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ABSTRACT In the direction of arrival (DOA) estimation of sparse array received signals, the estimation
accuracy of the grid search method in compressed sensing is improved with the increase of over-complete
redundant dictionary elements. However, the increase of over-complete redundant dictionary elements will
lead to a significant increase in the computational complexity of this method. In order to reduce the
computational complexity caused by over-complete redundant dictionary division, based on the equivalent
received signal of large aperture continuous difference co-array generated by sparse array, a DOA estimation
method using discrete Fourier transform (DFT) spectrum of signal for initial estimation is proposed in this
paper. After obtaining the DFT spectrum of the equivalent signal, based on the correspondence between the
DFT spectrum and the actual angle value, this paper proposes a new strategy for dividing the over-complete
redundant dictionary. In the process of fine angle search, this paper applies Taylor expansion to orthogonal
matching pursuit (OMP) algorithm to obtain higher estimation accuracy. Numerical simulation results
demonstrate the advantages of the proposed estimation method over the other methods.

13 INDEX TERMS Array signal processing, sparse array, DOA estimation, difference co-array.

I. INTRODUCTION14

As an important branch of array signal processing, direction15

of arrival (DOA) estimation is widely used in wireless com-16

munication, radar, sonar, unmanned vehicles [1], [2], [3], [4]17

and other fields. Experts and scholars from various coun-18

tries have studied a large number of high-resolution esti-19

mation algorithms for uniform linear array (ULA), such as20

multiple signal classification (MUSIC) algorithm [5], esti-21

mating signal parameter via rotational invariance techniques22

(ESPRIT) [6] and their improved algorithms [7], [8], [9].23

However, ULA consists of several sensors, the spacing of24

which does not exceed half wavelength of impinging signal,25

and there is a large mutual coupling interference between26

them [10], [11]. In addition, the number of sources estimated27

by ULA cannot exceed the total number of sensors. If a large28

number of sources are estimated, it can only be achieved29

by increasing the number of array sensors, which obviously30

brings an increase in the cost of array design.31

The associate editor coordinating the review of this manuscript and
approving it for publication was Manuel Rosa-Zurera.

The sensor spacing of sparse array is not limited by the 32

half-wavelength of the received signal, and compared with 33

ULA, it can provide a larger array aperture in the case of fewer 34

array sensors, thus achieving higher DOA estimation accu- 35

racy. At the same time, the co-array obtained by difference 36

of sparse array has more virtual sensors than the actual num- 37

ber of physical sensors, which can provide greater degrees 38

of freedom and increase the number of estimable sources. 39

In addition, under the same array aperture, the number of 40

sensors of sparse array is obviously less than that of ULA, 41

which greatly reduces the cost of array design. Therefore, 42

sparse array design and DOA estimation methods based on 43

sparse array have been widely concerned by experts and 44

scholars at home and abroad. A large number of sparse array 45

structures have been proposed, such as minimum redundant 46

array (MRA) [12], nested array (NA) [13], coprime array 47

(CA) [14] and various improved array structures [15], [16], 48

[17], [18]. At the same time, a series of algorithms to solve the 49

problem of sparse array DOA estimation, such as subspace 50

algorithms based on spatial smoothing (SS), like SS-ESPRIT 51

algorithm [19], algorithms based on DFT method [20], [21] 52
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and algorithms based on compressed sensing method [22],53

