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ABSTRACT Travel time is the basis for intelligent emergency control and guidance in expressway networks.
To realize its accurate prediction and improve the expressway service level during emergencies, this study
uses a combined model to predict the short-term travel time of expressway sections based on the expressway
gantry data of Sichuan Province. First, the travel time series was extracted using a data matching algorithm,
and the double standard deviation-cyclic elimination (2SD-CE) algorithm was used to clean the data. Then,
combined with the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)
algorithm, the travel time subsequence was extracted, and the frequency of the subsequence was divided
by Sample entropy (SampEn) algorithm. Based on this, bidirectional long short-term memory (BiLSTM),
long short-term memory (LSTM), and vanilla recurrent neural network (vanilla RNN) models were used to
construct prediction combination model 1 (CM1) under the condition of a single feature. Subsequently,
the CEEMDAN and empirical mode decomposition (EMD) algorithms were combined with the LSTM
algorithm to obtain the combination models (CM2 and CM3) without frequency division. The example
calculation and analysis show that under different time granularities (5 min, 10 min, and 15 min) and different
highway sections, the combined model can integrate the advantages of all prediction models and has higher
prediction accuracy and stability, among which the prediction effect of CM1 can reduce the prediction value
of the root mean squared error (RMSE) by 18.8~26.4%, 0.8~41%, 4.1~13.3%.

INDEX TERMS Expressway, travel time prediction, deep learning, CEEMDAN, recurrent neural network.

I. INTRODUCTION

After scattered or local traffic accidents, natural disasters,
and other emergencies in the road network have a conges-
tion impact on the expressway, this impact spreads to the
regional road network and slows down the efficiency of emer-
gency rescue. Therefore, there is an urgent need to improve
the intelligent control and guidance ability of expressway
networks, strengthen the close cooperation between peo-
ple, vehicles, and roads, improve road traffic efficiency, and
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create an efficient, accurate, and real-time expressway opera-
tion system [1]. In recent years, with the continuous develop-
ment of big data and artificial intelligence technology, traffic
data collected by sensors have gradually improved, providing
a certain data basis for the construction of machine learn-
ing models. As a new research direction in machine learn-
ing, deep learning has also been increasingly applied in the
field of traffic prediction [2], [3], [4], [5]. Deep learning can
not only learn its internal laws and high-order representation
from massive traffic data but also has an end-to-end learning
method that is suitable for short-term travel time prediction
problems with high nonlinearity [6]. Accurate and real-time
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travel time prediction is the key link between intelligent guid-
ance and control of expressway networks. Improving the pre-
diction accuracy of travel time can not only provide detection
means for emergencies, but also improve the traffic efficiency
of road networks through timely regulation and control to
achieve smooth road networks.

Travel time prediction is the basis for the intelligent control
and guidance of expressway networks. As an objective reflec-
tion of the driving condition of vehicles in a certain section,
it can measure the traffic state of the section at different times
and is closely related to traffic parameters such as traffic flow,
driving speed, and time occupancy [7]. Travel time predic-
tion can be divided into long-, medium-, and short-term pre-
dictions. Medium- and long-term predictions, as important
considerations for the long-term planning of road networks,
usually take years and months as scale units. The short-term
travel time prediction has a smaller scale than the medium-
and long-term predictions, but it accuracy is higher. It is gen-
erally believed that a prediction with a time span of less than
or equal to 15 min is a short-term prediction [9], [10], [11].

Real-time and accurate short-term travel time prediction
can correctly capture the change law of traffic flow on the
road to reasonably infer the traffic state of the outlet net-
work or road section at the next moment. In the decades
of research and development of traffic prediction, scholars
at home and abroad have developed various algorithms to
predict traffic parameters such as traffic flow, speed, and
travel time. According to different prediction methods, travel
time prediction models are divided into two categories: sta-
tistical models, which can be divided into linear and nonlin-
ear theoretical statistical models. Linear theoretical models
include Kalman filtering and time-series methods. Kalman
filtering theory was proposed in the 1960s, and Okutani and
Stephanedes [12] first applied this theory to traffic flow pre-
diction. The Kalman filtering model can deal with stationary
or non-stationary data, but it is a linear model, and the actual
traffic prediction problems are mostly nonlinear problems;
therefore, the Kalman filtering model has some limitations
in practical applications. The autoregressive moving aver-
age model (ARMA) and autoregressive integrated moving
average model (ARIMA) are commonly used time series
prediction models [13]. Ahmaed and Cook [14] applied the
ARIMA model for traffic flow prediction for the first time.
Li et al. [15] predicted traffic flow based on an improved
ARIMA model. These types of time series models are simple
in modeling, but they have high requirements for continuity
of data and it is difficult to deal with complex prediction
problems of multi-dimensional inputs.

Nonlinear theoretical models include nonparametric
regression [16] and chaos theory [17]. The k-nearest neigh-
bor (KNN) algorithm is a typical non-parametric regression
model. On the one hand, its algorithm is simple and easy to
understand, on the other hand, it relies heavily on training
data and has poor fault tolerance to training data. Disbro
and Frame [18] introduced the chaos theory into the field
of transportation for the first time. Wang and Shi [19] built
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a nonlinear chaos prediction model based on phase-space
reconstruction theory to predict urban road traffic flow. The
chaos theory model is based on measured data to obtain the
chaotic characteristic parameters of the system, which avoids
the influence of subjective factors and has a high prediction
accuracy, but it is only suitable for short-term traffic flow
prediction.

