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ABSTRACT Considering the real-time and high-precision requirements of image processing in X-ray
baggage security screening; and problems such as the inflexibility and complex computation of anchor-
based object detection, this paper introduces an anchor-free mode convolutional neural network object
detection method for detecting weapons (knives and handguns) in X-ray baggage security images. The
advantage of the anchor-free method over the anchor-based method is that the size of the anchor box
does not have to be set, and the generalization ability is strong; the absence of the anchor box reduces
the number of computations, and solves the problem of unbalanced positive and negative samples in the
anchor-based method. To fully evaluate the effectiveness of the anchor-free method for X-ray baggage
screening image detection, a large number of images containing knives and handguns were collected and
annotated in the early stages of this work to produce a dataset that could be used for training. Six mainstream
anchor-free methods (CornerNet, CenterNet, CornerNet-Lite, ExtremeNet, Objects as Points and You Only
Look Once(YOLOX)) are introduced. For experimental integrity, this paper adds an anchor-based comparison
experiment, using Faster-RCNN, YOLOv3 and YOLOVS5 to perform the same work. The experimental
results show that the YOLOX, Objects as Points and ExtremeNet anchor-free methods used in this paper
have excellent performance in weapon detection in X-ray baggage security images. Among them, the mean
average precision (mAP) of YOLOx combined with the CSPDarknet53 network reached 0.905, and the mAP
of ExtremeNet combined with the Hourglass-104 network reached 0.900; the performance of the Objects as
Points method was also good. All these methods performed better than the anchor-based methods compared
in this paper. Therefore, we believe that the anchor-free method has a practical effect in weapon detection
for X-ray luggage images.

INDEX TERMS Object detection, X-ray baggage security images, anchor-free.

I. INTRODUCTION

X-ray inspection equipment, as a widely used means of
detecting security risks, has been installed increasingly often
in key locations in crowded areas such as train stations and
airports, as an important protective barrier against terrorist
attacks. At present, the detection of dangerous goods still
relies on the human eye to identify pictures, which not only
consumes time and manpower, but also makes it easy to
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misidentify and miss detection when the operation task is
difficult. Therefore, automatic detection in X-ray images is
a topic that is challenging and worthy of research.

Deep learning-based image object detection techniques
have shown very competitive performance in recent years,
and after convolutional neural networks achieved great suc-
cess in classification tasks with ImageNet [1] in 2012, Gir-
shick et al. [2] were the first to propose a framework for object
detection in region-based convolutional networks. Since then,
a new phase of object detection has begun. Akcay et al
[25], for example, considered the use of convolutional neural
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networks with migration learning applied to X-ray baggage
images, and divided their study into two parts: classification
and object detection. They proposed using the AlexNet [1]
network to extract image features, and a support vector
machine (SVM) classifier was trained to achieve a classifica-
tion accuracy of 0.994 within the image object region. Slid-
ing window-based convolutional neural networks (CNNs),
faster region based CNNs (F-R CNNs) [1], region-based fully
convolutional networks (R-FCNs) [4] and You Only Look
Once (YOLOV2) [6] were explored for X-ray luggage object
detection in images, and the object detection results of X-ray
baggage security images based on the CNN were good.

References [25], [26], [27], [28], [29], [30], [31], [32],
[33], [34], and [35] also proposed using convolutional neural
networks to detect objects in X-ray baggage security images.
However, all of these methods generate a large number of
anchors during the detection process; when using anchors,
they need to be densely tiled at each feature scale, and only a
small fraction of the samples are positive, so the proportions
of positive and negative samples varys greatly. Ultimately,
computing resources are spent on useless samples, and the
general use of anchors requires preprocessing to mine dif-
ficult negative cases. Therefore, this paper, inspired by the
anchor-free idea, aims to determine the location and size
of the detection frame by eliminating anchors and directly
looking for key point information in the feature image, and
the possibility of consuming fewer computational resources
to obtain more accurate detection results in X-ray baggage
security screening scenarios is explored.

We collected a large number of X-ray baggage security
images, labelled the knives and handguns that needed to be
detected, and created a dataset for object detection. Unlike
common reflected images, X-ray images [2] are greyscale
images formed by X-ray generators projecting the remaining
energy generated by a beam of low-energy X-rays through
the object onto a sensor or detector; the greyscale values are
affected by the thickness, density and atomic number of the
material. According to the review of the detection of aviation
safety explosives in [2], in recent years, with the development
of detectors, computers, image processing and other related
technologies, the imaging quality of X-ray security equip-
ment has been continuously improved. The imaging mode
has developed from traditional single-energy to dual-energy
X-ray imaging [10], and the detection purpose has expanded
from simple shape recognition to exploring the essential prop-
erties of substances. Because dual-energy X-ray technology
for object detection is based on the chemical composition
(atomic number) of an object rather than only on the density
change as in single-energy X-ray technology, the dual-energy
X-ray measurement method can distinguish between organic
and inorganic materials, basically eliminating the changes
in most of the thickness of the material and displaying the
image density differences according to the chemical compo-
sition (atomic number). To improve the recognition of image
content, we will use the density difference of the grey image
according to the atomic number to fill for in the colour of
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pseudo colour image [11]; the equivalent of an atomic number
less than 10 is organic and will be coloured orange, the equiv-
alent of an atomic number greater than 18 is inorganic and
will be coloured blue, and material with an atomic number
between these two values or that is a mixture of the two types
will be coloured green.