have been proposed and improved successively, which form54

the theoretical basis of sparse array DOA estimation.55

In [19], an equivalent single snapshot received data of a56

difference co-array is constructed by using the covariance57

matrix of the received signal, and the full rank semidefinite58

covariance matrix is constructed by using the spatial smooth-59

ing method for the received data. The subspace class algo-60

rithm can be used to estimate the DOA of the sparse array.61

However, spatial smoothing reduces the degree of freedom62

(DOF) of the sparse array by nearly half, which affects the63

maximum number of estimable sources. The conventional64

DFT estimation algorithm proposed in [20] was initially used65

to solve the problem of DOA estimation of single snapshot66

received data from large-scale ULAs. Because sparse arrays67

can obtain co-arrays whose continuous array sensors aremore68

than the physical array sensors by differencemethod, theDFT69

algorithm is also extended to the DOA estimation of sparse70

arrays. However, the conventional DFT estimation algorithm71

uses the method of phase deflection to finely search the72

angles, whose estimation accuracy will no longer improve73

with the decrease of the search step when it reaches the upper74

limit. Reference [21] proposes an improved DFT algorithm75

by Taylor expansion of the expression of the co-array equiv-76

alent received signal, combined with the total least squares77

(TLS) method. This algorithm avoids the fine search of angle78

and achieves higher accuracy than the conventional DFT esti-79

mation algorithm, but the performance of this algorithm is80

poor under a large number of snapshots. In recent years,81

the algorithms based on compressed sensing is the research82

hotspot of DOA estimation of sparse array. Reference [22]83

applies OMP algorithm to DOA estimation. By dividing the84

over-complete redundant dictionary and using all virtual sen-85

sors of difference co-array, it gives full play to the high DOF86

of sparse array structure. However, the estimation accuracy of87

the algorithm is related to the search step. The acquisition of88

high estimation accuracy means more precise step, but also89

brings higher computational complexity.90

In order to take advantage of the high estimation accuracy91

of the compressed sensing algorithm and avoid the increase of92

computational complexity caused by the fine division search93

step, in this paper, we propose a DOA estimation algorithm94

based on the sparse array that can generate large aperture dif-95

ference co-array: Firstly, the low complexity DFT algorithm96

is used to estimate the DOA of the received signal, and the97

initial estimation result with large error is obtained; Then,98

based on the uneven distribution of data points and angle99

values in DFT spectrum, a basic over-complete redundant100

dictionary division strategy is proposed to construct a reason-101

able complete over-complete redundant dictionary; Finally,102

through an improved OMP algorithm based on the complete103

over-complete redundant dictionary, the final DOA estima-104

tion is obtained.105

The remainder of this paper is presented as follows.106

Section II introduces some preliminaries. Steps of the pro-107

posed DOA estimation method are elaborated in Section III.108

Section IV compares and analyzes the computational com- 109

plexity of various sparse array DOA estimation algorithms. 110

Section V presents the results of the numerical simulation 111

experiments. Section VI summarizes the whole paper. 112

II. PRELIMINARY 113

A. SPARSE ARRAY RECEIVED SIGNAL MODEL 114

Suppose that K independent far-field narrowband signals are 115

received by a sparse array at the power {σ 2
1 , σ

2
2 , . . . , σ

2
K } 116

from the direction of {θ1, θ2, . . . , θK }, respectively. If the 117

array sensor position set of a sparse array is recorded as 118

D = {d1, d2, . . . , dM }, where M is the total number of array 119

sensors, the received signal can be expressed as 120

X(t) = AS(t)+ N(t), (1) 121

where the array manifold matrix A can be expressed as 122

A = [aD(θ1), aD(θ2), . . . , aD(θK )], (2) 123

aD(θk ) =
[
1, e−jπd2 sin(θk ), . . . , e−jπdM sin(θk )

]T
. (3) 124

The signal vector S(t) is 125

S(t) = [S1(t), S2(t), . . . , SK (t)]T , (4) 126

where t = 1, 2, . . . , J , J represents the snapshots. 127

And the noise vector N(t) is 128

N(t) = [N1(t),N2(t), . . . ,NM (t)]T . (5) 129

In AWGN channel, the noise component satisfies the Gaus- 130

sian distribution with mean value 0 and variance σ 2
n . 131

Next, because the source signals are uncorrelated with each 132

other and they are uncorrelated with noise, the covariance 133

matrix RX of the received signal is calculated by 134

RX = E[XXH ] = ARSAH + σ 2
n IM , (6) 135

where RS = diag
[
σ 2
1 , σ

2
2 , . . . , σ

2
K

]
. The column vectoriza- 136

tion of RX can be obtained as 137

Z = vec(RX ) = (A∗ ◦ A)p+ σ 2
n en, (7) 138

where p = [σ 2
1 , σ

2
2 , . . . , σ

2
K ]

H , en = vec(IM ). Define B = 139

A∗ ◦ A, and ◦ represents the Khatri-Rao product, then 140

B = [b(θ1), b(θ2), . . . , b(θK )], (8) 141

b(θk ) = [e−jπ (d1−d1) sin(θk ), e−jπ (d2−d1) sin(θk ), 142

. . . , e−jπ (dm−dn) sin(θk ), . . . , e−jπ (dM−dM ) sin(θk )]T . 143

(9) 144

As a result, the position difference set of physical array sen- 145

sors is defined as 146

Dv = {dm − dn|dm ∈ D, dn ∈ D}. (10) 147

In this case, the elements in the set Dv are regarded as the 148

sensor positions of a virtual linear array, and Eq.(7) can be 149

regarded as the received signal vector on the virtual array Dv. 150
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FIGURE 1. Structure of NA.

