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ABSTRACT Travel time is the basis for intelligent emergency control and guidance in expressway networks.
To realize its accurate prediction and improve the expressway service level during emergencies, this study
uses a combined model to predict the short-term travel time of expressway sections based on the expressway
gantry data of Sichuan Province. First, the travel time series was extracted using a data matching algorithm,
and the double standard deviation-cyclic elimination (2SD-CE) algorithm was used to clean the data. Then,
combined with the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)
algorithm, the travel time subsequence was extracted, and the frequency of the subsequence was divided
by Sample entropy (SampEn) algorithm. Based on this, bidirectional long short-term memory (BiLSTM),
long short-term memory (LSTM), and vanilla recurrent neural network (vanilla RNN) models were used to
construct prediction combination model 1 (CM1) under the condition of a single feature. Subsequently,
the CEEMDAN and empirical mode decomposition (EMD) algorithms were combined with the LSTM
algorithm to obtain the combination models (CM2 and CM3) without frequency division. The example
calculation and analysis show that under different time granularities (5min, 10min, and 15min) and different
highway sections, the combined model can integrate the advantages of all prediction models and has higher
prediction accuracy and stability, among which the prediction effect of CM1 can reduce the prediction value
of the root mean squared error (RMSE) by 18.8∼26.4%, 0.8∼41%, 4.1∼13.3%.

17 INDEX TERMS Expressway, travel time prediction, deep learning, CEEMDAN, recurrent neural network.

I. INTRODUCTION18

After scattered or local traffic accidents, natural disasters,19

and other emergencies in the road network have a conges-20

tion impact on the expressway, this impact spreads to the21

regional road network and slows down the efficiency of emer-22

gency rescue. Therefore, there is an urgent need to improve23

the intelligent control and guidance ability of expressway24

networks, strengthen the close cooperation between peo-25

ple, vehicles, and roads, improve road traffic efficiency, and26

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamed M. A. Moustafa .

create an efficient, accurate, and real-time expressway opera- 27

tion system [1]. In recent years, with the continuous develop- 28

ment of big data and artificial intelligence technology, traffic 29

data collected by sensors have gradually improved, providing 30

a certain data basis for the construction of machine learn- 31

ing models. As a new research direction in machine learn- 32

ing, deep learning has also been increasingly applied in the 33

field of traffic prediction [2], [3], [4], [5]. Deep learning can 34

not only learn its internal laws and high-order representation 35

from massive traffic data but also has an end-to-end learning 36

method that is suitable for short-term travel time prediction 37

problems with high nonlinearity [6]. Accurate and real-time 38
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travel time prediction is the key link between intelligent guid-39

