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ABSTRACT This study proposes novel Long Short-Term Memory (LSTM)-based classifiers through
developing the internal structure of LSTM neural networks using 26 state activation functions as alternatives
to the traditional hyperbolic tangent (tanh) activation function. The LSTM networks have high performance
in solving the vanishing gradient problem that is observed in recurrent neural networks. Performance
investigations were carried out utilizing three distinct deep learning optimization algorithms to evaluate the
efficiency of the proposed state activation functions-based LSTM classifiers for two different classification
tasks. The simulation results demonstrate that the proposed classifiers that use the Modified Elliott, Softsign,
Sech, Gaussian, Bitanh1, Bitanh2 and Wave as state activation functions trump the tanh-based LSTM
classifiers in terms of classification accuracy. The proposed classifiers are encouraged to be utilized and
tested for other classification tasks.

11 INDEX TERMS LSTM, deep neural network, activation function, tanh gate.

I. INTRODUCTION12

Deep learning is a branch of machine learning that trains13

computers to learn from experience in the same way that14

humans do. Machine learning algorithms employ computer15

approaches to ‘‘learn’’ information directly from data rather16

than depending on a model [1]. In the last decade, the emer-17

gence of Deep Neural Networks (DNNs) has generated a lot18

of interest in several domains of Artificial Intelligence (AI).19

For diverse and complicated tasks, most recent studies have20

proposed and created several DNNs. Many network hyper-21

parameters (such as kernel initializer, optimizer, normalizer,22

number of hidden layers, activation function, loss function,23

learning rate, momentum, and so on) must be chosen in24

advance while creating a DNN [2]. Although DNN is based25

on a recurrent neural network, it outperforms its predeces-26

sors significantly. Furthermore, DNN uses both transforma-27

tions and graph technology to construct multi-layer learning28

models [3].29

The associate editor coordinating the review of this manuscript and

approving it for publication was Rajeeb Dey .

Hochreiter and Schmidhuber proposed the long short-term 30

memory network (LSTM), which is a recurrent neural net- 31

work (RNN) architecture that has been demonstrated to be 32

successful for various learning problems, particularly those 33

requiring sequential data [4]. The LSTM architecture consists 34

of blocks, which are a combination of recurrently connected 35

units [5]. The vanishing gradient problem occurs when the 36

gradient of an RNN’s error function increases or decreases 37

exponentially over time. The development of new LSTM 38

techniques, structures, and activation functions improves con- 39

vergence to greater accuracy during deeper network training, 40

overcoming the vanishing/exploding gradient problem [6]. 41

LSTM has become popular in a variety of applications in 42

recent years [7]. 43

Eachmemory unit replaces a neuron in the LSTMnetwork. 44

An actual neuron with a recurrent self-connection is included 45

in the unit. The gate activation function (sigmoid) and the 46

state activation function (tanh) are the two most common 47

activation functions for those neurons in memory units [8]. 48

The hyperbolic activation function (tanh) is the state activa- 49

tion function of LSTM networks, which is used to determine 50

candidate cell state (internal state) values and update the 51
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hidden state. It is a default in the cell and hidden state, which52