B. NESTED ARRAY151

The DOA estimation method proposed in this paper is suit-152

able for sparse arrays which can generate continuous dif-153

ference co-array with large aperture. The more continuous154

virtual array sensors can be generated by the array, the better155

the DOA estimation performance of the method is. In order156

to facilitate the experimental simulation, the classical NA is157

chosen in this paper. This subsection gives a brief introduction158

to NA.159

As shown in Figure 1, NA consists of two ULAs.160

Suppose that the sensor number of two ULAs are M1 and161

M2 and the sensor spacing is l1 and l2, respectively. l1 equals162

half-wavelength of the received signal, l2 = (M1+1)l1. Then163

the set of sensor positions of NA can be expressed as164

LNA = {m1l1|m1 = 1, 2, . . . ,M1}165

∪ {m2l2|m2 = 1, 2, . . . ,M2}. (11)166

According to [13], for an NAwith total sensor number equals167

toM , the optimal array arrangement and the available differ-168

ence co-array aperture size are shown in Table 1.169

TABLE 1. Sub-array sensor numbers and difference co-array aperture size
of the M-sensor NA.

C. CRAMER-RAO BOUND OF SPARSE ARRAY DOA170

ESTIMATION171

The Cramer-Rao Bound (CRB) of sparse array DOA estima-172

tion has been fully studied and discussed in many existing173

literatures. According to [23], [24], it can be expressed as:174

CRBθ =
1
N
(MH

θ 5
⊥

MS
Mθ )−1, (12)175

where,176

Mθ = (RT⊗R)−
1
2 ȦdP, (13)177

MS = (RT⊗R)−
1
2
[
Ȧd i

]
, (14)178

5⊥MS
= I −MS (MH

S MS )−1MH
S , (15)179

and,180

Ȧd = Ȧ
∗
�A+ A∗�Ȧ, (16)181

Ȧ =
[
∂a(θ1)
θ1

,
∂a(θ2)
θ2

, . . . ,
∂a(θK )
θK

]
. (17) 182

Based on the above, the CRB of DOA estimation using sparse 183

array can be easily obtained. 184

III. THE PROPOSED DOA ESTIMATION METHOD 185

The DOA estimation method proposed in this paper firstly 186

performs DFT on the received signal of the equivalent 187

continuous difference co-array obtained by vectorizing the 188

covariance matrix of the received signal to acquire the 189

initial estimated value of DOA; secondly, within a small 190

angle range around each initial estimated value construct a 191

basic over-complete redundant dictionary, and combine all 192

the obtained basic over-complete redundanct dictionaries to 193

form a complete over-complete redundant dictionary; finally, 194

based on the received signal of the equivalent difference co- 195

array, an improved OMP algorithm is used to fine-search the 196

angles, and the final DOA estimation results are obtained. The 197

flow of proposed method is as follows. 198

A. DOA INITIAL ESTIMATION BASED ON DFT 199

The equivalent received signal of the continuous difference 200

co-array part is intercepted from the difference co-array 201

equivalent received signal Z obtained from Eq.(7) to acquire 202

the vector Z1, which is expressed as 203

Z1 = B̃p+ σ 2
n ẽn. (18) 204

where, ẽn is the noise corresponding to the equivalent signal 205

received by the continuous difference co-array, and the array 206

manifold matrix B̃ is 207

B̃ = [b̃(θ1), b̃(θ2), . . . , b̃(θK )], (19) 208

b̃(θk ) = [1, e−jπd sin θk/λ, . . . , e−jπ (Tc−1)d sin θk/λ]T , (20) 209

where, d is the sensor spacing of the continuous difference 210

co-array, which is equal to half the wavelength λ of the signal 211

received by the array, and Tc is the sensor number of the con- 212

tinuous difference co-array. Therefore, b̃(θk ) can be reduced 213

to 214

b̃(θk ) = [1, e−jπ sin θk , . . . , e−jπ (Tc−1) sin θk ]T . (21) 215

The normalized matrix F of DFT is expressed as 216

F =
1
√
Tc


W 1
Tc W 2

Tc . . . W
Tc
Tc

W 2
Tc W 1

Tc . . . W
2Tc
Tc

. . . . . . . . . . . .

