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ABSTRACT Considering the real-time and high-precision requirements of image processing in X-ray
baggage security screening; and problems such as the inflexibility and complex computation of anchor-
based object detection, this paper introduces an anchor-free mode convolutional neural network object
detection method for detecting weapons (knives and handguns) in X-ray baggage security images. The
advantage of the anchor-free method over the anchor-based method is that the size of the anchor box
does not have to be set, and the generalization ability is strong; the absence of the anchor box reduces
the number of computations, and solves the problem of unbalanced positive and negative samples in the
anchor-based method. To fully evaluate the effectiveness of the anchor-free method for X-ray baggage
screening image detection, a large number of images containing knives and handguns were collected and
annotated in the early stages of this work to produce a dataset that could be used for training. Six mainstream
anchor-free methods (CornerNet, CenterNet, CornerNet-Lite, ExtremeNet, Objects as Points and You Only
LookOnce(YOLOx)) are introduced. For experimental integrity, this paper adds an anchor-based comparison
experiment, using Faster-RCNN, YOLOv3 and YOLOv5 to perform the same work. The experimental
results show that the YOLOx, Objects as Points and ExtremeNet anchor-free methods used in this paper
have excellent performance in weapon detection in X-ray baggage security images. Among them, the mean
average precision (mAP) of YOLOx combined with the CSPDarknet53 network reached 0.905, and the mAP
of ExtremeNet combined with the Hourglass-104 network reached 0.900; the performance of the Objects as
Points method was also good. All these methods performed better than the anchor-based methods compared
in this paper. Therefore, we believe that the anchor-free method has a practical effect in weapon detection
for X-ray luggage images.

21 INDEX TERMS Object detection, X-ray baggage security images, anchor-free.

I. INTRODUCTION22

X-ray inspection equipment, as a widely used means of23

detecting security risks, has been installed increasingly often24

in key locations in crowded areas such as train stations and25

airports, as an important protective barrier against terrorist26

attacks. At present, the detection of dangerous goods still27

relies on the human eye to identify pictures, which not only28

consumes time and manpower, but also makes it easy to29

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiju Poovvancheri .

misidentify and miss detection when the operation task is 30

difficult. Therefore, automatic detection in X-ray images is 31

a topic that is challenging and worthy of research. 32

Deep learning-based image object detection techniques 33

have shown very competitive performance in recent years, 34

and after convolutional neural networks achieved great suc- 35

cess in classification tasks with ImageNet [1] in 2012, Gir- 36

shick et al. [2] were the first to propose a framework for object 37

detection in region-based convolutional networks. Since then, 38

a new phase of object detection has begun. Akcay et al. 39

[25], for example, considered the use of convolutional neural 40
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networks with migration learning applied to X-ray baggage41

