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ABSTRACT This study proposes novel Long Short-Term Memory (LSTM)-based classifiers through
developing the internal structure of LSTM neural networks using 26 state activation functions as alternatives
to the traditional hyperbolic tangent (tanh) activation function. The LSTM networks have high performance
in solving the vanishing gradient problem that is observed in recurrent neural networks. Performance
investigations were carried out utilizing three distinct deep learning optimization algorithms to evaluate the
efficiency of the proposed state activation functions-based LSTM classifiers for two different classification
tasks. The simulation results demonstrate that the proposed classifiers that use the Modified Elliott, Softsign,
Sech, Gaussian, Bitanhl, Bitanh2 and Wave as state activation functions trump the tanh-based LSTM
classifiers in terms of classification accuracy. The proposed classifiers are encouraged to be utilized and

tested for other classification tasks.

INDEX TERMS LSTM, deep neural network, activation function, tanh gate.

I. INTRODUCTION

Deep learning is a branch of machine learning that trains
computers to learn from experience in the same way that
humans do. Machine learning algorithms employ computer
approaches to “learn” information directly from data rather
than depending on a model [1]. In the last decade, the emer-
gence of Deep Neural Networks (DNN5s) has generated a lot
of interest in several domains of Artificial Intelligence (AI).
For diverse and complicated tasks, most recent studies have
proposed and created several DNNs. Many network hyper-
parameters (such as kernel initializer, optimizer, normalizer,
number of hidden layers, activation function, loss function,
learning rate, momentum, and so on) must be chosen in
advance while creating a DNN [2]. Although DNN is based
on a recurrent neural network, it outperforms its predeces-
sors significantly. Furthermore, DNN uses both transforma-
tions and graph technology to construct multi-layer learning
models [3].
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Hochreiter and Schmidhuber proposed the long short-term
memory network (LSTM), which is a recurrent neural net-
work (RNN) architecture that has been demonstrated to be
successful for various learning problems, particularly those
requiring sequential data [4]. The LSTM architecture consists
of blocks, which are a combination of recurrently connected
units [5]. The vanishing gradient problem occurs when the
gradient of an RNN’s error function increases or decreases
exponentially over time. The development of new LSTM
techniques, structures, and activation functions improves con-
vergence to greater accuracy during deeper network training,
overcoming the vanishing/exploding gradient problem [6].
LSTM has become popular in a variety of applications in
recent years [7].

Each memory unit replaces a neuron in the LSTM network.
An actual neuron with a recurrent self-connection is included
in the unit. The gate activation function (sigmoid) and the
state activation function (tanh) are the two most common
activation functions for those neurons in memory units [8].
The hyperbolic activation function (fanh) is the state activa-
tion function of LSTM networks, which is used to determine
candidate cell state (internal state) values and update the
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hidden state. It is a default in the cell and hidden state, which
are referred to as block input and block output identically. The
sigmoid activation function (o) is default for the input, output
and forget gate. The memorization process is controlled by
a gating mechanism in LSTMs. The gate activation function
of LSTM networks allows information to be stored, written,
or read using gates that open and close in the same way [9].

LSTMs and their offspring have been successfully applied
to a wide range of applications, particularly classification.
These networks have a variety of applications, such as online
handwriting recognition [10], phoneme classification [11],
and online mode detection [12]. These networks are also
employed for language modeling [13], analysis of audio and
video data [14], and human behavior analysis [15]. Neural
networks exhibit diverse behaviors depending on a variety
of parameters, including the network’s structure, learning
algorithm, activation function employed at each node, and so
on. However, in neural network research, the emphasis has
been placed on learning algorithms and architectures, with
the importance of activation functions having received less
attention than other aspects of the network [16]. Because
of the value of the activation function, the decision borders
and the total input and output signal strength of the node are
determined by the node’s value. It is also possible that the
activation functions will have an impact on the complexity
and performance of networks as well as the convergence of
algorithms [17]. The careful selection of activation functions
has a significant impact on the overall performance of the
network.

As far as we know, this is the first study to compile
an extensive collection of activation functions in one place,
employ them as state activation functions in place of the con-
ventionally used (tanh) one, and investigate and compare the
performance of the proposed state activation functions-based
LSTM networks. Using the Japanese Vowels classification
and Weather Reports data sets, the misclassification errors
of the proposed state activation functions-based LSTM net-
works with different structures are compared more specific.
The results demonstrate that the most frequently utilized
activation functions in LSTMs do not contribute to the high-
est performance. Accordingly, the following are the primary
points of emphasis in this paper:

1) Compiling a large list of activation functions that can

be used in LSTMs.

2) Developing a novel LSTM network that employs
26 state activation functions as an alternative to the
traditional (tanh) activation function.

3) Making use of the newly developed LSTM networks
to resolve a wide range of practical classification
problems, such as vowels classification and image
classification.

4) Investigating the accuracy of the proposed LSTM net-
works in the context of the aforementioned classifica-
tion issues.

5) Investigating the impact of alternative optimization
algorithms, such as Adam, RMSProp, and SGDm,
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on the learning process of the proposed LSTM net-
works and, consequently, on the classification perfor-
mance of the networks.

A. RELATED WORK

In previous research [5] and [17] a comparison study was car-
ried out in which the performance of an LSTM network was
evaluated when different activation functions were switched.
This study compared the results of the network when differ-
ent activation functions were used. Both of these pieces of
research arrived to the same conclusion: the switching activa-
tion functions have an effect on the way the network operates.
Although the sigmoid function, which is the typical activation
function in sigmoidal gates, gives remarkable performance,
it has been discovered that other, less-recognized activation
functions can provide more accurate performance. These
alternative activation functions have been studied. In addi-
tion, in [5] they compared exactly 23 different activation
functions, in which the three gates (the input, output, and
forget gate) changed activation functions while the block
input and block output activation functions were held con-
stant with the hyperbolic tangent. This was done so that the
activation functions of the block could be compared(tanh).
The study’s authors recommended altering the hyperbolic
tangent function on the block input and block output as a
better alternative to altering the activation functions in the
three gates by the authors. In addition, the authors suggest
that additional research be done on other components of an
LSTM network. One example of this is the effect that this
modification would have.

Elsayed et al. [33] described how different activation func-
tions have been applied to more complicated LSTM- based
neural networks in different areas rather than recommenda-
tion systems in order to improve performance. The activation
functions of LSTM blocks have been investigated in detail by
Elsayed [33].

Song and Brogiird et al. [9] they tested the performance of
four distinct activation functions in LSTM neural networks
to see which one was the most effective (hyperbolic tangent,
sigmoid, ELU and SELU activation functions). They showed
that the tangent and sigmoid functions were much better
than the ELU and SELU at making predictions for movie
recommendation systems.

Burhani ef al. [22] obtained a similar conclusion in their
study on denoising auto encoders, namely that the modified
Elliott activation function had better performance and smaller
error than the log-sigmoid activation function. Furthermore,
in the first set of studies, we discovered that Cloglogm pro-
vided the best activation, which is similar to the findings of
Gomes et al. [17].

B. PAPER ORGANIZATION

The following is a summary of the information presented in
this paper. Section II provides the LSTM architecture and the
activation functions. Section III presents the methodology.
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Simulation results of the proposed framework are offered in
Section IV. Section V shows the conclusion of this paper.

Il. LSTM ARCHITECTURE AND THE ACTIVATION
FUNCTIONS

In the next sections, we will talk briefly about the LSTM
architecture and the activation functions used in the network.