W Tc
Tc W

2Tc
Tc . . . W Tc2

Tc

 , (22) 217

where the element of the p-th row and q-th column is 218

W pq
Tc = e−j

2π
Tc
pq. 219

β̃(θk ) can be obtained by DFT of array flow pattern vector 220

b̃(θk ), which is expressed as 221

β̃(θk ) = Fb̃(θk ). (23) 222
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where the q-th element is223

[β̃(θk )]q=
sin[Tc2 (

2π
Tc
q+π sin θk )]e

−j Tc−12 ( 2πTc q+π sin θk )

√
Tc sin[ 12 (

2π
Tc
q+π sin θk )]

. (24)224

It can be seen from Eq.(24) that only when qk =225

−Tc sin θk/2 is an integer, β̃(θk ) has and only the qk -th ele-226

ment is not zero, then all the power of the signal is concen-227

trated at the qk -th point of the DFT spectrum, and the DOA228

estimation of θk can be obtained directly from the position of229

that point.230

However, in practice, qk is not an integer in most231

cases, and the signal power will be leaked from the232

(−Tc sin θk/2)-th point to the surrounding points and it will233

appear on the DFT spectrum that several elements adjacent234

to qk are not zero, and the remaining elements are close to235

zero. Therefore, the θk can be initially estimated by finding236

the peak position qk of the non-zero elements in β̃(θk ).237

Since the angles of source signals are unknown quantities,238

the array flow pattern vector b̃(θk ) cannot be obtained directly,239

and the angles estimation can only be obtained by perform-240

ing DFT transformation on Z1. Assuming that y = FZ1 is241

obtained by performing DFT transformation on the equiva-242

lent received signal of the continuous difference co-array. The243

positions of the large peaks are found in the DFT spectrum,244

which are marked as q̃k , and the number of the peaks equal to245

the source signal number K . Then the initial DOA estimation246

is expressed as247

θ̃k = arcsin(−2q̃k/Tc), k = 1, 2, . . . ,K . (25)248

B. OVER-COMPLETE REDUNDANT DICTIONARY DIVISION249

STRATEGY250

Because the corresponding angle difference between any251

point in the DFT spectrum and its previous point and252

the corresponding angle difference between this point and253

its latter point are not equal, a simple average allocation254

strategy cannot be adopted to determine the range of the255

basic over-complete redundant dictionaries around the ini-256

tial estimation angles. In this section, a division strategy of257

over-complete redundant dictionary is designed as follows.258

It is known that the peak position of the k-th angle of source259

signals is q̃k . Take the two adjacent locations q̃k − 1 and260

q̃k + 1 and calculate their corresponding angles, which are261

recorded as262 {
φk = arcsin[−2(q̃k − 1)/Tc]
ψk = arcsin[−2(q̃k + 1)/Tc].