images, and divided their study into two parts: classification42

and object detection. They proposed using the AlexNet [1]43

network to extract image features, and a support vector44

machine (SVM) classifier was trained to achieve a classifica-45

tion accuracy of 0.994 within the image object region. Slid-46

ing window-based convolutional neural networks (CNNs),47

faster region based CNNs (F-R CNNs) [1], region-based fully48

convolutional networks (R-FCNs) [4] and You Only Look49

Once (YOLOv2) [6] were explored for X-ray luggage object50

detection in images, and the object detection results of X-ray51

baggage security images based on the CNN were good.52

References [25], [26], [27], [28], [29], [30], [31], [32],53

[33], [34], and [35] also proposed using convolutional neural54

networks to detect objects in X-ray baggage security images.55

However, all of these methods generate a large number of56

anchors during the detection process; when using anchors,57

they need to be densely tiled at each feature scale, and only a58

small fraction of the samples are positive, so the proportions59

of positive and negative samples varys greatly. Ultimately,60

computing resources are spent on useless samples, and the61

general use of anchors requires preprocessing to mine dif-62

ficult negative cases. Therefore, this paper, inspired by the63

anchor-free idea, aims to determine the location and size64

of the detection frame by eliminating anchors and directly65

looking for key point information in the feature image, and66

the possibility of consuming fewer computational resources67

to obtain more accurate detection results in X-ray baggage68

security screening scenarios is explored.69

We collected a large number of X-ray baggage security70

images, labelled the knives and handguns that needed to be71

detected, and created a dataset for object detection. Unlike72

common reflected images, X-ray images [2] are greyscale73

images formed by X-ray generators projecting the remaining74

energy generated by a beam of low-energy X-rays through75

the object onto a sensor or detector; the greyscale values are76

affected by the thickness, density and atomic number of the77

material. According to the review of the detection of aviation78

safety explosives in [2], in recent years, with the development79

of detectors, computers, image processing and other related80

technologies, the imaging quality of X-ray security equip-81

ment has been continuously improved. The imaging mode82

has developed from traditional single-energy to dual-energy83

X-ray imaging [10], and the detection purpose has expanded84

from simple shape recognition to exploring the essential prop-85

erties of substances. Because dual-energy X-ray technology86

for object detection is based on the chemical composition87

(atomic number) of an object rather than only on the density88

change as in single-energy X-ray technology, the dual-energy89

X-ray measurement method can distinguish between organic90

and inorganic materials, basically eliminating the changes91

in most of the thickness of the material and displaying the92

image density differences according to the chemical compo-93

sition (atomic number). To improve the recognition of image94

content, we will use the density difference of the grey image95

according to the atomic number to fill for in the colour of96

pseudo colour image [11]; the equivalent of an atomic number 97

less than 10 is organic and will be coloured orange, the equiv- 98

alent of an atomic number greater than 18 is inorganic and 99

will be coloured blue, and material with an atomic number 100

between these two values or that is a mixture of the two types 101

will be coloured green. 102

All images used in this experiment were provided by a 103

model of dual-energy X-ray detector, manufactured by UNI- 104

COMP, which provides two energy images simultaneously. 105

It means that two sets of data can be obtained during a radio- 106

graphy to generate two images corresponding to high-energy 107

and low-energy rays respectively. The dual-energy detector 108

has two scintillators, gadolinium sulfide (GOS) (153mg/cm2) 109

at low energy and cesium iodide CsI (TI) at high energy. The 110

measured object is moved by the conveyor belt at a speed 111

of 22cm/s. The maximum width of the scanned object is 112

650 mm, and the height is 500 mm.We collected a large num- 113

ber of pistol and knife models, mixed with ordinary objects 114

and other interference objects into the suitcase. After output 115

the raw image by X-ray scanning equipment, the image was 116

coloured according to the atomic number, and the image was 117

compressed to 960 × 640 resolution, 24 bits depth, and no 118

other post-processing was done. 119

Unlike the anchor-basedmethod, the anchor-freemethod is 120

based on finding the key object points to determine the object 121

location, and the key point generation strategy has a direct 122

impact on the accuracy and speed of detection. This exper- 123

iment introduces six anchor-free methods, namely, Corner- 124

Net [40], CornerNet-Lite [42], CenterNet [41], ExtremeNet 125

[44], Objects as Points [43] and YOLOx [45], all of which 126

have different combinations of methods for selecting key 127

points and can have different detection results. In this paper, 128

key points are classified into three types, corner points, centre 129

points, and extreme points, and the locations of these key 130

points are based on the mapping from the backbone network 131

output of the feature heatmap to the location of the object. 132

In addition to the YOLOx method, which uses the CSPDark- 133

net53 network structure (a fusion of CSPNet and Darknet53), 134

there are several other anchor-free methods that adopt the 135

Hourglass network as the backbone network. Hourglass is 136

a network model similar to encoding and decoding. It can 137

capture local and global information, which is helpful for 138

key point prediction. To compare anchor-based methods, this 139

paper also performs the same experiments on several classic 140

anchor-based methods, such as Faster-RCNN, YOLOv3 and 141

YOLOx and compares the experimental results with those of 142

the anchor-free methods. 143

The main contributions of this paper are as follows. (1) 144

This paper analyses the hashrate deficiency of the traditional 145

anchor-based object detection algorithm, and introduces the 146

latest anchor-free object detection algorithm for the task of 147

detecting X-ray baggage security knife and handgun images 148

to address the abovementioned problems. (2) In this paper, 149

several recent anchor-free object detection algorithms are 150

investigated, the advantages and disadvantages of the respec- 151

tive methods are analysed, and comparative experiments are 152
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conducted. (3) Given the paucity of knife and handgun detec-153

