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ABSTRACT A sinusoidal frequency estimator based on interpolated Discrete Fourier Transform (DFT)
algorithm by using Maximum Sidelobe Decay (MSD) windows is proposed in this paper. Firstly, the received
sinusoid is weighted by an appropriate MSD window. Then DFT is carried out on the weighted sinusoid and
the coarse estimation is acquired by finding the position of the maximum DFT sample. Different from all
the existing algorithms, the presented estimator adopts the maximum DFT sample and two Discrete Time
Fourier Transform (DTFT) spectral lines which are on the same side of the maximum DFT sample in the
fine estimation step. MSE formulas of the presented estimator in additive white noise are derived. Simulation

results indicate that the presented estimator outperforms the competing estimators.

INDEX TERMS DFT, DTFT, frequency estimation, MSD window.

I. INTRODUCTION
Frequency estimation of sinusoid is an essential subject in the
area of signal processing, and it is widely used in communi-
cations, radar signal processing, sonar, electronic measure-
ment, power systems and so on. For instance, the oscillation
frequency may deviate from the nominal frequency. And the
relative movement between the receiver and transmitter is
common which will lead to Doppler shift. Therefore, car-
rier frequency offset is common in mobile communication
systems. Estimating the carrier frequency offset accurately is
significant for the multicarrier communication systems.
Many researchers have presented their sinusoidal fre-
quency estimators. The sinusoidal frequency estimators are
categorized into two types: algorithms in time domain [1],
[2], [3], [4], [5], [6], [7], [8] and algorithms in frequency
domain [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18]. Algorithms in time domain include maximum likeli-
hood estimators [1], [2], [3], auto-correlation estimators [4],
[5], [6], [7], linear predictions estimators [8] and so on.
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Generally, the common problem of time-domain methods
is that they have relatively high computational complexity
and high hardware requirements. Therefore, time-domain
algorithms are not suitable to be applied for some real-time
applications. Algorithms in frequency domain are more effi-
cient and usually based on DFT. The DFT-based estimators
generally have two steps. Firstly, DFT is performed, and the
coarse estimation is done by finding the discrete frequency
index number of the maximum DFT sample. Next in the
fine estimation stage, several spectrum lines near the max-
imum one are utilized to interpolate the signal frequency.
The existing DFT-based estimators differ from each other
only in the fine estimation. In [9], Aboutanios and Mulgrew
employ the two DTFT spectral lines located at the midpoints
between the maximum DFT sample and its two neighbors.
Candan adopts the maximum DFT spectrum line and two
adjacent DFT spectrum lines in the fine estimation [10]. Liao
and Chen adopts phase correction of DFT coefficients which
removes the phase term to reduce the estimation bias [11].
An asymptotically unbiased method is proposed which uses
hybrid half-shifted and g-shifted DTFT interpolation and can
converge in two iterations [12]. In [13], the maximum DFT
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sample and two DTFT samples which are at any places in the
DTFT main lobe are utilized to realize the fine estimation.

The above algorithms [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18] perform
frequency estimation in white noise by using rectangular
window. When interfering signals exist besides white noise,
the sinusoid can be weighted by non-rectangular windows
to reduce the impact of the interfering signals. In recent
years, several estimators based on non-rectangular windows
have been presented [17], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28]. Based on the estimator in [10], Candan
proposes to estimate the frequency by using an arbitrary
non-rectangular window [19]. In [20], a generalization of the
algorithm in [9] is presented (called IpDTFT-NR algorithm).
It is based on MSD windows and suppresses the noise maxi-
mally for frequency estimator by DTFT interpolation. In [21],
Belega generalizes the methods in [9] and [10] to the situation
when the received sinusoid is multiplied with MSD win-
dows. The PSF-IpDFTc and the HPSF-IpDFTc algorithms
based on Hanning window are presented to estimate the fre-
quency of noisy and noisy harmonically distorted sinusoidal
signals, respectively [22]. The Parabolic Interpolated DTFT
(PIpDTEFT) algorithm is extended to the case when the signal
is weighted by MSD windows and the frequency estimation
accuracy is analyzed [27].

In this article, a sinusoidal frequency estimation algorithm
based on interpolated DFT by using MSD windows is pre-
sented. Firstly, the received sinusoid is multiplied with an
appropriate MSD window. Then DFT is carried out on the
weighted sinusoid. And the position of the maximum DFT
sample is found to acquire the coarse estimation. In the fine
estimation step, the maximum DFT sample and two DTFT
spectral lines which are on the same side of the maximum
DFT sample are adopted. MSE formulas of the presented
estimator in additive white noise are derived. Simulation
experiments are carried out, and the results indicate the per-
formance of the presented algorithm is better than that of the
competing estimators.

The remaining parts of the article are arranged as follows.
In Section II the presented estimation algorithm based on
MSD windows is given and the MSE formulas in additive
white noise are derived. Section III contrasts the present
algorithm with the competing algorithms and the Cramer-
Rao lower bound (CRLB). At last, Section IV draws the
conclusion of the article.