A. LSTM ARCHITECTURE

Classification is accomplished using the most basic LSTM
with a single hidden layer and an average pooling algorithm,
as well as a logistic regression output layer. Figure 1 demon-
strates the LSTM architecture, which is divided into three
parts: the input layer, a single hidden layer, and the output
layer. The hidden layer consists of single-cell blocks, which
are a collection of recurrently connected units. The input
vector x; introduced into the network at the specified time t.
In each block, the elements are determined by the equations 1
through 6.

fi = oWrxi + Urhi—1 + by) (D)
iy = o(Wixs + Uihi—1 + b)) 2
Or = oc(Woxs + Uphi—1 + by) 3)
C; = tanh Wex; + Uchy—1 + be) “4)
C=f0Ca+i0C o)
hy = O; O tanh(C;) 6)

For each LSTM block, the forget, input, and output gates are
specified by Eqs. 1-3, with f; corresponding to the forget gate,
i; corresponding to the input gate, and O; representing the
output gate. The input gate specifies which values should be
updated and which ones should not, the forget gate allows for
the forgetting and discarding of information, and the output
gate, in conjunction with the block output, determines which
information should be sent out at the specified time 7. C}
The block input at time t indicated in (Eq. 4) is a tanh layer,
and along with the input gate, the two determine the amount
of new information that should be stored in the cell state
at the time of the computations. At time t ; represents the
cell state, which has been updated from the previous cell
state (Eq. 5). Finally, A, is the block output at the specified
time (Eq. 6) [18].

Figure 2 shows an illustration of the LSTM block. The
three gates (input, forget, and output gates), as well as the
activation functions for the block input and block output,
are represented in the figure. A recurrent connection exists
between the block’s output and the block’s input, and all the
gates are connected together. It is made up of two weight
matrices W and U and one bias vector b. The © sign is
created by multiplying two vectors point by point in the same
direction. Functions ¢ and fanh are point-wise nonlinear
logistic sigmoid and hyperbolic tangent activation functions,
respectively.

The cell state, represented by the round circle “Cell” in
Figure 2, is the most important concept in LSTMs. The cell
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FIGURE 1. The LSTM architecture consisting of the input layer, a single
hidden layer, and the output layer [2].
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FIGURE 2. Architecture of a single LSTM blocks where tanh is the
hyperbolic tangent functions (tanh) gates.

state contains information that is transferred back and forth
between each LSTM block the output of a cell is referred
to as the hidden state in more explicit terms. Hidden state
is represented in Figure 2 by the output of the cell together
with the point wise operation from the output gate. Thanks
to the use of controlled structures known as gates, the LSTM
has the capability of removing or adding information to the
cell state and concealed state. They are made up of a sigmoid
neural network layer and a point wise multiplication opera-
tion, among other things. The sigmoid layer, represented by
the round circle in the illustration, generates integers rang-
ing from zero to one. Amount of information that will pass
through the gate is represented by the numbers [19].

B. ACTIVATION FUNCTIONS

An activation function is a function that is introduced to an
artificial neural network to assist the network in learning
complex patterns in the data and to have the capacity to
introduce non-linearity into a neural network without the use
of programming. When compared to the neuron-based model
found in our brains, the activation function is found at the
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TABLE 1. Label, definition and corresponding derivative of each
activation function.

Label Activation function Derivative function
Wave f) =1 —x¥e* (%) = 2x(x2 = 2)e™*"
Softsign __* (x) =
g f(x)_1+|x|+0.5 f(x),m
Aranda f(x) =1—(1+2e%)"1/2 f'(x) = e*(2e* + 1)73/2
Bi-sigl ) [
_ 1 1 917)( e*X*l
2 Gr e @A e e
1 - 2
+ 1+ e”"l)
Bi-sig2 fx) f'(x)
B 1 1 e~x e—x-1
PR Gt M Gl Vi
1 - 2
+ 1+ e"“l)
Bi-tanhl 1) ')
1 1
=3 [tanh (;) _ sech? (x ; ) + sech? (%)
1 4
+ tanh(C : )] 405
Bi-tanh2 f (ch) L f'() L
X — X+ x—1
=3 [tanh (17) _ sech? (T) : sech? (T)
+ tanh(x ; )] +0.5
Cloglog fx)=1-e°" 1) = ex "
Cloglogm f(x) =1-2e7%7¢" + 0.5 f'(x) = 7e*707¢% 5
Elliott _ 05x oy 05
fO) =5 70 F'&) =G5z
Gaussian fx) =e™ fr® = —2xe~**
Logarith- ) £
mic _(In(1+x)+05 x>0 1
_{ln(l—x)+0.5 x<0 _ Tr1 x=20
-~ x<0
Loglog fx) = e‘lex +0.5 flx) = ez‘ex"‘
Logsigm fx) = (—=)%+0.5 1x) — ~
1+e f'G) = (e*+1)°
Log- __1 (x) = 7_X
sigmoid f&) = 1o f'0 = =12
Modified- -—* 405 ey —
Elliott == f'0) =z
Rootsig f(x) = ——+0.5 1) — 1
=
Saturated fx) x+1 } _ Xz 1
=|x+1|;|x—1|+0.5 f’(x)=|x+ |2|x— [
Sech _ 2T t+e™)
fO) =0 pe: [ = @ ey
Sigmoida- ) = (—=)*+0.5 oy = e
Im e ' = = rys
Sigmoida- FO) = (—=5)" +0.5 oo 2e7X2
Im2 e f'&) ==
i 2e*
Sigt e, f'0 =y
=t =0 ¢
1 +1e ¥ 1+e™
“ive
Skewed- () o) = (e%* + 2e* + 3)e3¥
sig ~( 1 )( 1 ) FO = e+ 2
1+e*/\1+e2*
+0.5
GELU fx) )
= 0.5x(1 = 0.5 tanh(0.0356x3 + 0.797x)
57 + (0.0535x%
+ tanh ( 2/m(x + 0.398x)sech?(0.0356x°
+ 0.447x3))) +0.797x) + 0.5
ELU fx) ey (1 ifx>0
_{x ifx>0 f(x)_{f(x)+a ifx<0
“la(e*-1) ifx<0
SELU fx) iy = 51 ifx>0
£ _A{aex ifx<0

o (x ifx>0
l{a(e"—l) ifx<0

end of the process, selecting what information should be sent
to the next neuron. Exactly the same thing happens when an
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TABLE 2. Summary of the proposed LSTM-based classifiers architecture
parameters and training options.

Parameter Value

Size of input 12

Size of hidden units 20, 50,100 hidden units

Size of mini batch 27

No. of Epochs 100

Size of the full connected layer 9

initial network weights Randomly

Optimization algorithms Adam, RMSProp, and SGDm
Loss function Crossentropyex

TABLE 3. A comparative performances of different proposed activation
functions-based LSTM classifiers for Japanese Vowels dataset, using
Adam optimizer, and (sigmoid) gate activation function.

State No. of hidden. units & Gate
Activation Accuracy Act.
Fun. Fun. &
20 50 100 Opt-
imizer
Tanh 91.5135  92.1622  93.5432
Aranda 76.2162  90.2703  91.8919
Gaussian 90.2703  94.3243 95.575
Wave 91.3514  96.2162  97.5676
Softsign 91.0811 948649  95.6757
GELU 91.3514  94.5946  95.4643
Cloglog 70.8108 87.56 91.6216
Cloglogm 93.5135  95.1351 95.4054
Rootsig 92.4324  95.1351 94.5946
Sigt 49.5 78.9129  84.3243
Sech 927027  95.2162  96.2351 =)
Loglog 78.1081 90.8108  92.4324 g
Elliott 71.6216  85.4054  88.9189 ;
Bisigl 78.1081 88.1081 92.1622 <
Bisig2 66.4865 88.9189  90.2703 B
Bitanhl 93.2432  95.1351 95.1351 ED
Bitanh2 927027  94.8649  95.6757 A
Logsigm 90.8108  94.3243  95.1351
Logsigmoid 72.1622 883784  92.4324
ModifiedElliott 93.7838  93.2432 95.324
Saturated 92.162 92.973 78.648
Sigmoidalm 88.6486  92.9730  96.2162
Sigmoidalm2 88.9189  92.9730 92.973
Skewed-sig 11.2379 12.1460 19.327
Logarithmic 26.2581 28.3691 29.25
ELU 232587  23.6971 25.372
SELU 27.0231 27.369 29.369

activation function is used in an ANN. In this cell, the output
signal from the previous cell is received and converted into a
form that can be used as an input signal for the next cell.