ance and control of expressway networks. Improving the pre-40

diction accuracy of travel time can not only provide detection41

means for emergencies, but also improve the traffic efficiency42

of road networks through timely regulation and control to43

achieve smooth road networks.44

Travel time prediction is the basis for the intelligent control45

and guidance of expressway networks. As an objective reflec-46

tion of the driving condition of vehicles in a certain section,47

it can measure the traffic state of the section at different times48

and is closely related to traffic parameters such as traffic flow,49

driving speed, and time occupancy [7]. Travel time predic-50

tion can be divided into long-, medium-, and short-term pre-51

dictions. Medium- and long-term predictions, as important52

considerations for the long-term planning of road networks,53

usually take years and months as scale units. The short-term54

travel time prediction has a smaller scale than the medium-55

and long-term predictions, but it accuracy is higher. It is gen-56

erally believed that a prediction with a time span of less than57

or equal to 15 min is a short-term prediction [9], [10], [11].58

Real-time and accurate short-term travel time prediction59

can correctly capture the change law of traffic flow on the60

road to reasonably infer the traffic state of the outlet net-61

work or road section at the next moment. In the decades62

of research and development of traffic prediction, scholars63

at home and abroad have developed various algorithms to64

predict traffic parameters such as traffic flow, speed, and65

travel time. According to different prediction methods, travel66

time prediction models are divided into two categories: sta-67

tistical models, which can be divided into linear and nonlin-68

ear theoretical statistical models. Linear theoretical models69

include Kalman filtering and time-series methods. Kalman70

filtering theory was proposed in the 1960s, and Okutani and71

Stephanedes [12] first applied this theory to traffic flow pre-72

diction. The Kalman filtering model can deal with stationary73

or non-stationary data, but it is a linear model, and the actual74

traffic prediction problems are mostly nonlinear problems;75

therefore, the Kalman filtering model has some limitations76

in practical applications. The autoregressive moving aver-77

age model (ARMA) and autoregressive integrated moving78

average model (ARIMA) are commonly used time series79

prediction models [13]. Ahmaed and Cook [14] applied the80

ARIMA model for traffic flow prediction for the first time.81

Li et al. [15] predicted traffic flow based on an improved82

ARIMAmodel. These types of time series models are simple83

in modeling, but they have high requirements for continuity84

of data and it is difficult to deal with complex prediction85

problems of multi-dimensional inputs.86

Nonlinear theoretical models include nonparametric87

regression [16] and chaos theory [17]. The k-nearest neigh-88

bor (KNN) algorithm is a typical non-parametric regression89

model. On the one hand, its algorithm is simple and easy to90

understand, on the other hand, it relies heavily on training91

data and has poor fault tolerance to training data. Disbro92

and Frame [18] introduced the chaos theory into the field93

of transportation for the first time. Wang and Shi [19] built94

a nonlinear chaos prediction model based on phase-space 95

reconstruction theory to predict urban road traffic flow. The 96

chaos theory model is based on measured data to obtain the 97

chaotic characteristic parameters of the system, which avoids 98

the influence of subjective factors and has a high prediction 99

accuracy, but it is only suitable for short-term traffic flow 100

prediction. 101

The second category is artificial intelligence (AI) technol- 102

ogy based on neural networks. In recent years, with the rapid 103

development of artificial intelligence, deep learning theory 104

and neural network models have provided additional model- 105

ing ideas for the study of traffic flow prediction.Wu et al. [20] 106

applied SVR to travel time prediction and compared it with 107

historical mean and other methods, and the results showed 108

that the model could significantly reduce the prediction error. 109

Su et al. [21] proposed a short-term traffic flow predic- 110

tion method based on incremental support vector regression 111

(ISVR), and the results showed that the prediction accuracy 112

of this method was better than that of BP neural network 113

model. Luo et al. [22] used the least square support vector 114

machine method to predict the traffic flow, and adopted the 115

fusion optimization algorithm to select the optimal parame- 116

ters, which improved the prediction ability and calculation 117

efficiency of the model. Although these traditional neural 118

networks can better learn the characteristics of traffic flow 119

and predict future traffic flow according to the temporal and 120

spatial variation characteristics of traffic flow, most of them 121

use single hidden layer networks, which cannot learn the 122

deeper variation characteristics of traffic flow data, and the 123

prediction accuracy is often lower than that of deep network 124

prediction methods. 125

Deep learning has a strong learning ability for time series 126

and can deal better with spatially or temporally related data 127

structures [23]. The depth of a recurrent neural network 128

(RNN) is not only reflected in the fact that it has multiple 129

hidden layer structures but also has the function of timemem- 130

ory. RNN can be used for the recognition of text, speech, and 131

other data sequences, and can be better applied to the relevant 132

prediction field of time series data [24]. Serious gradient van- 133

ishing and gradient explosion problems exist in RNN. Subse- 134

quently, Hochreiter and Schmidhuber [25] designed an long 135

short-term memory (LSTM) unit to overcome this defect, 136

which enabled the recurrent neural network represented by 137

LSTM to be applied on a large scale in the field of time-series 138

prediction. Ma et al. [26] used the LSTM structure to estab- 139

lish a traffic speed prediction model, and used the microwave 140

traffic speed data of Beijing for verification. The experimen- 141

tal results showed that the network effectively captured the 142

correlation and nonlinearity of the traffic state time, and the 143

prediction accuracy was better than that of most statistical 144

methods. 145

In conclusion, the deep learning model has a better pre- 146

diction effect than the traditional traffic prediction methods. 147

Therefore, in the face of a large amount of diversified traf- 148

fic data, selecting the appropriate model or combining mod- 149

els with different structures to realize the complementary 150
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advantages of the model, extracting significant traffic fea-151