Il. PROPOSED ESTIMATOR AND MSE

A. PROPOSED ESTIMATOR

In this part, a frequency estimation algorithm of sinusoid
based on MSD windows is presented. The sinusoidal signal
is [11]

x [n] = s[n] +z[n]
= ACTfs+00) 4 210 n=0,1,...,N—1 (1)

where s[n] is the received sinusoid to be estimated. z[n] is
additive white noise, with variance o2 and mean value zero.
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fs is the frequency of sampling, and N is the number of
samples. A, fo and 6y denote the amplitude, frequency and
initial phase of the sinusoid respectively.
In a noiseless case, we perform N-point DFT of the sinu-
soid s[n], and have [14]
N-1
S[m+k] = ZAej(anon/fﬁ—@o)e—jZnnk/N
n=0
Asin [ (8 — k)]
sin[7(8 —k)/N]’
k=0,1,....N—1 (2)

— 00 g M 6k

where m is the discrete frequency index value of the maxi-
mum DFT sample. § represents the relative frequency devi-
ation between the maximum DFT sample and the signal
frequency, § € (—0.5,0.5). Af = fs/N is the frequency
interval between two adjacent DFT samples. We can express
the sinusoidal frequency as fo = (m + §) Af. At the coarse
stage, we need to search the position of the maximum DFT
sample S[m]. For the convenience of expression, S[m + k]
is denoted as Si. Then the expression of the maximum DFT
sample is

S[m] = Sy = e/lfotmé(1-1/N)] z.4$1n(71’5) 3)
sin (w8/N)

In the next step, the fine estimation of fy is actually to
estimate the relative frequency deviation §. We use the max-
imum DFT sample So and two DTFT samples So.1 and Sg2
(or S_p.1 and S_g) to obtain the fine estimate. The DTFT
sample value at the location f = (m + g)Af is written as

5 _ olto-m(g-5)31-1/ny Asin (T(g — 9)) @)
! sin (77 (q — 8)/N)
Substituting ¢ = 0.1 and 0.2 into the above formula

respectively, the expressions of the two DTFT spectrum lines
So.1 and Sp > can be written as

(67 (0.1=8)(1—1/N)] Asin (7 (0.1 —§))

sin (7 (0.1 — 8)/N)

Sop = -7 O2-8)(1-1/N)] Asin (7t (0.2 — §)) ©)

' sin (7 (0.2 — 8)/N)
Then the absolute values of Sy, So.; and Sp» are utilized
to deduce the estimation formula of §. After some derivation,

&)

Soq = ¢

we get
|S0.1] _ sin(0.17) cot(r§) — cos(0.17) @
ISol sin(0.1w/N) cot(w8/N) — cos(0.1x /N)
1S0.2| sin(0.27) cot(;r §) — cos(0.27) @®)

ISol sin(0.2w /N) cot(r6/N) — cos(0.2w /N)
From (7) and (8), we have derived in (9), as shown at the
bottom of the next page.
The estimation expression of § is written in (10), as shown
at the bottom of the next page.
When using the two DTFT samples S_q.1 and S_g > located
on the left of the maximum DFT sample, after similar deriva-
tion, we can obtain in (11), as shown at the bottom of the next

page.
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In a more general case, we can use the spectral lines So, S;/2
and §; to estimate the frequency (the variable i € [—1, 1]).
After similar derivation as above, we have derived in (12), as
shown at the bottom of the page.

The frequency estimation RMSEs of the above estimator
versus |i| are shown in Fig. 1 for N = 16 and SNR = 20dB.
li| varies from 0.02 to 1 with a step of 0.02. The RMSEs
are normalized to the square root of the CRLB (RCRLB).
When the frequency, amplitude and initial phase of a complex
sinusoidal signal are unknown, the CRLB can be written
as [1]

37
27IN(N2 —

CRLB = min var(f) = (13)

1) - SNR

It can be seen that when |§| = 0.05 and |i| < 0.2, RMSEs
of the proposed estimator are very close to the RCRLB.
Therefore, we can perform the preliminary fine estimation
of § with a certain method firstly. Then with the value of
the preliminary estimate, we can determine which of the
estimation formula ((10) or (11)) should be used and the
complex values of the three spectral lines used by the final
fine estimation can be renewed. The residual value of |§| in
the final fine estimation will be very small. This situation is
very similar to the results shown by the RMSEs curve for
|6] = 0.05 in Fig. 1. When |§| = 0.05, the performance for
lil < 0.2 is almost unchanged and is much better than the
performance for |i| > 0.2. Therefore, we choose |i| = 0.2 in
our method.

Next, we extend the above rectangular windowing estima-
tion algorithm to the case of MSD windowing. The MSD
window is also known as the Rife-Vincent class I window,
belonging to the sin®(x) window for « = 0,2,4, ... [26].
Among all H-term cosine windows, the sidelobe decay rate of

5] = 0.05
6] =0.15
5] =0.25
51 =0.35
6] = 0.45

RMSE/RCRLB

. . .
0 0.1 0.2 0.3

FIGURE 1. RMSEs of proposed estimator versus |i| (N = 16,SNR= 20dB).

The expression of H-term MSD window is expressed as [21]

H-1 I
= Z (=Day, cos (2771711) ,n=0,1,...,N—1
h=0
(14)

in which H > 1. a;, denotes the coefficient of the window and
can be expressed as [23]

H-1 H—h—1
Con— = Con—s
»H—2 "= ToH3

ap = h=1,2,....,H—1 (15
in which Cé = g!/[(g — D!I']. Tt is worth noticing that for
H =1 the MSD window is actually the rectangular window.