(26)263

Then, the range of the basic over-complete redundant dic-264

tionary obtained by θ̃k is [ θ̃k+φk2 ,
θ̃k+ψk

2 ]. By combining K265

basic over-complete redundant dictionaries, the complete266

over-complete redundant dictionary needed for accurate esti-267

mation is obtained as268

2G = {[
θ̃1 + φ1

2
,
θ̃1 + ψ1

2
], [
θ̃2 + φ2

2
,
θ̃2 + ψ2

2
],269

. . . , [
θ̃k + φk

2
,
θ̃k + ψk

2
], . . . , [

θ̃K+φK

2
,
θ̃K+ψK

2
]}. 270

(27) 271

where G denotes the number of elements in complete 272

over-complete redundant dictionary. Because the range of 273

each basic over-complete redundant dictionary varies, it can 274

be known that the number of elements in them may be differ- 275

ent. Then, the 2G can be abbreviated as 276

2G = {θ̇1, θ̇2, . . . , θ̇G}. (28) 277

C. ACCURATE ESTIMATION BASED ON IMPROVED OMP 278

ALGORITHM 279

The extended flow pattern matrix A2G is constructed accord- 280

ing to 2G, that is, 281

A2G = {aDv (θ̇1), aDv (θ̇2), . . . , aDv (θ̇G)} 282

= {e−j2πdv sin θ̇1/λ, e−j2πdv sin θ̇2/λ, . . . , e−j2πdv sin θ̇G/λ}. 283

(29) 284

where dv is a column vector indicating the position of differ- 285

ence co-array sensors. The signal model shown in Eq.(7) can 286

be transformed into a sparse representation problem, that is, 287

Z = A2Gp2 + σ
2
n en. (30) 288

where p2 ∈ RG×1 is a sparse vector with sparse degree K . 289

If there are source signals incident in the θg(g = 1, 2, . . . ,G) 290

direction, then the g-th element of p2 is pg 6= 0, otherwise 291

pg = 0. 292

Taylor expansion is performed on aDv (θ̇k ), when the search 293

step is small, its higher-order term can be ignored, then 294

aDv (θ̇k ) = aDv (ϕk )+
∂aDv (ϕk )
∂ϕk

1ϕk , (31) 295

where 1ϕk = θ̇k − ϕk . Therefore, A2G can be expressed as 296

A2G = A2G (ϕ)+
∂A2G (ϕ)
∂ϕ

1ϕ 297

= A2G (ϕ)+ χϕ1ϕ, (32) 298

where 299

1ϕ = diag{θ̇1 − ϕ1, θ̇2 − ϕ2, . . . , θ̇G − ϕG}. (33) 300

Let pϕ2 = 1ϕp2, then Eq.(30) can be approximately 301

expressed as 302

Z = A2G (ϕ)p2 + χϕp
ϕ
2 + σ

2
n en. (34) 303

Therefore, a sparse reconstruction problem can be obtained 304

as 305

min
v,σ 2n
‖ v ‖1,2 306

s.t.Z = A2G (ϕ)p2 + χϕp
ϕ
2 + σ

2
n en, (35) 307

where v = [p2, p
ϕ
2].This problem can be solved by the OMP 308

algorithm and its specific solving steps are as follows. 309

Step 1: Initialize r0 = Z, A0
2G
= A2G , χϕ0 = χϕand 310

sparsity K , index value set � = �, iteration times i = 1; 311
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Step 2: Calculate u = A2k•ri−1 and store the index value312

corresponding to the maximum value in u into � in the i-th313

iteration;314

Step 3: Take the columns corresponding to the index values315

of A2G and χϕ to obtain A�2G
and χ�ϕ ;316

Step 4: Calculate µi = ([p2, p
ϕ
2, en])

†Z;317

Step 5: Update ri = Z− [p2, p
ϕ
2, en]µi;318

Step 6: If i < K , set i = i + 1 and return to Step 2;319

Otherwise, stop iteration and obtain sparse vector µK .320

µK represents the estimated value of theoretical sparse321

vector and noise power, which can be expressed as322

µK = [(p̂2)
T , (p̂ϕ2)