tures, and setting appropriate parameters to further improve152

the accuracy of expressway short-term prediction is the devel-153

opment direction of deep learning in the field of expressway154

short-term travel time prediction in the future. The main con-155

tributions of this study are as follows.156

(1) A short-term travel-time prediction model based on157

complete ensemble empirical mode decomposition with158

adaptive noise (CEEMDAN) was proposed. In view of the159

high nonlinearity of travel time, the CEEMDAN algorithm is160

used to decompose the travel time series.161

(2) Combined with the Sample entropy (SampEn)162

algorithm, the complexity of each subsequence after decom-163

position was calculated. According to the complexity of time-164

series components, they are divided into high-frequency,165

intermediate frequency, and low-frequency sequences, which166

are predicted by the bidirectional long short-term memory167

(BiLSTM), LSTM, and vanilla RNN models, respectively.168

(3) The prediction results of each high-frequency, medium-169

frequency, and low-frequency sequence component are170

superimposed to obtain the travel time prediction value,171

which is compared with the baseline models. The research172

results can provide a basis for the intelligent control and173

guidance of expressway networks.174

The rest of the paper is organized as follows: The section II175

is related works. In section III, a method that combines176

the CEEMDAN, SampEn, and LSTM was proposed. The177

section IV describes the dataset of this study, and uses a178

novel algorithm to complete the preprocessing of the dataset.179

The V part is the validation and evaluation of the proposed180

model through experiments on different time granularity181

and different expressways. Finally, conclusions are drawn in182

section VI.183

II. RELATED WORKS184

This section briefly reviews some methods in the literature185

for extracting more significant traffic flow features through a186

combination of optimization algorithms andmodels. Because187

traffic flow data are disturbed by various factors such as188

weather and traffic detectors during the collection process,189

they often contain a large amount of noise. Currently, a large190

number of studies have shown that decomposition algorithms191

can reduce the influence of noise on prediction models and192

improve prediction accuracy. The empirical modal decompo-193

sition (EMD) method, proposed by Huang et al. [27], is a194

processing method that can cope with nonlinear sequences.195

EMD can be used without setting arbitrary basis functions196

and can be analyzed directly according to the data scales197

and characteristics. It has been shown to be effective when198

applied to decomposing highly nonlinear and nonsmooth199

data [28]. Duo et al. [29] used EMD to decompose traffic200

flow sequences into different frequency components and then201

input them into an optimized SVM model, which was vali-202

dated by a dataset of the Changchun city road network, show-203

ing that EMD can achieve improved prediction accuracy.204

Du et al. [30] proposed a prediction model based on empirical205

mode decomposition (EMD) and gated recurrent unit (GRU) 206

neural network for a more comprehensive characterization of 207

network traffic, by EMD to the traffic data is decomposed 208

into multiple components, and each component is used to 209

train the corresponding GRU neural network, and finally, the 210

predicted values of all components are combined to obtain 211

the final result. Although the EMD algorithm can effectively 212

cope with nonlinear sequences, the mode aliasing occurs dur- 213

ing the decomposition process, which is also a limitation of 214

the EMD algorithm. EEMD [31] solved the problem of mode 215

mixing by additional white noise. Tang et al. [32] compared 216

five denoising schemes and proposed that EEMD is superior 217

to other algorithms. Liu et al. [33] used the EEMD algorithm 218

to decompose the time series and extracted the basic feature 219

subset of each component using the minimum redundancy 220

maximum association feature selection algorithm, and then 221

used deep belief network to each component is trained, and 222

finally the prediction results are aggregated into the out- 223

put of the integrated model, and the results show that the 224

method has significant performance improvement compared 225

with a single deep belief network and other selected meth- 226

ods. Based on this, Torres et al. [34] proposed the Com- 227

plete Ensemble Empirical Mode Decomposition with Adap- 228

tive Noise(CEEMDAN) algorithm [28] by adding adaptive 229

white noise to each decomposition in order to improve the 230

completeness of EEMD and reduce reconstruction errors. 231

The basic principle is to adaptively add white noise during 232

intrinsic mode function (IMF) component decomposition to 233

calculate each intrinsic mode functions (IMFs) component, 234

which can achieve almost zero reconstruction error, has good 235

integrity, reduces the number of integrations, and alleviates 236

the phenomenon of modal aliasing. Guo et al. [35] pro- 237

posed a hybrid model based on deep learning methods and 238

CEMMDAN, which has great potential for traffic flow pre- 239

diction. Lu et al. [36] used this method to decompose raw 240

traffic flow data into several intrinsic modal function com- 241

ponents and one residual component, and then the XGBoost 242

model is trained and the decomposed components are pre- 243

dicted separately. The final prediction results were obtained 244

by integrating the prediction outputs of the XGBoost method. 245

It was demonstrated that the CEEMDAN-XGBoost model 246

can effectively fit the complex fluctuations of different types 247

of road sections, and the model accuracy is better than that 248

of LSTM and other XBGoost-based models. In the study of 249

Zhu et al. [37], the replacement entropy values of the IMF 250

components were calculated using the PE algorithm after 251

decomposing the original traffic flow data into several rel- 252

atively stable modal components, and the components with 253

similar entropy values were superimposed to form a new 254

sequence. Huang et al. [8] evaluated five decomposition algo- 255

rithms, EMD, EEMD, CEEMDAN, WPD (Wavelet Packet 256

Decomposition), and VMD (Variational Mode Decomposi- 257

tion), based on BiLSTM in terms of prediction performance, 258

robustness, and generalization performance, to investigate 259

the impact of multi-scale decomposition algorithms on neu- 260

ral network models, and they concluded that CEEMDAN 261
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can be used to pursue prediction accuracy and anti-noise262

performance.263

From the discussion in the previous section, we learned264

that deep learning models have better prediction results than265

traditional traffic prediction methods, but that is not abso-266

lute. Single prediction models are often designed by con-267

sidering the traffic flow time series only as a single series268

without designing the optimal method based on its inher-269

ent characteristics. Yu et al. first decompose and reconstruct270

the traffic flow data series using wavelet transform, build a271

sub-prediction model of the reconstructed data using radial272

basis function (RBF), and optimize it using Particle Swarm273

Optimization (PSO) [38]. Li et al. consider that the orig-274

inal traffic flow series contains linear and nonlinear parts,275

and predicted the linear part using ARIMA and the nonlin-276

ear part using RBF-NN. The results show that the hybrid277

model has better prediction results than the single ARIMA,278

RBF-NN model [39]. Compared with the single prediction279

model, the prediction accuracy of the hybrid model has been280

significantly improved. However, the existing studies still281

have shortcomings in the design, always ignoring the fact282

that traffic flow time series have typical periodic character-283

istics and will show different characteristics at different time284

granularity. This study begins to consider decomposing the285

original data series into sub-series with different frequencies286

or modes, building sub-prediction models, and combining287

the results of the sub-prediction models to obtain the final288

prediction results. To further demonstrate the model effect,289

two combined models of CNN and LSTM are compared to290

verify the prediction effect of this model.291

III. METHODS292

This section first introduces the CEEMDAN, SampEn, and293

LSTM. Based on this, a method that combines the three mod-294

els was proposed.295

A. CEEMDAN296

The steps of using the CEEMDAN algorithm to decompose297

the travel time series are as follows.298

Step 1: Add a series of adaptive white noise to the resam-299

pling travel time series:300

T i(t) = T (t)+ ϕ0θ i(t), i ∈ {1, · · · , I } (1)301

where T i(t) is the travel time series after adding white noise,302

T (t) is the historical travel time series of road sections, θ i(t)303

is the white noise added for the ith time, ϕ0 is the noise304

coefficient, and I is the integration time (usually 10-20).305

Step 2: Combined with EMD algorithm, the travel time306

series T i(t) is decomposed, and mean the decomposed IMF307

components:308

d1(t) =
1
I

I∑
i=1

d i1 (2)309

where, d i1 is the i-th IMF component, and the d1(t) represents310

the first travel time series component.311

Step 3: The first margin sequence can be obtained by 312

removing d1(t) from T (t): 313

r1(t) = T (t)− d1(t) (3) 314

where, the r1(t) represents the first margin sequence. 315

Step 4: Continue to decompose r1(t) + ϕ0E1
[
θ i(t)

]
and 316

obtain the second travel time series component: 317

d2(t) =
1
I

I∑
i=1

E1
{
r1(t)+ ϕ1E1

[
θ i(t)