A poor selection of activation functions can result in the
loss of input data as well as vanishing or exploding gradi-
ents in the neural network. Neural networks have three key
components that influence their performance: the network
architecture and the pattern of connections between units,
the learning algorithm, and the activation functions that are
utilized in the network. Each of these aspects has a signif-
icant impact on network performance [13]. The majority of
neural network research has concentrated on the value of the
learning algorithm, whereas the importance of the activation

VOLUME 10, 2022



M. H. Essai Ali et al.: Developing Novel Activation Functions Based Deep Learning LSTM for Classification

IEEE Access

LSTM Accuracy

Accuracy (%)

30 1
LST™ o 100HU

LST™ ave100Hu 1

0 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

Iterations
(a)
LSTM Loss

25

T T
LSTMTanMOOHU

LSTMWaVeWOOHU

Loss

0.5

0 100 200 300 400 500 600 700 800 900 1000
Iterations

(b)

FIGURE 3. Accuracy (a) and loss (b) curves of the learning process for the
proposed state activation functions-based LSTM classifiers using sigmoid
gate activation function, Adam optimizer, and 100 hidden units.

functions employed in neural networks has been largely
overlooked [20].

In this paper, we reconstruct the LSTM network by replac-
ing the (tanh) activation functions in Egs. 4, 5 and 6, by one of
the listed functions in Table 1. Also, we compare the impact
of using the 26 different activation functions on network
performance when employed in Tanh gates of a basic LSTM
block for classification. Additionally, the hyperbolic tangent
formula is known as the hyperbolic function. Is defined as
follows:

sinh(x)
tanh (x) = ——— 7
anh (x) cosh (x) )
The sigmoid function has the formula is given by [21].
(x) 1 (®)
o = —
* e —1

According to Table 1, we have produced a comprehensive
list of 26 such functions that will be described further below.
We observed experimentally that by increasing the value of
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TABLE 4. Comparative performance of different proposed activation
functions-based LSTM classifiers for Japanese Vowels dataset, using

Adam optimizer, and (Hard-sigmoid) gate activation function.

State No. of hidden. units & Gate
activation fun. Accuracy Act.
Fun.
&
Opt-
20 50 100 imizer
Tanh 89.4595 91.8919 94.3243
Aranda 90.2703 93.7838 95.9459
Gaussian 91.0811 93.7838 94.4054
Wave 91.3514 95.1351 97.0270
Softsign 93.7838 95.4054 95.9459
GELU 93.3514 94.5946 95.541
Cloglog 90.3514 94.5135 95.8649
Cloglogm 94.0541 94.0541 94.3243
Rootsig 92.9730 95.1351 96.4865
Sigt 73.7811 85.1892 92.9730 g
Sech 92.1622 95.9459 95.6757 2
Loglog 88.1081 93.7838 94.5946
Elliott 75.4258 91.8919 93.2432 2
Bisigl 92.7054 94.0541 95.9459 %’
Bisig?2 79.5478 90.5478 93.7854 ED
Bitanhl 94.0541 94.4054 95.9457 g7
Bitanh?2 96.5946 94.5946 96.7568 'g
Logsigm 91.6216 95.6757 96.0270 T
Logsigmoid 90.3514 94.3514 94.8514
ModifiedElliott  93.7838 94.8649 96.7568
Saturated 91.4595 90 78.3784
Sigmoidalm 93.2432 95.2216 95.2432
Sigmoidalm2 89.1892 94.2432 95.9459
Skewed-sig 12.3628 13.2670 13.6932
Logarithmic 24.147 25.184 26.7581
ELU 20.1439 20.9314 23.1247
SELU 23.2140 28.8561 30.7134

some functions by a factor of 0.5, they become usable as acti-
vation functions in the network. The alteration of the range
of activation functions has been seen in various previous
studies [22]. In Table 1, the first activation function is the
wave function proposed by Hara and Nakayamma. [23]. The
second is Softsign function proposed by [24], Aranda-Ordaz
introduced by Gomes et al which is labeled as Aranda [16].
Fourth to seventh functions are the bimodal activation func-
tions proposed by Singh et al and labeled as Bisigl, Bi-sig2,
Bi-tanhl, and Bi-tanh2, respectively. [25].The next function
presents a modified version of Cloglog, and Cloglogm [17].
Next come the Elliott, Gaussian, logarithmic, Thel3th func-
tion is the complementary log—log [26]. Logsigm the logistic
sigmoid comes next as called Log-sigmoid, followed by the
Modified Elliott function [5]. The 17th function is a sigmoid
function with roots, called Rootsig [27]. The 18th to 21th
functions are the Saturated, the hyperbolic secant (Sech), and
two modified sigmoidals labeled as Sigmoidalm and Sig-
moidalm?2 [28]. The tunable activation function proposed by
Yuan et al and labeled as Sigt is the 22th function [29]. Next
is a skewed-sig derivative activation function proposed by
Chandra et al. labeled as skewed-sig [30]. The 24™ function
Gaussian Error Linear Unit (GELU) [31]. Come last Expo-
nential Linear Unit (ELU) and Scaled Exponential Linear
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FIGURE 4. Accuracy (a) and loss (b) curves of the learning process for the
proposed state activation functions-based LSTM classifiers using Hard-
sigmoid gate activation function, Adam optimizer, and 100 hidden units.

Unit (SELU) [32]. However, due to the exploding gradient
problem, these techniques were unsuccessfully applied in the
network.

lIl. METHODOLOGY
In order to determine the effect of different activation
functions on the LSTM-based classifiers’ performance,
we replaced the state activation function of the hyperbolic
tangent (tanh gates), which is used to determine candidate cell
state (block input) and update the hidden state (block output),
with different activation functions from Table 1. To investi-
gate the influence of using different state activation functions
on the LSTM-based classifiers’ performance, initially the
proposed LSTM-based classifier is trained with the default
gate activation function (sigmoid gate), and then it is trained
with a hard-sigmoid activation function. The two tanh gates
in each configuration are identical and are selected from the
set of activation functions mentioned in Table 1.
Optimization algorithms play a vital role in improving
learning processes. The goal of the learning process is to find
a model that will produce better results through weights and

97264

TABLE 5. A comparative performances of different proposed activation
functions-based LSTM classifiers for Japanese Vowels dataset, using
RMSprop optimizer, and (sigmoid) gate activation function.