T , σ̂ 2
n ]
T . (36)323

Its first K elements are p̂2 = {p̂
1
2, p̂

2
2, . . . , p̂

K
2}, and the324

K + 1 to 2K elements are p̂ϕ2 = {p̂
ϕ1
2 , p̂

ϕ2
2 , . . . , p̂

ϕK
2 }. Then,325

the estimation result of the modified value of the estimation326

of the k-th angle of DOA is327

1̂ϕk = p̂ϕk2 /p̂
k
2. (37)328

The angle value in the over-complete redundant dictionary329

corresponding to the k-th angle of arrival can be determined330

by the k-th element in the set of index values �, that is331

ϕ̂k = 2G(�k ). (38)332

Therefore, the accurate estimation result of the k-th angle333

of arrival based on the improved OMP algorithm is334

θ̂k = ϕ̂k + 1̂φk . (39)335

As mentioned above, this is the flow of the DOA esti-336

mation method proposed in this paper. Compared with the337

Conventional DFT method using phase deflection for fine338

search, the proposed method has higher estimation accu-339

racy because of the using of improved OMP method. Com-340

pared with the estimationmethod based on spatial smoothing,341

since the array aperture loss caused by spatial smoothing is342

avoided, the proposed method has higher estimation accuracy343

due to the use of all virtual sensors of difference co-array.344

Compared with the direct OMP method that divides the345

searching grids in all directions, the proposed method further346

estimates the results of grid search through Taylor expansion,347

and improves the accuracy of the estimation results. Com-348

pared with the improved DFT method proposed in [21], the349

proposed method can be infinitely close to the actual source350

signal angles by dividing a finer search grid with no upper351

limit. In a word, by using the DFT spectrum of the signal for352

initial estimation and using the OMP algorithm based on Tay-353

lor expansion for accurate estimation, the proposed method354

has some advantages in estimation accuracy compared with355

the other methods.356

IV. ANALYSIS OF COMPUTATIONAL COMPLEXITY357

In this section, the number of complex multiplication times358

is used as the evaluation standard, and the computational359

complexity of the conventional DFT estimation algorithm,360

the OMP algorithm, the SS-ESPRIT algorithm, the improved361

DFT algorithm proposed in the [21] and the algorithm pro- 362

posed in this paper are analyzed. 363

Suppose that the number of physical sensors of the sparse 364

array is M , the length of the equivalent difference co-array 365

is T , the length of its continuous part is Tc, the source number 366

of received signal by the array is K , the snapshots of received 367

data is J , and the search time of algorithms using searching 368

mrthod is G. 369

The mentioned algorithms are all based on the virtualiza- 370

tion of signal covariance matrix, and the complex multipli- 371

cation times of the process of calculating covariance matrix 372

areM2J ; The complex multiplication times of the equivalent 373

received signal of the continuous difference co-array by DFT 374

transform are T 2
c ; The complex multiplication times of fine 375

search using phase rotation method are KGTc; The complex 376

multiplication times of fine search using the method of the 377

improved DFT algorithm proposed in [21] are (8K 2
+2K )Tc; 378

The complex multiplication times for using the SS-ESPRIT 379

algorithm to estimate the DOA of the continuous differ- 380

ence co-array equivalent received signal are (Tc + 1)3/4 + 381

2(Tc + 1)K 2
+ 11K 3; The complex multiplication times in 382

the iterative process of solving DOA by OMP algorithm are 383

KGT +K (K +1)[K (K +1)/4+2(K +2)T/3]; The complex 384

multiplication times of fine search using the method of the 385

proposed algorithm in this paper areKGT+K (K+1)[2K (K+ 386

3) + (8K + 10)T/3 + 9] + T + 1. Therefore, the computa- 387

tional complexity expressions of each algorithm are shown in 388

Table 2. 389

TABLE 2. Computational Complexity Expressions for Different Estimation
Algorithms.

In the case of comprehensively considering the search 390

accuracy and computational complexity of each grid search 391

algorithm, the search times of the conventional DFT algo- 392

rithm are set to G = 180 and G = 900, the search times of 393

the OMP algorithm are set toG = 1800, and the search times 394

of the algorithm proposed in this paper are set to G = 180. 395

Using a 17-sensor NA, the estimated sources numberK varies 396

from 1 to 30, and when the snapshots J is 2000, the com- 397

putational complexity of each DOA estimation algorithm is 398

varying as shown in Figure 2. 399

As can be seen from Figure 2, the computational complex- 400

ity of the proposed algorithm increases exponentially with the 401

increase of the source number. When the source number is 402
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FIGURE 2. Variation of Computational Complexity of Different Algorithms
with Source Numbers.

much less than sensor number (K < 11), the computational403

complexity of the proposed algorithm is at a low level, which404

is only higher than the conventional DFT algorithm with405

180 search times and the improved DFT algorithm proposed406

in [21]. When the source number is close to sensor number407

(11≤K < 17), the computational complexity of the proposed408

algorithm is higher than that of the SS-ESPRIT algorithm and409

is gradually close to the conventional DFT algorithm with410

900 search times. When the source number exceeds sensor411

number (K≥17), the computational complexity of the pro-412

posed algorithm increases rapidly and gradually surpasses the413

OMP algorithm with 1800 search times.414

V. NUMERICAL SIMULATION EXPERIMENTS415

In order to verify the performance of the proposed DOA416

estimation algorithm, based on the classical NA introduced in417

Section II, simulation experiments are carried out to compare418

the proposed algorithmwith the conventional DFT algorithm,419

the OMP algorithm, the improved DFT algorithm proposed420

in [21] and the SS-ESPRIT algorithm.421

A. SUCCESS RATE OF DOA ESTIMATION422

One of the advantages of sparse array over ULA is that it can423

achieve underdetermined estimation. DOA estimation algo-424

rithm needs to make full use of its underdetermined esti-425

mation ability. This subsection compares and simulates the426

success rate of signal DOA estimation of each algorithm.427

Simulation parameters: 17-sensor NA, snapshots J =428

2000, SNR = 5dB, the source number K varies from429

1 to 56 at intervals of 5, the elements of arrival angle vec-430

tor θ is uniformly distributed in the range of [−60◦, 60◦], the431

search times G of search class algorithms are set according432

to the parameters in Section IV, and Monte Carlo simulation433

times B is 200.434

In this paper, the conditions for judging the success of a435

single DOA estimation are set as436

1θk =
1
K

K∑
k=1

|θ̂k − θk |≤0.05◦. (40)437

If the number of experiments in whichDOAestimation is suc- 438

cessfully realized in B Monte Carlo experiments is recorded 439

as C , then the success rate of estimation is rs = C/B. 440

According to the above simulation parameters, the results 441

that the estimated success rate of each algorithm varies with 442

source number is shown in Figure 3. 443

FIGURE 3. Variation of Success Rate of DOA Estimation with Different
Algorithms with Source Numbers.