All images used in this experiment were provided by a
model of dual-energy X-ray detector, manufactured by UNI-
COMP, which provides two energy images simultaneously.
It means that two sets of data can be obtained during a radio-
graphy to generate two images corresponding to high-energy
and low-energy rays respectively. The dual-energy detector
has two scintillators, gadolinium sulfide (GOS) (153mg/cm2)
at low energy and cesium iodide CsI (TI) at high energy. The
measured object is moved by the conveyor belt at a speed
of 22cm/s. The maximum width of the scanned object is
650 mm, and the height is 500 mm. We collected a large num-
ber of pistol and knife models, mixed with ordinary objects
and other interference objects into the suitcase. After output
the raw image by X-ray scanning equipment, the image was
coloured according to the atomic number, and the image was
compressed to 960 x 640 resolution, 24 bits depth, and no
other post-processing was done.

Unlike the anchor-based method, the anchor-free method is
based on finding the key object points to determine the object
location, and the key point generation strategy has a direct
impact on the accuracy and speed of detection. This exper-
iment introduces six anchor-free methods, namely, Corner-
Net [40], CornerNet-Lite [42], CenterNet [41], ExtremeNet
[44], Objects as Points [43] and YOLOx [45], all of which
have different combinations of methods for selecting key
points and can have different detection results. In this paper,
key points are classified into three types, corner points, centre
points, and extreme points, and the locations of these key
points are based on the mapping from the backbone network
output of the feature heatmap to the location of the object.
In addition to the YOLOx method, which uses the CSPDark-
net53 network structure (a fusion of CSPNet and Darknet53),
there are several other anchor-free methods that adopt the
Hourglass network as the backbone network. Hourglass is
a network model similar to encoding and decoding. It can
capture local and global information, which is helpful for
key point prediction. To compare anchor-based methods, this
paper also performs the same experiments on several classic
anchor-based methods, such as Faster-RCNN, YOLOv3 and
YOLOx and compares the experimental results with those of
the anchor-free methods.

The main contributions of this paper are as follows. (1)
This paper analyses the hashrate deficiency of the traditional
anchor-based object detection algorithm, and introduces the
latest anchor-free object detection algorithm for the task of
detecting X-ray baggage security knife and handgun images
to address the abovementioned problems. (2) In this paper,
several recent anchor-free object detection algorithms are
investigated, the advantages and disadvantages of the respec-
tive methods are analysed, and comparative experiments are
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conducted. (3) Given the paucity of knife and handgun detec-
tion data in X-ray luggage images, this paper collects and
labels a large number of X-ray luggage images contain-
ing these two items to construct a new X-ray image-based
detection dataset. Based on this dataset, a comprehensive
evaluation of each of the above algorithms is carried out.
Experimentally, we conclude that anchor-free methods have
better practicability than the anchor-based methods intro-
duced for the task of weapon detection in X-ray baggage
security images.

Il. RELATED WORKS

Research on X-ray baggage security imagery has been
continuously updated with the development of computer
vision, and previous research has undergone several phases:
image enhancement [12], [13], [14], [15], [16], tradi-
tional image handcrafted feature extraction [17], [18], [19],
[20], [21], [22], [23], [24] and end-to-end neural network
object detection [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35].

By enhancing the visibility and edge contrast of objects
in an image and removing noise, the efficiency of identi-
fying objects in X-ray baggage screening images by staff
can be improved. Maneesha Singh et al. [12] used neural
networks with cross-validation methods to select the best
image enhancement algorithm based on the visibility char-
acteristics of X-ray luggage images, and the experimen-
tal results showed that the system played a positive role
in enhancing X-ray baggage images 93.04% of the time,
no role 6.22% of the time and a negative role 0.73% of
the time. Liang ef al. [13] used an image hash algorithm to
enhance the visibility of hidden low-density items in X-ray
baggage scan images, resulting in a 62% increase in the
speed of manual detection of low-density items and a 58%
increase in manual detection accuracy. Zhiyu Chen et al. [14]
used a background-subtraction-based method for image noise
reduction and then an image enhancement algorithm based on
histograms. Abidi B et al. [15] used RBG and hyperspectral
image (HSI) based colour conversion to colour code X-ray
greyscale images of weapons to improve image visualization
and increase the manual detection rate of weapons to 97%.