The sampled sinusoid multiplied by an appropriate MSD

window can be written as

MSD window is 6 (2H — 1) dB/octave which is highest [23]. swlnl=s[n]-wn], n=0,1,...,N —1 (16)
(n(S) |So| sin (0.17) + |So.2| cos (013”) sin (0.17) — |So.1| cos (0 1”) sin (0.27)
cot| — | = ©)]
N [So.2| sin (02”) sin (0.17) — |So.1| sin (01”>sin 0.27)
N 1Soalsin (%2%) = 21011 sin (%) cos (0.17)
§=—tan™! (10)
T |So| + |So.2| cos (%) —2|8o.1| cos (%) cos (0.1m)
. N [S_0.2] sin (OT> —218_0.1] sin (OT> cos (0.17)
6 = —tan~ an
™ — S0l = IS_0.2| cos (OT) +21S 04| cos (OT) cos (0.177)
~ N S;| sin 2 |8is2| sin cos (%t
§="2 tan~! |S;il ( ) | l/2| (ZN) (2) _ (12)
T IS0l + 18] cos () — 2 |Si2| cos (3) cos (%)
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The DTFT of s,,[n] is

Sy (1) V) &% (17)

where W (-) is the DTFT of the window function w[n]. And
v = m + § is the number of observed signal cycles. If it is
assumed that N is much larger than 1, then the DTFT of w(n]
is [21]

=AW (A —

H—-1
N A .
W) = % (=D"ay = e~/
h=0
=Wmne ™ n=0,1,...,.N—1 (18)

where
H-1

N A A
sin (JT ) Z —)'a, e (19)
=0

W)=

Calculating the derivative of W (1), we can get

h
W’ ) = N [sm (mA) + wAcos (TA)] Z (1;:2/1
h=0
h
_2_NA2 sin (7T \) Z La;z (20)
—n?

Then we replace the spectral lines in the square brackets
of (10) with the corresponding DTFT spectral lines of the
weighted sinusoid. And we obtain in (21), as shown at the
bottom of the next page, where S,,(m) is the maximum DFT
sample of s,,[n], S\, (m + 0.1) and S,,(m + 0.2) are two DTFT
samples which are located at f = (m + 0.1)Af and f =
(m 4+ 0.2)Af. According to (17), (18) and (19), let A = m,
m+ 0.1 and m + 0.2, we have

Sy (m)| = |A| W (=8) (22)
1S,y (m + 0.1)| = |A| W (0.1 — §) (23)
1S, (m + 0.2)| = |A| W (0.2 — 8) (24)

According to (21)-(24), we get in (25), as shown at the
bottom of the next page.

Then the first-order Taylor series expansions are performed
for W (=8), W (0.1 — 8) and W (0.2 — 8) near 0, 0.1 and
0.2 respectively. And we ignore the higher order terms, then
we have

W (=8) ~ W (0) — W (0)8 (26)
W (0.1 —8) ~ W (0.1) — W (0.1) 8 (27)
W(02-8) ~ W (0.2 —W (0.2)$ (28)

Substituting (26)-(28) into (25), we have derived in (29),
as shown at the bottom of the next page.

According to [21], W’ (0) = 0. After some algebra, the
following formula can be obtained in (30), as shown at the
bottom of the next page.

Then we set

B = W (0.2) sin <%>
N
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TABLE 1. Steps of the presented estimator.

Step Description

1 Multiply the sinusoid with an appropriate MSD window and
get x, [n]:x[n] . w[n],n =0,LK ,N-1

2 Carry out N-point DFT of x, [n], and find m

3 Using the estimator in [23] (i=1), 5:‘,1 is obtained

4 Compute the difference between ‘5'“,1‘ and 0.1, getting
p:‘gwl‘_o'l

5 If §,>0 , compute X, (m+p), X,(m+p+0.1) and

X, (m+0) ix‘ [n]e v

=0

0,=p, p+0.1, p+0.2, and obtain &, via (35) and (21). The
Sf = 5‘w1 _O'1+Sw

o

X, (m+p+02) via

final estimate is
(f=(m+8,-0.1+5,)ar)

6 If 6,<0 , compute X, (m-p) , X,(m—p-0.1) and

. Iy
X, (m+0,)=x,[n]e N
n=0

0,=-p, —p-0.1, —=p-0.2 and get 5‘”, via (36) and (37).
The final 8,=0,+0.1+9,

X, (m-p-02) via

estimate is

(f=(m+8,+0.1+5,)ar)

- AVRE
—2W (0.1) sin <T) cos (0.17) 31D
-, . (O.Zﬂ)
C =W 0.2)sin| —
N
~, R ARE
—2W" (0.1) sin <T> cos (0.17) 32)
- - 0.2
D = W (0)+ W (0.2) cos (T)
- 0.17
—2W (0.1) cos <T> cos (0.1m) (33)
<, (0.271)
E =W (0.2)cos | —
N
0.17
—2W' (0. 1)cos< N >cos 0.1m) (34)

From (30)-(34), the estimation expression for § is
5o YD - B
YE-C

When the maximum DFT sample S,,(m) and the two DTFT

samples S),(m — 0.1) and S,,(m — 0.2) are used, after similar
derivation, we can obtain

(35)

R VD + B
fo_2*8 (36)
VE +C

where (37), as shown at the bottom of the next page.
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The steps of the presented estimator are listed in Table. 1.
In the process of estimating the frequency with the algorithm
in this paper, it is necessary to preliminarily determine which
of the estimation formula (35) or (36) should be used for
the fine estimation. Therefore, we use the estimator in [23]
(i = 1) to acquire a preliminary estimation value 1 of
the relative frequency deviation. Fi- rstly, we multiply the
sinusoid with an appropriate MSD window. Then, we perform
DFT on the weighted sinusoid, and find the position of the
maximum DFT sample to obtain a coarse estimate. With the
value of 8,1, the complex values of the three samples used
by the presented algorithm are renewed. Finally, the fine
estimation is obtained via (35) and (21) when Swl > 0 or
via (36) and (37) when 8,,; < 0.