]}
(4) 318

where, Ej(·) is the j-th IMF component obtained by EMD 319

decomposition, and the d2(t) represents the second travel 320

time series component. 321

Step 5: Calculate the remaining IMF components: 322

rk (t) = rk−1(t)− dk (t), k = 2, 3, · · · ,K (5) 323

dk+1(t) =
1
I

I∑
i=1

E1
{
rk (t)+ ϕkEk

[
θ i(t)

]}
(6) 324

where, K is the total number of modes, rk (t) represents the 325

k-th margin sequence, dk+1 (t) represents the (k+1)-th travel 326

time series component, ϕk is the noise coefficient. 327

Step 6: When the travel time margin cannot be further 328

decomposed. The margin was calculated as follows: 329

R(t) = T (t)−
K∑
k=1

dk (t) (7) 330

where, R(t) represents the margin sequence. 331

B. SAMPLE ENTROPY (SampEn) 332

SampEn can measure the complexity of a time series well. Its 333

calculation does not depend on the length of the travel-time 334

subsequence and has excellent consistency. The smaller the 335

sample entropy, the higher is the self-similarity of the time 336

series; otherwise, the greater is the nonlinearity of the travel 337

time series. Assuming that the travel time sequence {x (n)} = 338

x (1) , x (2) , · · · , x (N ) consists of N sample time points, the 339

calculation steps of the entropy are as follows. 340

Step 1: Convert the travel time series into a vector 341

series with dimension m,Xm (1) , · · ·Xm (N −m+ 1), and 342

Xm (i) = {x (i) , x (i+ 1) , · · · , x (i+ m− 1)} , 1 ≤ i ≤ 343

N − m + 1. These vectors represent m consecutive values 344

from the ith time-point. 345

Step 2: d
[
Xm (i) ,Xm (j)

]
is the absolute value of the max- 346

imum difference in the corresponding element Xm (i) and 347

Xm (j), which is calculated as follows: 348

d [Xm (i) ,Xm (j)] = maxk=0,··· ,m−1 (|x (i+ k)− x (j+ k)|) 349

(8) 350

Step 3: For a given Xm (i), count the number of distances 351

between Xm (i) and Xm (j) that is less than or equal to r, and 352

record it as Bi. For 1 ≤ i ≤ N-m, define: 353

Bmi (r) =
1

N −m− 1
Bi (9) 354

96876 VOLUME 10, 2022



X. Jia et al.: Combined Prediction of Short-Term Travel Time of Expressway

Step 4: Defined B(m) (r) as:355

B(m) (r) =
1

N −m

N−m∑
i=1

Bmi (r) (10)356

Step 5: Increase the dimension to m+1, calculate the num-357

ber with distance between Xm+1 (i) and Xm+1 (i) less than or358

equal to r, and record it as Ai. Defined Am
i (r) as:359

Am
i (r) =

1
N −m+ 1

Ai (11)360

Step 6: Defined Am
i (r) as:361

A(m) (r) =
1

N −m

N−m∑
i=1

Ami (r) (12)362

B(m) (r) is the probability that two sequences match m363

points under the similarity tolerance r. A(m) (r) is the prob-364

ability that two sequences match m+1 points. The sample365

entropy is defined as366

SampEn (m, r) = lim
N→∞

{
−ln

[
Am (r)
Bm (r)

]}
(13)367

C. LONG SHORT-TERM MEMORY (LSTM)368

In the field of traffic prediction, the traditional recurrent neu-369

ral network has a poor ability to predict time series with a370

long-time delay, and the problem of long-term dependence371

will appear. LSTM is a type of temporal recurrent neural372

network that is specially designed to solve the long-term373

dependency problem of general RNN. It is typically used to374

predict temporal series data. The neural network module of375

LSTM has four layers that interact with information in a spe-376

cial manner; its structure is shown in Figure 1. Among them,377

the forgetting gate is responsible for controlling the choice378

of information in long-term memory. The closer to 1 means379

the more information is retained; The input gate is used to380

control the input process of the current time information, that381

is, to update the memory cell; The output gate controls the382

inflow of timing information in memory cells and determines383

the short-term memory part. There are two states in LSTM,384

one is long-term memory state C and the other is short-term385

memory stateH . C will update itself through the information386

input at each time sequence and deliver it all the time; H387

extracts the corresponding memory at each time step.388

The calculation of each LSTM layer can be explained using389

the following formula:390

i(t) = σ (W (i)x(t) + U (i)h(t−1)) (14)391

f(t) = σ (W (f)x(t) + U (f )h(t−1)) (15)392

o(t) = σ (W (o)x(t) + U (o)h(t−1)) (16)393

c̄(t) = tanh(W (c)x(t) + U (c)h(t−1)) (17)394

c(t) = f (t) × c(t−1) + i(t) × c̄(t) (18)395

h(t) = o(t) × tanh(c(t)) (19)396

where, x(t) is the input signal, σ (·) is the activation func-397

tion, i(t), f(t), o(t) are Input gate, Forget gate and Output398

FIGURE 1. Network structure of LSTM.

