
Received 14 August 2022, accepted 4 September 2022, date of publication 8 September 2022, date of current version 16 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3205350

Interpolated DFT Algorithm for Frequency
Estimation by Using Maximum Sidelobe
Decay Windows
HUIHAO WU , HUANHUAN SONG, YUCHAN BAI, LEI FAN , JIYU JIN, AND JUN XING
School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China

Corresponding authors: Lei Fan (fanlei@dlpu.edu.cn) and Jiyu Jin (jinjiyu@dlpu.edu.cn)

This work was supported by the 2021 Scientific Research Projects of Liaoning Provincial Department of Education under Grant
LJKZ0515, Grant LJKZ0519, and Grant LJKZ0518.

1

2

3

4

5

6

7

8

ABSTRACT A sinusoidal frequency estimator based on interpolated Discrete Fourier Transform (DFT)
algorithm by usingMaximum Sidelobe Decay (MSD) windows is proposed in this paper. Firstly, the received
sinusoid is weighted by an appropriate MSD window. Then DFT is carried out on the weighted sinusoid and
the coarse estimation is acquired by finding the position of the maximum DFT sample. Different from all
the existing algorithms, the presented estimator adopts the maximum DFT sample and two Discrete Time
Fourier Transform (DTFT) spectral lines which are on the same side of the maximum DFT sample in the
fine estimation step. MSE formulas of the presented estimator in additive white noise are derived. Simulation
results indicate that the presented estimator outperforms the competing estimators.

9 INDEX TERMS DFT, DTFT, frequency estimation, MSD window.

I. INTRODUCTION10

Frequency estimation of sinusoid is an essential subject in the11

area of signal processing, and it is widely used in communi-12

cations, radar signal processing, sonar, electronic measure-13

ment, power systems and so on. For instance, the oscillation14

frequency may deviate from the nominal frequency. And the15

relative movement between the receiver and transmitter is16

common which will lead to Doppler shift. Therefore, car-17

rier frequency offset is common in mobile communication18

systems. Estimating the carrier frequency offset accurately is19

significant for the multicarrier communication systems.20

Many researchers have presented their sinusoidal fre-21

quency estimators. The sinusoidal frequency estimators are22

categorized into two types: algorithms in time domain [1],23

[2], [3], [4], [5], [6], [7], [8] and algorithms in frequency24

domain [9], [10], [11], [12], [13], [14], [15], [16], [17],25

[18]. Algorithms in time domain include maximum likeli-26

hood estimators [1], [2], [3], auto-correlation estimators [4],27

[5], [6], [7], linear predictions estimators [8] and so on.28

The associate editor coordinating the review of this manuscript and

approving it for publication was Brian Ng .

Generally, the common problem of time-domain methods 29

is that they have relatively high computational complexity 30

and high hardware requirements. Therefore, time-domain 31

algorithms are not suitable to be applied for some real-time 32

applications. Algorithms in frequency domain are more effi- 33

cient and usually based on DFT. The DFT-based estimators 34

generally have two steps. Firstly, DFT is performed, and the 35

coarse estimation is done by finding the discrete frequency 36

index number of the maximum DFT sample. Next in the 37

fine estimation stage, several spectrum lines near the max- 38

imum one are utilized to interpolate the signal frequency. 39

The existing DFT-based estimators differ from each other 40

only in the fine estimation. In [9], Aboutanios and Mulgrew 41

employ the two DTFT spectral lines located at the midpoints 42

between the maximum DFT sample and its two neighbors. 43

Candan adopts the maximum DFT spectrum line and two 44

adjacent DFT spectrum lines in the fine estimation [10]. Liao 45

and Chen adopts phase correction of DFT coefficients which 46

removes the phase term to reduce the estimation bias [11]. 47

An asymptotically unbiased method is proposed which uses 48

hybrid half-shifted and q-shifted DTFT interpolation and can 49

converge in two iterations [12]. In [13], the maximum DFT 50
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sample and two DTFT samples which are at any places in the51