The second category is artificial intelligence (AI) technol-
ogy based on neural networks. In recent years, with the rapid
development of artificial intelligence, deep learning theory
and neural network models have provided additional model-
ing ideas for the study of traffic flow prediction. Wu et al. [20]
applied SVR to travel time prediction and compared it with
historical mean and other methods, and the results showed
that the model could significantly reduce the prediction error.
Su et al. [21] proposed a short-term traffic flow predic-
tion method based on incremental support vector regression
(ISVR), and the results showed that the prediction accuracy
of this method was better than that of BP neural network
model. Luo ef al. [22] used the least square support vector
machine method to predict the traffic flow, and adopted the
fusion optimization algorithm to select the optimal parame-
ters, which improved the prediction ability and calculation
efficiency of the model. Although these traditional neural
networks can better learn the characteristics of traffic flow
and predict future traffic flow according to the temporal and
spatial variation characteristics of traffic flow, most of them
use single hidden layer networks, which cannot learn the
deeper variation characteristics of traffic flow data, and the
prediction accuracy is often lower than that of deep network
prediction methods.

Deep learning has a strong learning ability for time series
and can deal better with spatially or temporally related data
structures [23]. The depth of a recurrent neural network
(RNN) is not only reflected in the fact that it has multiple
hidden layer structures but also has the function of time mem-
ory. RNN can be used for the recognition of text, speech, and
other data sequences, and can be better applied to the relevant
prediction field of time series data [24]. Serious gradient van-
ishing and gradient explosion problems exist in RNN. Subse-
quently, Hochreiter and Schmidhuber [25] designed an long
short-term memory (LSTM) unit to overcome this defect,
which enabled the recurrent neural network represented by
LSTM to be applied on a large scale in the field of time-series
prediction. Ma et al. [26] used the LSTM structure to estab-
lish a traffic speed prediction model, and used the microwave
traffic speed data of Beijing for verification. The experimen-
tal results showed that the network effectively captured the
correlation and nonlinearity of the traffic state time, and the
prediction accuracy was better than that of most statistical
methods.

In conclusion, the deep learning model has a better pre-
diction effect than the traditional traffic prediction methods.
Therefore, in the face of a large amount of diversified traf-
fic data, selecting the appropriate model or combining mod-
els with different structures to realize the complementary
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advantages of the model, extracting significant traffic fea-
tures, and setting appropriate parameters to further improve
the accuracy of expressway short-term prediction is the devel-
opment direction of deep learning in the field of expressway
short-term travel time prediction in the future. The main con-
tributions of this study are as follows.

(1) A short-term travel-time prediction model based on
complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) was proposed. In view of the
high nonlinearity of travel time, the CEEMDAN algorithm is
used to decompose the travel time series.

(2) Combined with the Sample entropy (SampEn)
algorithm, the complexity of each subsequence after decom-
position was calculated. According to the complexity of time-
series components, they are divided into high-frequency,
intermediate frequency, and low-frequency sequences, which
are predicted by the bidirectional long short-term memory
(BiLSTM), LSTM, and vanilla RNN models, respectively.

(3) The prediction results of each high-frequency, medium-
frequency, and low-frequency sequence component are
superimposed to obtain the travel time prediction value,
which is compared with the baseline models. The research
results can provide a basis for the intelligent control and
guidance of expressway networks.

The rest of the paper is organized as follows: The section II
is related works. In section III, a method that combines
the CEEMDAN, SampEn, and LSTM was proposed. The
section IV describes the dataset of this study, and uses a
novel algorithm to complete the preprocessing of the dataset.
The V part is the validation and evaluation of the proposed
model through experiments on different time granularity
and different expressways. Finally, conclusions are drawn in
section VL.