are referred to as block input and block output identically. The53

sigmoid activation function (σ ) is default for the input, output54

and forget gate. The memorization process is controlled by55

a gating mechanism in LSTMs. The gate activation function56

of LSTM networks allows information to be stored, written,57

or read using gates that open and close in the same way [9].58

LSTMs and their offspring have been successfully applied59

to a wide range of applications, particularly classification.60

These networks have a variety of applications, such as online61

handwriting recognition [10], phoneme classification [11],62

and online mode detection [12]. These networks are also63

employed for language modeling [13], analysis of audio and64

video data [14], and human behavior analysis [15]. Neural65

networks exhibit diverse behaviors depending on a variety66

of parameters, including the network’s structure, learning67

algorithm, activation function employed at each node, and so68

on. However, in neural network research, the emphasis has69

been placed on learning algorithms and architectures, with70

the importance of activation functions having received less71

attention than other aspects of the network [16]. Because72

of the value of the activation function, the decision borders73

and the total input and output signal strength of the node are74

determined by the node’s value. It is also possible that the75

activation functions will have an impact on the complexity76

and performance of networks as well as the convergence of77

algorithms [17]. The careful selection of activation functions78

has a significant impact on the overall performance of the79

network.80

As far as we know, this is the first study to compile81

an extensive collection of activation functions in one place,82

employ them as state activation functions in place of the con-83

ventionally used (tanh) one, and investigate and compare the84

performance of the proposed state activation functions-based85

LSTM networks. Using the Japanese Vowels classification86

and Weather Reports data sets, the misclassification errors87

of the proposed state activation functions-based LSTM net-88

works with different structures are compared more specific.89

The results demonstrate that the most frequently utilized90

activation functions in LSTMs do not contribute to the high-91

est performance. Accordingly, the following are the primary92

points of emphasis in this paper:93

1) Compiling a large list of activation functions that can94

be used in LSTMs.95

2) Developing a novel LSTM network that employs96

26 state activation functions as an alternative to the97

traditional (tanh) activation function.98

3) Making use of the newly developed LSTM networks99

to resolve a wide range of practical classification100

problems, such as vowels classification and image101

classification.102

4) Investigating the accuracy of the proposed LSTM net-103

works in the context of the aforementioned classifica-104

tion issues.105

5) Investigating the impact of alternative optimization106

algorithms, such as Adam, RMSProp, and SGDm,107

on the learning process of the proposed LSTM net- 108

works and, consequently, on the classification perfor- 109

mance of the networks. 110

A. RELATED WORK 111

In previous research [5] and [17] a comparison study was car- 112

ried out in which the performance of an LSTM network was 113

evaluated when different activation functions were switched. 114

This study compared the results of the network when differ- 115

ent activation functions were used. Both of these pieces of 116

research arrived to the same conclusion: the switching activa- 117

tion functions have an effect on the way the network operates. 118

Although the sigmoid function, which is the typical activation 119

function in sigmoidal gates, gives remarkable performance, 120

it has been discovered that other, less-recognized activation 121

functions can provide more accurate performance. These 122

alternative activation functions have been studied. In addi- 123

tion, in [5] they compared exactly 23 different activation 124

functions, in which the three gates (the input, output, and 125

forget gate) changed activation functions while the block 126

input and block output activation functions were held con- 127

stant with the hyperbolic tangent. This was done so that the 128

activation functions of the block could be compared(tanh). 129

The study’s authors recommended altering the hyperbolic 130

tangent function on the block input and block output as a 131

better alternative to altering the activation functions in the 132

three gates by the authors. In addition, the authors suggest 133

that additional research be done on other components of an 134

LSTM network. One example of this is the effect that this 135

modification would have. 136

Elsayed et al. [33] described how different activation func- 137

tions have been applied to more complicated LSTM- based 138

neural networks in different areas rather than recommenda- 139

tion systems in order to improve performance. The activation 140

functions of LSTM blocks have been investigated in detail by 141

Elsayed [33]. 142

Song and Brogärd et al. [9] they tested the performance of 143

four distinct activation functions in LSTM neural networks 144

to see which one was the most effective (hyperbolic tangent, 145

sigmoid, ELU and SELU activation functions). They showed 146

that the tangent and sigmoid functions were much better 147

than the ELU and SELU at making predictions for movie 148

recommendation systems. 149

Burhani et al. [22] obtained a similar conclusion in their 150

study on denoising auto encoders, namely that the modified 151

Elliott activation function had better performance and smaller 152

error than the log-sigmoid activation function. Furthermore, 153

in the first set of studies, we discovered that Cloglogm pro- 154

vided the best activation, which is similar to the findings of 155

Gomes et al. [17]. 156

B. PAPER ORGANIZATION 157

The following is a summary of the information presented in 158

this paper. Section II provides the LSTM architecture and the 159

activation functions. Section III presents the methodology. 160
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Simulation results of the proposed framework are offered in161

Section IV. Section V shows the conclusion of this paper.162

II. LSTM ARCHITECTURE AND THE ACTIVATION163

FUNCTIONS164

In the next sections, we will talk briefly about the LSTM165

architecture and the activation functions used in the network.166

A. LSTM ARCHITECTURE167

Classification is accomplished using the most basic LSTM168

with a single hidden layer and an average pooling algorithm,169

as well as a logistic regression output layer. Figure 1 demon-170

strates the LSTM architecture, which is divided into three171

parts: the input layer, a single hidden layer, and the output172

layer. The hidden layer consists of single-cell blocks, which173

are a collection of recurrently connected units. The input174

vector χt introduced into the network at the specified time t.175

In each block, the elements are determined by the equations 1176

through 6.177

ft = σ (Wf χt + Uf ht−1 + bf ) (1)178

it = σ (Wiχt + Uiht−1 + bi) (2)179

Ot = σ (WOχt + Uoht−1 + bo) (3)180

C′t = tanh (Wcχt + Ucht−1 + bc) (4)181

Ct = ft � Ct−1 + it � C′t (5)182

ht = Ot � tanh(Ct ) (6)183

For each LSTM block, the forget, input, and output gates are184

specified by Eqs. 1–3, with ft corresponding to the forget gate,185

it corresponding to the input gate, and Ot representing the186

output gate. The input gate specifies which values should be187

updated and which ones should not, the forget gate allows for188

the forgetting and discarding of information, and the output189

gate, in conjunction with the block output, determines which190

information should be sent out at the specified time t . C′t191

The block input at time t indicated in (Eq. 4) is a tanh layer,192

and along with the input gate, the two determine the amount193

of new information that should be stored in the cell state194

at the time of the computations. At time t t represents the195

cell state, which has been updated from the previous cell196

state (Eq. 5). Finally, ht is the block output at the specified197

time (Eq. 6) [18].198

Figure 2 shows an illustration of the LSTM block. The199

three gates (input, forget, and output gates), as well as the200

activation functions for the block input and block output,201

are represented in the figure. A recurrent connection exists202

between the block’s output and the block’s input, and all the203

gates are connected together. It is made up of two weight204

matrices W and U and one bias vector b. The � sign is205

created by multiplying two vectors point by point in the same206

direction. Functions σ and tanh are point-wise nonlinear207

logistic sigmoid and hyperbolic tangent activation functions,208

respectively.209

The cell state, represented by the round circle ‘‘Cell’’ in210

Figure 2, is the most important concept in LSTMs. The cell211

FIGURE 1. The LSTM architecture consisting of the input layer, a single
hidden layer, and the output layer [2].