gate,c̄(t), c(t) are Newmemory cell and Final memory cell,h(t) 399

is Hidden state,W (i),U (i), W (f),U (f ), W (o),U (o), W (c),U (c)
400

are parameter matrix. 401

D. COMBINED FORECASTING MODEL FRAMEWORK 402

Based on the RNN, combined with the CEEMDAN and 403

SampEn algorithms, the framework of the combined predic- 404

tion model was constructed, as shown in Figure 2. Firstly, 405

the expressway gantry data obtained by the fixed collection 406

technology is cleaned, and the abnormal value is removed. 407

According to the characteristics of the change of the traffic 408

state of the expressway, a reasonable sampling time window 409

is set, and the ‘‘3σ ’’ criterion method, box chart method 410

and 2SD-CE algorithm respectively remove outliers from the 411

travel time series for 7 consecutive days, and the Min Max 412

Scaler in Scikit-learn is used to normalize the data within the 413

range of [−1, 1]. After a series of preprocessing, a relatively 414

accurate historical travel time series T (t) is obtained, which 415

is the premise of successful prediction. 416

Then, CEEMDAN algorithm is applied to decompose the 417

travel time series of road sections, and decompose them into 418

several IMFs at different time scales. The final travel time 419

series can be expressed as: 420

T(t) =
K∑
k=1

dk (t)+ R(t) (20) 421

where R(t) is the margin sequence decomposed by CEEM- 422

DAN algorithm. 423

Next, the complexity of time-series components of road 424

sections is calculated by SampEn algorithm. Through the 425

sample entropy in part A of this section, the sample entropy 426

can be estimated by the following equation: 427

SampEn (m, r,N ) = −ln
[
Am (r)
Bm (r)

]
(21) 428

where N is the number of data points in the travel time series. 429

The threshold value of sample entropy is set to divide 430

the frequency of each sub sequence. According to the 431
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randomness from high to low, it is divided into high-432

frequency sequence, intermediate frequency sequence and433

low-frequency sequence.434

In the prediction of each sub sequence, the high-435

frequency sequence adopts bidirectional LSTM (BiLSTM),436

the intermediate frequency sequence adopts LSTM, and the437

low-frequency sequence adopts vanilla RNN. Finally, the pre-438

diction results are added to obtain the travel time prediction439

value. This combined prediction model is referred to as com-440

bination model 1 (CM1). As a comparison, CEEMDAN and441

EMD algorithms are respectively used to decompose the time442

series without frequency division, and then LSTM algorithm443

is used to predict these sub sequences. Finally, the final pre-444

diction results are obtained by summing all the prediction445

results. The models are respectively CM2 and CM3. Later,446

this will be demonstrated by a case study.447

FIGURE 2. Combined forecasting model framework.

IV. CASE STUDY448

A. DATA SOURCE449

The travel time data of the expressway section is collected450

by using the fixed acquisition technology to read the vehicle451

information in the vehicle electronic tag through the ETC452

(Electronic Toll Collection) microwave antenna installed on453

the gantry of the expressway toll station. The data range454

includes expressways in Chengdu and Ya’an City, Sichuan455

Province, including the Yalu, Chengnan, and Chengya456

expressways. The specific locations are shown in Figure 3.457

The time range is from July 30 to September 30, 2020, with458

a total of 1.2 billion pieces of data. The field names of459

the original data include CENTERNAME, GANTRYNAME,460

PILENUMBER, GANTRYORDERNUM, TRANSTIME,461

VLP, and VEHICLETYPE. See Table 1 for the meanings462

of these fields. Among all vehicle types, the number of463

class 1 passenger cars (passenger cars with fewer than464

seven seats) accounts for 85%, and their operation condi-465

tion can represent the traffic condition of the road section.466

To eliminate the influence of the dynamic performance of467

different types of vehicles on travel time, only the travel468

time of class 1 passenger cars was used and predicted.469

The original data for the expressway gantry are listed in470

Table 2.471

FIGURE 3. Sichuan expressway network.

TABLE 1. Meaning of each field of original data.

TABLE 2. Original data (Excerpt).

B. DATA CLEANING 472

In the process of gantry data acquisition and transmission, 473

owing to problems with the system itself or other factors, 474

data errors can easily occur. In the process of extracting 475

travel time from gantry data, firstly through simple screening 476

rules to eliminate obviously wrong data, such as data record 477

repeat, travel time is negative. The following rules are mainly 478

included. 479

Rule 1, excludes data with a model data of 0. 480

Rule 2, removes data at the exit or entrance of a certain 481

section. 482
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Rule 3, removes data with an empty gantry name.483