The implementation of image handcrafted feature extrac-
tion and a classifier enables automated, high-precision object
detection of in X-ray luggage images. The segmentation part
of the object detection algorithm mentioned by Mery et al.
[17] used a fusion of multiple methods: first binarizing the
image, then extracting interest regions and scale-invariant
feature transform (SIFT) key point matches through a Laplace
transformation of Gaussian edges. Automatic detection was
performed in experiments with 18 samples, which showed a
true positive rate of 94.3% and a false positive rate of 5.6%.
Bastan M et al. [18] investigated the applicability of a bag
of words (BoW) in X-ray image classification by comparing
multiple feature extraction methods and showed that differ-
ence of Gaussian (DoG) features, Hessian Laplace features,
Harris features and features from accelerated segment test
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(FAST) performed more competitively, it was also concluded
that the SIFT descriptors performed best, but not as well as on
conventional images, and that the main problem was the lack
of texture information in X-ray images. Franzel T et al. [19]
performed object detection of X-ray luggage images from
multiple viewpoints, where a combination of a histogram
of oriented gradient (HOG) features and an SVM classifier
was used for supervised learning to construct a classification
model, and the experimental results showed that the average
of the single-view detection accuracy (AP) increased from
49.7% to 64.5%, with multiple views able to detect approx-
imately 80% of handguns. Schmidt-Hackenberg et al. [20]
used four methods for the feature extraction of X-ray bag-
gage images for comparison (SLF-HMAX, V1-like, SIFT,
PHOW), using linear binary SVM kernels as classifiers,
and the experimental results showed that SLF-HMAX and
V1-like visual cortical elicitation were superior to the bag-
of-visual-words (BoVW) approach. Turcsany D et al. [21]
proposed a novel BoW representation scheme for the X-ray
baggage image object detection task, which was implemented
in the SVM classifier framework using a speeded-up robust
features (SURF) detector and descriptors, and it achieved a
true positive rate of 99.07% and a false positive rate of 4.31%
in the firearm detection scenario. Muhammet Bastan et al.
[22] used rotation invariant texture, SIFT, and colour descrip-
tors; used SPIN and its extended versions ESPIN and CSPIN
as point descriptors; and incorporated all these features into
a regular bag-of-features (BoF) framework. The detection
method used the original efficient subwindow search (ESS)
algorithm combined with the SVM linear structure. The
results showed that the object detection performance on
X-ray images greatly helped to extend the features and pro-
vide multiple views. M. E. Kundegorski et al. [23] compre-
hensively compared the combination of feature extraction
and descriptors in the BoVW technique to build classifiers
using SVM, and showed that SURF feature extraction and
descriptors have the highest accuracy and high execution
rates.

Entering the developmental period of deep learning object
detection, S. Akcay et al. [26] used deep CNNs to study the
image classification problem in the context of X-ray bag-
gage security and achieved a detection accuracy of 98.92%.
S. Akcay et al. [25] studied the application of deep neural net-
works for classification and object detection in X-ray baggage
security imagery and achieved an accuracy of 0.994 for the
classification task by combining AlexNet network structures
[1] and SVM classifiers. In addition, they used SW-CNNs,
F-RCNNs [1], and YOLOV2 [6] for object detection and
achieved a mean average precision (mAP) of 0.885 for
six-class object detection and 0.974 for two-class object
detection; the detection efficiency reached 100 ms per sheet,
which shows that the deep convolutional neural network
has very good performance in the X-ray baggage security
imagery detection task. Galvez et al. [27] used a YOLO
[5] object detector to detect threat objects in X-ray images
to address the problems of occlusion and rotation in X-ray
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baggage security images, and the mAP of this method reached
45.89% in 416 x 416 images. It reached 51.48% in 608 x
608 images and 52.40% in multiscale images. On the other
hand, transfer learning achieved a mAP of only 29.54%,
and a mAP of 29.17% was achieved for multiscale images.
Kogi et al. [28] used X-ray images to check for threatening
items in baggage, and concluded that the best detection was
achieved by a the combination of the Faster R-CNN [1]
detection models and the ResNet101 [37] feature extractor,
which yielded an accuracy of 87.58% (£0.75% error mar-
gin). Ponnusamy et al. [29] used the deep convolutional
neural network of YOLO [5] to classify luggage images on a
field programmable gate array (FPGA) platform. The results
showed that with less resource occupancy, the YOLO [5]
implementation provide a maximum accuracy of 98.9% in
classifying X-ray baggage images and identifying hazardous
materials. Saavedra et al. [30] proposed a framework that
simulates a large number of X-ray images, using a combi-
nation of PGGAN [38] and superimposition strategies [34];
this method was tested in the detection of four types of
threatening objects in real X-ray images: guns, knives, razor
blades and shuriken (ninja stars). The experiments showed
that YOLOv3 [7] obtained the best mAP, with 96.3% for
guns, 76.2% for knives, 86.9% for razor blades and 93.7%
for shuriken, while the average mAP for all threat objects
was 80.0%. Chang, An, et al. [31] proposed a two-stage
prohibited object detection network that can identify pro-
hibited objects in heavily cluttered X-ray baggage images
to reduce the false positives caused by neglecting the actual
physical sizes of items. Extensive experimentation demon-
strated that the proposed method outperformed state-of-the-
art object detection methods. Altindag et al. [32] introduced
a publicly available single-view dual-channel X-ray dataset
called the HUMS X-ray dataset, and three popular object
detection algorithms namely the Faster RCNN [1], YOLOv3
[7], and the single-shot detector (SSD) [39] were applied to
the X-ray dataset. The HUMS X-ray dataset is publicly avail-
able and includes low-energy, high-energy and false-coloured
images. Ma et al. [33] proposed an effective anomalous
object detection network to improve the detection accuracy
of anomalous objects in X-ray images. The experimental
results showed that the method achieved a mAP of 85.9%
on the SIXray dataset and a mAP of 85.8% on OPIXray
dataset.