FIGURE 2. Architecture of a single LSTM blocks where tanh is the
hyperbolic tangent functions (tanh) gates.

state contains information that is transferred back and forth 212

between each LSTM block the output of a cell is referred 213

to as the hidden state in more explicit terms. Hidden state 214

is represented in Figure 2 by the output of the cell together 215

with the point wise operation from the output gate. Thanks 216

to the use of controlled structures known as gates, the LSTM 217

has the capability of removing or adding information to the 218

cell state and concealed state. They are made up of a sigmoid 219

neural network layer and a point wise multiplication opera- 220

tion, among other things. The sigmoid layer, represented by 221

the round circle in the illustration, generates integers rang- 222

ing from zero to one. Amount of information that will pass 223

through the gate is represented by the numbers [19]. 224

B. ACTIVATION FUNCTIONS 225

An activation function is a function that is introduced to an 226

artificial neural network to assist the network in learning 227

complex patterns in the data and to have the capacity to 228

introduce non-linearity into a neural network without the use 229

of programming. When compared to the neuron-based model 230

found in our brains, the activation function is found at the 231
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TABLE 1. Label, definition and corresponding derivative of each
activation function.

end of the process, selecting what information should be sent232

to the next neuron. Exactly the same thing happens when an233

TABLE 2. Summary of the proposed LSTM-based classifiers architecture
parameters and training options.

TABLE 3. A comparative performances of different proposed activation
functions-based LSTM classifiers for Japanese Vowels dataset, using
Adam optimizer, and (sigmoid) gate activation function.

activation function is used in an ANN. In this cell, the output 234

signal from the previous cell is received and converted into a 235

form that can be used as an input signal for the next cell. 236

A poor selection of activation functions can result in the 237

loss of input data as well as vanishing or exploding gradi- 238

ents in the neural network. Neural networks have three key 239

components that influence their performance: the network 240

architecture and the pattern of connections between units, 241

the learning algorithm, and the activation functions that are 242

utilized in the network. Each of these aspects has a signif- 243

icant impact on network performance [13]. The majority of 244

neural network research has concentrated on the value of the 245

learning algorithm, whereas the importance of the activation 246
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FIGURE 3. Accuracy (a) and loss (b) curves of the learning process for the
proposed state activation functions-based LSTM classifiers using sigmoid
gate activation function, Adam optimizer, and 100 hidden units.

functions employed in neural networks has been largely247

overlooked [20].248

In this paper, we reconstruct the LSTM network by replac-249

ing the (tanh) activation functions in Eqs. 4, 5 and 6, by one of250

the listed functions in Table 1. Also, we compare the impact251

of using the 26 different activation functions on network252

performance when employed in Tanh gates of a basic LSTM253

block for classification. Additionally, the hyperbolic tangent254

formula is known as the hyperbolic function. Is defined as255

follows:256

tanh (x) =
sinh(x)
cosh (x)

(7)257

The sigmoid function has the formula is given by [21].258

σ (x) =
1

e−x − 1
(8)259

According to Table 1, we have produced a comprehensive260

list of 26 such functions that will be described further below.261

We observed experimentally that by increasing the value of262

TABLE 4. Comparative performance of different proposed activation
functions-based LSTM classifiers for Japanese Vowels dataset, using
Adam optimizer, and (Hard-sigmoid) gate activation function.

some functions by a factor of 0.5, they become usable as acti- 263

vation functions in the network. The alteration of the range 264

of activation functions has been seen in various previous 265

studies [22]. In Table 1, the first activation function is the 266

wave function proposed by Hara and Nakayamma. [23]. The 267

second is Softsign function proposed by [24], Aranda-Ordaz 268

introduced by Gomes et al which is labeled as Aranda [16]. 269

Fourth to seventh functions are the bimodal activation func- 270

tions proposed by Singh et al and labeled as Bisig1, Bi-sig2, 271

Bi-tanh1, and Bi-tanh2, respectively. [25].The next function 272

presents a modified version of Cloglog, and Cloglogm [17]. 273

Next come the Elliott, Gaussian, logarithmic, The13th func- 274

tion is the complementary log–log [26]. Logsigm the logistic 275

sigmoid comes next as called Log-sigmoid, followed by the 276

Modified Elliott function [5]. The 17th function is a sigmoid 277

function with roots, called Rootsig [27]. The 18th to 21th 278

functions are the Saturated, the hyperbolic secant (Sech), and 279

two modified sigmoidals labeled as Sigmoidalm and Sig- 280

moidalm2 [28]. The tunable activation function proposed by 281

Yuan et al and labeled as Sigt is the 22th function [29]. Next 282

is a skewed-sig derivative activation function proposed by 283

Chandra et al. labeled as skewed-sig [30]. The 24th function 284

Gaussian Error Linear Unit (GELU) [31]. Come last Expo- 285

nential Linear Unit (ELU) and Scaled Exponential Linear 286
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FIGURE 4. Accuracy (a) and loss (b) curves of the learning process for the
proposed state activation functions-based LSTM classifiers using Hard-
sigmoid gate activation function, Adam optimizer, and 100 hidden units.