DTFT main lobe are utilized to realize the fine estimation.52

The above algorithms [1], [2], [3], [4], [5], [6], [7], [8],53

[9], [10], [11], [12], [13], [14], [15], [16], [17], [18] perform54

frequency estimation in white noise by using rectangular55

window. When interfering signals exist besides white noise,56

the sinusoid can be weighted by non-rectangular windows57

to reduce the impact of the interfering signals. In recent58

years, several estimators based on non-rectangular windows59

have been presented [17], [19], [20], [21], [22], [23], [24],60

[25], [26], [27], [28]. Based on the estimator in [10], Candan61

proposes to estimate the frequency by using an arbitrary62

non-rectangular window [19]. In [20], a generalization of the63

algorithm in [9] is presented (called IpDTFT-NR algorithm).64

It is based on MSD windows and suppresses the noise maxi-65

mally for frequency estimator by DTFT interpolation. In [21],66

Belega generalizes the methods in [9] and [10] to the situation67

when the received sinusoid is multiplied with MSD win-68

dows. The PSF-IpDFTc and the HPSF-IpDFTc algorithms69

based on Hanning window are presented to estimate the fre-70

quency of noisy and noisy harmonically distorted sinusoidal71

signals, respectively [22]. The Parabolic Interpolated DTFT72

(PIpDTFT) algorithm is extended to the case when the signal73

is weighted by MSD windows and the frequency estimation74

accuracy is analyzed [27].75

In this article, a sinusoidal frequency estimation algorithm76

based on interpolated DFT by using MSD windows is pre-77

sented. Firstly, the received sinusoid is multiplied with an78

appropriate MSD window. Then DFT is carried out on the79

weighted sinusoid. And the position of the maximum DFT80

sample is found to acquire the coarse estimation. In the fine81

estimation step, the maximum DFT sample and two DTFT82

spectral lines which are on the same side of the maximum83

DFT sample are adopted. MSE formulas of the presented84

estimator in additive white noise are derived. Simulation85

experiments are carried out, and the results indicate the per-86

formance of the presented algorithm is better than that of the87

competing estimators.88

The remaining parts of the article are arranged as follows.89

In Section II the presented estimation algorithm based on90

MSD windows is given and the MSE formulas in additive91

white noise are derived. Section III contrasts the present92

algorithm with the competing algorithms and the Cramer-93

Rao lower bound (CRLB). At last, Section IV draws the94

conclusion of the article.95

II. PROPOSED ESTIMATOR AND MSE96

A. PROPOSED ESTIMATOR97

In this part, a frequency estimation algorithm of sinusoid98

based on MSD windows is presented. The sinusoidal signal99

is [11]100

x [n] = s [n]+ z [n]101

= Aej(2π f0n/fs+θ0) + z [n] , n = 0, 1, . . . ,N − 1 (1)102

where s[n] is the received sinusoid to be estimated. z[n] is103

additive white noise, with variance σ 2 and mean value zero.104

fs is the frequency of sampling, and N is the number of 105

samples. A, f0 and θ0 denote the amplitude, frequency and 106

initial phase of the sinusoid respectively. 107

In a noiseless case, we perform N -point DFT of the sinu- 108

soid s[n], and have [14] 109

S [m+ k] =
N−1∑
n=0

Aej(2π f0n/fs+θ0)e−j2πnk/N 110

= ejθ0ejπ
N−1
N (δ−k) A sin [π(δ − k)]

sin
[
π (δ − k)

/
N
] , 111

k = 0, 1, . . . ,N − 1 (2) 112

where m is the discrete frequency index value of the maxi- 113

mum DFT sample. δ represents the relative frequency devi- 114

ation between the maximum DFT sample and the signal 115

frequency, δ ∈ (−0.5, 0.5). 1f = fs
/
N is the frequency 116

interval between two adjacent DFT samples. We can express 117

the sinusoidal frequency as f0 = (m+ δ)1f . At the coarse 118

stage, we need to search the position of the maximum DFT 119

sample S[m]. For the convenience of expression, S[m + k] 120

is denoted as Sk . Then the expression of the maximum DFT 121

sample is 122

S [m] = S0 = ej[θ0+πδ(1−1/N )] A sin(πδ)
sin (πδ/N )

(3) 123

In the next step, the fine estimation of f0 is actually to 124

estimate the relative frequency deviation δ. We use the max- 125

imum DFT sample S0 and two DTFT samples S0.1 and S0.2 126

(or S−0.1 and S−0.2) to obtain the fine estimate. The DTFT 127

sample value at the location f = (m+ q)1f is written as 128

Sq = ej[θ0−π (q−δ)(1−1/N )] A sin (π (q− δ))
sin (π (q− δ)/N )

(4) 129

Substituting q = 0.1 and 0.2 into the above formula 130

respectively, the expressions of the two DTFT spectrum lines 131

S0.1 and S0.2 can be written as 132

S0.1 = ej[θ0−π(0.1−δ)(1−1/N )]
A sin (π (0.1− δ))

sin
(
π (0.1− δ)

/
N
) (5) 133

S0.2 = ej[θ0−π(0.2−δ)(1−1/N )]
A sin (π (0.2− δ))

sin
(
π (0.2− δ)

/
N
) (6) 134

Then the absolute values of S0, S0.1 and S0.2 are utilized 135

to deduce the estimation formula of δ. After some derivation, 136

we get 137

|S0.1|
|S0|

=
sin(0.1π) cot(πδ)− cos(0.1π)

sin(0.1π/N ) cot(πδ/N )− cos(0.1π/N )
(7) 138

|S0.2|
|S0|

=
sin(0.2π) cot(πδ)− cos(0.2π)

sin(0.2π/N ) cot(πδ/N )− cos(0.2π/N )
(8) 139

From (7) and (8), we have derived in (9), as shown at the 140

bottom of the next page. 141

The estimation expression of δ is written in (10), as shown 142

at the bottom of the next page. 143

When using the twoDTFT samples S−0.1 and S−0.2 located 144

on the left of the maximum DFT sample, after similar deriva- 145

tion, we can obtain in (11), as shown at the bottom of the next 146

page. 147
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In amore general case, we can use the spectral lines S0, Si/2148

and Si to estimate the frequency (the variable i ∈ [−1, 1]).149

After similar derivation as above, we have derived in (12), as150

shown at the bottom of the page.151

The frequency estimation RMSEs of the above estimator152

versus |i| are shown in Fig. 1 for N = 16 and SNR = 20dB.153

|i| varies from 0.02 to 1 with a step of 0.02. The RMSEs154

are normalized to the square root of the CRLB (RCRLB).155

When the frequency, amplitude and initial phase of a complex156

sinusoidal signal are unknown, the CRLB can be written157

as [1]158

CRLB = min var(f̂ ) =
3f 2s

2π2N (N 2 − 1) · SNR
(13)159

It can be seen that when |δ| = 0.05 and |i| ≤ 0.2, RMSEs160

of the proposed estimator are very close to the RCRLB.161

Therefore, we can perform the preliminary fine estimation162

of δ with a certain method firstly. Then with the value of163

the preliminary estimate, we can determine which of the164

estimation formula ((10) or (11)) should be used and the165

complex values of the three spectral lines used by the final166

fine estimation can be renewed. The residual value of |δ| in167

the final fine estimation will be very small. This situation is168

very similar to the results shown by the RMSEs curve for169

|δ| = 0.05 in Fig. 1. When |δ| = 0.05, the performance for170

|i| ≤ 0.2 is almost unchanged and is much better than the171

performance for |i| > 0.2. Therefore, we choose |i| = 0.2 in172

our method.173

Next, we extend the above rectangular windowing estima-174

tion algorithm to the case of MSD windowing. The MSD175

window is also known as the Rife-Vincent class I window,176

belonging to the sinα(x) window for α = 0, 2, 4, . . . [26].177

Among allH -term cosine windows, the sidelobe decay rate of178

MSD window is 6 (2H − 1) dB/octave which is highest [23].179

FIGURE 1. RMSEs of proposed estimator versus
∣∣i∣∣ (N = 16,SNR= 20dB).