According to these previous studies, it is clear that deep
convolutional neural networks have good effects in X-ray
baggage security image detection, but the object detection
methods in [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], and [35] are based on generating a large number of
anchors, many of which are useless; we would like to achieve
reduce effort and obtain better detection results. Therefore,
several methods [40], [41], [42], [43], [44], [45], which are
currently emerging in anchor-free object detection, are intro-
duced and applied to weapon detection in X-ray baggage
security images, and the applicability of these anchor-free
methods in this scenario is evaluated.
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lll. METHODOLOGY

To find the object region, the anchor base extracts the bound-
ing box for the region in which the object is located via
the region proposal network (RPN), while the anchor-free
method achieves the same end by generating a keypoint
for the object region. The generation of key points should
be based on the heatmaps generated by the image atten-
tion mechanism, similar to the way humans observe images,
where the global image is quickly scanned to obtain the object
area that needs to be focused on, and then more attention
resources are devoted to this area to obtain more details
about the object while suppressing useless information;
this is the difference between anchor-free and anchor-based
mechanisms.

A. BACKBONE NETWORK

The deep feature images extracted by convolutional neural
networks have an attentional effect upon activation, which
responds to regions of interest but easily loses deep fea-
tures. To capture information from multiscale feature maps,
Newell et al. [46] proposed the Hourglass network structure,
motivated by the need to capture information at each scale,
The network structure is hourglass-shaped, using a residual
module as the basic network unit, with repeated top-down
and bottom-up structures to infer the locations of key points
of the object. Hourglass network used by anchor-free in this
paper has made some modifications on this basis. Before
entering Hourglass module, image through a 7 x 7 convo-
lution module with stride 2 and 128 channels reducing the
resolution by 4 times. After the hourglass module is modified,
the max pooling downsampling method is removed and the
downsampling method with step 2 is used instead. The feature
resolutions are reduced 5 times, and the channel is increased
to (256, 384,384,384, 512). This Hourglass module is named
Hourglass-52, show in Figurel, and a stack of two modules
is called Hourglass-104.

YOLOx’s backbone network, CSPDarknet53, is a com-
bination of Darknet53 and the cross stage partial net-
work(CSPNet) [47]. CSPNet breaks up the feature map into
two parts, one of which carries out a convolution operation,
and the other of which concatenates the results of the previous
part of the convolution operation, as shown in Figure 2.
CSPNet respects the variability of gradients by integrating the
feature maps at the beginning and end of the network stage,
to reduce the amount of computation and ensure accuracy.