B. MSE OF §
In this part, the MSE of § via (35) and (21) (or (36) and (37))
in the background of additive white noise is analyzed. The
signal model can be written as

Xy [0l = sy 0]+ 20 [n],n=0,1,...,N—1 (38)

in which z,,[n] = z[n] - w[n].
We perform N-point DFT of x,,[n] and can get
Xwlkl=Swlkl+2Z,[k],k=0,1,....,.N—1 (39)

According to the Appendix, the MSE formulas of the
proposed estimator can be obtained. When é # 0.2, 0.1and 0,

the MSE formula of § via (35) and (21) is derived in (40), as
shown at the bottom of the next page.
When § = 0.2, we use 1in})[sin (x)/x] = 1 for the
x—

calculation of W (0.2 — §) in (40). Then we derived in (41),
as shown at the bottom of the next page.
When § = 0.1, lil%[sin (x)/x] = 1 is used for the
x—

calculation of W (0.1 — §) in (40). Then we derived in (42),
as shown at the bottom of the next page.
When § = 0, we utilize lin}) [sin(x) /x] = 1 for the
x—>

calculation of W (8) in (40). Then we obtain in (43), as shown
at the bottom of the next page.

When § # —0.2,—0.1 and 0, the MSE formula of H
via (36) and (37) is derived in (44), as shown at the bottom of
page.

When § = —0.2, the MSE formula of § via (36) and (37)
is the same as (41). When § = —0.1, the MSE formula of $
is the same as (42) and when § = 0, the MSE formula is the
same as (43).

When N = 16 and SNR = 10dB, the analytical RMSE
is illustrated in Fig. 2. Fig. 2 shows that the analytical RMSE
reaches its minimum around at |§| = 0.05. The minimum val-
ues of RMSE/RCRLB for two-term MSD windowing method
and three-term MSD windowing method are appro-ximately
1.5455 and 2.1555 respectively. The minimum values of the
analytical RMSE of the proposed method via (40)-(43) are
the same as those values via (41)-(44).

The MSE of Swl in the third step of Table. 1 is [23]

1S,,(m + 0.2)| sin (02”) — 218, (m + 0.1)| sin (0 1”) cos (0.177)

o Sl + 1S.m + 0.2)] cos (%3 ) = 218, (m + 0. 1) cos (%) cos (0.17) b
W (0.2 — 8) sin (%) —2W (0.1 — 8) sin (0%) cos (0.177)
y — (25)
W (=8) + W (0.2 — 8) cos (OT) 2W (0.1 — 8) cos (%) cos (0.177)
[W 0.2) — W' (0.2) 3] sin (%) _ [VV ©.1) — W' (0.1) 3] sin (0 1”) cos (0.177)
_ 2
d [VV 0) — W’ (0) 3] T [W 0.2) — W’ (0.2) 5] cos (OT) ) [W ©.1) — W’ (0.1) 5] cos (0 1”) cos (0.177) @
[W(o 2) sm(oT) 2W(0.1) sm(OT) cos(O.ln)]—é[W’(O.Z) sin(0T> —_2W'(0.1) sm(OT) 05(0.171)]

B [W(O)+W(0 2) cos(OT) 2W(O.1) cos(OT) cos(0. 171)] [W/(O.Z) COS(OT) —2W’ 0.1) cos(OT) cos(0. 171)] G0
o 1S,,(m — 0.2)| sin (02”) —218,(m — 0.1)| sin (0 1”) cos (0.177) -

— ISw(m)] = [S.(m = 0.2)] cos (%) + 218, (m — 0.l cos (%) cos (0.17)

95752
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The MSE of the final estimate Sf in the fifth or sixth step Ill. SIMULATION RESULTS

of Table. 1 will be very close to the minimum value of (40) In this part, simulation experiments are conducted, and
or (44). This can be seen in the simulation results of Fig. 5 in the performance of the presented estimation algorithm is
the next section. compared with the competing algorithms. The algorithms
. 2
E [(5 =) ]
2 2
{le o) [(O%D - B) (07 )} T 4|W, (0)] cos? (0.177) [(O'%D - B) _s (%E - C)] W5 (0)] (B — (SC)Z}

2-SNR- {W 02— 5) (%7 c)—2vi/(0.1—(S)cos(o.ln)(%E—c)—W(a)c}2

{4|W2(0.1Af)|cos(0.1n)[Tl - ) ( ”E—C)](B—ao—2|W2(0.2A_f)|[(%D—B)—5(%E—C>](3—5C>}

2.SNR- { (02—5)(T —c)—2vi/(0.1—(S)cos(o.m(%E—c)—W(&)c]2
{4|W2(0.1Af)|cos(0.ln)[( D—B)—s(%E—c)] [(Q%D—B)—s(%E—c)]]

2. SNR- {W(o.z—a) (%E - C) —2W (0.1 — 8) cos (0.17) (%E - C> - W((S)C}2

+

(40)

E [(5 - 8)2]

{|W2 0)] [(%D—B) (02” )} +4|W; (0)] cos? (o.1n)[(%0—3) —02 (%E—c)]zﬂwz (0)|(B—O.2C)2}

~

2-SNR-{0.57 (% E = C) = 2W 0.1 cos (0.17) (HZE =€) = W (02) c}2

N {4 [W5 (0.1AF)] cos (0.177) [(%D - B) - )} (B—0.2C) —2|W (02Af)] [(MD - 3) —02 (%E - c)] B - 0.2C)}

