the largest MSD and MPDavg (%) values,971

and each added component gets lower MPDavg (%) values in972

comparison with its previous version, which demonstrates the973

ACPL, AAP, IGMOCP & IPUMOP, and IRS have a positive974

effect on the performance of the ICPA.975

As is depicted in Fig. 9, themean rank of the Friedman rank976

test is ICPA > ICPA-1 > ICPA-2 > ICPA-3 > CPA-HDM,977

and the final rank is CPA-HDM < ICPA-3 < ICPA-2 <978

ICPA-1 < ICPA, the lower the final rank, the superior the979

performance of the algorithm, which verifies that each added980

component can enhance the algorithms’ performance.981

At the significant level of 0.05, the results of Friedman982

statistic χ2 and FID are summarized in Table 7, where χ2
983

is 39.28 and FID is 491. The critical value of χ2 0.05[4] is984

9.49 with degrees of freedom l − 1 = 4, F(4,36) is 2.63 with985

l − 1 = 4 and (l − 1)(n− 1) = 36 degrees of freedom.986

The results in Table 7 show that χ2 > χ2
0.05[4], FID >987

F(4,36) at α = 0.05. Thus, the differences among the988

five comparison algorithms are significant. The analyses989

above confirm that the ACPLS, AAP, IGMOCP & IPUMOP,990

TABLE 10. The results of Friedman statistic when the algorithms number
l = 16 and standard instances number n = 11.

TABLE 11. Parameter settings of participating algorithms.

and IRS can make a positive impact on the proposed 991

algorithm. 992

2) THE OPTIMAL PARAMETERS COMBINATION OF 993

CPA-HDM THROUGH ORTHOGONAL EXPERIMENTS 994

The performance of CPA-HDM is related to the number of 995

carnivorous plants n, the number of prey n1, the proportion rr 996

of the population to execute ACPLS, and the individuals per- 997

forming the ACPLS are re-selected from the population every 998

I iterations. Therefore, to determine the optimal parameters 999

combination of n, n1, rr, and I , the orthogonal experiment in 1000

Table 8 is designed. 1001

The maximum runtime is given in Table 3, Table 9 summa- 1002

rizes the results of themean best value by solving 11 instances 1003

in 16 groups. 1004
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TABLE 12. Experiment results of CPA-HDM and the other six participating algorithms.
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TABLE 12. (Continued.) Experiment results of CPA-HDM and the other six participating algorithms.
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FIGURE 11. The rank of the seven participating algorithms.

Fig. 9 shows the average ranking and the final ranking of1005

the Friedman test, in which can be observed that Experient 51006

ranks first among 16 experiments. From the perspective of the1007

Friedman statistic, it can be noticed from Table 10 that χ2 and1008

FID are greater than χ2
α[15] andF(15,150) at the significant level1009

of 0.05, which shows a significant difference between the1010

compared experimental combinations. Based on the findings1011

obtained so far, it can confirm that Experient 5 is superior to1012

the other remaining 15 experiments. Therefore, the optimal1013

parameter combination is n = 10, n1 = 120, rr = 0.3,1014

and I = 5.1015

3) CPA-HDM COMPARED WITH OTHER PARTICIPATING1016

ALGORITHMS AND ANALYSIS1017

To demonstrate the performance of CPA-HDM, 28 instances1018

with cities from 29 up to 1084, have been selected and1019

compared with six algorithms in the literature, namely:1020

D-GWO [23], DSFLA [40], DBAL [38], agglomerative1021

greedy brain storm optimization algorithm (AGBSO3) [54],1022

a parallel cooperative hybrid method based on 3-Opt and1023

ant colony (PACO-3Opt) [55], and ABC [28]. Among them,1024

the D-GWO, DSFLA, DBAL, PACO-3Opt, and ABC are1025

memetic algorithms. The parameters of the participating1026

algorithms are shown in Table 11.1027

The comparison results of these algorithms are presented1028

in Table 12. The maximum runtime is shown in Table 3, the1029

details of the participating algorithms are shown in Table 11,1030

and the Best, Worst, Mean, SD, PDavg (%), MSD, and1031

MPDavg (%) values are set as the measurement of accuracy1032

and stability. The MSD is the average of SD, the MPDavg is1033

the average of PDavg (%).1034

The results, which are given in Table 12, show the effi-1035

ciency of CPA-HDM, as it could achieve higher accuracy1036

for most instances and better MPDavg (%) values than the1037

other six algorithms, it only fails to find the lower Best1038

value in rat195 and rat783. The CPA-HDM gets the 16 the-1039

oretical optimal solutions on 28 benchmark instances, and1040

the PDavg (%) is no more than 0.91% on 19 instances.1041

The MPDavg (%) is 0.78%, which is 0.91%, 0.35%, 0.26%,1042

1.36%, 0.5%, and 0.33% superior to the D-GWO, DSFLA,1043

DBAL, AGBSO3, ABC, and PACO-3Opt, respectively.1044

The Friedman rank test is carried out and the results1045

are depicted in Fig. 11. The mean rank is AGBSO3 >1046

TABLE 13. The results of Friedman statistic when the algorithms number
l = 7 and standard instances number n = 28.

TABLE 14. Unadjusted and adjusted p-values by Holm’s post hoc test
(CPA-HDM is the control algorithm).