State No. of hidden. units & Gate
activation Accuracy Act.
Fun. Fun.
& Opti-
mizer
20 50 100
Tanh 90.8108 93.0541 94.1351
Aranda 60 80 86.2162
Gaussian 92.9730 94.8649 95.4054
Wave 91.2703 95.6757 96.4865
Softsign 91.8919 95.4054 95.7054
GELU 89.4595 92.4324 95.1649
Cloglog 66.2162 80 81.0811
Cloglogm 93.5135 92.1622 95.1351
Rootsig 90.5405 94.0541 95.3243
Sigt 63.5135 73.24323 84.054 )
Sech 90.8108 92.1622 95.1351 3,
Loglog 73.5135 78.3784 75.4054 %
Elliott 63.5135 76.5135 72.9730
Bisigl 72.9730 79.5676 82.1622 £S5
Bisig2 70.270 81.0811 82.1622 =
Bitanh1 92.4324 94.5946 95.3944 5
Bitanh2 93.7838 93.5135 95.5946 §D
Logsigm 81.8919 90.8108 91.8919 A
Logsigmoid 61.51622 82.1622 81.0811
ModifiedElliott 92.8654 94.3654 95.8654
Saturated 92.4324 95.1757 90.81088
Sigmoidalm 87.2973 90.5405 91.01351
Sigmoidalm2 80.2703 91.8919 91.351
Skewed-sig 76.4865 70.8108 65.2544
Logarithmic 27.2565 25.3254 2.1472
ELU 19.3254 19.2584 19.5814
SELU 12.02581 13.2541 13.8524

biases adjusted to minimize the loss function. Learning of
deep neural networks can be described as an optimization
problem that seeks to find a global optimum through a reli-
able training trajectory and fast convergence using gradient
descent algorithms [19]. Choosing the optimal optimization
approach for a specific scientific problem acts as a serious
challenge. Choosing an inappropriate optimization approach
may lead the network to reside in the local minima during
training, and this does not achieve any advances in the learn-
ing process. Hence, the investigation is necessary to analyze
the performance of different optimizers depending on the
dataset employed for obtaining the best LSTM-based classi-
fiers for the proposed ones. The commonly used optimization
algorithms are Adam (Adaptive Moment Estimation) [35],
RMSProp (Root Mean Square Propagation) [34], and SGDM
(Stochastic gradient descent momentum) [36].

IV. SIMULATION RESULTS

To train the proposed LSTM-based classifiers, the back prop-
agation through time algorithm (BPTT) [37] is used with
different types of optimization algorithms such as ADAM,
SGDM, and RMSprop. The classifiers are trained and tested
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FIGURE 5. Accuracy (a) and loss (b) curves of the learning process for the
proposed state activation functions-based LSTM classifiers using sigmoid
gate activation function, RMSprop optimizer, and 100 hidden units.

three times for each activation function with the same training
and testing data at different numbers of hidden units (20, 50,
and 100). The initial network weights and the batches are
chosen randomly in each experiment. The loss and accuracy
are reported using the results of the two experiments for each
LSTM-based classifier configuration.

Accuracy is one of the classifiers” validation parameters.
Accuracy determines that how percentage of test data is
correctly classified. It can be defined as follows:

number of true classified samples
Accuracy =

100 9
number of total test samples ¥ ©)

A loss is defined as the difference between the classi-
fier’s responses and the original classification sample. The
loss function can be represented by several functions. The
crossentropyex loss function was used in the current paper.
It can be expressed as follows:

N : A
crossentropyex = — Zi:l Z;:l Xij(k)log(X;i(k)) (10)

where N is the number of samples, ¢ is the number ofA classes,
X is the ith classified sample for the jth class and Xj; is the
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TABLE 6. Comparative performances of different proposed activation
functions-based LSTM classifiers for Japanese Vowels dataset, using
RMSprop optimizer, and (Hard-sigmoid) gate activation function.

State No. of hidden. units & Gate
activation Accuracy Act.
Fun. Fun.
&
Opti-
mizer
20 50 100
Tanh 90.8108 93.345 94.4054 a
Aranda 71.6514 86.4865 88.3784 g_
Gaussian 94.5946  94.8649 95.4054 g
Wave 88.9189  93.5135 95.9459 o
Softsign 92.7027  94.8649 95.4054 -
GELU 90.8649  93.6216 94.8108 =
Cloglog 82.5676  87.5676 87.2973 ©
Cloglogm 92.4324 93.4324 94.9243 §D
Rootsig 91.0811  94.8649 95.1351 ;
Sigt 67.0270  79.1892 84.0541 %
Sech 90.8108  94.5946 95.1351
Loglog 77.5676  87.5676 85.4054
Elliott 68.1081  83.2162 86.2162
Bisigl 75.6757 89.1892 91.6216
Bisig2 70.270 81.081 84.594
Bitanh1 93.2432  94.8649 95.4054
Bitanh2 92.7027  93.3946 94.9463
Logsigm 92.4865 93.3514 94.5432
Logsigmoid 76.7543  87.5676 88.5676
ModifiedElliott 93.7838  95.7568 95.6768
Saturated 92.4324  93.7838 94.3243
Sigmoidalm 90.5405 91.6216 93.2432
Sigmoidalm2 86.7568  91.8919 94.8919
Skewed-sig 82.1622 87.837 70.2587
Logarithmic 25.2584 24.2581 19.2547
ELU 11.2589  25.8741 19.258
SELU 13.254 12.5874 12.9582

state activation function-based classifier response for sam-
ple i for class j.

To analyze the performance of the LSTM-based classifiers,
two sets of experiments are designed with different types of
datasets. In both sets of experiments, different architectures
of proposed LSTM-based classifiers are evaluated, and in
each configuration of the proposed LSTM blocks, an identical
activation function from Table 1.

All simulations were carried out using MATLAB
R2019b/deep learning toolbox.

A. FIRST SET OF EXPERIMENTS

In this study, we employed data sets from the Japanese Vowels
dataset for the first set of trials. The original Japanese Vowels
(Vowels) dataset from the University of California, Irvine
machine learning repository is a multivariate time series
data in which nine male speakers pronounced two Japanese
vowels (ae) in succession. A 12-degree linear prediction
analysis (Sampling rate: 10kHz, Frame length: 25.6ms, Shift
length: 6.4ms) was performed to obtain a discrete-time series
with 12 LPC cepstrum coefficients (Sampling rate: 10kHz,
Frame length: 25.6ms, Shift length: 6.4ms). In other words,
each utterance made by the speaker results in the formation
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FIGURE 6. Accuracy (a) and loss (b) curves of the learning process for the
proposed state activation functions-based LSTM classifiers using Hard
sigmoid gate activation function, RMSprop optimizer, and 100 hidden
units.

of an interval between 7 and 29 time series, with each point in
the interval containing a total of 12 features (12 coefficients).
The total number of time series is 640, which is a round
number. With the help of time series data representing two
Japanese vowels pronounced in succession [37], this example
trains an LSTM network to recognize the speaker [38].

Table 2 summarizes the proposed LSTM-based classifiers
architecture parameters and training options and different
number of hidden units. The batch sizes have been chosen
based on experiment for producing a better performance.
The loss and accuracy are reported using the results of the
two experiments of each configuration. Hyper parameters are
not tuned specifically for each configuration of LSTM-based
classifier and are identical for all experiments.

Table 3 and Table 4 list the true classification accuracy
percentages for each activation function-based LSTM clas-
sifier for Japanese Vowels Classification using optimization
algorithm (Adam), sigmoid and hard-sigmoid gate activation
functions, respectively. All the training data is exposed to the
classifier in mini-batches at each epoch. Where tanh is the
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FIGURE 7. Accuracy (a) and loss (b) curves of the learning process for the
proposed state activation functions-based LSTM classifiers using sigmoid
gate activation function, SGDM optimizer, and 100 hidden units.

default state activation function in the LSTM structure, the
tanh-based LSTM classifiers’ achieved accuracies are taken
as reference for comparison.

From Table 3, activation function-based LSTM classifiers
can achieve the highest accuracy using 100 hidden neurons
rather than 20 or 50. In total, 19 LSTM-based classifiers
perform accurate classification with an accuracy in the range
of 90-97.5676% at 100 hidden neurons, in addition to the
tanh-based LSTM classifier, which achieves an accuracy of
93.2432%. Tabulated results demonstrate that 12 of the 19
proposed LSTM-based classifiers outperform the tanh-based
LSTM classifier, and the best of all is the wave-based LSTM
classifier with 97.5676% accuracy. Figure 3 displays the
accuracy and loss curves obtained from the learning processes
of the conventional tanh-based LSTM classifier and the pro-
posed wave-based LSTM classifier with the highest accuracy.