The simulation results show that the DOA estimation suc- 444

cess rate of the proposed algorithm is significantly better 445

than that of other comparison algorithms, indicating that the 446

proposed algorithm can give full play to the aperture advan- 447

tage of sparse arrays and achieve DOA estimation of more 448

targets. 449

B. ROOT MEAN SQUARE ERROR 450

This subsection presents the Root Mean Square Error 451

(RMSE) of DOA estimation results of various algorithms 452

under different source number. This paper uses the definition 453

of RMSE as 454

RMSE =

√√√√ 1
KB

K∑
k=1

B∑
b=1

[(θ̂k,l − θk )2], (41) 455

where, K represents the source number, B is the Monte Carlo 456

simulation times, the estimated angle of the k-th source dur- 457

ing the b-th Monte Carlo simulation is expressed as θ̂k,b and 458

θk represents the actual angle of the k-th source. 459

From the complexity analysis results of section IV, it can 460

be seen that when the relationship between the source num- 461

ber and the sensor number changes, the relationship between 462

the computational complexity of the proposed algorithm and 463

other algorithms is also constantly changing. In this section, 464

by setting different parameters of source number, the DOA 465

estimation performance of the proposed algorithm is verified 466

by simulation. 467

1) DOA ESTIMATION WHEN SOURCE NUMBER IS MUCH 468

FEWER THAN SENSOR NUMBER 469

According to Figure 2, when source number is much fewer 470

than sensor number, the computational complexity of the pro- 471

posed algorithm is only higher than that of the conventional 472
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DFT algorithm with 180 search times and the improved DFT473

algorithm proposed in [21]. Therefore, the computational474

complexity of each algorithm and the RMSEs of the DOA475

estimation results vary with SNR and snapshots, as shown in476

Figures 4, 5 and 6.477

Simulation parameters: 17-sensor NA, source number478

K = 9, the elements of arrival angle vector θ is uniformly479

distributed in the range of [−60◦, 60◦], the search times G of480

search class algorithms are set according to the parameters in481

section IV. According to Table 2, in the computational com-482

plexity expressions of different algorithms, the snapshots J483

only exists in the computational complexity of the covariance484

matrix processO(M2J ), and the value of this item is equal in485

the expressions of all algorithms. Therefore, the value of the486

snapshots J does not affect the comparison of computational487

complexity, so the snapshot is taken as a fixed value, which488

is the same in the subsequent simulation and will not be489

described again.490

(1) Parameters for computational complexity: SNR = 5dB,491

snapshots J = 2000.492

(2) Parameters for RMSE vs. SNR: SNR varies from493

−10dB to 16dB at 2dB intervals, snapshots J = 2000, Monte494

Carlo simulation times B = 200.495

(3) Parameters for RMSE vs. snapshots: snapshots J =496

[20, 50, 100, 500, 1000, 2000, 3000, 4000, 5000], SNR =497

5dB, Monte Carlo simulation times B = 200.498

FIGURE 4. Computational Complexity of Different Algorithms with Source
Numbers K = 9.

The simulation results show that when source num-499

ber is much fewer than sensor number, the computa-500

tional complexity of the proposed algorithm is low, but its501

DOA estimation accuracy is higher than that of the other502

algorithms.503

2) DOA ESTIMATION WHEN SOURCE NUMBER IS CLOSE TO504

SENSOR NUMBER505

According to Figure 2, when source number is close to sen-506

sor number, computational complexity of the proposed algo-507

rithm is higher than that of the SS-ESPRIT algorithm and508

close to the traditional DFT algorithm with 900 search times.509

FIGURE 5. Variation of RMSE for Different Algorithms with SNR, when
Source Number K = 9.

FIGURE 6. Variation of RMSE for Different Algorithms with Snapshots,
when Source Number K = 9.

Therefore, the computational complexity of each algorithm 510

and the RMSEs of the DOA estimation results vary with SNR 511

and snapshots, as shown in Figures 7, 8 and 9. 512

Simulation parameters: 17-sensor NA, source number 513

K = 15, the elements of arrival angle vector θ is uniformly 514

distributed in the range of [−60◦, 60◦], the search times G of 515

search class algorithms are set according to the parameters in 516

section IV. 517

(1) Parameters for computational complexity: SNR = 5dB, 518

snapshots J = 2000. 519

(2) Parameters for RMSE vs. SNR: SNR varies from 520

−10dB to 16dB at 2dB intervals, snapshots J = 2000, Monte 521

Carlo simulation times B = 200. 522

(3) Parameters for RMSE vs. snapshots: snapshots J = 523

[20, 50, 100, 500, 1000, 2000, 3000, 4000, 5000], SNR = 524

5dB, Monte Carlo simulation times B = 200. 525

The simulation results show that the computational com- 526

plexity of the proposed algorithm increases when source 527

number is close to sensor number, and the DOA estimation 528

accuracy of the proposed algorithm is a little lower than that 529

of other algorithms under low SNR and few snapshots, but 530

the estimation accuracy of the proposed algorithm is still the 531

highest under most conditions. 532
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FIGURE 7. Computational Complexity of Different Algorithms with Source
Numbers K = 15.

FIGURE 8. Variation of RMSE for Different Algorithms with SNR, when
Source Number K = 15.