tion data in X-ray luggage images, this paper collects and154

labels a large number of X-ray luggage images contain-155

ing these two items to construct a new X-ray image-based156

detection dataset. Based on this dataset, a comprehensive157

evaluation of each of the above algorithms is carried out.158

Experimentally, we conclude that anchor-free methods have159

better practicability than the anchor-based methods intro-160

duced for the task of weapon detection in X-ray baggage161

security images.162

II. RELATED WORKS163

Research on X-ray baggage security imagery has been164

continuously updated with the development of computer165

vision, and previous research has undergone several phases:166

image enhancement [12], [13], [14], [15], [16], tradi-167

tional image handcrafted feature extraction [17], [18], [19],168

[20], [21], [22], [23], [24] and end-to-end neural network169

object detection [25], [26], [27], [28], [29], [30], [31],170

[32], [33], [34], [35].171

By enhancing the visibility and edge contrast of objects172

in an image and removing noise, the efficiency of identi-173

fying objects in X-ray baggage screening images by staff174

can be improved. Maneesha Singh et al. [12] used neural175

networks with cross-validation methods to select the best176

image enhancement algorithm based on the visibility char-177

acteristics of X-ray luggage images, and the experimen-178

tal results showed that the system played a positive role179

in enhancing X-ray baggage images 93.04% of the time,180

no role 6.22% of the time and a negative role 0.73% of181

the time. Liang et al. [13] used an image hash algorithm to182

enhance the visibility of hidden low-density items in X-ray183

baggage scan images, resulting in a 62% increase in the184

speed of manual detection of low-density items and a 58%185

increase in manual detection accuracy. Zhiyu Chen et al. [14]186

used a background-subtraction-basedmethod for image noise187

reduction and then an image enhancement algorithm based on188

histograms. Abidi B et al. [15] used RBG and hyperspectral189

image (HSI) based colour conversion to colour code X-ray190

greyscale images of weapons to improve image visualization191

and increase the manual detection rate of weapons to 97%.192

The implementation of image handcrafted feature extrac-193

tion and a classifier enables automated, high-precision object194

detection of in X-ray luggage images. The segmentation part195

of the object detection algorithm mentioned by Mery et al.196

[17] used a fusion of multiple methods: first binarizing the197

image, then extracting interest regions and scale-invariant198

feature transform (SIFT) key pointmatches through a Laplace199

transformation of Gaussian edges. Automatic detection was200

performed in experiments with 18 samples, which showed a201

true positive rate of 94.3% and a false positive rate of 5.6%.202

Bastan M et al. [18] investigated the applicability of a bag203

of words (BoW) in X-ray image classification by comparing204

multiple feature extraction methods and showed that differ-205

ence of Gaussian (DoG) features, Hessian Laplace features,206

Harris features and features from accelerated segment test207

(FAST) performed more competitively, it was also concluded 208

that the SIFT descriptors performed best, but not as well as on 209

conventional images, and that the main problem was the lack 210

of texture information in X-ray images. Franzel T et al. [19] 211

performed object detection of X-ray luggage images from 212

multiple viewpoints, where a combination of a histogram 213

of oriented gradient (HOG) features and an SVM classifier 214

was used for supervised learning to construct a classification 215

model, and the experimental results showed that the average 216

of the single-view detection accuracy (AP) increased from 217

49.7% to 64.5%, with multiple views able to detect approx- 218

imately 80% of handguns. Schmidt-Hackenberg et al. [20] 219

used four methods for the feature extraction of X-ray bag- 220

gage images for comparison (SLF-HMAX, V1-like, SIFT, 221

PHOW), using linear binary SVM kernels as classifiers, 222

and the experimental results showed that SLF-HMAX and 223

V1-like visual cortical elicitation were superior to the bag- 224

of-visual-words (BoVW) approach. Turcsany D et al. [21] 225

proposed a novel BoW representation scheme for the X-ray 226

baggage image object detection task, which was implemented 227

in the SVM classifier framework using a speeded-up robust 228

features (SURF) detector and descriptors, and it achieved a 229

true positive rate of 99.07% and a false positive rate of 4.31% 230

in the firearm detection scenario. Muhammet Bastan et al. 231

[22] used rotation invariant texture, SIFT, and colour descrip- 232

tors; used SPIN and its extended versions ESPIN and CSPIN 233

as point descriptors; and incorporated all these features into 234

a regular bag-of-features (BoF) framework. The detection 235

method used the original efficient subwindow search (ESS) 236

algorithm combined with the SVM linear structure. The 237

results showed that the object detection performance on 238

X-ray images greatly helped to extend the features and pro- 239

vide multiple views. M. E. Kundegorski et al. [23] compre- 240

hensively compared the combination of feature extraction 241

and descriptors in the BoVW technique to build classifiers 242

using SVM, and showed that SURF feature extraction and 243

descriptors have the highest accuracy and high execution 244

rates. 245

Entering the developmental period of deep learning object 246

detection, S. Akcay et al. [26] used deep CNNs to study the 247

image classification problem in the context of X-ray bag- 248

gage security and achieved a detection accuracy of 98.92%. 249

S. Akcay et al. [25] studied the application of deep neural net- 250

works for classification and object detection inX-ray baggage 251

security imagery and achieved an accuracy of 0.994 for the 252

classification task by combining AlexNet network structures 253

[1] and SVM classifiers. In addition, they used SW-CNNs, 254

F-RCNNs [1], and YOLOv2 [6] for object detection and 255

achieved a mean average precision (mAP) of 0.885 for 256

six-class object detection and 0.974 for two-class object 257

detection; the detection efficiency reached 100 ms per sheet, 258

which shows that the deep convolutional neural network 259

has very good performance in the X-ray baggage security 260

imagery detection task. Galvez et al. [27] used a YOLO 261

[5] object detector to detect threat objects in X-ray images 262

to address the problems of occlusion and rotation in X-ray 263
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baggage security images, and themAP of thismethod reached264