Table 4 lists the accuracy percentages for all examined
classifiers under the condition of using a hard-sigmoid
gate activation function in place of the sigmoid function.
21 LSTM-based classifiers perform accurate classification
with accuracy in the range of 92 — 97.0270% at 100 hidden
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TABLE 7. Comparative performances of different proposed activation
functions-based LSTM classifiers for Japanese Vowels dataset, using
SGDM optimizer, and (sigmoid) gate activation function.

TABLE 8. Comparative performances of different proposed activation
functions-based LSTM classifiers for Japanese Vowels dataset, using
SGDM optimizer, and (Hard-sigmoid) gate activation function.

State activation ~ No. of hidden. units & Gate
Fun. Accuracy Act.
Fun.&
Opt-
20 50 100 imizer
Tanh 92.4324  93.2432 93.2541
Aranda 42.8919 50.8108  51.0811 E
Gaussian 88.3784 90 91.6216 8
Wave 87.2973  84.8649 87.5135
Softsign 90.8108 92.4324 93.3514 3
GELU 86.4865 91.0811 94.8649 i
Cloglog 54.3027 57.5676 57.027 g
Cloglogm 91.6216  94.5946 95.4054 %‘3
Rootsig 85.9459  86.4865 85.1351
Sigt 54.0541 54.054a  54.8649
Sech 89.1892  88.9189 89.3243
Loglog 72.9730  73.5135 74.8649
Elliott 50.2703  50.5405 56.2162
Bisigl 55.8649  57.0270  60.2703
Bisig2 55.405 55.6757 58.6486
Bitanhl 88.9189  84.3243 87.8108
Bitanh2 89.7297 91.6216  90.5405
Logsigm 61.3514  67.8378 70.5405
Logsigmoid 54.8649  64.3243 55.9459
ModifiedElliott  92.4324  93.5135 95.9459
Saturated 91.3514 78.6486  95.1351
Sigmoidalm 82.7027  80.5405 82.3514
Sigmoidalm2 54.5946  66.7568 64.5946
Skewed-sig 12.3698  11.2587 14.7896
Logarithmic 25.4583  23.4587 24.3258
ELU 12.3598 12.254 11.2587
SELU 10.1247  11.0254 10.3658

State activation No. of hidden. units & Gate
Fun. Accuracy Act.
Fun. &
Opt-
20 50 100 imizer
Tanh 92.2432 93.9459 94.3649
Aranda 53.2432 56.7568 51.0811
Gaussian 89.4595 91.3514 94.4838
Wave 82.7027 87.2973 89.9459
Softsign 92.1622 92.4324 94.8514
GELU 84.0541 83.7838 87.2973
Cloglog 57.5676 55.5405 60.9459
Cloglogm 93.5135 93.5135 95.5135
Rootsig 90 91.3514 92.4324
Sigt 50.2703 49.4595 49.4595 s
Sech 80 89.5405 90.1892 a
Loglog 75.4054  76.4865 745946 3
Elliott 46.2162  55.4054  47.8378 %
Bisigl 58.3784 54.5081 55.4054 %
Bisig2 45675 456751 51.0811 §
Bitanh1 84.0541 91.0811 94.6216 _g
Bitanh2 91.8919 93.5135 90.5405 5
Logsigm 62.3424 714324 724324 T
Logsigmoid 59.4595 55.9459 54.5946
ModifiedElliott 92.9722 93.7838 95.9459
Saturated 52.3698 54.4587 59.258
Sigmoidalm 86.4865 83.7838 88.1081
Sigmoidalm2 63.5135 72.4324 75.1351
Skewed-sig 11.2587 12.599 23.5822
Logarithmic 25.369 25.8777 23.2588
ELU 10.3698 12.3598 12.369
SELU 25.369 36.9251 38.3611

neurons, in addition to the tanh-based LSTM classifier, which
achieves an accuracy of 93.5432%. Tabulated results demon-
strate that 17 of the 21 proposed LSTM-based classifiers
outperform the tanh-based LSTM classifier, and the best of all
is the wave-based LSTM classifier with 97.0270% accuracy.
Figure 4 shows the accuracy and loss curves obtained from
the learning processes of the traditional tanh-based LSTM
classifier and the proposed wave-based LSTM classifier with
the highest accuracy. The overall performance of the pro-
posed state activation function-based LSTM classifiers with
a hard-sigmoid gate activation function is better than those
using the sigmoid gate activation function.

Table 5 and Table 6 list the true classification accuracy
percentages for each activation function-based LSTM clas-
sifier for Japanese Vowels Classification using optimization
algorithm (RMSprop), sigmoid, and hard-sigmoid gate acti-
vation functions, respectively. All the training data is exposed
to the classifier in mini-batches at each epoch. Where tanh is
the default state activation function in the LSTM structure, the
tanh-based LSTM classifiers’ achieved accuracies are taken
as reference for comparison.

Table 5 shows that activation function-based LSTM clas-
sifiers with 100 hidden neurons, rather than 20 or 50,
yield the maximum accuracy. In addition to the tanh-based
LSTM classifier, which achieves an accuracy of 94.1351 %,
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14 LSTM-based classifiers reach an accuracy in the range
of 90-96.4865% at 100 hidden neurons. The findings show
that 7 of the 14 proposed LSTM-based classifiers beat the
tanh-based LSTM classifier, with the wave-based LSTM
classifier performing best with 96.486%. Figure 5 displays
the accuracy and loss curves obtained from the learning pro-
cesses of the conventional tanh-based LSTM classifier and
the proposed wave-based LSTM classifier with the highest
accuracy.

Table 6 illustrates the accuracy percentages for all classi-
fiers tested when the hard-sigmoid gate activation function
was used instead of the sigmoid function. In addition to
the tanh-based LSTM classifier, which achieves an accuracy
of 94.4054%, 15 LSTM-based classifiers produce accurate
classification with an accuracy ranging from 91.6216 to
95.9459% at 100 hidden neurons. Tabled results show that
13 of the 15 proposed LSTM-based classifiers outperform
the tanh-based LSTM classifier, with the wave-based LSTM
classifier outperforming all others with 95.9459 %. Figure 6
displays the accuracy and loss curves obtained from the learn-
ing processes of the conventional tanh-based LSTM classifier
and the proposed wave-based LSTM classifier with the high-
est accuracy. The suggested state activation functions-based
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FIGURE 8. Accuracy (a) and loss (b) curves of the learning process for the
proposed state activation functions-based LSTM classifiers using
Hard-sigmoid gate activation function, SGDM optimizer, and 100 hidden
units.

LSTM classifiers with a hard-sigmoid gate activation func-
tionoutperform those with a sigmoid gate activation function.

Table 7 and Table 8 list the true classification accuracy
percentages for each activation function-based LSTM clas-
sifier for Japanese Vowels Classification using optimization
algorithm (SGDM), sigmoid and hard-sigmoid gate activa-
tion functions respectively. All the training data is exposed
to the classifier in mini-batches at each epoch. Where tanh is
the default state activation function in the LSTM structure, the
tanh-based LSTM classifiers’ achieved accuracies are taken
as reference for comparison.

From Table 7, activation function-based LSTM classifiers
can achieve the highest accuracy using 100 hidden neu-
rons rather than 20 or 50. 7 LSTM-based classifiers per-
form accurate classification with an accuracy in the range
of 90-95.9459% at 100 hidden neurons, in addition to the
tanh-based LSTM classifier, which achieves an accuracy
of 93.2541 94.0541%. Tabulated results demonstrate that
4 of the 7 proposed LSTM-based classifiers outperform the
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FIGURE 10. Comparison of the accuracy of best state activation
functions-based LSTM classifiers using Hard-sigmoid gate activation
function, (SGDM, RMSprop and Adam) optimizer, and 100 hidden units.