0.1

N E

E—C) 2W(01)cm(01n)(01”E C) W(o.z)c}2

[4|W2(0.1Af)\cos(0171)|:(0T - ) 02 )} [(%D-B)-OQ(%E—C)]} "
E-

c) 2W (0.1) cos (0.177) (Ohl,”E - c) —W(02) 0}2

2(
-SNR- fo.57 (4
2(

2. SNR- {05n( 271

E[(s_aﬂ
{|W2(0)\[(%073)70.1(%E7c)]2+4|W2(0)|cos2(0.1n)[(%1)73) 01(0T fC)]2+|W2(0)|(BfO.lC)2}

~

2-SNR- W (0.1) (%2 E = 2C) — 7 cos (0.17) (S E - )}
{4|W2 (0.1Af)] cos (0.17) [(%D —B) —01 (%E - c)] (B—0.1C) — 2 |W> (0.2Af)] [(OT - ) —01 (%E - c)] (B - 0.10)}
2-SNR- W (0.1) (%2 E = 2C) — 7 cos (0.17) (S E - c)]
[41ws 0147 cos 0.17) [(%32D — B) — 0.1 (% E - ©) ][ (47D - B) - 01 (%ZE - ¢)]]

2-SNR- W (0.1) (%2 E = 2C) — 7 cos (0.1m) (S E - C>}2

+

“42)

E [(5 - 5)2}

{|W2 ) (%D - 3)2 +4|W (O] cos? (0.17) (47D — 3)2 + W2 (0] B2 = 2|W2 0.240)| (°D - B) B}

x

2. SNR- {W 0.2) (%E _ c) —2W (0.1) cos (0.177) (O%E _ c) — 0.5nC}2

{4 IW2 (0.1AF)] cos (0.177) (%D - B) B — 4|W5 (0.1A1)] cos (0.17) (%D - B) (%D - 3)} @)

' 2-SNR- {W (0.2) (%7 E — C) = 2W (0.1 cos (0.1) (%E - C) - o.syrc}2
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Theoretical( two-term MSD window, via (40)-(43) )
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FIGURE 2. Analytical RMSE versus § (N = 16, SNR=10dB).

used for comparison include AM estimator [9], HAQSE
estimator [12], Candan estimator [19], IPDDTFT-NR estimator
[20], MV-IpDTFT(2) estimator [21], MV-IpDTFT(3) estima-
tor [21] and PIpDTFT estimator [27]. The AM and HAQSE
estimator are based on rectangular window, and the other
estimators are based on MSD windows. These experiments
are divided into three cases: noisy sinusoid, noisy sinusoid
affected by single-tone interfering signal and noisy and har-
monically distorted sinusoid. The windows we employ are:
the rectangular window (H = 1, ag = 1), the two-term MSD
window (H = 2, ap = 0.5 and a; = 0.5) and three-term
MSD window (H = 3, ap = 0.375,a; = 0.5 and ap =
0.125). In the simulations, the sinusoid amplitude A = 1, the
initial phase 6y is uniformly distributed on [0, 27 ].

A. NOISY SINUSOID

When SNR = 10dB and N = 16, the theoretical and
simulated RMSEs versus the relative frequency deviation §
are shown in Fig. 3. The theoretical RMSEs are calculated

34r Theoretical ( two-term MSD window, via (40)-(43) )
3.2 Theoretical ( three-term MSD window, via (40)-(43) )
) s Simulated ( two-term MSD window, via (21) and (35) )
3L Simulated ( three-term MSD window, via (21) and (35) )
28

RMSE/RCRLB
NI

N

. L L . . . . . .
-05 -04 -03 -02 -01 0 0.1 0.2 0.3 0.4 0.5

FIGURE 3. Analytical (via (40)-(43)) and simulated (via (21), (35)) RMSEs
versus § (N = 16, SNR=10dB).

according to (40)-(43). § varies from -0.5 to 0.5 with a step of
0.01. For each value of 8, 2000 runs are considered. We can
see that the theoretical RMSEs are in good agreement with
the simulation results.

When all the parameters are the same as Fig. 3, the the-
oretical and simulated RMSEs versus the relative frequency
deviation § are illustrated in Fig. 4. The theoretical RMSEs
are calculated according to (41)-(44). Similar conclusions can
be drawn as Fig. 3.

When SNR = 10dB and N = 16, Fig. 5 shows the RMSEs
of different algorithms with respect to the relative frequency
deviation §. 100,000 runs are considered for each value of
8. It can be observed from Fig. 5 that the RMSE of the
presented estimation method by using rectangular window
is the lowest and closest to the RCRLB. This is owing to
the fact that non-rectangular windowing methods will cause
performance degradation when there are no interference
signals. The performance of the proposed estimator with

E [(5 - 5)2]

~

0.2

2. SNR- {W(02+8)

{|w2 o) [(02”1) B) +6 (0T )]2 4 |Ws (0] cos? (0.177) [(%D - B) 4 (%E - C)]2 T 1W5 (0)] (B + 50)2}
(

C)—2W (0.148)cos (0.17) (HZE—Cc)-W @) C :
N

21 g
N {4|W2 (0.1Af)] cos (0.17) [(MD —B) 4+ (
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{4|W2 (0.1A1)| cos (0.177) [(02”0 B) +3(
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FIGURE 4. Analytical (via (41)-(44)) and simulated (via (36), (37)) RMSEs
versus § (N = 16,SNR=10dB).
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FIGURE 5. RMSEs of different algorithms versus § (N = 16,SNR=10dB).

two-term MSD window and the PIpDTFT estimator
with two-term MSD window are very close to each other.
These two estimators achieve better results than the other
windowing methods. It can also be seen that the RMSEs of the
estimator in [23] (used in the preliminary estimation) increase
with the increase of |§| and are relatively bigger than the other
methods with the same window. The RMSEs of the proposed
estimator based on MSD windows are almost independent
of § and are very close to the theoreti- cal minimum values
returned by (40).