B. KEY POINT STRATEGY

The CornerNet [40] method designs the corner pooling mod-
ule to locate the upper left and lower right corners of the
object. Corner pooling provides a prior prediction of the cor-
ner points, which makes corner point location more accurate
and solves the problem that bounding box corner points often
appear outside the ground truth. Taking the top-left corner
point as an example, max pooling is performed from left to
right for each row pixel of the feature map matrix; at the same

VOLUME 10, 2022



Y. Huang et al.: Anchor-Free Weapon Detection for X-Ray Baggage Security Images I E E EACCGSS

Residual Module

OutpNum/2
3

Channel = InpNum InpNum K=3x OutpNum/2 Channel = OutpNum
—7 1> BN Relu—> K=IXI — BN Relu—> Stride=1 —> BN Relu —> K-=1x1
OutpNum/2 Padding=1 OutpNum 3
OutpNum/2
InpNum
K=1x1
OutpNum

Res OriSize
<256>
<256>
Res OriSize/2
<384>
<384>
Res OriSize/4
<384>
<384>
Res OriSize/8
<384>
<384>
Res Res Res Res Res Res Up Res Up Res Up Res Up
——— > Stride=2 — <256> ——\— Stride=2 — <384> Stride=2 — <384> Stride=2 —» <384> —» <512> —» <512> —> Sample —> <384> —» Sample 4569—» <384> —> Sample —> <384> —> Sample 4’6
<384> <384> <384> <512> <512> <384> 2 <384> 2 <384> 2 <256> 2

FIGURE 1. Hourglass network structure.

/ CSPLayer
inputs (640,640,3) /

. /
312801280 - l / l

12X 640 X 640 ~ /
.I .I Fcous (320,320,12) / l 1
P s /
| | ) -_II ||| 7 l / ConvBNSIiLU(1X 1) ConvBNSIiLU(1X 1)

N
\
w
o
73
&
Q
o
=
=
P
(5]
)
k=3
]
]
S
=Y
£y
=
~
~

e e /
g ittt $ ************ v/ ConvBNSILU(1 X 1)
BaseConv (160,160,128) | / 1

ConvBNSILU(3 X 3)

i

|

¥

i
i@
s
e
=)
<
[
8
RS
T3
e
s
=
|2
N
=
B
| =
|
|

H s

! |
i BaseConv (80,80,256) \:K ConvBNSiLU(1 X 1)
i n
i ! J

\
i CSPLayer (80,80,256) —%\—\’ ConvBNSIiLU(3 X 3)
I

BaseConv (40,40,512)

}

\ ConvBNSiLU(1 X 1)
CSPLayer (40,40,512)  ——> \ 1
) | \
————————————— l: —om—sto--eg \ ConvBNSIiLU(3 X 3)

l

BaseConv (20,20,1024)

}

I I
I I
I I
| |
i i )
|| SPPBottleneck (20,20,1024) 1 \ \l/
| | \
3 l 3 N ConvBNSiLU(1X 1)
| CSPLayer (20,20,1024) ——> k| l
I |
] !
FIGURE 2. CSPDarknet53 network structure.
time, max-pooling is performed from the top down for each CenterNet [41] obtains the centre heatmap and corner

column; The two feature maps that performed max pooling heatmaps from centre pooling and cascade corner pooling,
are added, and the maximal area is the predicted top-left respectively, which are used to predict the location of the key
corner point, as shown in Figure 3. points. Similar to max pooling in CornerNet, centre pooling
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FIGURE 3. Schematic diagram of Corner pooling.

obtains the centre point by concatenating max pooling oper-
ations in different directions, up and down. Cascade corner
pooling first extracts the boundary maxima of the feature
image object region, and then continues to extract the maxima
internally at the boundary maxima and sums them with the
boundary maxima. Compared to CornerNet’s corner points,
CenterNet’s corner points have richer semantics concerning
the associated objects, as shown in Figure 3.

Extreme points: The ExtremeNet [44] method uses four-
point annotation to annotate the extreme points of the object
in each of the four directions when annotating data. The
key point is inferred from the peak on the heatmap Y© e
0, DY output by the backbone network, which is the
value of a position on the heatmap that exceeds a certain
threshold 7, and is the maximum value within its 3 x 3 grid.
The fully convolutional encoder-decoder network is then used
to predict a multichannel heatmap, and each channel corre-
sponds to a key point.

C. KEY POINT LOSS FUNCTION

The bounding box generation of the anchor-free method is
based on the location of the key points, but points around
the ground truth location can also generate bounding boxes
that satisfy the intersection-over-union (IoU) condition. Thus,
CornerNet gives an unstandardized penalty factor consisting
of a two-dimensional Gaussian function that reduces the
penalty for negative samples within a certain radius around
the ground truth; the closer a sample is to the ground truth,

the smaller the penalty.
_ x2+ y2
202
Yeij = ¢

x2+y2§r2 (1)

ow.

Here, y.;; is denoted as the value when the heatmap is a
positive sample at position (i, j) and is classified as Class c.
Yeij = 1 and y.;; = O represent positive samples and negative
samples, respectively, where x and y denote the position of
the negative sample (i, j) relative to the coordinates of the
positive sample (centre of the circle). o = r/3, where r
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denotes the radius of the circle. The y.; value decreases
more slowly as the negative sample moves away from the
positive sample. To maintain the consistency of the penalty
and the increase/decrease in distance, the penalty factor is set
to (1 — y¢;j), so the loss function for key point detection is:
(2), as shown at the bottom of the next page.