Rule 4, removes data with a vehicle entry time later than484

or equal to the exit time. Such data is not of research signifi-485

cance, so it is excluded.486

Rule 5, removes data whose travel time is significantly487

beyond the range (greater than one day). The long travel time488

may be caused by the driver stopping in the service area while489

driving at high speed.490

Rule 6, removes data with a stroke time interval of less than491

10 seconds. A short travel time may be because the vehicle is492

recorded twice by the same gantry, or simultaneously by the493

opposite gantry.494

Rule 7, removes duplication of data records.495

Rule 8, exclude cases where the travel time is negative or496

empty.497

After cleaning the obviously incorrect data, there are still498

some outliers in the travel time series. Travel time series have499

the characteristics of high randomness and nonlinearity. It is500

unreasonable to combine the travel times at all the time points501

to eliminate outliers. It is necessary to set a reasonable sam-502

pling time window according to different traffic conditions.503

In general, a larger time window cannot effectively capture504

the changes in traffic state within a smaller time range to505

eliminate the normal value of a larger travel time. Although506

a smaller time window can reasonably obtain the characteris-507

tics of the travel time change, it is vulnerable to the influence508

of the sample size. Therefore, according to the characteristics509

of the change in expressway traffic state, 10 min was selected510

as the time window in the evening peak period (16:00 to511

22:00) to capture the time-varying difference of travel time,512

30 min was selected as the time window of early morning and513

night time (0:00 to 6:00), and the time window of other peak514

periods was set to 20 min.515

The 2SD-CE algorithm was used to filter abnormal travel516

time. The principle is that when the difference between the517

sample value of the travel time and the average value of the518

total sample is greater than twice the standard deviation of519

the total sample, the sample value of the travel time is clas-520

sified as an abnormal value and is eliminated. The specific521

screening requirements are shown in Figure 4.522

The 2SD-CE algorithm is used to filter the abnormal travel523

time with the specific steps as follows.524

Step 1: According to the travel time characteristics of the525

road section and different traffic conditions, reasonable sta-526

tistical time windows were set.527

Step 2: Calculate the mean µ and standard deviation σ of528

the travel time samples in each statistical time window.529

Step 3: Judge whether there are any data outside the range530

of µ±2σ in the sample. If there is, remove the data and refer531

to Step2 for recalculation. If it does not exist, proceed to532

Step4;533

Step 4: Retain the travel time sample after final screening.534

C. DATA CLEANING RESULTS535

All the sections of the Yalu Expressway were selected for536

outlier elimination. Taking section 1 in the upward direction537

FIGURE 4. Data cleaning process.

of Yalu expressway as an example, according to the above 538

travel time data cleaningmethod, the scatter diagram of travel 539

time distribution after eliminating obvious wrong data can 540

be obtained, as shown in Figure 5 (b). It can be seen from 541

the figure that although the travel time shows a certain trend 542

after the initial cleaning of the data with an obvious wrong 543

travel time, there are still many noise points; that is, there are 544

still some data with large travel times in the flat peak. If an 545

appropriate outlier elimination method is not adopted, it is 546
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FIGURE 5. Data cleaning results,(a)raw travel time data(b)after
eliminating obvious wrong data(c)‘‘3σ ’’Criterion method(d)box diagram
method(e)2SD-CE algorithm.

bound to affect the quality of the training samples and reduce547

the effect of model fitting.548

Use ‘‘3σ ’’ criterionmethod, box chart method and 2SD-CE549

algorithm eliminate outliers from the travel time series for550

7 consecutive days respectively. The elimination effect is551

shown in Figure 5 (c), (d) and (e). As can be seen from the552

figure, although the ‘‘3σ ’’ criterion method and box chart553

method can effectively eliminate the noise points with exces-554

sive travel time in the peak period, they also eliminate the555

characteristic points with excessive travel time in the peak556

period, and do not retain the characteristics of excessive travel557

time in the peak period. The effect of eliminating the abnor-558

mal data of travel time in the expressway section is not ideal,559

and there are some limitations; therefore, they are not suitable560

for the treatment of the abnormal value of travel time in the561

expressway section. The 2SD-CE algorithm subdivides each562

time period by setting a statistical time window to retain563

the travel time characteristics in each time period. It can be564

seen from Figure 5 (e) that after cleaning the data using this565

method, not only are the outliers of travel time effectively566

removed, but the trend of excessive travel time in peak hours567

is also retained to a great extent. Therefore, the 2SD-CE568

algorithm was applied to address the outliers of travel569

time.570

The cleaned data were resampled to a time granularity of 571

5 min, and there were few missing data points. The historical 572

average method was used to fill in missing values. Because 573

the travel time series generally fluctuates significantly, the 574

Min Max Scaler in Scikit-learn is used to normalize the data 575

within the range of [−1, 1]. 576

V. PERFORMANCE EVALUATION 577

A. MODEL EVALUATION INDEX 578

Historical travel time series based on expressway gantry data 579

can predict future travel time after preprocessing. However, 580

to ensure that the prediction results meet the needs of express- 581

way intelligent control and guidance, it is often necessary to 582

measure whether the model meets certain requirements, such 583

as accuracy, efficiency, and portability. Therefore, to mea- 584

sure the performance of different models, the root mean 585

square error (RMSE), mean absolute error (MAE), and mean 586

absolute percentage error (MAPE) were used as evaluation 587

indices. The smaller the values of RMSE, MAE, and MAPE, 588

the better is the prediction performance of the model. This 589

is specified as the observed value yi and the predicted value 590

ŷi, i ∈ (1, . . . , n). The evaluation indices are defined as 591

follows: 592

RMSE =

√√√√1
n

n∑
i=1

(yi − ŷi)2 (22) 593

MAE =
1
n

n∑
i=1

∣∣yi − ŷi∣∣ (23) 594

MAPE =
100%
n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (24) 595

B. PARAMETER SETTING 596

The experiment was implemented in Python IDE PyCharm, 597

and the main software environments used were Keras Ver- 598

sion 2.4.3 and TensorFlow Version 2.3.0. The hardware 599

environment was a Lenovo Y7000 personal computer (Intel 600

Core i7-9750HCPU@2.60GHz processor, NVIDIAGeForce 601

GTX 1660ti graphics card, 16GB RAM, 512 GB hard disk). 602

When setting the model training parameters, we set the ratio 603

of the training and test sets of the total samples to 9:1. 604

The grid search method of internal nested cross-validation 605

was used to optimize the network parameters. The steps of 606

this method are as follows: first, the pre-selected values of 607

various parameters such as the number of neurons in the 608

hidden layer, learning rate and batch size are listed in the dic- 609

tionary, and the ‘‘grid’’ is generated by the exhaustive method 610

through the arrangement and combination of various param- 611

eters, and then put into the model in batches for prediction 612

performance evaluation, In each batch, the cross validation 613

method is used to fully evaluate the model performance of a 614

single group of parameters, and finally the optimal parameter 615

combination is selected through comparison. 616

Through the grid searchmethod, in the vanilla RNNmodel, 617

the number of neurons is determined to be 32, and the learning 618
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rate is 0.001, set batch_size to 64 and the number of iterations619