TABLE 9. Summary of the proposed LSTM-based classifiers architecture
parameters and training options.

Parameter Value

Size of input 1

Size of hidden units 20,50,100hidden units

Size of mini batch 27

No. of Epochs 10

Gradient Threshold 1

Initial network weights Randomly

Optimization algorithms Adam, RMSProp, and SGDm
Loss function Crossentropyex

tanh-based LSTM classifier, and the best of all is the Modi-
fied Elliott based LSTM classifier with 95.9459% accuracy.
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TABLE 10. Comparative performances of different proposed activation
functions-based LSTM classifiers for weather Reports dataset, using
Adam optimizer, and (sigmoid) gate activation function.

State activation No. of hidden. units & Gate
Fun. Accuracy Act.
Fun. &
20 50 100 Opt-
imizer
Tanh 85.2571 86.0647  86.1925
Aranda 75.1239 75.2587  76.3579
Gaussian 84.9281 85.4598  86.4528
Wave 74.3258 83.3625  84.3214
Softsign 86.9638 88.2587  88.0485 s
GELU 84.0258 86.5681  87.4526 §
Cloglog 81.9257 823692  83.0258 <
Cloglogm 83.8527 83.2587  84.3625 @3
Rootsig 86.5687 86.3619  87.5281 -
Sigt 81.1571 82.147 83.1385 é
Sech 85.7851 86.2145  86.5241 &0
Loglog 79.9685 80.2135 823258 A
Elliott 83.26 84.3322  85.5225
Bisigl 82.8754 83.1258  85.5238
Bisig2 81.9857 83.3258  84.6814
Bitanh1 86.8567 87.2145  87.7251
Bitanh2 84.5287 85.1254  86.5262
Logsigm 85.3258 86.8564  86.4257
Logsigmoid 81.1254 84.1425 85.2571
ModifiedElliott 85.1475 86.3652 87.985
Saturated 35.2147 40.1250  41.6587
Sigmoidalm 84.1472 85.2587  86.5241
Sigmoidalm2 83.3625 84.0257  86.9214
Skewed-sig 15.3269 16.2587  16.2148
Logarithmic 13.6258 12.3654  13.2564
ELU 23.1587 24.0235  23.5980
SELU 30.3691 32.6589  33.0154

Figure 7 displays the accuracy and loss curves obtained from
the learning processes of the conventional tanh-based LSTM
classifier and the proposed Modified Elliott & Cloglogm-
based LSTM classifiers with the highest accuracy.

Table 8 lists the accuracy percentages for all examined
classifiers under the condition of using a hard-sigmoid
gate activation function in place of the sigmoid function.
7 LSTM-based classifiers perform accurate classification
with an accuracy in the range of 90.5405- 95.9459% at
100 hidden neurons, in addition to the tanh-based LSTM
classifier, which achieves an accuracy of 94.3649 94.4054%.
Tabulated results demonstrate that 5 of the 7 proposed LSTM-
based classifiers outperform the tanh-based LSTM classifier,
and the best of all is the Modified Elliott (with a range of
based LSTM classifier with 95.9459% accuracy). Figure 8
displays the accuracy and loss curves obtained from the learn-
ing processes of the conventional tanh-based LSTM classifier
and the proposed Modified Elliott-based LSTM classifier
with the highest accuracy.

The performance of the proposed state activation function-
based LSTM classifiers with a hard-sigmoid gate activation
function and those with a sigmoid gate activation function is
comparable.

Figure 9, and Figure 10 depict and summaries the
achieved accuracy by the more powerful state activation
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FIGURE 11. Accuracy (a) and loss (b) curves of the learning process for
the proposed state activation functions-based LSTM classifiers using
sigmoid gate activation function, Adam optimizer, and 100 hidden units.

functions-based LSTM classifiers, that use the Sigmoid and
Hard-sigmoid gate activation functions, respectively, and are
trained by employing Adam, RMSprop, and SGDM optimiz-
ers, and 100 hidden unit structures.

By employing the Adam optimizer, it is obvious that the
wave-based LSTM classifier beats the tanh-based LSTM
classifier by achieving a correct classification accuracy of
97.5676%, where the latter achieved 93.4054%. Also, the
wave-based LSTM classifier is the best among the proposed
classifiers. Using the RMSProp optimizer, the wave-based
LSTM classifier outperforms the tanh-based LSTM classi-
fier, reaching 96.4865% accurate classification accuracy vs
93.4054 % for the latter. Moreover, among the suggested
classifiers, the wave-based LSTM classifier is the best.

By using the SGDM optimizer, the Modified Elliott-based
LSTM classifier trumps the tanh-based LSTM classifier by
attaining 95.9459 percent accurate classification accuracy,
vs 94.3649 percent. Fig. 10 shows that the Modified Elliott-
based LSTM classifier is the best.

Generally, the proposed Modified Elliott, Gaussian, Sech,
Wave, Bitanh1, Bitanh2 and Softsign based LSTM classifiers
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TABLE 11. Comparative performances of different proposed activation
functions-based LSTM classifiers for weather Reports dataset, using
Adam optimizer, and (Hard-sigmoid) gate activation function.

State activation No. of hidden. units & Gate
Fun. Accuracy Act.
Fun. &
Opti-
20 50 100 mizer
Tanh 86.2581 86.4916  86.5587
Aranda 83.7398 83.3910 84.4853
Gaussian 85.2569 87.5871 87.9521
Wave 75.3258 80.369 80.6987
Softsign 86.8963 86.9587 87.6258
GELU 84.4595 85.3647  86.945
Cloglog 81.0258 81.5135 82.5135
Rootsig 85.9857 86.2154 87.8547
Sigt 79.258 80.1235 84.9287
Sech 86.9587 87.6854 87.9581 £
Loglog 80.4595  82.949 83.4595 ":%
Elliott 81.9459 83.5135 83.3247 3
Bisigl 83.5135 84.4785 85.7382 -
Bisig2 80.5135 84.4595 85.1478 8
Bitanh1 85.3658  86.0257 87.5527 go
Bitanh2 86.9685 87.758 87.4523 @
Logsigm 85.4595  85.945 86.2581 'g
Cloglogm 85.3658  86.3658 87.5847 a
Logsigmoid 82.0257 82.174 84.1471
ModifiedElliott 85.9459 86.6852 87.7265
Saturated 22.0368 23.597 24.658
Sigmoidalm 8.1147 84.3658  86.4595
Sigmoidalm2 83.9638 83.5135 86.0257
Skewed-sig 9.4587 13.2589 13.9258
Logarithmic 19.0257 136824 12.0587
ELU 8.2365 8.7258 9.2581
SELU 23.0157 12.3658 13.258

outperform their peer tanh-based LSTM classifier. Also, the
investigated classifiers that use the hard-sigmoid gate activa-
tion function trump those that use the sigmoid gate activation
function.

B. SECOND SET OF EXPERIMENTS

The Weather Reports Classification System will serve as the
foundation for the second set of experiments. With the use of a
bag-of-words model, this example demonstrates how to train
a simple text classifier on word frequency counts. You may
develop a basic classification model that uses word frequency
counts as predictors by following the instructions below.
This example demonstrates how to train a basic classification
model to predict the event type of weather reports based on
the text descriptions provided.