When SNR = 3dB and N = 128, the RMSEs of different
algorithms versus § are shown in Fig. 6. 100,000 runs are
considered for each value of § . We can see from Fig. 6 that
the RMSE of the proposed method with rectangular window
is lower than that of AM method, and higher than that of
HAQSE method. The performance of the presented method
with two-term MSD window and the PIpDTFT estimator
with two-term MSD window are very close to each other.
The RMSEs of these two estimators are lower than those of
the other windowing methods. The RMSEs of the presented
method based on MSD windows are almost independent of &
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FIGURE 6. RMSEs of different algorithms versus § (N = 128, SNR= 3dB).
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FIGURE 7. RMSEs of different algorithms with two-term MSD window
versus SNR (N = 16,5=0.2).

and are very close to the theoretical minimum values returned
by (40).

Fig. 7 compares the RMSEs of different estimators with
two-term MSD window versus SNR when N = 16 and § =
0.2.20,000 runs are considered for each value of SNR. We can
see that the presented algorithm with rectangular w- indow
is the closest to the RCRLB. Among all the algorithms with
two-term MSD window, the presented algorithm can achieve
the best results.

When all the parameters are the same as Fig. 7, the RMSEs
versus SNR of various algorithms with three-term MSD win-
dow are shown in Fig. 8. Similar conclusions can be drawn
as Fig. 7.

B. NOISY SINUSOID AFFECTED BY SINGLE-TONE
INTERFERING SIGNAL

Next, the case of noisy sinusoid affected by single-tone
interfering signal is considered. It is assumed the frequency
of the single-tone interference sinusoid is 6Af higher than
that of the sinusoid to be estimated, and the SIR (signal-to-
interference ratio) is 3dB. The initial phase of the interfering
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FIGURE 8. RMSEs of different algorithms with three-term MSD window
versus SNR (N = 16,5=0.2).
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FIGURE 9. RMSEs of different algorithms with two-term MSD window
versus SNR (N = 16, § = 0.2, SIR = 3dB).

signal is uniformly distributed on [0, 27]. 20,000 runs are
considered for each value of SNR.

When N = 16 and § = 0.2, the RMSEs versus SNR
of various algorithms are shown in Fig. 9. It can be noted
that the RMSE of the presented estimation method by using
two-term MSD window is closer to the RCRLB than the
other algorithms. When the SNR is higher than 15dB, the
presented algorithm based on rectangular window gradu-
ally moves away from the RCRLB. Therefore, when single-
tone interfering signal exists besides white noise, windowing
methods can reduce the impact of the interference sinusoid
on the desired sinusoid.

The RMSEs versus SNR of various methods by using
three-term MSD window are illustrated in Fig. 10. When
all the parameters are the same as Fig. 9, Fig. 10 illustrates
that the performance of the presented algorithm based on
three-term MSD window is better than that of the other
methods based on three-term MSD window and the pre-
sented method with rectangular window. Therefore, when
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FIGURE 10. RMSEs of different algorithms with three-term MSD window
versus SNR (N = 16,5 = 0.2, SIR = 3dB).
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FIGURE 11. MSEs of the presented and Candan estimator versus the
number of observed cycles v (N = 128, SNR = 20dB,THD = 60%).

single-tone interfering sinusoid exists besides white noise,
windowing methods have to be preferred.

C. NOISY AND HARMONICALLY DISTORTED SINUSOID

In the simulations of this part, it is assumed that there are
the 2nd, 3nd and 4th harmonics. And the amplitude ratios of
the harmonics are 4:2:1. We assume that the Total harmonic
Distortion (THD) is equal to 60%. The initial phases of the
harmonics are uniformly distributed on [0, 27 ]. The value
of the number of observed cycles v varies in [2.54, 12.04]
and the step is 1 / 12. For each value of v, 20,000 runs are
considered.

Fig. 11 illustrates the MSEs of the presented and Candan
estimator versus v when N = 128, SNR = 20dB. When
v is in range of [2.75,3.21) or [3.65, 4.15), it is noticed
that the MSE of Candan estimator based on two-term MSD
window is lower than that of the other methods. And we also
observe that the MSE of the presented algorithm is lower
than that of the other windowing methods when v is in range
of [3.21, 3.65) or [4.15, 12.04]. We can see evidently from
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FIGURE 12. MSEs of presented and IpDTFT-NR estimator versus v
(N = 128,SNR = 20dB, THD = 60%).
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FIGURE 13. MSEs of the presented and MV-IpDTFT(2) estimator versus v
(N = 128,SNR = 20dB, THD = 60%).

Fig. 11 that the presented algorithm with rectangular window
fluctuates greatly. For the same algorithm, the estimation
performance with two-term MSD is better than that based
on three-term MSD window. As v increases, the performance
of the estimation methods by using MSD windows gradually
tend to be stable.

The performance of estimator in this paper and
IpDTFT-NR estimator are illustrated in Fig. 12 for N = 128,
SNR = 20dB. As can be noted from Fig. 12, the performance
of the presented estimator by using two-term MSD window
outperforms the other windowing estimators when v > 5.14.
When v < 5.14, the presented estimator with two-term MSD
window and IpDTFT-NR estimator with two-term MSD
window can alternately achieve better results than the other
algorithms.