Il. RELATED WORKS

This section briefly reviews some methods in the literature
for extracting more significant traffic flow features through a
combination of optimization algorithms and models. Because
traffic flow data are disturbed by various factors such as
weather and traffic detectors during the collection process,
they often contain a large amount of noise. Currently, a large
number of studies have shown that decomposition algorithms
can reduce the influence of noise on prediction models and
improve prediction accuracy. The empirical modal decompo-
sition (EMD) method, proposed by Huang et al. [27], is a
processing method that can cope with nonlinear sequences.
EMD can be used without setting arbitrary basis functions
and can be analyzed directly according to the data scales
and characteristics. It has been shown to be effective when
applied to decomposing highly nonlinear and nonsmooth
data [28]. Duo et al. [29] used EMD to decompose traffic
flow sequences into different frequency components and then
input them into an optimized SVM model, which was vali-
dated by a dataset of the Changchun city road network, show-
ing that EMD can achieve improved prediction accuracy.
Du et al. [30] proposed a prediction model based on empirical
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mode decomposition (EMD) and gated recurrent unit (GRU)
neural network for a more comprehensive characterization of
network traffic, by EMD to the traffic data is decomposed
into multiple components, and each component is used to
train the corresponding GRU neural network, and finally, the
predicted values of all components are combined to obtain
the final result. Although the EMD algorithm can effectively
cope with nonlinear sequences, the mode aliasing occurs dur-
ing the decomposition process, which is also a limitation of
the EMD algorithm. EEMD [31] solved the problem of mode
mixing by additional white noise. Tang et al. [32] compared
five denoising schemes and proposed that EEMD is superior
to other algorithms. Liu et al. [33] used the EEMD algorithm
to decompose the time series and extracted the basic feature
subset of each component using the minimum redundancy
maximum association feature selection algorithm, and then
used deep belief network to each component is trained, and
finally the prediction results are aggregated into the out-
put of the integrated model, and the results show that the
method has significant performance improvement compared
with a single deep belief network and other selected meth-
ods. Based on this, Torres et al. [34] proposed the Com-
plete Ensemble Empirical Mode Decomposition with Adap-
tive Noise(CEEMDAN) algorithm [28] by adding adaptive
white noise to each decomposition in order to improve the
completeness of EEMD and reduce reconstruction errors.
The basic principle is to adaptively add white noise during
intrinsic mode function (IMF) component decomposition to
calculate each intrinsic mode functions (IMFs) component,
which can achieve almost zero reconstruction error, has good
integrity, reduces the number of integrations, and alleviates
the phenomenon of modal aliasing. Guo et al. [35] pro-
posed a hybrid model based on deep learning methods and
CEMMDAN, which has great potential for traffic flow pre-
diction. Lu et al. [36] used this method to decompose raw
traffic flow data into several intrinsic modal function com-
ponents and one residual component, and then the XGBoost
model is trained and the decomposed components are pre-
dicted separately. The final prediction results were obtained
by integrating the prediction outputs of the XGBoost method.
It was demonstrated that the CEEMDAN-XGBoost model
can effectively fit the complex fluctuations of different types
of road sections, and the model accuracy is better than that
of LSTM and other XBGoost-based models. In the study of
Zhu et al. [37], the replacement entropy values of the IMF
components were calculated using the PE algorithm after
decomposing the original traffic flow data into several rel-
atively stable modal components, and the components with
similar entropy values were superimposed to form a new
sequence. Huang et al. [8] evaluated five decomposition algo-
rithms, EMD, EEMD, CEEMDAN, WPD (Wavelet Packet
Decomposition), and VMD (Variational Mode Decomposi-
tion), based on BiLSTM in terms of prediction performance,
robustness, and generalization performance, to investigate
the impact of multi-scale decomposition algorithms on neu-
ral network models, and they concluded that CEEMDAN
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can be used to pursue prediction accuracy and anti-noise
performance.

From the discussion in the previous section, we learned
that deep learning models have better prediction results than
traditional traffic prediction methods, but that is not abso-
lute. Single prediction models are often designed by con-
sidering the traffic flow time series only as a single series
without designing the optimal method based on its inher-
ent characteristics. Yu et al. first decompose and reconstruct
the traffic flow data series using wavelet transform, build a
sub-prediction model of the reconstructed data using radial
basis function (RBF), and optimize it using Particle Swarm
Optimization (PSO) [38]. Li et al. consider that the orig-
inal traffic flow series contains linear and nonlinear parts,
and predicted the linear part using ARIMA and the nonlin-
ear part using RBF-NN. The results show that the hybrid
model has better prediction results than the single ARIMA,
RBF-NN model [39]. Compared with the single prediction
model, the prediction accuracy of the hybrid model has been
significantly improved. However, the existing studies still
have shortcomings in the design, always ignoring the fact
that traffic flow time series have typical periodic character-
istics and will show different characteristics at different time
granularity. This study begins to consider decomposing the
original data series into sub-series with different frequencies
or modes, building sub-prediction models, and combining
the results of the sub-prediction models to obtain the final
prediction results. To further demonstrate the model effect,
two combined models of CNN and LSTM are compared to
verify the prediction effect of this model.

lll. METHODS

This section first introduces the CEEMDAN, SampEn, and
LSTM. Based on this, a method that combines the three mod-
els was proposed.

A. CEEMDAN
The steps of using the CEEMDAN algorithm to decompose
the travel time series are as follows.

Step 1: Add a series of adaptive white noise to the resam-
pling travel time series:

Tit) =T(t) + @ob'(t), iefl,---, 1} (D

where T'(¢) is the travel time series after adding white noise,
T(¢) is the historical travel time series of road sections, 6(¢)
is the white noise added for the ith time, ¢g is the noise
coefficient, and [ is the integration time (usually 10-20).

Step 2: Combined with EMD algorithm, the travel time
series TU(7) is decomposed, and mean the decomposed IMF
components:

1<,
di0) = ; §d; )

where, df is the i-th IMF component, and the d; () represents
the first travel time series component.
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Step 3: The first margin sequence can be obtained by
removing dj(t) from T'(¢):

ri(t) =T(1) — di (1) 3)

where, the r1(¢) represents the first margin sequence.
Step 4: Continue to decompose r1(1) + ¢oE1 [6'()] and
obtain the second travel time series component:

b=+ S [no+er o]l @
i=1

where, Ej(-) is the j-th IMF component obtained by EMD
decomposition, and the d2(¢) represents the second travel
time series component.

Step 5: Calculate the remaining IMF components:

ne(t) = ne—1() —di(1), k=2,3,--- . K (5

Gt = 7 S [no+aeloo]}  ©
i=1

where, K is the total number of modes, r¢ () represents the
k-th margin sequence, dj+1 (t) represents the (k + 1)-th travel
time series component, ¢ is the noise coefficient.

Step 6: When the travel time margin cannot be further
decomposed. The margin was calculated as follows:

K
R() =T(1)~ ) di(0) ™

k=1

where, R(t) represents the margin sequence.