N the number of objects in the image, o and 8 are hyper-
parameters that control the contribution to the loss, P;; is the
predicted value on the prediction heatmap, and the predicted
location (i, j) is the probability of the corner being classified
as c.

The method of this paper extracts the key point map (shown
in Figure 5) during the detection process and predicts the
corner, centre, and extreme points of the object. With the
prediction of the key points, the anchor points generated at
the anchor base are eliminated, and the object is ensured to
have response in the feature map.

D. MAIN PROCESS

To gain an overall understanding of these anchor-free meth-
ods, this subsection summarizes the overall flow of the meth-
ods to better understand their processes for handling data and
the differences between them.

CornerNet [40] first inputs the images to the backbone net-
work, Hourglass Network-104, and the output feature images
are then input to two prediction modules for the top-left and
bottom-right corners of the bounding box. To determine that
the top-left corner point and the bottom-right corner point
belong to the same object, drawing on the Newell [46] asso-
ciative embedding method, an embedding is generated for the
corner points while detecting them, and the corner point is
grouped by calculating the distance between the top-left and
bottom-right embedding, with the smaller distance indicating
that the two corner points belong to the same group. The
offsets module is used to predict the offset of the corner
position, adjust the corner position, and map it back to the
input resolution.

CenterNet [41] uses a fully convolutional network to
directly obtain a 4-fold downsampled heatmap, with the num-
ber of channels of the heatmap equal to the number ofob-
ject categories to be detected, and then uses centre pooling
and cascade corner pooling to obtain the centre heatmap
and corner heatmaps, respectively, which are used to pre-
dict the position of key points. After obtaining the corner
position and category, the offsets map the corner position to
the corresponding position in the input image, and then the
embeddings determine which two corners belong to the same
object to form a bounding box. For more accurate detection,
CenterNet predicts not only the corners but also the centre
point. CenterNet defines a centre area for each bounding box
and determines whether the centre area of each bounding
box contains a centre point. If it does, the prediction box
is retained, and the confidence of the box is the average of
the confidence of the centre, top-left and bottom-right points.
If it does not, the bounding box is removed, which gives
the network the ability to perceive the information inside the
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object area and can effectively remove incorrect bounding
box.

Objects as Points [43] passes the image into the backbone
network, and a quadruple-downsampled heatmap is obtained;
then, a 3 x 3 maxpool layer is used to extract the peak point of
the heatmap, i.e., the centre point, and the peak point position
of each feature map predicts the width and height information
of the object as well as the offset of the centre point and the
bounding box size.

CornerNet-Lite [42] is a combination of two effective vari-
ants of CornerNet: CornerNet-Saccade, which uses an atten-
tion mechanism to avoid processing all pixels of the image,
and CornerNet-Squeeze, which introduces a new compact
backbone architecture.

CornerNet-Saccade finds the correct size of the foreground
area with an attention map and then crops it out for the next
stage of the fine inspection image. Therefore, CornerNet-
Saccade is divided into two stages: object location estimation
and object detection. The first stage of CornerNet-Saccade
predicts three different sizes of attention maps and some
coarse bounding boxes from the downsized images to obtain
the positions and rough sizes of the objects in the images,
which need to be evaluated later. The second stage of
CornerNet-Saccade crops out the object region on the original
map based on the object location predicted by the attention
maps and the coarse bounding box. The final bounding box is
generated in the cropping region by the corner point detection
mechanism, exactly as in CornerNet.

To reduce CornerNet’s computing resources on Hourglass-
104, CornerNet-Squeeze was proposed, inspired by
SqueezeNet [48], to replace residual blocks with Fire mod-
ules in SqueezeNet; inspired by MobileNet [49], CornerNet-
Squeeze replaced the layer 2 3 x 3 standard convolution with
3 x 3 deep separable convolution.

ExtremeNet [44] uses Hourglass to detect 5 key points (4
extreme points and 1 centre point) for each classification.
Since there are many key points for predicting the outputs
of the four channels of the extreme points and there are n*
ways to combine them, to make it easier to group them,
these keypoints are recorded as t, b, r, and [/; then, the
resulting geometric centroids are: ¢ = <["J2”x L +b 2 If the
value of this geometric centre point on the centre heatmap
is greater than a certain threshold, Y c = then the
set of key points is valid, i.e., the key points belong to the
same object.

YOLOXx [45] switchs YOLO [5] to an anchor-free strat-
egy, it reduces the predictions for each location from 3 to
1 and directly predicts four values (two offsets in terms of
the left-top corner of the grid, as well as the height and
width of the predicted box). Through this modification, the

detector’s parameters and giga floating-point operations per
second (GFLOPs) are reduced to make it faster.