to 20; In the LSTM model, the number of neurons is deter-620

mined to be 48, and the learning rate is 0.001, set batch_size to621

64 and the number of iterations to 30; In the BiLSTMmodel,622

the number of neurons is 48 and the learning rate is 0.001,623

batch_size is 128 and the number of iterations is set to 30.624

The input length of the historical time series of all the models625

was 15. The mean square error (MSE) was used as the loss626

function, and the adaptive moment estimation optimization627

gradient descent algorithm (Adam) was used as the optimizer.628

C. TRAVEL TIME SERIES DECOMPOSITION RESULTS629

The CEEMDAN algorithm was used to decompose the travel630

time series of all sections of the Yalu expressway into several631

IMFs at different time scales. Taking the travel time data632

of section 2 with 5 min as the time granularity for seven633

consecutive days as an example, the decomposition results634

are shown in Figure 6, from top to bottom are the original635

time series and the 9 IMFs components sequentially decom-636

posed by the CEEMDAN algorithm. It can be seen from the637

figure that the decomposed travel time series eliminates the638

noise of the original sequence to a great extent. In addition,639

the decomposed travel time series has a certain smoothness,640

which can significantly improve the prediction effect of the641

travel series.642

FIGURE 6. Travel time series decomposition results.

After decomposing the travel time series into several IMFs643

with the CCEMDAN algorithm, the complexity of the time644

series components of all sections of the Yalu expressway645

is calculated using SampEn. The mean values of the calcu-646

lation results are presented in Table 3. It can be seen that647

the sample entropy gradually decreases from IMF1 to IMF9,648

which means that the complexity of the travel time series649

also decreases. Set the threshold value of sample entropy as650

1 and 0.2, then IMF1∼ IMF4 are divided into high-frequency651

sequences with high randomness, IMF5–IMF7 are intermedi-652

ate frequency sequences with general randomness, and IMF8653

and IMF9 are divided into low-frequency sequences with rel- 654

atively low randomness. 655

TABLE 3. Sample entropy of travel time subsequences after CEEMDAN
decomposition.

To evaluate the prediction performance and stability of 656

CM1, two combined models of convolutional neural network 657

(CNN) and LSTM were selected: CNN-LSTM and Convo- 658

lutional LSTM (ConvLSTM). The specific parameters of the 659

various control models are set as follows: 660

(1) LSTM: The number of neurons was set to 48, the learn- 661

ing rate was 0.001, the batch_ size was set to 64, and 662

the number of iterations was 30. 663

(2) CNN-LSTM: Uses the convolution part of the 664

model to process the data and inputs the processed 665

one-dimensional array into the LSTM model. In the 666

parameter setting, the number of filters was 64, and the 667

size of the convolution kernel was 1× 2. The activation 668

function is a linear rectified linear unit (ReLU). 669

(3) ConvLSTM: The multiplication operation in each gate 670

of the LSTM unit is replaced by a convolution oper- 671

ation. The difference from the CNN-LSTM model is 672

that the former does not convolute the cycle time kernel. 673

In the parameter setting, the number of filters was 64, 674

and the size of the convolution kernel was 1 × 2. The 675

activation function was ReLU. 676

D. PREDICTION EFFECT UNDER DIFFERENT TIME 677

GRANULARITY 678

To analyze the short-term prediction effect of the combined 679

model on the travel time of expressways, we selected the time 680

granularity of 5 min, 10 min, and 15 min to predict the travel 681

time of all sections of the Yalu expressway. For example, 682

in Section 2, the prediction results are shown in Figure 7. 683

It can be observed from the figure that the three combined 684

models show a good prediction effect of travel time under 685

different granularities. Compared with CM1 and CM2 using 686

the CEEMDAN algorithm, CM3 using the EMD algorithm 687

overestimates the travel time value at most time points, espe- 688

cially in the 5-minute time granularity. Both the CM1 and 689

CM2 models can better conform to the changing trend of the 690

travel time series and have high prediction accuracy. 691

For a more accurate comparison of the differences between 692

the models, the MAPE box diagram of the prediction results 693

of each model under the time granularity of 5, 10, and 15 min 694

is obtained, as shown in Figure 8. According to the figure, 695

under the time granularity of 5, 10, and 15 min, the MAPE 696

of CM1, CM2, and CM3 at each time point was maintained 697

within 7%, 8%, and 15%, respectively, indicating that these 698

three models have high prediction accuracy at each time 699
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FIGURE 7. Prediction results of different models with different time
granularities: (a)time granularity: 5 min; (b)time granularity: 10 min;
(c) time granularity: 15 min.

FIGURE 8. MAPE error diagram of different models with different time
granularity, (a)time granularity is 5 minutes(b)time granularity is 10
minutes(c)time granularity is 15 minutes.

point. Under different time granularities, the median and700

mean of MAPE of CM1 andCM2 are lower than that of CM3,701

and there are few data points with MAPE close to 0 in CM3;702

therefore, its prediction error is also relatively large.703

To further reflect the prediction effect of CM1, two704

combined models of CNN and LSTM were introduced:705

CNN-LSTM and ConvLSTM. The errors of the prediction706

results of different models under the time granularity of 5, 10,707

and 15 min are shown in Table 4. It can be seen that under dif-708

ferent time granularities, the prediction effect of ConvLSTM709

is better than that of CNN-LSTM, and the prediction perfor-710

mance of LSTM is not inferior to that of the combined model711

of CNN and LSTM, which shows that under the condition712

of a single feature, the combination of CNN and LSTM 713

cannot significantly improve the prediction accuracy of 714

RNN. 715

TABLE 4. Prediction error of different models with different granularity.