B. SAMPLE ENTROPY (SampEn)

SampEn can measure the complexity of a time series well. Its
calculation does not depend on the length of the travel-time
subsequence and has excellent consistency. The smaller the
sample entropy, the higher is the self-similarity of the time
series; otherwise, the greater is the nonlinearity of the travel
time series. Assuming that the travel time sequence {x (n)} =
x(1),x(2),---,x (N) consists of N sample time points, the
calculation steps of the entropy are as follows.

Step 1: Convert the travel time series into a vector
series with dimension m, X, (1), -+ Xpn (N —m+ 1), and
Xn() = x@,x(@+1D,---,x@+m—-1}, 1 < i <
N — m + 1. These vectors represent m consecutive values
from the ith time-point.

Step 2: d[Xm (i) , Xm (j)] is the absolute value of the max-
imum difference in the corresponding element Xy, (i) and
Xm (j), which is calculated as follows:

d [Xm (1) , Xim ()] = maxg=0,.... m—1 (Ix (( + k) —x G+ k)|)
(3)
Step 3: For a given Xy, (i), count the number of distances

between Xy, (i) and Xp, (j) that is less than or equal to r, and
record it as B;. For 1 < i < N-m, define:

1

Bo=y—mi?

i &)
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Step 4: Defined B™ (r) as:
1 N—m
(m) — m
B () = ——— i;Bi () (10)

Step 5: Increase the dimension to m+-1, calculate the num-
ber with distance between X1 (i) and X1 (i) less than or
equal to r, and record it as A;. Defined A?“ (r) as:

m 1
AO= T (a
Step 6: Defined A" (r) as:
1 N—m
A @) =—— 3" AT (12)
N —m =

B™ (r) is the probability that two sequences match m
points under the similarity tolerance r. A‘™ (r) is the prob-
ability that two sequences match m+-1 points. The sample
entropy is defined as

| [
SampEn (m, r) = lim {—In (13)
N—o00 B™ (r)

C. LONG SHORT-TERM MEMORY (LSTM)
In the field of traffic prediction, the traditional recurrent neu-
ral network has a poor ability to predict time series with a
long-time delay, and the problem of long-term dependence
will appear. LSTM is a type of temporal recurrent neural
network that is specially designed to solve the long-term
dependency problem of general RNN. It is typically used to
predict temporal series data. The neural network module of
LSTM has four layers that interact with information in a spe-
cial manner; its structure is shown in Figure 1. Among them,
the forgetting gate is responsible for controlling the choice
of information in long-term memory. The closer to 1 means
the more information is retained; The input gate is used to
control the input process of the current time information, that
is, to update the memory cell; The output gate controls the
inflow of timing information in memory cells and determines
the short-term memory part. There are two states in LSTM,
one is long-term memory state C and the other is short-term
memory state H. C will update itself through the information
input at each time sequence and deliver it all the time; H
extracts the corresponding memory at each time step.

The calculation of each LSTM layer can be explained using
the following formula:

i = 0(w(i)x(f) + U(i)h(t—l)) (14)
0 = o(WOx® 4 yPpt=h) (15)
o = G(W(O)x(t) + U(O)h(t—l)) (16)
¢ = tanh(W©x® 4 y©@p=D) (17)
M zf(l) x =D 1 o &0 (18)
Y = 0™ x tanh(c) (19)

where, x(* is the input signal, o'(-) is the activation func-
tion, i), £, o are Input gate, Forget gate and Output
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FIGURE 1. Network structure of LSTM.
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gate,é(’ ) ¢ are New memory cell and Final memory cell,h®
is Hidden state, WO, U, w® y® w© y© we© y©
are parameter matrix.

D. COMBINED FORECASTING MODEL FRAMEWORK
Based on the RNN, combined with the CEEMDAN and
SampEn algorithms, the framework of the combined predic-
tion model was constructed, as shown in Figure 2. Firstly,
the expressway gantry data obtained by the fixed collection
technology is cleaned, and the abnormal value is removed.
According to the characteristics of the change of the traffic
state of the expressway, a reasonable sampling time window
is set, and the “30” criterion method, box chart method
and 2SD-CE algorithm respectively remove outliers from the
travel time series for 7 consecutive days, and the Min Max
Scaler in Scikit-learn is used to normalize the data within the
range of [—1, 1]. After a series of preprocessing, a relatively
accurate historical travel time series T'(¢) is obtained, which
is the premise of successful prediction.

Then, CEEMDAN algorithm is applied to decompose the
travel time series of road sections, and decompose them into
several IMFs at different time scales. The final travel time
series can be expressed as:

K
T() = ) di() + R(1) (20)

k=1

where R(?) is the margin sequence decomposed by CEEM-
DAN algorithm.

Next, the complexity of time-series components of road
sections is calculated by SampEn algorithm. Through the
sample entropy in part A of this section, the sample entropy
can be estimated by the following equation:

AT (r)
B (f")}

SampEn (m, r, N) = —In |: 21

where N is the number of data points in the travel time series.
The threshold value of sample entropy is set to divide
the frequency of each sub sequence. According to the
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randomness from high to low, it is divided into high-
frequency sequence, intermediate frequency sequence and
low-frequency sequence.