Unit (SELU) [32]. However, due to the exploding gradient287

problem, these techniques were unsuccessfully applied in the288

network.289

III. METHODOLOGY290

In order to determine the effect of different activation291

functions on the LSTM-based classifiers’ performance,292

we replaced the state activation function of the hyperbolic293

tangent (tanh gates), which is used to determine candidate cell294

state (block input) and update the hidden state (block output),295

with different activation functions from Table 1. To investi-296

gate the influence of using different state activation functions297

on the LSTM-based classifiers’ performance, initially the298

proposed LSTM-based classifier is trained with the default299

gate activation function (sigmoid gate), and then it is trained300

with a hard-sigmoid activation function. The two tanh gates301

in each configuration are identical and are selected from the302

set of activation functions mentioned in Table 1.303

Optimization algorithms play a vital role in improving304

learning processes. The goal of the learning process is to find305

a model that will produce better results through weights and306

TABLE 5. A comparative performances of different proposed activation
functions-based LSTM classifiers for Japanese Vowels dataset, using
RMSprop optimizer, and (sigmoid) gate activation function.

biases adjusted to minimize the loss function. Learning of 307

deep neural networks can be described as an optimization 308

problem that seeks to find a global optimum through a reli- 309

able training trajectory and fast convergence using gradient 310

descent algorithms [19]. Choosing the optimal optimization 311

approach for a specific scientific problem acts as a serious 312

challenge. Choosing an inappropriate optimization approach 313

may lead the network to reside in the local minima during 314

training, and this does not achieve any advances in the learn- 315

ing process. Hence, the investigation is necessary to analyze 316

the performance of different optimizers depending on the 317

dataset employed for obtaining the best LSTM-based classi- 318

fiers for the proposed ones. The commonly used optimization 319

algorithms are Adam (Adaptive Moment Estimation) [35], 320

RMSProp (Root Mean Square Propagation) [34], and SGDM 321

(Stochastic gradient descent momentum) [36]. 322

IV. SIMULATION RESULTS 323

To train the proposed LSTM-based classifiers, the back prop- 324

agation through time algorithm (BPTT) [37] is used with 325

different types of optimization algorithms such as ADAM, 326

SGDM, and RMSprop. The classifiers are trained and tested 327
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FIGURE 5. Accuracy (a) and loss (b) curves of the learning process for the
proposed state activation functions-based LSTM classifiers using sigmoid
gate activation function, RMSprop optimizer, and 100 hidden units.

three times for each activation function with the same training328

and testing data at different numbers of hidden units (20, 50,329

and 100). The initial network weights and the batches are330

chosen randomly in each experiment. The loss and accuracy331

are reported using the results of the two experiments for each332

LSTM-based classifier configuration.333

Accuracy is one of the classifiers’’ validation parameters.334

Accuracy determines that how percentage of test data is335

correctly classified. It can be defined as follows:336

Accuracy =
number of true classified samples

number of total test samples
∗ 100 (9)337

A loss is defined as the difference between the classi-338

fier’s responses and the original classification sample. The339

loss function can be represented by several functions. The340

crossentropyex loss function was used in the current paper.341

It can be expressed as follows:342

crossentropyex = −
∑N

i=1

∑c

j=1
Xij(k)log(X̂ij(k)) (10)343

where N is the number of samples, c is the number of classes,344

Xij is the ith classified sample for the jth class and X̂ij is the345

TABLE 6. Comparative performances of different proposed activation
functions-based LSTM classifiers for Japanese Vowels dataset, using
RMSprop optimizer, and (Hard-sigmoid) gate activation function.

state activation function-based classifier response for sam- 346

ple i for class j. 347

To analyze the performance of the LSTM-based classifiers, 348

two sets of experiments are designed with different types of 349

datasets. In both sets of experiments, different architectures 350

of proposed LSTM-based classifiers are evaluated, and in 351

each configuration of the proposed LSTMblocks, an identical 352

activation function from Table 1. 353

All simulations were carried out using MATLAB 354

R2019b/deep learning toolbox. 355

A. FIRST SET OF EXPERIMENTS 356

In this study, we employed data sets from the JapaneseVowels 357

dataset for the first set of trials. The original Japanese Vowels 358

(Vowels) dataset from the University of California, Irvine 359

machine learning repository is a multivariate time series 360

data in which nine male speakers pronounced two Japanese 361

vowels (ae) in succession. A 12-degree linear prediction 362

analysis (Sampling rate: 10kHz, Frame length: 25.6ms, Shift 363

length: 6.4ms) was performed to obtain a discrete-time series 364

with 12 LPC cepstrum coefficients (Sampling rate: 10kHz, 365

Frame length: 25.6ms, Shift length: 6.4ms). In other words, 366

each utterance made by the speaker results in the formation 367
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FIGURE 6. Accuracy (a) and loss (b) curves of the learning process for the
proposed state activation functions-based LSTM classifiers using Hard
sigmoid gate activation function, RMSprop optimizer, and 100 hidden
units.