IV. EXPERIMENTS

The experiments used the six anchor-free object detection
algorithms described above, the CornerNet method and the
CornerNet-Lite method based on corner point detection, the
CenterNet method based on a combination of corner and
centre points, the Objects as Points method based on the
centre point, and the ExtremeNet method using extreme
point detection. The anchor-based methods—Faster-RCNN,
YOLOvV3 and YOLOv5—were also compared for experimen-
tal completeness.

Dataset: Since X-ray baggage security images are uncon-
ventional images with few sources of data acquisition and
even fewer datasets for object detection of knives and guns,
the data for this experiment were obtained from a X-ray
machine manufacturer, and several different types of knives,
handguns, and other items were combined for X-ray scan-
ning. From the tens of thousands of pictures, 10,233 X-ray
pictures of knives and pistols were selected as the main mate-
rial for the experiment. To obtain a more complete dataset,
we carried out extensive image annotation work using an
annotation tool to create the labels required for the experiment
from the positions of the knives and handguns in the image.
On average, each image contains two to three labels.

Training Details: We trained the methods using the
PyTorch framework with an image input size of 511 x
511 and an output size of 128 x 128. To reduce overfit-
ting, standard data augmentation was used, including ran-
dom horizontal flipping, random scaling, random cropping,
and random colour dithering, which included adjusting the
brightness, saturation, and contrast of the image; the training
loss was optimized using Adam. The number of training
iterations was 100,000, the learning rate was 2.5 X 1074,
and the batch size varied depending on the network size and
number of stacks; the more parameters there were, the smaller
the batch size. Training was performed on a single Nvidia
GeForce Titan 1080 GPU, and each network training took
approximately two days to complete.

Evaluation: We evaluated the performance of the
anchor-free methods in the X-ray baggage security image
object detection task using the mAP and average recall (AR),
which were averaged across multiple IoUs using 3 IoU
thresholds IoU € [0.5:0.75:0.95], which could enable a better
location and position of the object detector. To test the
performance of these models, we divided part of the dataset
into images and labels for testing, from which we selected
1,000 for the validation set and 1,000 for the test set.
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TABLE 1. Detection results of anchor-based and anchor-free.

B Cascade corner pooling

Methods Backbone FPS AP50 AP75 AP50:95
Faster-rcnn VGGI16 14.2 0.879 — —
Anchor-
based YOLOV3 Darknet-53 29.6 0.882 0.865 0.665
YOLOv5 CSPDarknet53 66.98 0.971 0.880 0.806
Hourglass-104 22 0.860 0.800 0.761
ComerNet
Hourglass 2.79 0.874 0.810 0.770
CornerNet-Squeeze Hourglass-104 16.8 0.932 0.899 0.849
CornerNet-Saccade Hourglass 16.6 0.612 0.550 0.530
Hourglass-104 1.78 0.907 0.836 0.790
Anchor- CenterNet
free Hourglass 2.29 0.943 0.895 0.843
Ext Net Hourglass-104 23 0.966 0.956 0.900
riremene Hourglass 13.3 0.952 0.946 0.865
Hourglass-104 18.6 0.979 0.951 0.878
Objects as points Resnet-18 71.1 0.969 0.927 0.816
DLA-34 55.6 0.978 0.950 0.881
YOLOX CSPDarknet53 40.5 0.996 0.966 0.905

Table 1 presents the final experimental results, with
the addition of three classical anchor-based methods as
comparison experiments in addition to the six anchor-

free methods, each based on its own applicable net-
work structure, and evaluation metrics including the
number of frames per second (FPS) and three IoU
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threshold. The precision-recall (P-R) curve is shown in
Figure 7.

Since the anchor-free method is more in line with the way
the human eye’s attention mechanism locates objects, the
goal of this paper is to determine whether the anchor-free
method is feasible and superior in the field of object
detection in X-ray baggage security images; from the
experimental results, the performances of the Objects as
Points, ExtremeNet and YOLOx methods were impressive.
Their detection accuracy almost reached or even surpassed
that of YOLOVS, a new anchor-based method. Objects as
Points reached 18.6 FPS with Hourglass-104, surpassing
Faster-RCNN in speed and performing similarly to it in accu-
racy; with DLA-32, it reached 55.6 FPS with 0.881 accuracy.
ExtremeNet had an FPS of 2.3 and an accuracy of 0.900 with
Hourglass-104. YOLOx had an FPS of 40.5 on the CSPDark-
net53 network, which was not as high as that of YOLOVS,
but it showed the best accuracy across all thresholds of IoU.
Therefore, these three anchor-free methods have advantages
over the anchor-based methods used in this paper for X-ray
baggage screening images, as shown in Figure 7.