In the prediction of each sub sequence, the high-
frequency sequence adopts bidirectional LSTM (BiLSTM),
the intermediate frequency sequence adopts LSTM, and the
low-frequency sequence adopts vanilla RNN. Finally, the pre-
diction results are added to obtain the travel time prediction
value. This combined prediction model is referred to as com-
bination model 1 (CM1). As a comparison, CEEMDAN and
EMD algorithms are respectively used to decompose the time
series without frequency division, and then LSTM algorithm
is used to predict these sub sequences. Finally, the final pre-
diction results are obtained by summing all the prediction
results. The models are respectively CM2 and CM3. Later,
this will be demonstrated by a case study.

Travel time series

!

undecomposed

Single model

'
3|1\1F|‘ |l\lF2H e HI\IF\'”
! 1

,,,,,,,,,,,,,,, T

‘Iugh ‘ ||nﬂﬁun|‘ ‘ low

| oM ‘ | oMz |

[BiLstar]  [LsT™] [ Vanitla RNN |i
!

FIGURE 2. Combined forecasting model framework.

IV. CASE STUDY

A. DATA SOURCE

The travel time data of the expressway section is collected
by using the fixed acquisition technology to read the vehicle
information in the vehicle electronic tag through the ETC
(Electronic Toll Collection) microwave antenna installed on
the gantry of the expressway toll station. The data range
includes expressways in Chengdu and Ya’an City, Sichuan
Province, including the Yalu, Chengnan, and Chengya
expressways. The specific locations are shown in Figure 3.
The time range is from July 30 to September 30, 2020, with
a total of 1.2 billion pieces of data. The field names of
the original data include CENTERNAME, GANTRYNAME,
PILENUMBER, GANTRYORDERNUM, TRANSTIME,
VLP, and VEHICLETYPE. See Table 1 for the meanings
of these fields. Among all vehicle types, the number of
class 1 passenger cars (passenger cars with fewer than
seven seats) accounts for 85%, and their operation condi-
tion can represent the traffic condition of the road section.
To eliminate the influence of the dynamic performance of
different types of vehicles on travel time, only the travel
time of class 1 passenger cars was used and predicted.
The original data for the expressway gantry are listed in
Table 2.
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FIGURE 3. Sichuan expressway network.

TABLE 1. Meaning of each field of original data.

Initial field Data type Field meaning
CENTERNAME Char Expressway name
GANTRYNAME Char Gantry name

PILENUMBER Char Stake number
GANTRYORDERNUM Int Up and down directions of
Expressway
TRANSTIME Datetime Time of vehicle passing
VLP Char Car number
VEHICLETYPE Int Vehicle type
TABLE 2. Original data (Excerpt).
GA
NT VE
CEN
TER GANTRYNA PILEN" RY TRANSTIM HIC
NAM ME UMBE OR E VLP LE
E R DE TY
RN PE
UM
Yihai-,enghuo k2132 2020/9/29 LDXX
Yalu Gantry to15 201 11:18 XX !
Menghuo-
L2 k2095 2020/9/29 LDXX
Yalu Shimian +050 201 11:55 XX 1
Gantry
Val ﬂ“?ma“' k2063 0 2020929  LDXX |
au atyuan +960 12:18 XX
Gantry
Yal Hainan-Haibei K2038 201 2020/9/29 LDXX 1
au Gantry +850 12:36 XX
Yalu Hainan-Haibei K2035 201 2020/9/29 LDXX 1
Gantry +960 12:38 XX
Yal Haibei-Hainan K2035 101 2020/9/30 LDXX 1
au Gantry +900 14:43 XX

B. DATA CLEANING
In the process of gantry data acquisition and transmission,
owing to problems with the system itself or other factors,
data errors can easily occur. In the process of extracting
travel time from gantry data, firstly through simple screening
rules to eliminate obviously wrong data, such as data record
repeat, travel time is negative. The following rules are mainly
included.

Rule 1, excludes data with a model data of 0.

Rule 2, removes data at the exit or entrance of a certain
section.
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Rule 3, removes data with an empty gantry name.

Rule 4, removes data with a vehicle entry time later than
or equal to the exit time. Such data is not of research signifi-
cance, so it is excluded.

Rule 5, removes data whose travel time is significantly
beyond the range (greater than one day). The long travel time
may be caused by the driver stopping in the service area while
driving at high speed.

Rule 6, removes data with a stroke time interval of less than
10 seconds. A short travel time may be because the vehicle is
recorded twice by the same gantry, or simultaneously by the
opposite gantry.

Rule 7, removes duplication of data records.

Rule 8, exclude cases where the travel time is negative or
empty.

After cleaning the obviously incorrect data, there are still
some outliers in the travel time series. Travel time series have
the characteristics of high randomness and nonlinearity. It is
unreasonable to combine the travel times at all the time points
to eliminate outliers. It is necessary to set a reasonable sam-
pling time window according to different traffic conditions.
In general, a larger time window cannot effectively capture
the changes in traffic state within a smaller time range to
eliminate the normal value of a larger travel time. Although
a smaller time window can reasonably obtain the characteris-
tics of the travel time change, it is vulnerable to the influence
of the sample size. Therefore, according to the characteristics
of the change in expressway traffic state, 10 min was selected
as the time window in the evening peak period (16:00 to
22:00) to capture the time-varying difference of travel time,
30 min was selected as the time window of early morning and
night time (0:00 to 6:00), and the time window of other peak
periods was set to 20 min.