of an interval between 7 and 29 time series, with each point in368

the interval containing a total of 12 features (12 coefficients).369

The total number of time series is 640, which is a round370

number. With the help of time series data representing two371

Japanese vowels pronounced in succession [37], this example372

trains an LSTM network to recognize the speaker [38].373

Table 2 summarizes the proposed LSTM-based classifiers374

architecture parameters and training options and different375

number of hidden units. The batch sizes have been chosen376

based on experiment for producing a better performance.377

The loss and accuracy are reported using the results of the378

two experiments of each configuration. Hyper parameters are379

not tuned specifically for each configuration of LSTM-based380

classifier and are identical for all experiments.381

Table 3 and Table 4 list the true classification accuracy382

percentages for each activation function-based LSTM clas-383

sifier for Japanese Vowels Classification using optimization384

algorithm (Adam), sigmoid and hard-sigmoid gate activation385

functions, respectively. All the training data is exposed to the386

classifier in mini-batches at each epoch. Where tanh is the387

FIGURE 7. Accuracy (a) and loss (b) curves of the learning process for the
proposed state activation functions-based LSTM classifiers using sigmoid
gate activation function, SGDM optimizer, and 100 hidden units.

default state activation function in the LSTM structure, the 388

tanh-based LSTM classifiers’ achieved accuracies are taken 389

as reference for comparison. 390

From Table 3, activation function-based LSTM classifiers 391

can achieve the highest accuracy using 100 hidden neurons 392

rather than 20 or 50. In total, 19 LSTM-based classifiers 393

perform accurate classification with an accuracy in the range 394

of 90–97.5676% at 100 hidden neurons, in addition to the 395

tanh-based LSTM classifier, which achieves an accuracy of 396

93.2432%. Tabulated results demonstrate that 12 of the 19 397

proposed LSTM-based classifiers outperform the tanh-based 398

LSTM classifier, and the best of all is the wave-based LSTM 399

classifier with 97.5676% accuracy. Figure 3 displays the 400

accuracy and loss curves obtained from the learning processes 401

of the conventional tanh-based LSTM classifier and the pro- 402

posed wave-based LSTM classifier with the highest accuracy. 403

Table 4 lists the accuracy percentages for all examined 404

classifiers under the condition of using a hard-sigmoid 405

gate activation function in place of the sigmoid function. 406

21 LSTM-based classifiers perform accurate classification 407

with accuracy in the range of 92 – 97.0270% at 100 hidden 408
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TABLE 7. Comparative performances of different proposed activation
functions-based LSTM classifiers for Japanese Vowels dataset, using
SGDM optimizer, and (sigmoid) gate activation function.

neurons, in addition to the tanh-based LSTM classifier, which409

achieves an accuracy of 93.5432%. Tabulated results demon-410

strate that 17 of the 21 proposed LSTM-based classifiers411

outperform the tanh-based LSTMclassifier, and the best of all412

is the wave-based LSTM classifier with 97.0270% accuracy.413

Figure 4 shows the accuracy and loss curves obtained from414

the learning processes of the traditional tanh-based LSTM415

classifier and the proposed wave-based LSTM classifier with416

the highest accuracy. The overall performance of the pro-417

posed state activation function-based LSTM classifiers with418

a hard-sigmoid gate activation function is better than those419

using the sigmoid gate activation function.420

Table 5 and Table 6 list the true classification accuracy421

percentages for each activation function-based LSTM clas-422

sifier for Japanese Vowels Classification using optimization423

algorithm (RMSprop), sigmoid, and hard-sigmoid gate acti-424

vation functions, respectively. All the training data is exposed425

to the classifier in mini-batches at each epoch. Where tanh is426

the default state activation function in the LSTM structure, the427

tanh-based LSTM classifiers’ achieved accuracies are taken428

as reference for comparison.429

Table 5 shows that activation function-based LSTM clas-430

sifiers with 100 hidden neurons, rather than 20 or 50,431

yield the maximum accuracy. In addition to the tanh-based432

LSTM classifier, which achieves an accuracy of 94.1351 %,433

TABLE 8. Comparative performances of different proposed activation
functions-based LSTM classifiers for Japanese Vowels dataset, using
SGDM optimizer, and (Hard-sigmoid) gate activation function.

14 LSTM-based classifiers reach an accuracy in the range 434

of 90–96.4865% at 100 hidden neurons. The findings show 435

that 7 of the 14 proposed LSTM-based classifiers beat the 436

tanh-based LSTM classifier, with the wave-based LSTM 437

classifier performing best with 96.486%. Figure 5 displays 438

the accuracy and loss curves obtained from the learning pro- 439

cesses of the conventional tanh-based LSTM classifier and 440

the proposed wave-based LSTM classifier with the highest 441

accuracy. 442

Table 6 illustrates the accuracy percentages for all classi- 443

fiers tested when the hard-sigmoid gate activation function 444

was used instead of the sigmoid function. In addition to 445

the tanh-based LSTM classifier, which achieves an accuracy 446

of 94.4054%, 15 LSTM-based classifiers produce accurate 447

classification with an accuracy ranging from 91.6216 to 448

95.9459% at 100 hidden neurons. Tabled results show that 449

13 of the 15 proposed LSTM-based classifiers outperform 450

the tanh-based LSTM classifier, with the wave-based LSTM 451

classifier outperforming all others with 95.9459 %. Figure 6 452

displays the accuracy and loss curves obtained from the learn- 453

ing processes of the conventional tanh-based LSTM classifier 454

and the proposed wave-based LSTM classifier with the high- 455

est accuracy. The suggested state activation functions-based 456

VOLUME 10, 2022 97267



M. H. Essai Ali et al.: Developing Novel Activation Functions Based Deep Learning LSTM for Classification

FIGURE 8. Accuracy (a) and loss (b) curves of the learning process for the
proposed state activation functions-based LSTM classifiers using
Hard-sigmoid gate activation function, SGDM optimizer, and 100 hidden
units.