The expression of H -term MSD window is expressed as [21] 180

w [n] =
H−1∑
h=0

(−1)hah cos
(
2π

h
N
n
)
, n = 0, 1, . . . ,N − 1 181

(14) 182

in whichH ≥ 1. ah denotes the coefficient of the window and 183

can be expressed as [23] 184

a0 =
CH−1
2H−2

22H−2
, ah =

CH−h−1
2H−2

22H−3
, h = 1, 2, . . . ,H − 1 (15) 185

in which C l
g = g!

/
[(g− l)!l!]. It is worth noticing that for 186

H = 1 the MSD window is actually the rectangular window. 187

The sampled sinusoid multiplied by an appropriate MSD 188

window can be written as 189

sw [n] = s [n] · w [n] , n = 0, 1, . . . ,N − 1 (16) 190

cot
(
πδ

N

)
=

|S0| sin (0.1π)+ |S0.2| cos
(
0.2π
N

)
sin (0.1π)− |S0.1| cos

(
0.1π
N

)
sin (0.2π)

|S0.2| sin
(
0.2π
N

)
sin (0.1π)− |S0.1| sin

(
0.1π
N

)
sin (0.2π)

(9)

δ̂ =
N
π

tan−1

 |S0.2| sin
(
0.2π
N

)
− 2 |S0.1| sin

(
0.1π
N

)
cos (0.1π)

|S0| + |S0.2| cos
(
0.2π
N

)
− 2 |S0.1| cos

(
0.1π
N

)
cos (0.1π)

 (10)

δ̂ =
N
π

tan−1

 |S−0.2| sin
(
0.2π
N

)
− 2 |S−0.1| sin

(
0.1π
N

)
cos (0.1π)

− |S0| − |S−0.2| cos
(
0.2π
N

)
+ 2 |S−0.1| cos

(
0.1π
N

)
cos (0.1π)

 (11)

δ̂ =
N
π

tan−1
{

|Si| sin
(
π i
N

)
− 2

∣∣Si/2∣∣ sin ( π i2N

)
cos

(
π i
2

)
|S0| + |Si| cos

(
π i
N

)
− 2

∣∣Si/2∣∣ cos ( π i2N

)
cos

(
π i
2

)} (12)
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The DTFT of sw[n] is191

Sw (λ) = AW (λ− ν) ejθ0 (17)192

where W (·) is the DTFT of the window function w[n]. And193

ν = m + δ is the number of observed signal cycles. If it is194

assumed that N is much larger than 1, then the DTFT of w[n]195

is [21]196

W (λ) =
N sin (πλ)

π

H−1∑
h=0

(−1)h ah
λ

λ2 − h2
e−jπλ197

= W̃ (λ) e−jπλ, n = 0, 1, . . . ,N − 1 (18)198

where199

W̃ (λ) =
N sin (πλ)

π

H−1∑
h=0

(−1)h ah
λ

λ2 − h2
(19)200

Calculating the derivative of W̃ (λ), we can get201

W̃ ′ (λ) =
N
π

[sin (πλ)+ πλ cos (πλ)]
H−1∑
h=0

(−1)h ah
λ2 − h2

202

−
2N
π
λ2 sin (πλ)

H−1∑
h=0

(−1)h ah(
λ2 − h2

)2 (20)203

Then we replace the spectral lines in the square brackets204

of (10) with the corresponding DTFT spectral lines of the205

weighted sinusoid. And we obtain in (21), as shown at the206

bottom of the next page, where Sw(m) is the maximum DFT207

sample of sw[n], Sw(m+ 0.1) and Sw(m+ 0.2) are two DTFT208

samples which are located at f = (m + 0.1)1f and f =209

(m + 0.2)1f . According to (17), (18) and (19), let λ = m,210

m+ 0.1 and m+ 0.2, we have211

|Sw (m)| = |A| W̃ (−δ) (22)212

|Sw (m+ 0.1)| = |A| W̃ (0.1− δ) (23)213

|Sw (m+ 0.2)| = |A| W̃ (0.2− δ) (24)214

According to (21)-(24), we get in (25), as shown at the215

bottom of the next page.216

Then the first-order Taylor series expansions are performed217

for W̃ (−δ), W̃ (0.1− δ) and W̃ (0.2− δ) near 0, 0.1 and218

0.2 respectively. And we ignore the higher order terms, then219

we have220

W̃ (−δ) ≈ W̃ (0)− W̃ ′ (0) δ (26)221

W̃ (0.1− δ) ≈ W̃ (0.1)− W̃ ′ (0.1) δ (27)222

W̃ (0.2− δ) ≈ W̃ (0.2)− W̃ ′ (0.2) δ (28)223

Substituting (26)-(28) into (25), we have derived in (29),224

as shown at the bottom of the next page.225

According to [21], W̃ ′ (0) = 0. After some algebra, the226

following formula can be obtained in (30), as shown at the227

bottom of the next page.228

Then we set229

B = W̃ (0.2) sin
(
0.2π
N

)
230

TABLE 1. Steps of the presented estimator.

−2W̃ (0.1) sin
(
0.1π
N

)
cos (0.1π) (31) 231

C = W̃ ′ (0.2) sin
(
0.2π
N

)
232

−2W̃ ′ (0.1) sin
(
0.1π
N

)
cos (0.1π) (32) 233

D = W̃ (0)+ W̃ (0.2) cos
(
0.2π
N

)
234

−2W̃ (0.1) cos
(
0.1π
N

)
cos (0.1π) (33) 235

E = W̃ ′ (0.2) cos
(
0.2π
N

)
236

−2W̃ ′ (0.1) cos
(
0.1π
N

)
cos (0.1π) (34) 237

From (30)-(34), the estimation expression for δ is 238

δ̂ =
YD− B
YE − C

(35) 239

When the maximumDFT sample Sw(m) and the two DTFT 240

samples Sw(m− 0.1) and Sw(m− 0.2) are used, after similar 241

derivation, we can obtain 242

δ̂ = −
VD+ B
VE + C

(36) 243

where (37), as shown at the bottom of the next page. 244
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The steps of the presented estimator are listed in Table. 1.245