Fig. 13 shows the MSEs of the presented and
MV-IpDTFT(2) estimator versus v when N = 128 and
SNR = 20dB. We can obtain that the presented method
with two-term MSD window and MV-IpDTFT(2) method
with two-term MSD window can alternately achieve better
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FIGURE 14. MSEs of the presented and MV-IpDTFT(3) estimator versus v
(N = 128,SNR = 20dB, THD = 60%).
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FIGURE 15. MSEs of the presented and PIpDTFT estimator versus v
(N = 128,SNR = 20dB, THD = 60%).

results than the other algorithms when v < 5.12. When
v > 5.12, the MSE of the algorithm we present by using
two-term MSD window is lower than the other windowing
methods and should be preferred. The MSE of the presented
rectangular windowing method fluctuates greatly. And it is
worth noting that the estimation method with two-term MSD
window achieves better results than the same method with
three-term MSD window.

Fig. 14 shows the MSEs of the presented and
MV-IpDTFT(3) estimator versus v for N = 128, SNR =
20dB. When all the simulation parameters are the same as
Fig. 11, itcan be seen that the performance of MV-IpDTFT(3)
method is very close to that of Candan method. Therefore,
we can obtain similar conclusions as Fig. 11.

When N = 128 and SNR = 20dB, the MSEs of the
presented and PIpDTFT estimator versus v are shown in
Fig. 15. We can see that the performance of the PIpDTFT
method is poor when || is close to 0.5. The MSE of the
presented rectangular windowing method fluctuates greatly.
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TABLE 2. Computational requirements of different estimators.

Estimators mui;;riliglaet?ons Complex additions
Proposed (N/2)log, N +3N Nlog, N +3N -3
AM [9] (N/2)log, N +4N +2 Nlog, N +4N
HAQSE [12] (N/2)log, N +4N +2 Nlog, N +4N

Candan [19]
MV-IpDTFT(3) [21]
IpDTFT-NR [20]
MV-IpDTFT(2) [21]
PIpDTFT [27]

(N/2)log, N +3N +2
(N/2)log, N +3N +2
(N/2)log, N +8N +1
(N/2)log, N + 4N
(N/2)log, N +3N

Nlog, N+3N +3
Nlog, N+3N +3
Nlog, N+8N -6
Nlog, N +4N —4
Nlog, N +3N

The proposed method with two-term MSD window achieves
better results than the other algorithms.

The computational requirements of different estimators are
given in Table. 2. The AM estimator [9], HAQSE estimator
[12], Candan estimator [19], MV-IpDTFT(3) estimator [21],
IpDTFT-NR [20] and MV-IpDTFT(2) estimator [21] are used
in the second iteration. The computational requirements of
the proposed method are almost the same with those of
Candan, MV-IpDTFT(3) and PIpDTFT estimator [27], and
are lower than those of the other estimators.

IV. CONCLUSION

A sinusoidal signal frequency estimator based on interpolated
DFT by using MSD window is proposed in this paper. The
received sinusoid is multiplied with MSD windows to reduce
the impact of the interference signals on the frequency esti-
mation. The maximum DFT sample and two DTFT spectrum
lines which are on the same side of the maximum DFT sample
are utilized in the fine estimation step. MSE formulas of
the presented estimator in additive white noise are derived.
The simulation results show that under the circumstances
of noisy sinusoid affected by single-tone interfering signal,
and noisy and harmonically distorted sinusoid, the estima-
tion method presented in this paper achieves better results
than Candan method, IpDTFT-NR method, MV-IpDTFT(2)
method, MV-IpDTFT(3) method and PIpDTFT estimator.
The impact of the interference signals on the frequency esti-
mation of the received sinusoid can be reduced by using
the presented method. The computational complexity of the
proposed method is almost the same with that of Candan,
MV-IpDTFT (3) and PIpDTFT estimator, and is lower than
that of the other competing estimators.

APPENDIX
The MSE formula of § via (35) and (21) in the background of
additive white noise is deduced firstly.

The amplitude of the DTFT of x,,[n] is expressed as [23]

X ~ A+ Re (e ) =ar + U @6)

95758

where Ay, ¢y are the amplitude and phase of the DTFT of
swln]. Zg is the DTFT of z,[n] and Uy is the real part of
Zpe

For the convenience of expression, when f = mAf, (m +
0.1)Af and (m+ 0.2) Af, the amplitudes of the three spectral
lines |Xmaf|, [Xonto.nar| and |Xgnro.2)ar| are denoted as
|Xol, |Xo.1] and |Xp2|. Then we can get

|Xol ~ Apar + Unap = Ao + Up 47

1X0.11 = Agnro.nar + Umro.nar =Ao1 + Up (48)

X021 = Agnro2)ar + Umro2)ar =Ao2 + Upz (49)

where Apafr, Am+0.1)ar and Agnro.2)ar are denoted as A,

A0_1 and A().z respectively. UmAf, U(m+0.l)Af‘ and U(m+0.2)Af
are denoted as Uy, Uy, and Uy > respectively.