V. DISCUSSION
The experiment introduces six anchor-free methods for the

detection of knives and handguns in X-ray baggage security

97852

images. There is some research continuity between these
methods. The CornerNet method locates an object through
corner points. Due to the absence of anchor restrictions,
combining the corner points into an accurate bounding box
requires a very high-level corner point combination algorithm
because the assistance of global information is not available
in determining whether two corner points belong to the same
object; therefore, it is easy to combine two corner points of
different objects into a bounding box. Therefore, in deter-
mining whether the top-left corner and bottom-right corner
belong to the same object, CenterNet considers adding centre
point information to further determine whether the centre
of the box consisting of these two points contains a cen-
tre point with a high response value. Likewise, ExtremeNet
predicts four extreme points and predicts a central point to
increase the confidence level of the extreme point combina-
tion. From the results, CenterNet is more accurate than Cor-
nerNet, and the ExtremeNet method has the highest accuracy
of all methods, verifying that the centre point is indeed effec-
tive in improving detection accuracy. The YOLOx method
assigns a 3 x 3 area in the centre location of each object as
a positive sample, which means that YOLOX also adopts the
anchor-free strategy of the centre point but expands this point
to a certain range, which further verifies the importance of the
centre point strategy for anchor-free methods.
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FIGURE 8. Detection effect demonstration A. CornerNet, B. CenterNet, C. CornerNet- Saccade, D. CornerNet-Squeeze, E. ExtremeNet, F. Objects
as Points, G. YOLOx.
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In addition, we find that the detection speed is affected
when considering the combination of two types of key points.
The fastest FPS of CornerNet, CenterNet and ExtremeNet on
the Hourglass-104 network is only 2.3, which poses a great
challenge for meeting real-time requirements. The Objects
as Points method considers the centre point as an important
positioning tool and aims to maintain the detection speed,
so it simplifies, by focusing only on the centre position and
it offset prediction, and it does not consider other types of
key point combinations, which greatly improves the detection
speed. What is more surprising is that the detection accuracy
is still excellent.

To further exploit the performance advantages of the
Objects as Points method, we also aimed to merge the
deep-layer aggregation (DLA) [50] network and the ResNet-
18 network, which resulted in a very significant performance
improvement, especially on the basis of the DLA network,
along with satisfactory speed and accuracy. As a result, the
accuracy and FPS were 0.881 and 55.6, respectively. Both the
DLA network and Hourglass are neural network structures
with feature fusion functions, while the DLA network can
fuse semantic and spatial information for recognition and
localization by extending the common method of allowing
skip connections and using the aggregation structure of mul-
tilevel skip connections. With improved model performance
and a reduced number of model parameters compared to
that of hourglass, DLA is able to support the Objects as
Points method to dramatically increase detection speed while
maintaining high accuracy.

VI. CONCLUSION

In the task of weapon detection in X-ray baggage images,
computer vision-aided detection requires high accuracy and
real-time performance, but existing anchor-based methods
are not very generalizable and require anchors with different
sizes and aspect ratios to be set for different datasets; such
settings can be considered hyperparameters, which have an
impact on the average accuracy. In addition, to improve detec-
tion recall, it is generally necessary to densely flatten a large
number of anchors, which on the one hand makes the match-
ing computation IoU larger and on the other hand leads to an
extreme imbalance between positive and negative samples.
To address these problems, we introduced the anchor-free
method in an attempt to improve the accuracy and speed of
weapon detection in X-ray baggage images. For this purpose,
we obtained a large number of X-ray scan images, mainly
including guns and knives, from X-ray equipment manufac-
turers and carried out extensive data annotation work to pro-
duce the datasets used for the experiments. Then, exhaustive
comparative experiments were conducted between anchor-
based and anchor-free methods, and the experimental results
were analysed.

ExtremeNet, Objects as Points and YOLOX, anchor-free
methods outperformed anchor-based methods used in this
paper in the detection of weapons in X-ray baggage security
images. YOLOx had the highest overall accuracy of 0.905 on

97854

the CSPDarknet53 network. ExtremeNet achieved a detection
accuracy of 0.900 on the Hourglass-104 skeleton network,
and Objects as Points achieved an accuracy of 0.881 on
the DLA-34 skeleton network. Additionally, given the real-
time nature of the detection tasl, Objects as Points worked
well with a lighter-weight network structure. Overall, the
anchor-free approach is simpler and more flexible and can
be improved and developed further.

In the future, more classes of datasets can be constructed to
further enrich the object detection dataset of X-ray baggage
security images; in addition, with the emergence of bet-
ter skeleton network structures, the anchor-free method can
achieve improved detection accuracy and speed accordingly.
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