In the process of estimating the frequency with the algorithm246

in this paper, it is necessary to preliminarily determine which247

of the estimation formula (35) or (36) should be used for248

the fine estimation. Therefore, we use the estimator in [23]249

(i = 1) to acquire a preliminary estimation value δ̂w1 of250

the relative frequency deviation. Fi- rstly, we multiply the251

sinusoidwith an appropriateMSDwindow. Then, we perform252

DFT on the weighted sinusoid, and find the position of the253

maximum DFT sample to obtain a coarse estimate. With the254

value of δ̂w1, the complex values of the three samples used255

by the presented algorithm are renewed. Finally, the fine256

estimation is obtained via (35) and (21) when δ̂w1 > 0 or257

via (36) and (37) when δ̂w1 ≤ 0.258

B. MSE OF δ̂259

In this part, the MSE of δ̂ via (35) and (21) (or (36) and (37))260

in the background of additive white noise is analyzed. The261

signal model can be written as262

xw [n] = sw [n]+ zw [n] , n = 0, 1, . . . ,N − 1 (38)263

in which zw[n] = z[n] · w[n].264

We perform N -point DFT of xw[n] and can get265

Xw [k] = Sw [k]+ Zw [k] , k = 0, 1, . . . ,N − 1 (39)266

According to the Appendix, the MSE formulas of the267

proposed estimator can be obtained.When δ 6= 0.2, 0.1and 0,268

the MSE formula of δ̂ via (35) and (21) is derived in (40), as 269

shown at the bottom of the next page. 270

When δ = 0.2, we use lim
x→0

[sin (x) /x] = 1 for the 271

calculation of W̃ (0.2− δ) in (40). Then we derived in (41), 272

as shown at the bottom of the next page. 273

When δ = 0.1, lim
x→0

[sin (x) /x] = 1 is used for the 274

calculation of W̃ (0.1− δ) in (40). Then we derived in (42), 275

as shown at the bottom of the next page. 276

When δ = 0, we utilize lim
x→0

[sin (x) /x] = 1 for the 277

calculation of W̃ (δ) in (40). Then we obtain in (43), as shown 278

at the bottom of the next page. 279

When δ 6= −0.2,−0.1 and 0, the MSE formula of δ̂ 280

via (36) and (37) is derived in (44), as shown at the bottom of 281

page. 282

When δ = −0.2, the MSE formula of δ̂ via (36) and (37) 283

is the same as (41). When δ = −0.1, the MSE formula of δ̂ 284

is the same as (42) and when δ = 0, the MSE formula is the 285

same as (43). 286

When N = 16 and SNR = 10dB, the analytical RMSE 287

is illustrated in Fig. 2. Fig. 2 shows that the analytical RMSE 288

reaches its minimum around at |δ| = 0.05. Theminimum val- 289

ues of RMSE/RCRLB for two-termMSDwindowingmethod 290

and three-term MSD windowing method are appro-ximately 291

1.5455 and 2.1555 respectively. The minimum values of the 292

analytical RMSE of the proposed method via (40)-(43) are 293

the same as those values via (41)-(44). 294

The MSE of δ̂w1 in the third step of Table. 1 is [23] 295

Y =
|Sw(m+ 0.2)| sin

(
0.2π
N

)
− 2 |Sw(m+ 0.1)| sin

(
0.1π
N

)
cos (0.1π)

|Sw(m)| + |Sw(m+ 0.2)| cos
(
0.2π
N

)
− 2 |Sw(m+ 0.1)| cos

(
0.1π
N

)
cos (0.1π)

(21)

Y =
W̃ (0.2− δ) sin

(
0.2π
N

)
− 2W̃ (0.1− δ) sin

(
0.1π
N

)
cos (0.1π)

W̃ (−δ)+ W̃ (0.2− δ) cos
(
0.2π
N

)
− 2W̃ (0.1− δ) cos

(
0.1π
N

)
cos (0.1π)

(25)

Y =

[
W̃ (0.2)− W̃ ′ (0.2) δ

]
sin
(
0.2π
N

)
− 2

[
W̃ (0.1)− W̃ ′ (0.1) δ

]
sin
(
0.1π
N

)
cos (0.1π)[

W̃ (0)− W̃ ′ (0) δ
]
+

[
W̃ (0.2)− W̃ ′ (0.2) δ

]
cos

(
0.2π
N

)
− 2

[
W̃ (0.1)− W̃ ′ (0.1) δ

]
cos

(
0.1π
N

)
cos (0.1π)

(29)

Y =

[
W̃ (0.2) sin

(
0.2π
N

)
−2W̃ (0.1) sin

(
0.1π
N

)
cos(0.1π)

]
−δ
[
W̃ ′(0.2) sin

(
0.2π
N

)
−2W̃ ′(0.1) sin

(
0.1π
N

)
cos(0.1π)

]
[
W̃ (0)+W̃ (0.2) cos

(
0.2π
N

)
−2W̃ (0.1) cos

(
0.1π
N

)
cos(0.1π)

]
−δ
[
W̃ ′(0.2) cos

(
0.2π
N

)
−2W̃ ′(0.1) cos

(
0.1π
N

)
cos(0.1π)

] (30)

V =
|Sw(m− 0.2)| sin

(
0.2π
N

)
− 2 |Sw(m− 0.1)| sin

(
0.1π
N

)
cos (0.1π)

− |Sw(m)| − |Sw(m− 0.2)| cos
(
0.2π
N

)
+ 2 |Sw(m− 0.1)| cos

(
0.1π
N

)
cos (0.1π)

(37)
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The MSE of the final estimate δ̂f in the fifth or sixth step296

of Table. 1 will be very close to the minimum value of (40)297

or (44). This can be seen in the simulation results of Fig. 5 in298

the next section.299

III. SIMULATION RESULTS 300

In this part, simulation experiments are conducted, and 301

the performance of the presented estimation algorithm is 302

compared with the competing algorithms. The algorithms 303
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FIGURE 2. Analytical RMSE versus δ (N = 16, SNR=10dB).