The 2SD-CE algorithm was used to filter abnormal travel
time. The principle is that when the difference between the
sample value of the travel time and the average value of the
total sample is greater than twice the standard deviation of
the total sample, the sample value of the travel time is clas-
sified as an abnormal value and is eliminated. The specific
screening requirements are shown in Figure 4.

The 2SD-CE algorithm is used to filter the abnormal travel
time with the specific steps as follows.

Step 1: According to the travel time characteristics of the
road section and different traffic conditions, reasonable sta-
tistical time windows were set.

Step 2: Calculate the mean p and standard deviation o of
the travel time samples in each statistical time window.

Step 3: Judge whether there are any data outside the range
of w420 in the sample. If there is, remove the data and refer
to Step2 for recalculation. If it does not exist, proceed to
Step4;

Step 4: Retain the travel time sample after final screening.

C. DATA CLEANING RESULTS
All the sections of the Yalu Expressway were selected for
outlier elimination. Taking section 1 in the upward direction
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FIGURE 4. Data cleaning process.

of Yalu expressway as an example, according to the above
travel time data cleaning method, the scatter diagram of travel
time distribution after eliminating obvious wrong data can
be obtained, as shown in Figure 5 (b). It can be seen from
the figure that although the travel time shows a certain trend
after the initial cleaning of the data with an obvious wrong
travel time, there are still many noise points; that is, there are
still some data with large travel times in the flat peak. If an
appropriate outlier elimination method is not adopted, it is
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bound to affect the quality of the training samples and reduce
the effect of model fitting.

Use “30” criterion method, box chart method and 2SD-CE
algorithm eliminate outliers from the travel time series for
7 consecutive days respectively. The elimination effect is
shown in Figure 5 (c), (d) and (e). As can be seen from the
figure, although the “30” criterion method and box chart
method can effectively eliminate the noise points with exces-
sive travel time in the peak period, they also eliminate the
characteristic points with excessive travel time in the peak
period, and do not retain the characteristics of excessive travel
time in the peak period. The effect of eliminating the abnor-
mal data of travel time in the expressway section is not ideal,
and there are some limitations; therefore, they are not suitable
for the treatment of the abnormal value of travel time in the
expressway section. The 2SD-CE algorithm subdivides each
time period by setting a statistical time window to retain
the travel time characteristics in each time period. It can be
seen from Figure 5 (e) that after cleaning the data using this
method, not only are the outliers of travel time effectively
removed, but the trend of excessive travel time in peak hours
is also retained to a great extent. Therefore, the 2SD-CE
algorithm was applied to address the outliers of travel
time.
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The cleaned data were resampled to a time granularity of
5 min, and there were few missing data points. The historical
average method was used to fill in missing values. Because
the travel time series generally fluctuates significantly, the
Min Max Scaler in Scikit-learn is used to normalize the data
within the range of [—1, 1].

V. PERFORMANCE EVALUATION

A. MODEL EVALUATION INDEX

Historical travel time series based on expressway gantry data
can predict future travel time after preprocessing. However,
to ensure that the prediction results meet the needs of express-
way intelligent control and guidance, it is often necessary to
measure whether the model meets certain requirements, such
as accuracy, efficiency, and portability. Therefore, to mea-
sure the performance of different models, the root mean
square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE) were used as evaluation
indices. The smaller the values of RMSE, MAE, and MAPE,
the better is the prediction performance of the model. This
is specified as the observed value y; and the predicted value

vi, i € (1,...,n). The evaluation indices are defined as
follows:
l n
RMSE = |- (i —§)? (22)
e
1 n
MAE = - 21: |yi — 34 (23)
=
100% | yi _)A’i‘
MAPE = 24)
n Z Yi

i=1

B. PARAMETER SETTING

The experiment was implemented in Python IDE PyCharm,
and the main software environments used were Keras Ver-
sion 2.4.3 and TensorFlow Version 2.3.0. The hardware
environment was a Lenovo Y7000 personal computer (Intel
Core i7-9750H CPU @2.60GHz processor, NVIDIA GeForce
GTX 1660ti graphics card, 16GB RAM, 512 GB hard disk).
When setting the model training parameters, we set the ratio
of the training and test sets of the total samples to 9:1.

The grid search method of internal nested cross-validation
was used to optimize the network parameters. The steps of
this method are as follows: first, the pre-selected values of
various parameters such as the number of neurons in the
hidden layer, learning rate and batch size are listed in the dic-
tionary, and the “grid” is generated by the exhaustive method
through the arrangement and combination of various param-
eters, and then put into the model in batches for prediction
performance evaluation, In each batch, the cross validation
method is used to fully evaluate the model performance of a
single group of parameters, and finally the optimal parameter
combination is selected through comparison.

Through the grid search method, in the vanilla RNN model,
the number of neurons is determined to be 32, and the learning
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rate is 0.001, set batch_size to 64 and the number of iterations
to 20; In the LSTM model, the number of neurons is deter-
mined to be 48, and the learning rate is 0.001, set batch_size to
64 and the number of iterations to 30; In the BiLSTM model,
the number of neurons is 48 and the learning rate is 0.001,
batch_size is 128 and the number of iterations is set to 30.
The input length of the historical time series of all the models
was 15. The mean square error (MSE) was used as the loss
function, and the adaptive moment estimation optimization
gradient descent algorithm (Adam) was used as the optimizer.