Table 9 summarizes the proposed LSTM-based classifier
architecture parameters and training options and different
numbers of hidden units. The batch sizes have been chosen
based on experiments to produce better performance. The
loss and accuracy are reported using the results of the two
experiments for each configuration. Hyper parameters are
not tuned specifically for each configuration of LSTM-based
classifier and are identical for all experiments.
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FIGURE 12. Accuracy (a) and loss (b) curves of the learning process for
the proposed state activation functions-based LSTM classifiers using

Hard-sigmoid gate activation function, Adam optimizer, and 100 hidden
units.

Table 10 and Table 11 list the true classification accuracies
percentages for each activation functions-based LSTM clas-
sifier for Weather Reports Classification using optimization
algorithm (Adam), sigmoid, and hard-sigmoid gate activation
functions respectively. All the training data is exposed to
the classifier in mini-batches at each epoch. Where tanh is
the default state activation function in the LSTM structure, the
tanh-based LSTM classifiers’ achieved accuracies are taken
as reference for comparison.

From Table 10, activation function-based LSTM classi-
fiers can achieve the highest accuracy using 100 hidden
neurons rather than 20 or 50. 19 LSTM-based classifiers
perform accurate classification with accuracy in the range of
84-88.04% at 100 hidden neurons, in addition to the tanh-
based LSTM classifier, which achieves an accuracy of 86.1%.
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FIGURE 13. Accuracy (a) and loss (b) curves of the learning process for
the proposed state activation functions-based LSTM classifiers using
sigmoid gate activation function, RMSprop optimizer, and 100 hidden
units.

Tabulated results demonstrate that 11 of the 19 proposed
LSTM-based classifiers outperform the tanh-based LSTM
classifier, and the best of all is the Softsign (with range of
[- 0.5, 1.5]) -based LSTM classifier with 88.04% accuracy.
Fig. 11 displays the accuracy and loss curves obtained from
the learning processes of the conventional tanh-based LSTM
classifier and the proposed Softsign-based LSTM classifier
with the highest accuracy.

Table 11 lists the accuracy percentages for all exam-
ined classifiers under the condition of using hard-sigmoid
gate activation function in place of the sigmoid function.
18 LSTM-based classifiers perform accurate classification
with accuracy in the range of 84— 87.9581% at 100 hidden
neurons, in addition to the tanh-based LSTM classifier, which
achieves an accuracy of 86.5587%. Tabulated results demon-
strate that 12 of the 18 proposed LSTM-based classifiers
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FIGURE 14. Accuracy (a) and loss (b) curves of the learning process for
the proposed state activation functions-based LSTM classifiers using Hard
sigmoid gate activation function, RMSprop optimizer, and 100 hidden
units.

outperform the tanh-based LSTM classifier, and the best of
all is the Gaussian (with range of [0, 1]), Sech (with range
of [0, 1]) -based LSTM classifier with 8§7.9581% accuracy.
Fig. 12 shows the accuracy and loss curves obtained from
the learning processes of the conventional tanh-based LSTM
classifier and the proposed Gaussian-based LSTM classifier
with the highest accuracy. The overall performance of the
proposed state activation functions-based LSTM classifiers
with a hard-sigmoid gate activation function is better than
those are using the sigmoid gate activation function.

Table 12 and Table 13 list the true classification accu-
racy percentages for each activation function-based LSTM
classifier for Weather Reports Classification using opti-
mization algorithm (RMSprop), sigmoid and hard-sigmoid
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FIGURE 15. Comparison of the accuracy of the best state activation
functions-based LSTM classifiers using Sigmoid gate activation function,
(SGDM, RMSprop and Adam) optimizer, and 100 hidden units.

TABLE 12. Comparative performances of different proposed activation
functions-based LSTM classifiers for weather Reports dataset, using
RMSprop optimizer, and (sigmoid) gate activation function.
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FIGURE 16. Comparison of the accuracy of the best state activation
functions-based LSTM classifiers using Hard-Sigmoid gate activation
function, (SGDM, RMSprop and Adam) optimizer, and 100 hidden units.

TABLE 13. Comparative performances of different proposed activation
functions-based LSTM classifiers for weather Reports dataset, using
RMSprop optimizer, and (Hard-sigmoid) gate activation function.

State activation No. of hidden. units & Gate
Fun. Accuracy Act.
Fun.
20 50 100 & Opt-
imizer
Tanh 85.1553 86.0916  86.3804
Aranda 84.8233 85.1553 86.5307
Gaussian 84.6336 84.4913  87.2265
Wave 83.282 85.6770 84.586
Sofisign 86.1039 87.6690  88.4752
GELU 84.30166  85.1553  86.9576
Cloglog 83.9459 85.9379  86.3410
Cloglogm 87.2658 86.6018  88.5226
Rootsig 87.1947 87.8587 87.005 3
Sigt 81.87406  83.0448 832582
Sech 86.9813 86.7678  88.8546 E
Loglog 85.0605 86.3647  83.1397 )
Elliott 84.13563  84.7048 854873 T
Bisigl 84.8045 855585 87.1235 £
Bisig?2 83.2345 83.2345 84.799 %D
Bitanhl 86.43591  86.5070  87.7405
Bitanh?2 88.0484 87.0998  87.0014
Logsigm 86.1513 86.3647  87.2658
Logsigmoid 85.1316 86.4121  85.3687
ModifiedElliott  85.41624 86.958 87.7164
Saturated 45.363 452525  49.3698
Sigmoidalm 86.6018 86.3601  87.0287
Sigmoidalm?2 84.8945 87.5741  87.5741
Skewed-sig 8.2147 8.7124 10.2587
Logarithmic 12.354 13.2148  13.5841
ELU 20.1473 22.1364  22.5326
SELU 21.0214 21.3334  22.0125

State No. of hidden. units & Gate
Activation Accuracy Act.
Fun. Fun.
&
Opti-
mizer
20 50 100
Tanh 86.0998  86.3916  86.5804
Aranda 83.9222  83.8748  86.9050
Gaussian 86.4121 87.3607  88.0247
Wave 85.0268  85.2585 85.4399
Sofisign 86.0327  86.2224  87.5741
GELU 85.0268  85.6998  86.6258
Cloglog 84.0171 84.7759  84.9840
Rootsig 85.9379  87.9061 87.805
Sigt 81.7406  83.5665 83.4005 a
Sech 85.9853 87.7401 87.0761 2
Loglog 84.4202 867204  84.3253 &
Elliott 857719 851553 865359 2
Bisigl 85.9379  85.2265 86.8153
Bisig2 82.8515 84.5151 80.5347 o
Bitanhl 87.5267  87.1947  87.7875 g
Bitanh2 87.0524  86.3173 86.7441 .20
Logsigm 86.5781 87.2421 87.8587
Cloglogm 86.5307  86.3884  87.6215 ::5
Logsigmoid 85.5347 85.0605 86.6802
ModifiedElliott ~ 87.3607  86.9576  88.0484
Saturated 25.2508 45.369 50.2581
Sigmoidalm 85.5110  86.9576  85.2028
Sigmoidalm?2 86.2420  85.5585 86.6544
Skewed-sig 9.0214 10.5824 13.2541
Logarithmic 25.3214  25.8117 26.2581
ELU 27.3251 282514  29.2147
SELU 223625  22.4251 25.2147

gate activation function respectively. All the training data
is exposed to the classifier in mini-batches at each epoch.
Where tanh is the default state activation function in the
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LSTM structure, the tanh-based LSTM classifiers’ achieved
accuracies are taken as reference for comparison.
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TABLE 14. Comparative performances of different proposed activation
functions-based LSTM classifiers for weather Reports dataset, using
SGDM optimizer, and (sigmoid) gate activation function.