LSTM classifiers with a hard-sigmoid gate activation func-457

tionoutperform those with a sigmoid gate activation function.458

Table 7 and Table 8 list the true classification accuracy459

percentages for each activation function-based LSTM clas-460

sifier for Japanese Vowels Classification using optimization461

algorithm (SGDM), sigmoid and hard-sigmoid gate activa-462

tion functions respectively. All the training data is exposed463

to the classifier in mini-batches at each epoch. Where tanh is464

the default state activation function in the LSTM structure, the465

tanh-based LSTM classifiers’ achieved accuracies are taken466

as reference for comparison.467

From Table 7, activation function-based LSTM classifiers468

can achieve the highest accuracy using 100 hidden neu-469

rons rather than 20 or 50. 7 LSTM-based classifiers per-470

form accurate classification with an accuracy in the range471

of 90–95.9459% at 100 hidden neurons, in addition to the472

tanh-based LSTM classifier, which achieves an accuracy473

of 93.2541 94.0541%. Tabulated results demonstrate that474

4 of the 7 proposed LSTM-based classifiers outperform the475

FIGURE 9. Comparison of the accuracy of best state activation
functions-based LSTM classifiers using sigmoid gate activation function,
(SGDM, RMSprop and Adam) optimizer, and 100 hidden units.

FIGURE 10. Comparison of the accuracy of best state activation
functions-based LSTM classifiers using Hard-sigmoid gate activation
function, (SGDM, RMSprop and Adam) optimizer, and 100 hidden units.

TABLE 9. Summary of the proposed LSTM-based classifiers architecture
parameters and training options.

tanh-based LSTM classifier, and the best of all is the Modi- 476

fied Elliott based LSTM classifier with 95.9459% accuracy. 477
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TABLE 10. Comparative performances of different proposed activation
functions-based LSTM classifiers for weather Reports dataset, using
Adam optimizer, and (sigmoid) gate activation function.

Figure 7 displays the accuracy and loss curves obtained from478

the learning processes of the conventional tanh-based LSTM479

classifier and the proposed Modified Elliott & Cloglogm-480

based LSTM classifiers with the highest accuracy.481

Table 8 lists the accuracy percentages for all examined482

classifiers under the condition of using a hard-sigmoid483

gate activation function in place of the sigmoid function.484

7 LSTM-based classifiers perform accurate classification485

with an accuracy in the range of 90.5405– 95.9459% at486

100 hidden neurons, in addition to the tanh-based LSTM487

classifier, which achieves an accuracy of 94.3649 94.4054%.488

Tabulated results demonstrate that 5 of the 7 proposed LSTM-489

based classifiers outperform the tanh-based LSTM classifier,490

and the best of all is the Modified Elliott (with a range of491

based LSTM classifier with 95.9459% accuracy). Figure 8492

displays the accuracy and loss curves obtained from the learn-493

ing processes of the conventional tanh-based LSTM classifier494

and the proposed Modified Elliott-based LSTM classifier495

with the highest accuracy.496

The performance of the proposed state activation function-497

based LSTM classifiers with a hard-sigmoid gate activation498

function and those with a sigmoid gate activation function is499

comparable.500

Figure 9, and Figure 10 depict and summaries the501

achieved accuracy by the more powerful state activation502

FIGURE 11. Accuracy (a) and loss (b) curves of the learning process for
the proposed state activation functions-based LSTM classifiers using
sigmoid gate activation function, Adam optimizer, and 100 hidden units.

functions-based LSTM classifiers, that use the Sigmoid and 503

Hard-sigmoid gate activation functions, respectively, and are 504

trained by employing Adam, RMSprop, and SGDM optimiz- 505

ers, and 100 hidden unit structures. 506

By employing the Adam optimizer, it is obvious that the 507

wave-based LSTM classifier beats the tanh-based LSTM 508

classifier by achieving a correct classification accuracy of 509

97.5676%, where the latter achieved 93.4054%. Also, the 510

wave-based LSTM classifier is the best among the proposed 511

classifiers. Using the RMSProp optimizer, the wave-based 512

LSTM classifier outperforms the tanh-based LSTM classi- 513

fier, reaching 96.4865% accurate classification accuracy vs 514

93.4054 % for the latter. Moreover, among the suggested 515

classifiers, the wave-based LSTM classifier is the best. 516

By using the SGDM optimizer, the Modified Elliott-based 517

LSTM classifier trumps the tanh-based LSTM classifier by 518

attaining 95.9459 percent accurate classification accuracy, 519

vs 94.3649 percent. Fig. 10 shows that the Modified Elliott- 520

based LSTM classifier is the best. 521

Generally, the proposed Modified Elliott, Gaussian, Sech, 522

Wave, Bitanh1, Bitanh2 and Softsign based LSTM classifiers 523
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TABLE 11. Comparative performances of different proposed activation
functions-based LSTM classifiers for weather Reports dataset, using
Adam optimizer, and (Hard-sigmoid) gate activation function.