used for comparison include AM estimator [9], HAQSE304

estimator [12], Candan estimator [19], IpDTFT-NR estimator305

[20], MV-IpDTFT(2) estimator [21], MV-IpDTFT(3) estima-306

tor [21] and PIpDTFT estimator [27]. The AM and HAQSE307

estimator are based on rectangular window, and the other308

estimators are based on MSD windows. These experiments309

are divided into three cases: noisy sinusoid, noisy sinusoid310

affected by single-tone interfering signal and noisy and har-311

monically distorted sinusoid. The windows we employ are:312

the rectangular window (H = 1, a0 = 1), the two-term MSD313

window (H = 2, a0 = 0.5 and a1 = 0.5) and three-term314

MSD window (H = 3, a0 = 0.375, a1 = 0.5 and a2 =315

0.125). In the simulations, the sinusoid amplitude A = 1, the316

initial phase θ0 is uniformly distributed on [0, 2π ].317

A. NOISY SINUSOID318

When SNR = 10dB and N = 16, the theoretical and319

simulated RMSEs versus the relative frequency deviation δ320

are shown in Fig. 3. The theoretical RMSEs are calculated321

FIGURE 3. Analytical (via (40)-(43)) and simulated (via (21), (35)) RMSEs
versus δ (N = 16, SNR=10dB).

according to (40)-(43). δ varies from -0.5 to 0.5 with a step of 322

0.01. For each value of δ, 2000 runs are considered. We can 323

see that the theoretical RMSEs are in good agreement with 324

the simulation results. 325

When all the parameters are the same as Fig. 3, the the- 326

oretical and simulated RMSEs versus the relative frequency 327

deviation δ are illustrated in Fig. 4. The theoretical RMSEs 328

are calculated according to (41)-(44). Similar conclusions can 329

be drawn as Fig. 3. 330

When SNR = 10dB and N = 16, Fig. 5 shows the RMSEs 331

of different algorithms with respect to the relative frequency 332

deviation δ. 100,000 runs are considered for each value of 333

δ. It can be observed from Fig. 5 that the RMSE of the 334

presented estimation method by using rectangular window 335

is the lowest and closest to the RCRLB. This is owing to 336

the fact that non-rectangular windowing methods will cause 337

performance degradation when there are no interference 338

signals. The performance of the proposed estimator with 339
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FIGURE 4. Analytical (via (41)-(44)) and simulated (via (36), (37)) RMSEs
versus δ (N = 16,SNR=10dB).

FIGURE 5. RMSEs of different algorithms versus δ (N = 16,SNR=10dB).

two-term MSD window and the PIpDTFT estimator340

with two-term MSD window are very close to each other.341

These two estimators achieve better results than the other342

windowingmethods. It can also be seen that the RMSEs of the343

estimator in [23] (used in the preliminary estimation) increase344

with the increase of |δ| and are relatively bigger than the other345

methods with the same window. The RMSEs of the proposed346

estimator based on MSD windows are almost independent347

of δ and are very close to the theoreti- cal minimum values348

returned by (40).349

When SNR = 3dB and N = 128, the RMSEs of different350

algorithms versus δ are shown in Fig. 6. 100,000 runs are351

considered for each value of δ . We can see from Fig. 6 that352

the RMSE of the proposed method with rectangular window353

is lower than that of AM method, and higher than that of354

HAQSE method. The performance of the presented method355

with two-term MSD window and the PIpDTFT estimator356

with two-term MSD window are very close to each other.357

The RMSEs of these two estimators are lower than those of358

the other windowing methods. The RMSEs of the presented359

method based on MSD windows are almost independent of δ360

FIGURE 6. RMSEs of different algorithms versus δ (N = 128,SNR= 3dB).

FIGURE 7. RMSEs of different algorithms with two-term MSD window
versus SNR (N = 16,δ=0.2).

and are very close to the theoretical minimum values returned 361

by (40). 362

Fig. 7 compares the RMSEs of different estimators with 363

two-term MSD window versus SNR when N = 16 and δ = 364

0.2. 20,000 runs are considered for each value of SNR.We can 365

see that the presented algorithm with rectangular w- indow 366

is the closest to the RCRLB. Among all the algorithms with 367

two-term MSD window, the presented algorithm can achieve 368

the best results. 369

When all the parameters are the same as Fig. 7, the RMSEs 370

versus SNR of various algorithms with three-term MSD win- 371

dow are shown in Fig. 8. Similar conclusions can be drawn 372

as Fig. 7. 373

B. NOISY SINUSOID AFFECTED BY SINGLE-TONE 374

INTERFERING SIGNAL 375

Next, the case of noisy sinusoid affected by single-tone 376

interfering signal is considered. It is assumed the frequency 377

of the single-tone interference sinusoid is 61f higher than 378

that of the sinusoid to be estimated, and the SIR (signal-to- 379

interference ratio) is 3dB. The initial phase of the interfering 380
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FIGURE 8. RMSEs of different algorithms with three-term MSD window
versus SNR (N = 16,δ=0.2).

FIGURE 9. RMSEs of different algorithms with two-term MSD window
versus SNR (N = 16, δ = 0.2,SIR = 3dB).

signal is uniformly distributed on [0, 2π ]. 20,000 runs are381

considered for each value of SNR.382

When N = 16 and δ = 0.2, the RMSEs versus SNR383

of various algorithms are shown in Fig. 9. It can be noted384

that the RMSE of the presented estimation method by using385

two-term MSD window is closer to the RCRLB than the386

other algorithms. When the SNR is higher than 15dB, the387

presented algorithm based on rectangular window gradu-388

ally moves away from the RCRLB. Therefore, when single-389

tone interfering signal exists besides white noise, windowing390

methods can reduce the impact of the interference sinusoid391

on the desired sinusoid.392

The RMSEs versus SNR of various methods by using393

three-term MSD window are illustrated in Fig. 10. When394

all the parameters are the same as Fig. 9, Fig. 10 illustrates395

that the performance of the presented algorithm based on396

three-term MSD window is better than that of the other397

methods based on three-term MSD window and the pre-398

sented method with rectangular window. Therefore, when399

FIGURE 10. RMSEs of different algorithms with three-term MSD window
versus SNR (N = 16,δ = 0.2,SIR = 3dB).