45.89% in 416 × 416 images. It reached 51.48% in 608 ×265

608 images and 52.40% in multiscale images. On the other266

hand, transfer learning achieved a mAP of only 29.54%,267

and a mAP of 29.17% was achieved for multiscale images.268

Koçi et al. [28] used X-ray images to check for threatening269

items in baggage, and concluded that the best detection was270

achieved by a the combination of the Faster R-CNN [1]271

detection models and the ResNet101 [37] feature extractor,272

which yielded an accuracy of 87.58% (±0.75% error mar-273

gin). Ponnusamy et al. [29] used the deep convolutional274

neural network of YOLO [5] to classify luggage images on a275

field programmable gate array (FPGA) platform. The results276

showed that with less resource occupancy, the YOLO [5]277

implementation provide a maximum accuracy of 98.9% in278

classifying X-ray baggage images and identifying hazardous279

materials. Saavedra et al. [30] proposed a framework that280

simulates a large number of X-ray images, using a combi-281

nation of PGGAN [38] and superimposition strategies [34];282

this method was tested in the detection of four types of283

threatening objects in real X-ray images: guns, knives, razor284

blades and shuriken (ninja stars). The experiments showed285

that YOLOv3 [7] obtained the best mAP, with 96.3% for286

guns, 76.2% for knives, 86.9% for razor blades and 93.7%287

for shuriken, while the average mAP for all threat objects288

was 80.0%. Chang, An, et al. [31] proposed a two-stage289

prohibited object detection network that can identify pro-290

hibited objects in heavily cluttered X-ray baggage images291

to reduce the false positives caused by neglecting the actual292

physical sizes of items. Extensive experimentation demon-293

strated that the proposed method outperformed state-of-the-294

art object detection methods. Altindağ et al. [32] introduced295

a publicly available single-view dual-channel X-ray dataset296

called the HUMS X-ray dataset, and three popular object297

detection algorithms namely the Faster RCNN [1], YOLOv3298

[7], and the single-shot detector (SSD) [39] were applied to299

the X-ray dataset. The HUMS X-ray dataset is publicly avail-300

able and includes low-energy, high-energy and false-coloured301

images. Ma et al. [33] proposed an effective anomalous302

object detection network to improve the detection accuracy303

of anomalous objects in X-ray images. The experimental304

results showed that the method achieved a mAP of 85.9%305

on the SIXray dataset and a mAP of 85.8% on OPIXray306

dataset.307

According to these previous studies, it is clear that deep308

convolutional neural networks have good effects in X-ray309

baggage security image detection, but the object detection310

methods in [25], [26], [27], [28], [29], [30], [31], [32], [33],311

[34], and [35] are based on generating a large number of312

anchors, many of which are useless; we would like to achieve313

reduce effort and obtain better detection results. Therefore,314

several methods [40], [41], [42], [43], [44], [45], which are315

currently emerging in anchor-free object detection, are intro-316

duced and applied to weapon detection in X-ray baggage317

security images, and the applicability of these anchor-free318

methods in this scenario is evaluated.319

III. METHODOLOGY 320

To find the object region, the anchor base extracts the bound- 321

ing box for the region in which the object is located via 322

the region proposal network (RPN), while the anchor-free 323

method achieves the same end by generating a keypoint 324