outperform their peer tanh-based LSTM classifier. Also, the524

investigated classifiers that use the hard-sigmoid gate activa-525

tion function trump those that use the sigmoid gate activation526

function.527

B. SECOND SET OF EXPERIMENTS528

The Weather Reports Classification System will serve as the529

foundation for the second set of experiments.With the use of a530

bag-of-words model, this example demonstrates how to train531

a simple text classifier on word frequency counts. You may532

develop a basic classification model that uses word frequency533

counts as predictors by following the instructions below.534

This example demonstrates how to train a basic classification535

model to predict the event type of weather reports based on536

the text descriptions provided.537

Table 9 summarizes the proposed LSTM-based classifier538

architecture parameters and training options and different539

numbers of hidden units. The batch sizes have been chosen540

based on experiments to produce better performance. The541

loss and accuracy are reported using the results of the two542

experiments for each configuration. Hyper parameters are543

not tuned specifically for each configuration of LSTM-based544

classifier and are identical for all experiments.545

FIGURE 12. Accuracy (a) and loss (b) curves of the learning process for
the proposed state activation functions-based LSTM classifiers using
Hard-sigmoid gate activation function, Adam optimizer, and 100 hidden
units.

Table 10 and Table 11 list the true classification accuracies 546

percentages for each activation functions-based LSTM clas- 547

sifier for Weather Reports Classification using optimization 548

algorithm (Adam), sigmoid, and hard-sigmoid gate activation 549

functions respectively. All the training data is exposed to 550

the classifier in mini-batches at each epoch. Where tanh is 551

the default state activation function in the LSTM structure, the 552

tanh-based LSTM classifiers’ achieved accuracies are taken 553

as reference for comparison. 554

From Table 10, activation function-based LSTM classi- 555

fiers can achieve the highest accuracy using 100 hidden 556

neurons rather than 20 or 50. 19 LSTM-based classifiers 557

perform accurate classification with accuracy in the range of 558

84–88.04% at 100 hidden neurons, in addition to the tanh- 559

based LSTM classifier, which achieves an accuracy of 86.1%. 560
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FIGURE 13. Accuracy (a) and loss (b) curves of the learning process for
the proposed state activation functions-based LSTM classifiers using
sigmoid gate activation function, RMSprop optimizer, and 100 hidden
units.

Tabulated results demonstrate that 11 of the 19 proposed561

LSTM-based classifiers outperform the tanh-based LSTM562

classifier, and the best of all is the Softsign (with range of563

[- 0.5, 1.5]) -based LSTM classifier with 88.04% accuracy.564

Fig. 11 displays the accuracy and loss curves obtained from565

the learning processes of the conventional tanh-based LSTM566

classifier and the proposed Softsign-based LSTM classifier567

with the highest accuracy.568

Table 11 lists the accuracy percentages for all exam-569

ined classifiers under the condition of using hard-sigmoid570

gate activation function in place of the sigmoid function.571

18 LSTM-based classifiers perform accurate classification572

with accuracy in the range of 84– 87.9581% at 100 hidden573

neurons, in addition to the tanh-based LSTM classifier, which574

achieves an accuracy of 86.5587%. Tabulated results demon-575

strate that 12 of the 18 proposed LSTM-based classifiers576

FIGURE 14. Accuracy (a) and loss (b) curves of the learning process for
the proposed state activation functions-based LSTM classifiers using Hard
sigmoid gate activation function, RMSprop optimizer, and 100 hidden
units.

outperform the tanh-based LSTM classifier, and the best of 577

all is the Gaussian (with range of [0, 1]), Sech (with range 578

of [0, 1]) -based LSTM classifier with 87.9581% accuracy. 579

Fig. 12 shows the accuracy and loss curves obtained from 580

the learning processes of the conventional tanh-based LSTM 581

classifier and the proposed Gaussian-based LSTM classifier 582

with the highest accuracy. The overall performance of the 583

proposed state activation functions-based LSTM classifiers 584

with a hard-sigmoid gate activation function is better than 585

those are using the sigmoid gate activation function. 586

Table 12 and Table 13 list the true classification accu- 587

racy percentages for each activation function-based LSTM 588

classifier for Weather Reports Classification using opti- 589

mization algorithm (RMSprop), sigmoid and hard-sigmoid 590
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FIGURE 15. Comparison of the accuracy of the best state activation
functions-based LSTM classifiers using Sigmoid gate activation function,
(SGDM, RMSprop and Adam) optimizer, and 100 hidden units.

TABLE 12. Comparative performances of different proposed activation
functions-based LSTM classifiers for weather Reports dataset, using
RMSprop optimizer, and (sigmoid) gate activation function.

gate activation function respectively. All the training data591

is exposed to the classifier in mini-batches at each epoch.592

Where tanh is the default state activation function in the593

FIGURE 16. Comparison of the accuracy of the best state activation
functions-based LSTM classifiers using Hard-Sigmoid gate activation
function, (SGDM, RMSprop and Adam) optimizer, and 100 hidden units.

TABLE 13. Comparative performances of different proposed activation
functions-based LSTM classifiers for weather Reports dataset, using
RMSprop optimizer, and (Hard-sigmoid) gate activation function.

LSTM structure, the tanh-based LSTM classifiers’ achieved 594

accuracies are taken as reference for comparison. 595
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TABLE 14. Comparative performances of different proposed activation
functions-based LSTM classifiers for weather Reports dataset, using
SGDM optimizer, and (sigmoid) gate activation function.