C. TRAVEL TIME SERIES DECOMPOSITION RESULTS

The CEEMDAN algorithm was used to decompose the travel
time series of all sections of the Yalu expressway into several
IMFs at different time scales. Taking the travel time data
of section 2 with 5 min as the time granularity for seven
consecutive days as an example, the decomposition results
are shown in Figure 6, from top to bottom are the original
time series and the 9 IMFs components sequentially decom-
posed by the CEEMDAN algorithm. It can be seen from the
figure that the decomposed travel time series eliminates the
noise of the original sequence to a great extent. In addition,
the decomposed travel time series has a certain smoothness,
which can significantly improve the prediction effect of the
travel series.
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FIGURE 6. Travel time series decomposition results.

After decomposing the travel time series into several IMFs
with the CCEMDAN algorithm, the complexity of the time
series components of all sections of the Yalu expressway
is calculated using SampEn. The mean values of the calcu-
lation results are presented in Table 3. It can be seen that
the sample entropy gradually decreases from IMF1 to IMF9,
which means that the complexity of the travel time series
also decreases. Set the threshold value of sample entropy as
1 and 0.2, then IMF1 ~ IMF4 are divided into high-frequency
sequences with high randomness, IMF5-IMF7 are intermedi-
ate frequency sequences with general randomness, and IMF8
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and IMF9 are divided into low-frequency sequences with rel-
atively low randomness.

TABLE 3. Sample entropy of travel time subsequences after CEEMDAN
decomposition.

IMF IMF1 IME2 IME3 IMF4
Sample 4.18965 4.07753 2.34770 1.11358
entropy

IME5 IMF6 IMF7 IMFS IME9
0.72465 0.43551 0.34570 0.12120 0.07081

To evaluate the prediction performance and stability of
CM1, two combined models of convolutional neural network
(CNN) and LSTM were selected: CNN-LSTM and Convo-
lutional LSTM (ConvLSTM). The specific parameters of the
various control models are set as follows:

(1) LSTM: The number of neurons was set to 48, the learn-
ing rate was 0.001, the batch_ size was set to 64, and
the number of iterations was 30.

(2) CNN-LSTM: Uses the convolution part of the
model to process the data and inputs the processed
one-dimensional array into the LSTM model. In the
parameter setting, the number of filters was 64, and the
size of the convolution kernel was 1 x 2. The activation
function is a linear rectified linear unit (ReL.U).

(3) ConvLSTM: The multiplication operation in each gate
of the LSTM unit is replaced by a convolution oper-
ation. The difference from the CNN-LSTM model is
that the former does not convolute the cycle time kernel.
In the parameter setting, the number of filters was 64,
and the size of the convolution kernel was 1 x 2. The
activation function was ReL.U.

D. PREDICTION EFFECT UNDER DIFFERENT TIME
GRANULARITY

To analyze the short-term prediction effect of the combined
model on the travel time of expressways, we selected the time
granularity of 5 min, 10 min, and 15 min to predict the travel
time of all sections of the Yalu expressway. For example,
in Section 2, the prediction results are shown in Figure 7.
It can be observed from the figure that the three combined
models show a good prediction effect of travel time under
different granularities. Compared with CM1 and CM2 using
the CEEMDAN algorithm, CM3 using the EMD algorithm
overestimates the travel time value at most time points, espe-
cially in the 5-minute time granularity. Both the CM1 and
CM2 models can better conform to the changing trend of the
travel time series and have high prediction accuracy.

For a more accurate comparison of the differences between
the models, the MAPE box diagram of the prediction results
of each model under the time granularity of 5, 10, and 15 min
is obtained, as shown in Figure 8. According to the figure,
under the time granularity of 5, 10, and 15 min, the MAPE
of CM1, CM2, and CM3 at each time point was maintained
within 7%, 8%, and 15%, respectively, indicating that these
three models have high prediction accuracy at each time
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FIGURE 8. MAPE error diagram of different models with different time
granularity, (a)time granularity is 5 minutes(b)time granularity is 10
minutes(c)time granularity is 15 minutes.

point. Under different time granularities, the median and
mean of MAPE of CM1 andCM2 are lower than that of CM3,
and there are few data points with MAPE close to 0 in CM3;
therefore, its prediction error is also relatively large.

To further reflect the prediction effect of CMI, two
combined models of CNN and LSTM were introduced:
CNN-LSTM and ConvLSTM. The errors of the prediction
results of different models under the time granularity of 5, 10,
and 15 min are shown in Table 4. It can be seen that under dif-
ferent time granularities, the prediction effect of ConvLSTM
is better than that of CNN-LSTM, and the prediction perfor-
mance of LSTM is not inferior to that of the combined model
of CNN and LSTM, which shows that under the condition

96882

of a single feature, the combination of CNN and LSTM
cannot significantly improve the prediction accuracy of
RNN.

TABLE 4. Prediction error of different models with different granularity.