3) DOA ESTIMATION WHEN SOURCE NUMBER EXCEEDS533

SENSOR NUMBER534

According to Figure 2, when source number exceeds sen-535

sor number, the computational complexity of the proposed536

algorithm is higher than that of the SS-ESPRIT algorithm537

and close to the conventional DFT algorithm with 900 search538

times. Therefore, the computational complexity of each algo-539

rithm and the RMSEs of the DOA estimation results vary with540

SNR and snapshots, as shown in Figures 10, 11 and 12.541

Simulation parameters: 17-sensor NA, source number542

K = 15, the elements of arrival angle vector θ is uniformly543

distributed in the range of [−60◦, 60◦], the search times G of544

search class algorithms are set according to the parameters in545

section IV.546

(1) Parameters for computational complexity: SNR = 5dB,547

snapshots J = 2000.548

(2) Parameters for RMSE vs. SNR: SNR varies from549

−10dB to 16dB at 2dB intervals, snapshots J = 2000, Monte550

Carlo simulation times B = 200.551

(3) Parameters for RMSE vs. snapshots: snapshots J =552

[20, 50, 100, 500, 1000, 2000, 3000, 4000, 5000], SNR =553

5dB, Monte Carlo simulation times B = 200.554

The simulation results show that when source number555

exceeds sensor number, the computational complexity of the556

FIGURE 9. Variation of RMSE for Different Algorithms with Snapshots,
when Source Number K = 15.

FIGURE 10. Computational Complexity of Different Algorithms with
Source Numbers K = 29.

FIGURE 11. Variation of RMSE for Different Algorithms with SNR, when
Source Number K = 29.

proposed algorithm is much higher than that of the other 557

algorithms, and the DOA estimation accuracy of the proposed 558

algorithm is worse than that of SS-ESPRIT algorithm and 559

OMP algorithm when the SNR is low as well as the snapshots 560

are few; when the SNR is high and the snapshots are many, 561

the DOA estimation accuracy of the proposed algorithm is 562

better than that of the other algorithms. 563

95856 VOLUME 10, 2022



L. Zhang et al.: DOA Estimation Method for Sparse Array Based on DFT Spectrum of Received Signals

FIGURE 12. Variation of RMSE for Different Algorithms with Snapshots,
when Source Number K = 29.

Through a comprehensive analysis of the above three564

groups of comparative simulation experiments, we can draw565

the following conclusions: compared with the traditional566

DFT algorithm, OMP algorithm, SS-ESPRIT algorithm and567

the improved DFT algorithm proposed in [21], the pro-568

posed algorithm can achieve relatively higher DOA estima-569

tion accuracy under the condition that the source number is570

close to or fewer than the sensor number. When the source571

number increases, the DOA estimation accuracy of the pro-572

posed algorithm will be lower than that of SS-ESPRIT and573

OMP algorithms under low SNR and few snapshots. The574

reason for the above phenomenon is that in order to reduce575

the complexity caused by search times, the proposed algo-576

rithm initially estimates the angles by calculating the DFT577

spectrum of the equivalent received signal. The number of578

sources that this method can distinguish is limited by the579

length of the array, and under low SNR and few snapshots, the580

DFT spectrum will produce more pseudo-peaks, which will581

affect the result of DOA estimation. Therefore, the traditional582

DFT algorithm and the improved DFT algorithm proposed583

in [21] are also affected by low SNR and few snapshots, while584

SS-ESPRIT and OMP algorithms that do not use DFT for585

initial estimation are not significantly affected by low SNR586

and few snapshots.587

VI. CONCLUSION588

In this paper, aiming at the problem of signal DOA estima-589

tion of sparse array, based on the large aperture continuous590

difference co-array generated by sparse array, a high preci-591

sion DOA estimation algorithm is proposed. After the initial592

estimation result is obtained by using the DFT spectrum,593

the over-complete redundant dictionary is divided according594

to the initial estimation angles. Finally, the accurate DOA595

estimation result is obtained by using the improved OMP596

algorithm. The simulation results show that, compared with597

the conventional DFT algorithm, the improved DFT algo-598

rithm, the OMP algorithm and the SS-ESPRIT algorithm,599

the proposed algorithm can give full play to the large aper-600

ture advantage of sparse array and achieve the DOA estima-601

tion of more sources, and the proposed algorithm has higher602

estimation accuracy when the snapshots are many and the 603

SNR is high. 604

However, due to the limitation of DFT, the estimation accu- 605

racy of the proposed algorithm will be affected under the 606

conditions of large number of sources, few snapshots and 607

low SNR. Subsequently, the estimation performance of the 608

proposed algorithm can be further improved by improving the 609

accuracy of the initial estimation. 610
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