From Table 12, activation function-based LSTM596

classifiers can achieve the highest accuracy using 100 hid-597

den neurons rather than 20 or 50. 19 LSTM-based clas-598

sifiers perform accurate classification with an accuracy in599

the range of 84–88.8546% at 100 hidden neurons, in addi-600

tion to the tanh-based LSTM classifier, which achieves601

an accuracy of 86.3804%. Tabulated results demonstrate602

that 14 of the 19 proposed LSTM-based classifiers outper-603

form the tanh-based LSTM classifier, and the best of all is604

the Sech based LSTM classifier with 88.8546% accuracy.605

Fig. 13 shows the accuracy and loss curves obtained from606

the learning processes of the conventional tanh-based LSTM607

classifier and the proposed Sech-based LSTM classifier with608

the highest accuracy.609

Table 13 lists the accuracy percentages for all exam-610

ined classifiers under the condition of using a hard-sigmoid611

gate activation function in place of the sigmoid function.612

19 LSTM-based classifiers perform accurate classification613

with accuracy in the range of 84– 88.0484% at 100 hidden614

neurons, in addition to the tanh-based LSTM classifier, which615

achieves an accuracy of 86.5587%. Tabulated results demon-616

strate that 15 of the 19 proposed LSTM-based classifiers617

outperform the tanh-based LSTM classifier, and the best of618

all is the Gaussian-, Modified Elliott-based LSTM classifier619

with 88.0484% accuracy. Fig. 14 shows the accuracy and loss620

TABLE 15. Comparative performances of different proposed activation
functions-based LSTM classifiers for weather Reports dataset, using
SGDM optimizer, and (Hard-sigmoid) gate activation function.

curves obtained from the learning processes of the conven- 621

tional tanh-based LSTM classifier and the proposed Modi- 622

fied Elliott-based LSTM classifier with the highest accuracy. 623

The overall performance of the proposed state activation 624

function-based LSTM classifiers with a hard-sigmoid gate 625

activation function is better than those using the sigmoid gate 626

activation function. 627

Table 14 and Table 15 list the true classification accuracies 628

percentages for each activation functions-based LSTM clas- 629

sifier for Weather Reports Classification using optimization 630

algorithm (SGDM), sigmoid and hard-sigmoid gate activa- 631

tion functions respectively. All the training data is exposed 632

to the classifier in mini-batches at each epoch. Where tanh is 633

the default state activation function in the LSTM structure, the 634

tanh-based LSTM classifiers’ achieved accuracies are taken 635

as reference for comparison. From Table 14 and Table 15, all 636

activation function-based LSTM classifiers can achieve weak 637

results compared to other optimization algorithms (Adam, 638

RMSprop) in all different hidden neurons. 639

As shown in Figure 15, by using the Adam optimizer, 640

it is obvious that the Softsign-based LSTM classifier beats 641

the tanh-based LSTM classifier by achieving a correct clas- 642

sification accuracy of 88.048%, where the latter achieved 643

86.1925%. Also, the Softsign-based LSTM classifier is the 644

best among the proposed classifiers. 645
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Using the RMSProp optimizer, the Sech-based LSTMclas-646

sifier outperforms the tanh-based LSTM classifier, reaching647

88.8% accurate classification accuracy vs 86.3% for the latter,648

as shown in Figure 15 and Figure16.649

By noting Figure 15 and Figure 16, utilizing the SGDM650

optimizer and Hard-Sigmoid gate activation function, both651

the Modified Elliott-based LSTM classifier and tanh-based652

LSTM classifier attain a maximum accuracy of 57.9%.653

V. CONCLUSION654

LSTM blocks, contain mainly two types of activation func-655

tions: state activation function (tanh) and gate activation func-656

tion (hard-sigmoid or sigmoid). In this study, state activation657

functions-based LSTM classifiers have been proposed using658

26 different activation functions that can be used in place of659

the tanh.660

The performance of the proposed classifiers has been661

investigated using two different data sets: Japanese Vowels662

and Weather Reports; and three different structures with 20,663

50, and 100 hidden units. The Adam, RMSprop, and SGDM664

optimization algorithms are also used to tune their internal665

weights and biases.666

The results showed that some less well-known activation667

functions such as Modified Elliott, Gaussian, Sech, Wave,668

and Softsign yield lower loss levels compared to the most669

popular functions and hence aid classifiers to produce more670

promising results compared to those that use the common671

tanh activation function. Also, the Skewed-sig, Logarithmic,672

ELU, SELU, and Saturated activation functions, which are673

utilized in LSTM blocks, yield poor results compared to the674

other activation functions.675

Also, the given results show that the proposed classifiers676

that use hard sigmoid as a gate activation function beat those677

that use the sigmoid activation function. And the proposed678

trained classifiers using Adam and RMSprop outperform679

those that are trained using the SGDm optimizer. For future680

studies, the following is suggested:681

1. Studying the performance of the proposed LSTM-based682

classifiers using other different optimization algorithms such683

as Adadelta, Adagrad, AMSgrad, AdaMax, and Nadam.684

2. Studying the performance of the proposed LSTM-based685

classifiers using other different activation functions such as686

Probit, logsig and sincos.687

3. Studying the computational complexity of the proposed688

LSTM-based classifiers.689
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