CNN- Conv-

LSTM LSTM LSTM CM3 CM2 CM1

Prediction model

.5_ RMSE  47.173 32.454 31.844 19531769 1437
minute 3 9 6
s time
gralnula MAE 33.181 25736 22357 15.13  13.06  10.15
rity 2 8 2
MAPE

(%) 3.175 2.567 2.151 1513 1366  0.997

2637 15.67  15.55

RMSE 51987 39363 42004 - -
10-
minute
stime MAE 34634 26219 28062 17592 “269 11;;63
granula
rity
MAPE g5 2456 2618 1679 1145 1137
(%)
RMSE 45071 32518  31.002 19(')38 17552 “’;80
15-
minute
sime MAE 31581 22124 22233 422 1299 1200
granula
oy MAPE

(%) 3.019 2.117 2.153 1.377 1261 1.152

Under the time granularity of 5 min, 10 min, and 15 min,
the RMSE of CM1 using the decomposition algorithm for
the travel time series was 54.9%, 62.9%, and 45.8% lower
than that of LSTM, the MAE was 54.5%, 58.5%, and 46%
lower, and the MAPE was 53.7%, 56.6%, and 46.5% lower,
respectively. CM1 model is better than CM2 and CM3,
which can reduce the RMSE by 18.8 ~ 26.4%, 0.8 ~ 41%,
4.1 ~ 13.3%, MAE by 223 ~ 329%, 0.5 ~ 35.1%,
7.6 ~15.6%,MAPE by 27% ~ 34.1%,0.7% ~ 32.3%, 8.68%
~16.3%.

Therefore, compared with the combined prediction mode
of CNN and LSTM, the combined prediction mode of
step-by-step prediction using the time-series decomposition
algorithm has a higher prediction accuracy. In addition, the
advantage of CM1 over CM2 is that it uses the BiLSTM
model to predict high-frequency travel time subsequences.
Compared with the LSTM model, the BILSTM model can
better predict high-frequency travel time subsequences.

E. PREDICTION EFFECT UNDER DIFFERENT EXPRESSWAY

To better analyze the applicability of the model to different
expressway datasets, the travel time on September 30 was
selected as the prediction object, the time granularity was
set to 5 min, and the traffic volume of each section of
the Yalu expressway, Chengnan Expressway, and Chengya
expressway were counted. According to the statistical results,
sections with large and small traffic flows on the Yalu
expressway were determined. The CM1 model was used to
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expressway(f)small traffic flow of Chengya expressway.

predict the travel time. The measured speed value and the
speed value converted from the predicted value of travel time
were drawn into a scatter diagram to analyze the prediction
effect of the model. The results are shown in Figure 9. Each
figure contained 288 data points. The straight line represents
the 45 °line, the X-coordinate is the predicted value, and the
Y-coordinate is the real value. The closer it is to the 45 °line,
the more accurate the prediction result.

Based on the prediction results of the whole day on
September 30, it can be seen that the data points of the sec-
tions with small traffic flow on the Yalu expressway, Cheng-
nan expressway, and Chengya expressway are closer to the
45° line, and the speeds are basically distributed between
70 ~ 100 km/h, so the prediction results are ideal, the dis-
tribution of prediction data points in the sections with large
traffic flow is relatively discrete, and the prediction effect is
worse than that in the sections with small traffic flow.

The prediction error results of the different prediction mod-
els for the Yalu, Chengnan, and Chengya expressways are
shown in Figure 10. Among them, the section with a large
traffic flow is represented by M, and the section with a small
traffic flow is represented by L. Overall, the prediction effect
of CM1 and CM2 in each expressway section is better than
that of the other models. The CM 1 model can more accurately
grasp the periodicity and regularity of travel times in different
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sections of traffic flow. The prediction effect of each model
in the section with a small traffic flow was significantly bet-
ter than that in the section with a large traffic flow. This is
because the change in vehicle speed was more frequent in
the section with a large traffic flow. Sometimes, it is diffi-
cult to capture the operation situation of slow driving during
peak hours, resulting in differences in travel time prediction
results.

VI. CONCLUSION AND FUTURE WORK

Expressway travel time data series have significant nonlin-
ear and nonstationary characteristics, and it is difficult for
a single prediction model to meet the increasing demand
for prediction accuracy. This study attempts to combine the
CEEMDAN algorithm with an RNN to build a prediction
model, which is verified by different time granularities and
expressways. The main conclusions are as follows. (1) The
CM1 combined prediction model proposed in this paper has
high accuracy for travel time prediction of different time
granularities and expressways, and the prediction model has
certain generalization and robustness. (2) Under the time
granularity of 5 min, 10 min, and 15 min, the prediction
performances of CM1, CM2, and CM3 were better than those
of LSTM, CNN-LSTM, and ConvLSTM, which indicate that
the combined prediction method was better than the single
model. (3) Under different time granularity, CM1 is better
than CM2 and CM3; under different expressway, CM1 can
more accurately grasp the variation characteristics of travel
time in different sections of traffic flow. This indicates that the
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BiLSTM model can better predict the high-frequency travel
time subsequence.

However, this paper still has some limitations. Firstly, the
CM1 combined model training time is long because the intro-
duction of CEEMDAN algorithm affects the training time
of LSTM model. Secondly, the model only considers the
randomness and periodicity of traffic volume sequence, but
ignores other factors that affect traffic volume under real con-
ditions, such as weather and traffic changes in adjacent areas.
To improve the stroke time prediction model, the future work
direction will focus on the following two aspects: (1) per-
form a more comprehensive time complexity analysis using
asymptotic notations to precisely show the running time of the
work, find effective ways to improve computing efficiency,
(2) more comparative analysis of the predictive effect of
CEEMDAN and deep neural structures should be conducted,
explore and improve the algorithm to include more influenc-
ing factors, and extend to the road network level.
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