In additive noise background, we replace |[S,,(m)|,

|Sy(m + 0.1)| and |S,,(m + 0.2)] in (21) with | Xp|, |Xo.1| and

|X0.2|. Then we have

Y

|Xp.2| sin (%) —21Xp.1] sin (%) cos (0.17)

a |Xo| + |Xo.2| cos (%) —21Xp.1] cos (%) cos (0.17)
(50)

Then (35) can be written as
YD—B LiD—LB
YE-C LE-LC

where L; and L, are the numerator and denominator of Y
respectively. Then the numerator of § can be written as

§=

(D

LD — LB

- [lXo o sin (%> —2|Xol sin <ﬁ) cos (0.1;1)} D
: N : N
- [|X0| + |Xo0.2| cos <%>
N

—21Xo.1| cos <%> cos (0.171):| B 52)

By substituting (47)-(49) into (52) and we have

LiD—I[»B

. (027 0.27
= |Aga2|sin|{ ——)D—cos| — | B
N N
. (0.7 0.1x
—2Ap.1cos (0.1z) [sin{ — | D —cos{ — | C
N N

—ApB]

o . (027 D 0.2 B
0.2 | sin N cos N
. (0.1x 0.1m
—2Up.qcos(0.1m){sin| — )D—cos| — | C
N N

—UoB] (53)
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Similarly, the denominator of (51) can be expressed as

L\E—-I,C

[ () (8))

0.1
—2A¢.1 cos (0.17) (sin (_n) E
N
0.1m
—cos| — ) C ) —-ApC
N
1oy ((sin 0.27 E — cos 0.27 c
1 — — —
02 N N

0.1
—2Up.1 cos(0.17) (sin (%) E

Ceos (217 ¢ —UC] 54
COS(T) ) 0 (54

Substituting (53) and (54) into (51), after some derivation
in (55), as shown at the top of the previous page.

Under high SNR, we derived in (56), as shown at the top
of the previous page.

The equation (55) is expanded by the first order Tay-

Substituting (59) in (58), we derived in (60), as shown at
the bottom of the page.

Formula (60) can be written in (61), as shown at the bottom
of the page.

When N is much larger than 1, we have cos(0.27 /N) =~
1, cos(0.1r /N) ~ 1, sin(0.27 /N) =~ 0.271/\7 and
sin(0.17 /N) ~ 0.1z /N. Then we can obtain in (62), as
shown at the bottom of the page.

We consider the denominator of (62) first. As A; can be
expressed as A; = AW(i — §) and W(-) is an even function,
we can obtain

0.2
Aoa (222 E — ¢
[ 02 ( N )
0.1 2
—240,; cos (0.17) (T”E - c) - AOC}
_ 0.2
— A2 [W 0.2 — ) (T”E _ c)

N 0.17 - 2
—2W (0.1 — §) cos (0.17) <TE - C> — W) c}

lor series and the higher-order terms are ignored. Then (63)
we derived in (57), as shown at the top of the previous page. )
Under high SNR, the third term is much larger than the ~ Then we consider the numerator of (62) as follows
fourth term in (57). Therefore, we ignore the fourth term in
the above equation and can obtain in (58), as shown at the top E { [Uo.z ((0.271’ D— B) _s <0.2n E_ C))
of the previous page. N N
Using Ag = Sy(m),Ao.1 = Syw(m+0.1)and Agp = Sy(m+ 0.17
0.2)in (35), we getin (59), as shown at the bottom of the page. —2U0.1 cos (0.17) N D—-B
Apa (sin (% D — cos (%) B) —2A¢.1 cos (0.17) (sin (%) D — cos (%) B) — AoB
8= (59)
Ao (sin (% E — cos (%) C) —2Ap.1 cos (0.17) (sin (ﬂ> E — cos (%) C) —ApC

) — 2Up.1 cos(0.17) (sin O'%

B ) )
E — cos (%) C) — 2A¢.1 cos(0.17) (sin %) E — cos %) C) —ApC

Uy (sin (%
8
0.2

) 22) C) = 2Ug.1 cos0.17) (sin (%7 ) E = cos (%) €) = UoC .
Ago (sin ( : ”) E — cos (%) C) — 2A0.1 cos(0.17) (sin ( ( ) C)

R Uoo [(sin %) D — cos (%
§—68 =
T

) %
Apa (sin (%) E — cos (%) C) —2A¢.1 cos (0.1m) (sin (% E — cos (O%) C) —ApC
)

20,1 cos (0.17) [(sin (m
0

Aoz (sin (%) E — cos (%) €) = 2401 cos (0.17) (sin (%42 ) E = cos (%2 ) € ) — 40C

E {[UM ((%D — B) —5 (%E - c)) — 2Up; cos (0.17) ((O'%D - B) —s (O%E - c)) — Uy (B — SC)]Z}

(62)

95760

[Ao,z (%E - C) — 2Ap.1 cos (0.1m) (%E _ C) —AoC]z
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0.1m 2
-5 (TE - c)) —~Up(B— (SC)}
5 [(0.2n ) (O.er )T
—E U |(—=—D-B)-8(—E-C
N N

0.17 0.17 2
4U?2  cos? (0.1 ~——D-B|-§|—E-C
#4053 o8 01|70 8) -5 (P76 - )
+UZ (B —8C)?

0.2m 0.2

0.1 0.1
F4UoUp 1 cos 0.177) [(T”D - B) ) (T”E—c)]

(B—-46C)

0.1w
—4Up2Uo.1 cos (0.17) | | ——D — B

Sl (o)

0.2
(25| o
N
The autocorrelation function of Uy is [23]
o2
E(Up, Up) = - [Wa(fi — f2)l
0_2 N-1 ]
== Z w2 (n)e PTi—RTn/N - (g5
n=0
Then we have
o2
E (Uo2lo) = > |W2 (0.2A1)] (66)
o2
E (Uo2Uo.1) = E (Up.1Uop) = > W2 (0.1A1)] (67)
2
2\ _ 2 _ 2\ _ %"
E (Uo) =E (U0.1) =E (Uo.z) =5 W2 0)]
(68)

By substituting (63)-(68) into (62), we obtain the MSE
formula (40).

After similar derivation, the MSE formula of § via (36)
and (37) can be obtained as (44).
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