FIGURE 11. MSEs of the presented and Candan estimator versus the
number of observed cycles ν (N = 128, SNR = 20dB,THD = 60%).

single-tone interfering sinusoid exists besides white noise, 400

windowing methods have to be preferred. 401

C. NOISY AND HARMONICALLY DISTORTED SINUSOID 402

In the simulations of this part, it is assumed that there are 403

the 2nd, 3nd and 4th harmonics. And the amplitude ratios of 404

the harmonics are 4:2:1. We assume that the Total harmonic 405

Distortion (THD) is equal to 60%. The initial phases of the 406

harmonics are uniformly distributed on [0, 2π ]. The value 407

of the number of observed cycles ν varies in [2.54, 12.04] 408

and the step is 1
/
12. For each value of ν, 20,000 runs are 409

considered. 410

Fig. 11 illustrates the MSEs of the presented and Candan 411

estimator versus ν when N = 128, SNR = 20dB. When 412

ν is in range of [2.75, 3.21) or [3.65, 4.15), it is noticed 413

that the MSE of Candan estimator based on two-term MSD 414

window is lower than that of the other methods. And we also 415

observe that the MSE of the presented algorithm is lower 416

than that of the other windowing methods when ν is in range 417

of [3.21, 3.65) or [4.15, 12.04]. We can see evidently from 418
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FIGURE 12. MSEs of presented and IpDTFT-NR estimator versus ν
(N = 128,SNR = 20dB, THD = 60%).

FIGURE 13. MSEs of the presented and MV-IpDTFT(2) estimator versus ν
(N = 128,SNR = 20dB, THD = 60%).

Fig. 11 that the presented algorithm with rectangular window419

fluctuates greatly. For the same algorithm, the estimation420

performance with two-term MSD is better than that based421

on three-termMSDwindow. As ν increases, the performance422

of the estimation methods by using MSD windows gradually423

tend to be stable.424

The performance of estimator in this paper and425

IpDTFT-NR estimator are illustrated in Fig. 12 for N = 128,426

SNR = 20dB. As can be noted from Fig. 12, the performance427

of the presented estimator by using two-term MSD window428

outperforms the other windowing estimators when ν ≥ 5.14.429

When ν < 5.14, the presented estimator with two-term MSD430

window and IpDTFT-NR estimator with two-term MSD431

window can alternately achieve better results than the other432

algorithms.433

Fig. 13 shows the MSEs of the presented and434

MV-IpDTFT(2) estimator versus ν when N = 128 and435

SNR = 20dB. We can obtain that the presented method436

with two-term MSD window and MV-IpDTFT(2) method437

with two-term MSD window can alternately achieve better438

FIGURE 14. MSEs of the presented and MV-IpDTFT(3) estimator versus ν
(N = 128,SNR = 20dB, THD = 60%).

FIGURE 15. MSEs of the presented and PIpDTFT estimator versus ν
(N = 128,SNR = 20dB, THD = 60%).

results than the other algorithms when ν < 5.12. When 439

ν ≥ 5.12, the MSE of the algorithm we present by using 440

two-term MSD window is lower than the other windowing 441

methods and should be preferred. The MSE of the presented 442

rectangular windowing method fluctuates greatly. And it is 443

worth noting that the estimation method with two-term MSD 444

window achieves better results than the same method with 445

three-term MSD window. 446

Fig. 14 shows the MSEs of the presented and 447

MV-IpDTFT(3) estimator versus ν for N = 128, SNR = 448

20dB. When all the simulation parameters are the same as 449

Fig. 11, it can be seen that the performance ofMV-IpDTFT(3) 450

method is very close to that of Candan method. Therefore, 451

we can obtain similar conclusions as Fig. 11. 452

When N = 128 and SNR = 20dB, the MSEs of the 453

presented and PIpDTFT estimator versus ν are shown in 454

Fig. 15. We can see that the performance of the PIpDTFT 455

method is poor when |δ| is close to 0.5. The MSE of the 456

presented rectangular windowing method fluctuates greatly. 457
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TABLE 2. Computational requirements of different estimators.