TABLE 15. Computation time (s) of algorithms when city size is less
than 300.

D-GWO > ABC > PACO-3Opt > DSFLA > DBAL > 1047

CPA-HDM, and the final rank is AGBSO3 < D-GWO < 1048

ABC < PACO-3Opt < DSFLA < DBAL < CPA-HDM, 1049

which illustrates that CPA-HDM is superior to the other 1050

algorithms. 1051

The results of Friedman statistic χ2 and FID are shown in 1052

Table 13. The value of χ2 is 107.83, and FID is 48.39. When 1053

the degrees of freedom l − 1 = 6 and the significant level 1054

α = 0.05, the critical value of χ2
α[6] is 12.59, and the critical 1055

value of F(6,162) at (l − 1)(n − 1) = 162 is 2.16. It can be 1056

observed that χ2 > χ2α [6], FID > F(6,162) at α = 0.05, 1057

which verifies that the differences among the algorithms are 1058

significant, and the outperformance of CPA-HDM has been 1059

confirmed. 1060

For further statistical analysis, Holm’s procedure is 1061

employed to evaluate the practical difference between 1062

CPA-HDM and the other six algorithms at a 95% confi- 1063

dence level. The unadjusted and adjusted p-values returned 1064
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FIGURE 12. The convergence cure of the involved algorithms.

by Holm’s procedure for multiple comparisons are summa-1065

rized in Table 14. The results in Table 14 show that all the1066

p-values are lower than 0.05, which indicates that CPA-HDM1067

is significantly different from all participating algorithms.1068

For demonstrating the convergence performance of1069

CPA-HDM, the convergence analysis of the participant algo-1070

rithms is analyzed with tav and convergence curves. The1071

average computation time tav of 16 instances in 20 times1072

runs is shown in Table 15, and the graphical representation1073

of the convergence analysis is depicted in Fig. 13. The Tavg1074

in Table 15 denotes the average time of tav, the x-axis in1075

Fig. 12 is taken as the running time of the algorithm and the1076

y-axis is taken as the length of the route.1077

Table 15 shows that CPA-HDM wins on 8 instances,1078

whereas DSFLA performs better on att48 and pr107, DBAL1079

performs better on pr124 and pr264, ABC performs better1080

on ch130 and kroA150, and PACO-3Opt performs better 1081

on kroA100 and kroB150. The Tavg of CPA-HDM achieved 1082

the shortest among seven algorithms, which means that the 1083

proposed algorithm exhibits superior performance. 1084

The figures depicted in Fig. 12 also confirm the efficiency 1085

of the CPA-HDM, as it achieved the fastest convergence 1086

speed among various comparison algorithms on six instances. 1087

Although CPA-HDM converges slower than D-GWO on six 1088

instances and DSFLA on pr299 in the early stage, it could 1089

keep the convergence speed at the highest level among the 1090

involved algorithms in the middle and later iteration for its 1091

balance the exploration and exploitation ability. 1092

Based on the analyses above, it is clear that the CPA-HDM 1093

exhibits superior accuracy and high convergence speed in 1094

solving TSP, which has an outstanding performance with dif- 1095

ferent scale instances compared with the other six algorithms. 1096
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V. CONCLUSION AND FUTURE WORK1097

A real-coded CPA with a heuristic decoding method, named1098

CPA-HDM, is proposed in this paper to solve TSP, which1099

incorporates several useful components. The CPA-HDM1100

presents a heuristic decoding method to map continuous1101

variables to discrete ones, the method both considers the1102

continuous variables and the distance between cities. After1103

that, the AAP, the IGMOCP & IPUMOP are proposed in the1104

growth phase to address the poor performance of balancing1105

the exploration and exploitation ability in CPA. Also, the1106

IRS is redesigned, which allows all carnivorous plants to1107

reproduce and reduces the possibility of search stagnation.1108

Finally, the ACPLS is incorporated into the algorithm, the1109

double-bridge exchange is employed in the early iteration,1110

the neighborhood 2-opt exchange is employed in the late iter-1111

ation, and the local search algorithm is employed to promote1112

the convergence speed.1113

To verify the performance of the proposed algorithm and1114

its improvements, several instances from TSPLIB have been1115

solved. The results show that the CPA-HDM could con-1116

verge quickly towards the optimal solutions for most of the1117

instances selected. From the statistics, the following con-1118

clusions can be drawn: 1) the proposed decoding method1119

can direct the produced discrete solutions toward optimality1120

compared with the order-based arrangement and rounding1121

method; 2) Using ACPLS, AAP, IGMOCP& IPUMOP, and1122

IRS exhibit a positive role in the performance of the algo-1123

rithm; 3) The CPA-HDMperforms highest solution precision,1124

robust, and convergence speed of its balanced exploration and1125

exploitation capabilities compared with the other participat-1126

ing algorithms.1127

TheCPA-HDM is only proven on the symmetric TSP, some1128

practical applications are still needed to test its effectiveness.1129

Besides, to further improve the performance of CPA and1130

expand its application fields, the permutation-coded carniv-1131

orous plant algorithm, decoding method of the real-coded1132

carnivorous plant algorithm for solving TSP, the research1133

of hybrid carnivorous plant algorithm, and applied research,1134

such as the flexible job-shop scheduling, route optimization,1135

and cross-region work problem of agricultural machinery1136

with time window can be carried out in the future.1137
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