for the object region. The generation of key points should 325

be based on the heatmaps generated by the image atten- 326

tion mechanism, similar to the way humans observe images, 327

where the global image is quickly scanned to obtain the object 328

area that needs to be focused on, and then more attention 329

resources are devoted to this area to obtain more details 330

about the object while suppressing useless information; 331

this is the difference between anchor-free and anchor-based 332

mechanisms. 333

A. BACKBONE NETWORK 334

The deep feature images extracted by convolutional neural 335

networks have an attentional effect upon activation, which 336

responds to regions of interest but easily loses deep fea- 337

tures. To capture information from multiscale feature maps, 338

Newell et al. [46] proposed the Hourglass network structure, 339

motivated by the need to capture information at each scale, 340

The network structure is hourglass-shaped, using a residual 341

module as the basic network unit, with repeated top-down 342

and bottom-up structures to infer the locations of key points 343

of the object. Hourglass network used by anchor-free in this 344

paper has made some modifications on this basis. Before 345

entering Hourglass module, image through a 7 × 7 convo- 346

lution module with stride 2 and 128 channels reducing the 347

resolution by 4 times. After the hourglass module is modified, 348

the max pooling downsampling method is removed and the 349

downsamplingmethodwith step 2 is used instead. The feature 350

resolutions are reduced 5 times, and the channel is increased 351

to (256, 384, 384, 384, 512). This Hourglass module is named 352

Hourglass-52, show in Figure1, and a stack of two modules 353

is called Hourglass-104. 354

YOLOx’s backbone network, CSPDarknet53, is a com- 355

bination of Darknet53 and the cross stage partial net- 356

work(CSPNet) [47]. CSPNet breaks up the feature map into 357

two parts, one of which carries out a convolution operation, 358

and the other of which concatenates the results of the previous 359

part of the convolution operation, as shown in Figure 2. 360

CSPNet respects the variability of gradients by integrating the 361

feature maps at the beginning and end of the network stage, 362

to reduce the amount of computation and ensure accuracy. 363

B. KEY POINT STRATEGY 364

The CornerNet [40] method designs the corner pooling mod- 365

ule to locate the upper left and lower right corners of the 366

object. Corner pooling provides a prior prediction of the cor- 367

ner points, which makes corner point location more accurate 368

and solves the problem that bounding box corner points often 369

appear outside the ground truth. Taking the top-left corner 370

point as an example, max pooling is performed from left to 371

right for each row pixel of the feature map matrix; at the same 372
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FIGURE 1. Hourglass network structure.

FIGURE 2. CSPDarknet53 network structure.

time, max-pooling is performed from the top down for each373

column; The two feature maps that performed max pooling374

are added, and the maximal area is the predicted top-left375

corner point, as shown in Figure 3.376

CenterNet [41] obtains the centre heatmap and corner 377

heatmaps from centre pooling and cascade corner pooling, 378

respectively, which are used to predict the location of the key 379

points. Similar to max pooling in CornerNet, centre pooling 380
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FIGURE 3. Schematic diagram of Corner pooling.