The proposed method with two-term MSD window achieves458

better results than the other algorithms.459

The computational requirements of different estimators are460

given in Table. 2. The AM estimator [9], HAQSE estimator461

[12], Candan estimator [19], MV-IpDTFT(3) estimator [21],462

IpDTFT-NR [20] andMV-IpDTFT(2) estimator [21] are used463

in the second iteration. The computational requirements of464

the proposed method are almost the same with those of465

Candan, MV-IpDTFT(3) and PIpDTFT estimator [27], and466

are lower than those of the other estimators.467

IV. CONCLUSION468

A sinusoidal signal frequency estimator based on interpolated469

DFT by using MSD window is proposed in this paper. The470

received sinusoid is multiplied with MSD windows to reduce471

the impact of the interference signals on the frequency esti-472

mation. The maximum DFT sample and two DTFT spectrum473

lines which are on the same side of themaximumDFT sample474

are utilized in the fine estimation step. MSE formulas of475

the presented estimator in additive white noise are derived.476

The simulation results show that under the circumstances477

of noisy sinusoid affected by single-tone interfering signal,478

and noisy and harmonically distorted sinusoid, the estima-479

tion method presented in this paper achieves better results480

than Candan method, IpDTFT-NR method, MV-IpDTFT(2)481

method, MV-IpDTFT(3) method and PIpDTFT estimator.482

The impact of the interference signals on the frequency esti-483

mation of the received sinusoid can be reduced by using484

the presented method. The computational complexity of the485

proposed method is almost the same with that of Candan,486

MV-IpDTFT (3) and PIpDTFT estimator, and is lower than487

that of the other competing estimators.488

APPENDIX489

The MSE formula of δ̂ via (35) and (21) in the background of490

additive white noise is deduced firstly.491

The amplitude of the DTFT of xw[n] is expressed as [23]492

∣∣Xf ∣∣ ≈ Af + Re
(
Zf e−jφf

)
= Af + Uf (46)493

where Af , φf are the amplitude and phase of the DTFT of 494

sw[n]. Zf is the DTFT of zw[n] and Uf is the real part of 495

Zf e−jφf . 496

For the convenience of expression, when f = m1f , (m + 497

0.1)1f and (m+ 0.2)1f , the amplitudes of the three spectral 498

lines
∣∣Xm1f ∣∣, ∣∣X(m+0.1)1f ∣∣ and ∣∣X(m+0.2)1f ∣∣ are denoted as 499

|X0|, |X0.1| and |X0.2|. Then we can get 500

|X0| ≈ Am1f + Um1f = A0 + U0 (47) 501

|X0.1| ≈ A(m+0.1)1f + U(m+0.1)1f = A0.1 + U0.1 (48) 502

|X0.2| ≈ A(m+0.2)1f + U(m+0.2)1f = A0.2 + U0.2 (49) 503

where Am1f , A(m+0.1)1f and A(m+0.2)1f are denoted as A0, 504

A0.1 and A0.2 respectively. Um1f , U(m+0.1)1f and U(m+0.2)1f 505

are denoted as U0, U0.1 and U0.2 respectively. 506

In additive noise background, we replace |Sw(m)|, 507

|Sw(m+ 0.1)| and |Sw(m+ 0.2)| in (21) with |X0|, |X0.1| and 508

|X0.2|. Then we have 509

Y 510

=

|X0.2| sin
(
0.2π
N

)
− 2 |X0.1| sin

(
0.1π
N

)
cos (0.1π)

|X0| + |X0.2| cos
(
0.2π
N

)
− 2 |X0.1| cos

(
0.1π
N

)
cos (0.1π)

511

(50) 512

Then (35) can be written as 513

δ̂ =
YD− B
YE − C

=
L1D− L2B
L1E − L2C

(51) 514

where L1 and L2 are the numerator and denominator of Y 515

respectively. Then the numerator of δ̂ can be written as 516

L1D− L2B 517

=

[
|X0.2| sin

(
0.2π
N

)
−2 |X0.1| sin

(
0.1π
N

)
cos (0.1π)

]
D 518

−

[
|X0| + |X0.2| cos

(
0.2π
N

)
519

−2 |X0.1| cos
(
0.1π
N

)
cos (0.1π)

]
B (52) 520

By substituting (47)-(49) into (52) and we have 521

L1D− L2B 522

=

[
A0.2

(
sin
(
0.2π
N

)
D− cos

(
0.2π
N

)
B
)

523

−2A0.1 cos (0.1π)
(
sin
(
0.1π
N

)
D− cos

(
0.1π
N

)
C
)

524

−A0B] 525

+

[
U0.2

(
sin
(
0.2π
N

)
D− cos

(
0.2π
N

)
B
)

526

−2U0.1 cos(0.1π)
(
sin
(
0.1π
N

)
D− cos

(
0.1π
N

)
C
)

527

−U0B] (53) 528

95758 VOLUME 10, 2022



H. Wu et al.: Interpolated DFT Algorithm for Frequency Estimation by Using Maximum Sidelobe Decay Windows

δ̂ =

 A0.2
(
sin
(
0.2π
N

)
D− cos

(
0.2π
N

)
B
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
D− cos

(
0.1π
N

)
B
)
− A0B

A0.2
(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− A0C

+

U0.2

(
sin
(
0.2π
N

)
D− cos

(
0.2π
N

)
B
)
− 2U0.1 cos (0.1π)

(
sin
(
0.1π
N

)
D− cos

(
0.1π
N

)
B
)
− U0B

A0.2
(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− A0C


×

1[
1+

U0.2

(
sin
(
0.2π
N

)
E−cos

(
0.2π
N

)
C
)
−2U0.1 cos(0.1π)

(
sin
(
0.1π
N

)
E−cos

(
0.1π
N

)
C
)
−U0C

A0.2
(
sin
(
0.2π
N

)
E−cos

(
0.2π
N

)
C
)
−2A0.1 cos(0.1π)

(
sin
(
0.1π
N

)
E−cos

(
0.1π
N

)
C
)
−A0C

] (55)

U0.2

(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2U0.1 cos (0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− U0C

A0.2
(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− A0C

� 1 (56)

δ̂ ≈
A0.2

(
sin
(
0.2π
N

)
D− cos

(
0.2π
N

)
B
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
D− cos

(
0.1π
N

)
B
)
− A0B

A0.2
(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− A0C

+

U0.2

(
sin
(
0.2π
N

)
D− cos

(
0.2π
N

)
B
)
− 2U0.1 cos (0.1π)

(
sin
(
0.1π
N

)
D− cos

(
0.1π
N

)
B
)
− U0B

A0.2
(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− A0C

−

A0.2
(
sin
(
0.2π
N

)
D− cos

(
0.2π
N

)
B
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
D− cos

(
0.1π
N

)
B
)
− A0B

A0.2
(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− A0C

×

U0.2

(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2U0.1 cos (0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− U0C

A0.2
(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− A0C

−

U0.2

(
sin
(
0.2π
N

)
D− cos

(
0.2π
N

)
B
)
− 2U0.1 cos (0.1π)

(
sin
(
0.1π
N

)
D− cos

(
0.1π
N

)
B
)
− U0B

A0.2
(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− A0C

×

U0.2

(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2U0.1 cos (0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− U0C

A0.2
(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− A0C

(57)

δ̂ ≈
A0.2

(
sin
(
0.2π
N

)
D− cos

(
0.2π
N

)
B
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
D− cos

(
0.1π
N

)
B
)
− A0B

A0.2
(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− A0C

+

U0.2

(
sin
(
0.2π
N

)
D− cos

(
0.2π
N

)
B
)
− 2U0.1 cos (0.1π)

(
sin
(
0.1π
N

)
D− cos

(
0.1π
N

)
B
)
− U0B

A0.2
(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− A0C

−

A0.2
(
sin
(
0.2π
N

)
D− cos

(
0.2π
N

)
B
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
D− cos

(
0.1π
N

)
B
)
− A0B

A0.2
(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− A0C

×

U0.2

(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2U0.1 cos (0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− U0C