Under the time granularity of 5 min, 10 min, and 15 min, 716

the RMSE of CM1 using the decomposition algorithm for 717

the travel time series was 54.9%, 62.9%, and 45.8% lower 718

than that of LSTM, the MAE was 54.5%, 58.5%, and 46% 719

lower, and the MAPE was 53.7%, 56.6%, and 46.5% lower, 720

respectively. CM1 model is better than CM2 and CM3, 721

which can reduce the RMSE by 18.8 ∼ 26.4%, 0.8 ∼ 41%, 722

4.1 ∼ 13.3%, MAE by 22.3 ∼ 32.9%, 0.5 ∼ 35.1%, 723

7.6∼ 15.6%,MAPEby 27%∼ 34.1%, 0.7%∼ 32.3%, 8.68% 724

∼ 16.3%. 725

Therefore, compared with the combined prediction mode 726

of CNN and LSTM, the combined prediction mode of 727

step-by-step prediction using the time-series decomposition 728

algorithm has a higher prediction accuracy. In addition, the 729

advantage of CM1 over CM2 is that it uses the BiLSTM 730

model to predict high-frequency travel time subsequences. 731

Compared with the LSTM model, the BiLSTM model can 732

better predict high-frequency travel time subsequences. 733

E. PREDICTION EFFECT UNDER DIFFERENT EXPRESSWAY 734

To better analyze the applicability of the model to different 735

expressway datasets, the travel time on September 30 was 736

selected as the prediction object, the time granularity was 737

set to 5 min, and the traffic volume of each section of 738

the Yalu expressway, Chengnan Expressway, and Chengya 739

expressway were counted. According to the statistical results, 740

sections with large and small traffic flows on the Yalu 741

expressway were determined. The CM1 model was used to 742
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FIGURE 9. Scatter diagram of prediction results of different expressway
sections, (a)large traffic flow of Yalu expressway(b)small traffic flow of
Yalu expressway (c) large traffic flow of Chengnan expressway (d)small
traffic flow of Chengnan expressway(e)large traffic flow of Chengya
expressway(f)small traffic flow of Chengya expressway.

predict the travel time. The measured speed value and the743

speed value converted from the predicted value of travel time744

were drawn into a scatter diagram to analyze the prediction745

effect of the model. The results are shown in Figure 9. Each746

figure contained 288 data points. The straight line represents747

the 45 ◦line, the X-coordinate is the predicted value, and the748

Y-coordinate is the real value. The closer it is to the 45 ◦line,749

the more accurate the prediction result.750

Based on the prediction results of the whole day on751

September 30, it can be seen that the data points of the sec-752

tions with small traffic flow on the Yalu expressway, Cheng-753

nan expressway, and Chengya expressway are closer to the754

45◦ line, and the speeds are basically distributed between755

70 ∼ 100 km/h, so the prediction results are ideal, the dis-756

tribution of prediction data points in the sections with large757

traffic flow is relatively discrete, and the prediction effect is758

worse than that in the sections with small traffic flow.759

The prediction error results of the different predictionmod-760

els for the Yalu, Chengnan, and Chengya expressways are761

shown in Figure 10. Among them, the section with a large762

traffic flow is represented by M, and the section with a small763

traffic flow is represented by L. Overall, the prediction effect764

of CM1 and CM2 in each expressway section is better than765

that of the other models. The CM1model canmore accurately766

grasp the periodicity and regularity of travel times in different767

FIGURE 10. Error diagram of prediction results of different expressway
sections, (a) RMSE (b) MAE.

sections of traffic flow. The prediction effect of each model 768

in the section with a small traffic flow was significantly bet- 769

ter than that in the section with a large traffic flow. This is 770

because the change in vehicle speed was more frequent in 771

the section with a large traffic flow. Sometimes, it is diffi- 772

cult to capture the operation situation of slow driving during 773

peak hours, resulting in differences in travel time prediction 774

results. 775

VI. CONCLUSION AND FUTURE WORK 776

Expressway travel time data series have significant nonlin- 777

ear and nonstationary characteristics, and it is difficult for 778

a single prediction model to meet the increasing demand 779

for prediction accuracy. This study attempts to combine the 780

CEEMDAN algorithm with an RNN to build a prediction 781

model, which is verified by different time granularities and 782

expressways. The main conclusions are as follows. (1) The 783

CM1 combined prediction model proposed in this paper has 784

high accuracy for travel time prediction of different time 785

granularities and expressways, and the prediction model has 786

certain generalization and robustness. (2) Under the time 787

granularity of 5 min, 10 min, and 15 min, the prediction 788

performances of CM1, CM2, and CM3were better than those 789

of LSTM, CNN-LSTM, and ConvLSTM, which indicate that 790

the combined prediction method was better than the single 791

model. (3) Under different time granularity, CM1 is better 792

than CM2 and CM3; under different expressway, CM1 can 793

more accurately grasp the variation characteristics of travel 794

time in different sections of traffic flow. This indicates that the 795
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BiLSTM model can better predict the high-frequency travel796

time subsequence.797

However, this paper still has some limitations. Firstly, the798

CM1 combined model training time is long because the intro-799

duction of CEEMDAN algorithm affects the training time800

of LSTM model. Secondly, the model only considers the801

randomness and periodicity of traffic volume sequence, but802

ignores other factors that affect traffic volume under real con-803

ditions, such as weather and traffic changes in adjacent areas.804

To improve the stroke time prediction model, the future work805

direction will focus on the following two aspects: (1) per-806

form a more comprehensive time complexity analysis using807

asymptotic notations to precisely show the running time of the808

work, find effective ways to improve computing efficiency,809

(2) more comparative analysis of the predictive effect of810

CEEMDAN and deep neural structures should be conducted,811

explore and improve the algorithm to include more influenc-812

ing factors, and extend to the road network level.813
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