obtains the centre point by concatenating max pooling oper-381

ations in different directions, up and down. Cascade corner382

pooling first extracts the boundary maxima of the feature383

image object region, and then continues to extract themaxima384

internally at the boundary maxima and sums them with the385

boundary maxima. Compared to CornerNet’s corner points,386

CenterNet’s corner points have richer semantics concerning387

the associated objects, as shown in Figure 3.388

Extreme points: The ExtremeNet [44] method uses four-389

point annotation to annotate the extreme points of the object390

in each of the four directions when annotating data. The391

key point is inferred from the peak on the heatmap Ŷ (C) ∈392

(0, 1)H×W output by the backbone network, which is the393

value of a position on the heatmap that exceeds a certain394

threshold τp and is the maximum value within its 3× 3 grid.395

The fully convolutional encoder-decoder network is then used396

to predict a multichannel heatmap, and each channel corre-397

sponds to a key point.398

C. KEY POINT LOSS FUNCTION399

The bounding box generation of the anchor-free method is400

based on the location of the key points, but points around401

the ground truth location can also generate bounding boxes402

that satisfy the intersection-over-union (IoU) condition. Thus,403

CornerNet gives an unstandardized penalty factor consisting404

of a two-dimensional Gaussian function that reduces the405

penalty for negative samples within a certain radius around406

the ground truth; the closer a sample is to the ground truth,407

the smaller the penalty.408

ycij =

e−
x2+y2

2σ2 x2 + y2 ≤ r2

0 o.w.
(1)409

Here, ycij is denoted as the value when the heatmap is a410

positive sample at position (i, j) and is classified as Class c.411

ycij = 1 and ycij = 0 represent positive samples and negative412

samples, respectively, where x and y denote the position of413

the negative sample (i, j) relative to the coordinates of the414

positive sample (centre of the circle). σ = r/3, where r415

denotes the radius of the circle. The ycij value decreases 416

more slowly as the negative sample moves away from the 417

positive sample. To maintain the consistency of the penalty 418

and the increase/decrease in distance, the penalty factor is set 419

to (1 − ycij), so the loss function for key point detection is: 420

(2), as shown at the bottom of the next page. 421

N the number of objects in the image, α and β are hyper- 422

parameters that control the contribution to the loss, Pcij is the 423

predicted value on the prediction heatmap, and the predicted 424

location (i, j) is the probability of the corner being classified 425

as c. 426

Themethod of this paper extracts the key point map (shown 427

in Figure 5) during the detection process and predicts the 428

corner, centre, and extreme points of the object. With the 429

prediction of the key points, the anchor points generated at 430

the anchor base are eliminated, and the object is ensured to 431

have response in the feature map. 432

D. MAIN PROCESS 433

To gain an overall understanding of these anchor-free meth- 434

ods, this subsection summarizes the overall flow of the meth- 435

ods to better understand their processes for handling data and 436

the differences between them. 437

CornerNet [40] first inputs the images to the backbone net- 438

work, Hourglass Network-104, and the output feature images 439

are then input to two prediction modules for the top-left and 440

bottom-right corners of the bounding box. To determine that 441

the top-left corner point and the bottom-right corner point 442

belong to the same object, drawing on the Newell [46] asso- 443

ciative embedding method, an embedding is generated for the 444

corner points while detecting them, and the corner point is 445

grouped by calculating the distance between the top-left and 446

bottom-right embedding, with the smaller distance indicating 447

that the two corner points belong to the same group. The 448

offsets module is used to predict the offset of the corner 449

position, adjust the corner position, and map it back to the 450

input resolution. 451

CenterNet [41] uses a fully convolutional network to 452

directly obtain a 4-fold downsampled heatmap, with the num- 453

ber of channels of the heatmap equal to the number ofob- 454

ject categories to be detected, and then uses centre pooling 455

and cascade corner pooling to obtain the centre heatmap 456

and corner heatmaps, respectively, which are used to pre- 457

dict the position of key points. After obtaining the corner 458

position and category, the offsets map the corner position to 459

the corresponding position in the input image, and then the 460

embeddings determine which two corners belong to the same 461

object to form a bounding box. For more accurate detection, 462

CenterNet predicts not only the corners but also the centre 463

point. CenterNet defines a centre area for each bounding box 464

and determines whether the centre area of each bounding 465

box contains a centre point. If it does, the prediction box 466

is retained, and the confidence of the box is the average of 467

the confidence of the centre, top-left and bottom-right points. 468

If it does not, the bounding box is removed, which gives 469

the network the ability to perceive the information inside the 470
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object area and can effectively remove incorrect bounding471