A0.2
(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− A0C

(58)
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Similarly, the denominator of (51) can be expressed as529

L1E − L2C530

=

[
A0.2

(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)

531

−2A0.1 cos (0.1π)
(
sin
(
0.1π
N

)
E532

− cos
(
0.1π
N

)
C
)
− A0C

]
533

+

[
U0.2

(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)

534

−2U0.1 cos(0.1π)
(
sin
(
0.1π
N

)
E535

− cos
(
0.1π
N

)
C
)
− U0C

]
(54)536

Substituting (53) and (54) into (51), after some derivation537

in (55), as shown at the top of the previous page.538

Under high SNR, we derived in (56), as shown at the top539

of the previous page.540

The equation (55) is expanded by the first order Tay-541

lor series and the higher-order terms are ignored. Then542

we derived in (57), as shown at the top of the previous page.543

Under high SNR, the third term is much larger than the544

fourth term in (57). Therefore, we ignore the fourth term in545

the above equation and can obtain in (58), as shown at the top546

of the previous page.547

Using A0 = Sw(m), A0.1 = Sw(m+0.1) and A0.2 = Sw(m+548

0.2) in (35), we get in (59), as shown at the bottom of the page.549

Substituting (59) in (58), we derived in (60), as shown at 550

the bottom of the page. 551

Formula (60) can be written in (61), as shown at the bottom 552

of the page. 553

When N is much larger than 1, we have cos(0.2π
/
N ) ≈ 554

1, cos(0.1π
/
N ) ≈ 1, sin(0.2π

/
N ) ≈ 0.2π

/
N and 555

sin(0.1π
/
N ) ≈ 0.1π

/
N . Then we can obtain in (62), as 556

shown at the bottom of the page. 557

We consider the denominator of (62) first. As Ai can be 558

expressed as Ai = AW̃ (i − δ) and W̃ (·) is an even function, 559

we can obtain 560[
A0.2

(
0.2π
N

E − C
)

561

−2A0.1 cos (0.1π)
(
0.1π
N

E − C
)
− A0C

]2
562

= A2
[
W̃ (0.2− δ)

(
0.2π
N

E − C
)

563

−2W̃ (0.1− δ) cos (0.1π)
(
0.1π
N

E − C
)
− W̃ (δ)C

]2
564

(63) 565

Then we consider the numerator of (62) as follows 566

E
{[
U0.2

((
0.2π
N

D− B
)
− δ

(
0.2π
N

E − C
))

567

−2U0.1 cos (0.1π)
((

0.1π
N

D− B
)

568

δ =
A0.2

(
sin
(
0.2π
N

)
D− cos

(
0.2π
N

)
B
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
D− cos

(
0.1π
N

)
B
)
− A0B

A0.2
(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− A0C

(59)

δ̂ = δ +
U0.2

(
sin
(
0.2π
N

)
D− cos

(
0.2π
N

)
B
)
− 2U0.1 cos(0.1π)

(
sin
(
0.1π
N

)
D− cos

(
0.1π
N

)
B
)
− U0B

A0.2
(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2A0.1 cos(0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− A0C

−δ
U0.2

(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2U0.1 cos(0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− U0C

A0.2
(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2A0.1 cos(0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− A0C

(60)

δ̂ − δ =
U0.2

[(
sin
(
0.2π
N

)
D− cos

(
0.2π
N

)
B
)
− δ

(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)]
− U0 (B− δC)

A0.2
(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− A0C

−

2U0.1 cos (0.1π)
[(

sin
(
0.1π
N

)
D− cos

(
0.1π
N

)
B
)
− δ

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)]

A0.2
(
sin
(
0.2π
N

)
E − cos

(
0.2π
N

)
C
)
− 2A0.1 cos (0.1π)

(
sin
(
0.1π
N

)
E − cos

(
0.1π
N

)
C
)
− A0C

(61)

E
[(
δ̂ − δ

)2]
=

E
{[
U0.2

((
0.2π
N D− B

)
− δ

(
0.2π
N E − C

))
− 2U0.1 cos (0.1π)

((
0.1π
N D− B

)
− δ

(
0.1π
N E − C

))
− U0 (B− δC)

]2}
[
A0.2

(
0.2π
N E − C

)
− 2A0.1 cos (0.1π)

(
0.1π
N E − C

)
− A0C

]2 (62)
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−δ

(
0.1π
N

E − C
))
− U0 (B− δC)

]2}
569

= E

{
U2
0.2

[(
0.2π
N

D− B
)
− δ

(
0.2π
N

E − C
)]2

570

+4U2
0.1 cos

2 (0.1π)
[(

0.1π
N

D− B
)
−δ

(
0.1π
N

E − C
)]2

571

+U2
0 (B− δC)

2
572

−2U0.2U0

[(
0.2π
N

D− B
)
−δ

(
0.2π
N

E − C
)]

(B−δC)573

+4U0U0.1 cos (0.1π)
[(

0.1π
N

D− B
)
−δ

(
0.1π
N

E−C
)]

574

(B− δC)575

−4U0.2U0.1 cos (0.1π)
[(

0.1π
N

D− B
)

576

−δ

(
0.1π
N

E − C
)][(

0.2π
N

D− B
)

577

−δ

(
0.2π
N

E − C
)]}

(64)578

The autocorrelation function of Uf is [23]579

E(Uf1 ,Uf2 ) =
σ 2

2
|W2(f1 − f2)|580

=
σ 2

2

N−1∑
n=0

w2(n)e−j2π(f1−f2)Tn/N (65)581

Then we have582

E (U0.2U0) =
σ 2

2
|W2 (0.21f )| (66)583

E (U0.2U0.1) = E (U0.1U0) =
σ 2

2
|W2 (0.11f )| (67)584

E
(
U2
0

)
= E

(
U2
0.1

)
= E

(
U2
0.2

)
=
σ 2

2
|W2 (0)|585

(68)586

By substituting (63)-(68) into (62), we obtain the MSE587

formula (40).588

After similar derivation, the MSE formula of δ̂ via (36)589

and (37) can be obtained as (44).590
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