State No. of hidden. units & Gate
Activation Accuracy Act.
Fun. Fun.
& Opti-
20 50 100 mizer
Tanh 54.4324  56.8158 57.258
Aranda 42.8919  50.8108  51.0811
Gaussian 45.3784 49 51.6216
Wave 472973 52.8649  53.5135
Softsign 50.8108  52.4324  53.3514
GELU 46.4865  51.0811  54.8649
Cloglog 543027  57.5676 57.027
Cloglogm 51.6216  54.5946  55.4054
Rootsig 50.9459  50.4865  50.1351
Sigt 54.0541  54.3054  54.8649
Sech 51.1892 529189  54.3243 E
Loglog 529305  53.5135  54.8649 O
Elliott 50.2703  50.5405  56.2162
Bisigl 55.8649  56.0270 562703 %
Bisig2 55.405 55.6757  56.6486
Bitanh1 549189  54.3243  57.0108 g
Bitanh2 49.7297  51.6216  52.5405 %‘J
Logsigm 51.3514  54.8378  56.5405
Logsigmoid 548649  55.3243  55.9459
ModifiedElliott 53.4324  56.5135  56.9459
Saturated 12.3514  18.6486  19.1351
Sigmoidalm 427027  43.5405 513514
Sigmoidalm2 44.5946  46.7568  49.5946
Skewed-sig 10.3698  12.2587  13.7896
Logarithmic 23.4583  23.8521  24.3125
ELU 11.3598  11.5254  12.2587
SELU 11.1247  15.0254  13.3658

From Table 12, activation function-based LSTM
classifiers can achieve the highest accuracy using 100 hid-
den neurons rather than 20 or 50. 19 LSTM-based clas-
sifiers perform accurate classification with an accuracy in
the range of 84-88.8546% at 100 hidden neurons, in addi-
tion to the tanh-based LSTM classifier, which achieves
an accuracy of 86.3804%. Tabulated results demonstrate
that 14 of the 19 proposed LSTM-based classifiers outper-
form the tanh-based LSTM classifier, and the best of all is
the Sech based LSTM classifier with 88.8546% accuracy.
Fig. 13 shows the accuracy and loss curves obtained from
the learning processes of the conventional tanh-based LSTM
classifier and the proposed Sech-based LSTM classifier with
the highest accuracy.

Table 13 lists the accuracy percentages for all exam-
ined classifiers under the condition of using a hard-sigmoid
gate activation function in place of the sigmoid function.
19 LSTM-based classifiers perform accurate classification
with accuracy in the range of 84— 88.0484% at 100 hidden
neurons, in addition to the tanh-based LSTM classifier, which
achieves an accuracy of 86.5587%. Tabulated results demon-
strate that 15 of the 19 proposed LSTM-based classifiers
outperform the tanh-based LSTM classifier, and the best of
all is the Gaussian-, Modified Elliott-based LSTM classifier
with 88.0484% accuracy. Fig. 14 shows the accuracy and loss
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TABLE 15. Comparative performances of different proposed activation
functions-based LSTM classifiers for weather Reports dataset, using
SGDM optimizer, and (Hard-sigmoid) gate activation function.

State activation No. of hidden. units & Gate
fun. Accuracy Ac.
Fun.
& Opti-
20 50 100 mmizer

Tanh 56.2432  57.3459 57.9649
Aranda 53.2432  56.7568  51.0811
Gaussian 49.4595  51.3514 54.4838
Wave 52.7027 55.2973 55.9459
Softsign 51.6224  52.4324 54.8514

GELU 54.0541  56.7838 57.9973 E

Cloglog 50.5676  50.9405 55.9459 8

Cloglogm 535135  54.5135 55.5135 &

Rootsig 50 51.3514 52.4324 o

Sigt 50.2703  49.4595 49.4595 'g

Sech 50 50.5405 49.1892 &

Loglog 53.4054  54.4865 54.9465 _3

Elliott 46.2162  55.4054 57.8378 é
Bisigl 543784  54.5081 55.4054
Bisig2 45.675 45.6751 51.0811
Bitanhl 44.0541  51.0811 54.6216
Bitanh2 51.8919  53.5135 50.5405
Logsigm 52.3424 52.4324 51.4324
Logsigmoid 49.4595  55.9459 54.5946
ModifiedElliort ~ 52.9722  55.7838 57.9459
Saturated 323698  34.4587 39.258
Sigmoidalm 46.4865  43.7838  48.1081
Sigmoidalm?2 53.5135  52.4324 55.1351
Skewed-sig 11.2587 22.599 24.5822
Logarithmic 22.369 24.8777 26.2588
ELU 9.3698 11.3598 15.369
SELU 15.369 16.9251 28.3611

curves obtained from the learning processes of the conven-
tional tanh-based LSTM classifier and the proposed Modi-
fied Elliott-based LSTM classifier with the highest accuracy.
The overall performance of the proposed state activation
function-based LSTM classifiers with a hard-sigmoid gate
activation function is better than those using the sigmoid gate
activation function.

Table 14 and Table 15 list the true classification accuracies
percentages for each activation functions-based LSTM clas-
sifier for Weather Reports Classification using optimization
algorithm (SGDM), sigmoid and hard-sigmoid gate activa-
tion functions respectively. All the training data is exposed
to the classifier in mini-batches at each epoch. Where tanh is
the default state activation function in the LSTM structure, the
tanh-based LSTM classifiers’ achieved accuracies are taken
as reference for comparison. From Table 14 and Table 15, all
activation function-based LSTM classifiers can achieve weak
results compared to other optimization algorithms (Adam,
RMSprop) in all different hidden neurons.

As shown in Figure 15, by using the Adam optimizer,
it is obvious that the Softsign-based LSTM classifier beats
the tanh-based LSTM classifier by achieving a correct clas-
sification accuracy of 88.048%, where the latter achieved
86.1925%. Also, the Softsign-based LSTM classifier is the
best among the proposed classifiers.
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Using the RMSProp optimizer, the Sech-based LSTM clas-
sifier outperforms the tanh-based LSTM classifier, reaching
88.8% accurate classification accuracy vs 86.3% for the latter,
as shown in Figure 15 and Figurel6.

By noting Figure 15 and Figure 16, utilizing the SGDM
optimizer and Hard-Sigmoid gate activation function, both
the Modified Elliott-based LSTM classifier and tanh-based
LSTM classifier attain a maximum accuracy of 57.9%.

V. CONCLUSION

LSTM blocks, contain mainly two types of activation func-
tions: state activation function (tanh) and gate activation func-
tion (hard-sigmoid or sigmoid). In this study, state activation
functions-based LSTM classifiers have been proposed using
26 different activation functions that can be used in place of
the tanh.

The performance of the proposed classifiers has been
investigated using two different data sets: Japanese Vowels
and Weather Reports; and three different structures with 20,
50, and 100 hidden units. The Adam, RMSprop, and SGDM
optimization algorithms are also used to tune their internal
weights and biases.

The results showed that some less well-known activation
functions such as Modified Elliott, Gaussian, Sech, Wave,
and Softsign yield lower loss levels compared to the most
popular functions and hence aid classifiers to produce more
promising results compared to those that use the common
tanh activation function. Also, the Skewed-sig, Logarithmic,
ELU, SELU, and Saturated activation functions, which are
utilized in LSTM blocks, yield poor results compared to the
other activation functions.

Also, the given results show that the proposed classifiers
that use hard sigmoid as a gate activation function beat those
that use the sigmoid activation function. And the proposed
trained classifiers using Adam and RMSprop outperform
those that are trained using the SGDm optimizer. For future
studies, the following is suggested:

1. Studying the performance of the proposed LSTM-based
classifiers using other different optimization algorithms such
as Adadelta, Adagrad, AMSgrad, AdaMax, and Nadam.

2. Studying the performance of the proposed LSTM-based
classifiers using other different activation functions such as
Probit, logsig and sincos.

3. Studying the computational complexity of the proposed
LSTM-based classifiers.
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