box.472

Objects as Points [43] passes the image into the backbone473

network, and a quadruple-downsampled heatmap is obtained;474

then, a 3×3 maxpool layer is used to extract the peak point of475

the heatmap, i.e., the centre point, and the peak point position476

of each feature map predicts the width and height information477

of the object as well as the offset of the centre point and the478

bounding box size.479

CornerNet-Lite [42] is a combination of two effective vari-480

ants of CornerNet: CornerNet-Saccade, which uses an atten-481

tion mechanism to avoid processing all pixels of the image,482

and CornerNet-Squeeze, which introduces a new compact483

backbone architecture.484

CornerNet-Saccade finds the correct size of the foreground485

area with an attention map and then crops it out for the next486

stage of the fine inspection image. Therefore, CornerNet-487

Saccade is divided into two stages: object location estimation488

and object detection. The first stage of CornerNet-Saccade489

predicts three different sizes of attention maps and some490

coarse bounding boxes from the downsized images to obtain491

the positions and rough sizes of the objects in the images,492

which need to be evaluated later. The second stage of493

CornerNet-Saccade crops out the object region on the original494

map based on the object location predicted by the attention495

maps and the coarse bounding box. The final bounding box is496

generated in the cropping region by the corner point detection497

mechanism, exactly as in CornerNet.498

To reduce CornerNet’s computing resources on Hourglass-499

104, CornerNet-Squeeze was proposed, inspired by500

SqueezeNet [48], to replace residual blocks with Fire mod-501

ules in SqueezeNet; inspired by MobileNet [49], CornerNet-502

Squeeze replaced the layer 2 3× 3 standard convolution with503

3× 3 deep separable convolution.504

ExtremeNet [44] uses Hourglass to detect 5 key points (4505

extreme points and 1 centre point) for each classification.506

Since there are many key points for predicting the outputs507

of the four channels of the extreme points and there are n4508

ways to combine them, to make it easier to group them,509

these keypoints are recorded as t , b, r , and l; then, the510

resulting geometric centroids are: c =
(
lx+rx
2 ,

ty+by
2

)
. If the511

value of this geometric centre point on the centre heatmap512

is greater than a certain threshold, Ŷ (C)Cx ,Cy ≥ τp, then the513

set of key points is valid, i.e., the key points belong to the514

same object.515

YOLOx [45] switchs YOLO [5] to an anchor-free strat-516

egy, it reduces the predictions for each location from 3 to517

1 and directly predicts four values (two offsets in terms of518

the left-top corner of the grid, as well as the height and519

width of the predicted box). Through this modification, the520

detector’s parameters and giga floating-point operations per 521

second (GFLOPs) are reduced to make it faster. 522

IV. EXPERIMENTS 523

The experiments used the six anchor-free object detection 524

algorithms described above, the CornerNet method and the 525

CornerNet-Lite method based on corner point detection, the 526

CenterNet method based on a combination of corner and 527

centre points, the Objects as Points method based on the 528

centre point, and the ExtremeNet method using extreme 529

point detection. The anchor-based methods—Faster-RCNN, 530

YOLOv3 andYOLOv5—were also compared for experimen- 531

tal completeness. 532

Dataset: Since X-ray baggage security images are uncon- 533

ventional images with few sources of data acquisition and 534

even fewer datasets for object detection of knives and guns, 535

the data for this experiment were obtained from a X-ray 536

machine manufacturer, and several different types of knives, 537

handguns, and other items were combined for X-ray scan- 538

ning. From the tens of thousands of pictures, 10,233 X-ray 539

pictures of knives and pistols were selected as the main mate- 540

rial for the experiment. To obtain a more complete dataset, 541

we carried out extensive image annotation work using an 542

annotation tool to create the labels required for the experiment 543

from the positions of the knives and handguns in the image. 544

On average, each image contains two to three labels. 545

Training Details: We trained the methods using the 546

PyTorch framework with an image input size of 511 × 547

511 and an output size of 128 × 128. To reduce overfit- 548

ting, standard data augmentation was used, including ran- 549

dom horizontal flipping, random scaling, random cropping, 550

and random colour dithering, which included adjusting the 551

brightness, saturation, and contrast of the image; the training 552

loss was optimized using Adam. The number of training 553

iterations was 100,000, the learning rate was 2.5 × 10−4, 554

and the batch size varied depending on the network size and 555

number of stacks; themore parameters there were, the smaller 556

the batch size. Training was performed on a single Nvidia 557

GeForce Titan 1080 GPU, and each network training took 558

approximately two days to complete. 559

Evaluation: We evaluated the performance of the 560

anchor-free methods in the X-ray baggage security image 561

object detection task using the mAP and average recall (AR), 562

which were averaged across multiple IoUs using 3 IoU 563

thresholds IoU ∈ [0.5:0.75:0.95], which could enable a better 564

location and position of the object detector. To test the 565

performance of these models, we divided part of the dataset 566

into images and labels for testing, from which we selected 567

1,000 for the validation set and 1,000 for the test set. 568

Ldet = −
1
N

C∑
c=1

H∑
i=1

W∑
j=1

{(
1− pcij

)α log (pcij) ycij = 1(
1− ycij

)β (pcij)α log (1− pcij) o.w.
(2)
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FIGURE 4. Schematic diagram of CenterNet.

FIGURE 5. Key points map.

TABLE 1. Detection results of anchor-based and anchor-free.

Table 1 presents the final experimental results, with569

the addition of three classical anchor-based methods as570

comparison experiments in addition to the six anchor-571

free methods, each based on its own applicable net- 572

work structure, and evaluation metrics including the 573

number of frames per second (FPS) and three IoU 574
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FIGURE 6. Method flowchart: A. CornerNet, B. CenterNet, C. Objects as Points, D. CornerNet-Lite, E. ExtremeNet, F. YOLOx.
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FIGURE 7. P-R (precision recall) diagram.

threshold. The precision-recall (P-R) curve is shown in575

Figure 7.576

Since the anchor-free method is more in line with the way577

the human eye’s attention mechanism locates objects, the578

goal of this paper is to determine whether the anchor-free579

method is feasible and superior in the field of object580

detection in X-ray baggage security images; from the581

experimental results, the performances of the Objects as582

Points, ExtremeNet and YOLOx methods were impressive.583

Their detection accuracy almost reached or even surpassed584

that of YOLOv5, a new anchor-based method. Objects as585

Points reached 18.6 FPS with Hourglass-104, surpassing586

Faster-RCNN in speed and performing similarly to it in accu-587

racy; with DLA-32, it reached 55.6 FPS with 0.881 accuracy.588

ExtremeNet had an FPS of 2.3 and an accuracy of 0.900 with589

Hourglass-104. YOLOx had an FPS of 40.5 on the CSPDark-590

net53 network, which was not as high as that of YOLOv5,591

but it showed the best accuracy across all thresholds of IoU.592

Therefore, these three anchor-free methods have advantages593

over the anchor-based methods used in this paper for X-ray594

baggage screening images, as shown in Figure 7.595

V. DISCUSSION596

The experiment introduces six anchor-free methods for the597

detection of knives and handguns in X-ray baggage security598

images. There is some research continuity between these 599

methods. The CornerNet method locates an object through 600

corner points. Due to the absence of anchor restrictions, 601

combining the corner points into an accurate bounding box 602

requires a very high-level corner point combination algorithm 603

because the assistance of global information is not available 604

in determining whether two corner points belong to the same 605

object; therefore, it is easy to combine two corner points of 606

different objects into a bounding box. Therefore, in deter- 607

mining whether the top-left corner and bottom-right corner 608

belong to the same object, CenterNet considers adding centre 609

point information to further determine whether the centre 610

of the box consisting of these two points contains a cen- 611

tre point with a high response value. Likewise, ExtremeNet 612

predicts four extreme points and predicts a central point to 613

increase the confidence level of the extreme point combina- 614

tion. From the results, CenterNet is more accurate than Cor- 615

nerNet, and the ExtremeNet method has the highest accuracy 616

of all methods, verifying that the centre point is indeed effec- 617

tive in improving detection accuracy. The YOLOx method 618

assigns a 3 × 3 area in the centre location of each object as 619

a positive sample, which means that YOLOx also adopts the 620

anchor-free strategy of the centre point but expands this point 621

to a certain range, which further verifies the importance of the 622

centre point strategy for anchor-free methods. 623
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FIGURE 8. Detection effect demonstration A. CornerNet, B. CenterNet, C. CornerNet- Saccade, D. CornerNet-Squeeze, E. ExtremeNet, F. Objects
as Points, G. YOLOx.
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In addition, we find that the detection speed is affected624

when considering the combination of two types of key points.625

The fastest FPS of CornerNet, CenterNet and ExtremeNet on626

the Hourglass-104 network is only 2.3, which poses a great627

challenge for meeting real-time requirements. The Objects628

as Points method considers the centre point as an important629

positioning tool and aims to maintain the detection speed,630

so it simplifies, by focusing only on the centre position and631

it offset prediction, and it does not consider other types of632

key point combinations, which greatly improves the detection633

speed. What is more surprising is that the detection accuracy634

is still excellent.635

To further exploit the performance advantages of the636

Objects as Points method, we also aimed to merge the637

deep-layer aggregation (DLA) [50] network and the ResNet-638

18 network, which resulted in a very significant performance639

improvement, especially on the basis of the DLA network,640

along with satisfactory speed and accuracy. As a result, the641

accuracy and FPS were 0.881 and 55.6, respectively. Both the642

DLA network and Hourglass are neural network structures643

with feature fusion functions, while the DLA network can644

fuse semantic and spatial information for recognition and645

localization by extending the common method of allowing646

skip connections and using the aggregation structure of mul-647

tilevel skip connections. With improved model performance648

and a reduced number of model parameters compared to649

that of hourglass, DLA is able to support the Objects as650

Points method to dramatically increase detection speed while651

maintaining high accuracy.652

VI. CONCLUSION653

In the task of weapon detection in X-ray baggage images,654

computer vision-aided detection requires high accuracy and655

real-time performance, but existing anchor-based methods656

are not very generalizable and require anchors with different657

sizes and aspect ratios to be set for different datasets; such658

settings can be considered hyperparameters, which have an659

impact on the average accuracy. In addition, to improve detec-660

tion recall, it is generally necessary to densely flatten a large661

number of anchors, which on the one hand makes the match-662

ing computation IoU larger and on the other hand leads to an663

extreme imbalance between positive and negative samples.664

To address these problems, we introduced the anchor-free665

method in an attempt to improve the accuracy and speed of666

weapon detection in X-ray baggage images. For this purpose,667

we obtained a large number of X-ray scan images, mainly668

including guns and knives, from X-ray equipment manufac-669

turers and carried out extensive data annotation work to pro-670

duce the datasets used for the experiments. Then, exhaustive671

comparative experiments were conducted between anchor-672

based and anchor-free methods, and the experimental results673

were analysed.674

ExtremeNet, Objects as Points and YOLOx, anchor-free675

methods outperformed anchor-based methods used in this676

paper in the detection of weapons in X-ray baggage security677

images. YOLOx had the highest overall accuracy of 0.905 on678

the CSPDarknet53 network. ExtremeNet achieved a detection 679

accuracy of 0.900 on the Hourglass-104 skeleton network, 680

and Objects as Points achieved an accuracy of 0.881 on 681

the DLA-34 skeleton network. Additionally, given the real- 682

time nature of the detection tasl, Objects as Points worked 683

well with a lighter-weight network structure. Overall, the 684

anchor-free approach is simpler and more flexible and can 685

be improved and developed further. 686

In the future, more classes of datasets can be constructed to 687

further enrich the object detection dataset of X-ray baggage 688

security images; in addition, with the emergence of bet- 689

ter skeleton network structures, the anchor-free method can 690

achieve improved detection accuracy and speed accordingly. 691
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