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ABSTRACT In the direction of arrival (DOA) estimation of sparse array received signals, the estimation
accuracy of the grid search method in compressed sensing is improved with the increase of over-complete
redundant dictionary elements. However, the increase of over-complete redundant dictionary elements will
lead to a significant increase in the computational complexity of this method. In order to reduce the
computational complexity caused by over-complete redundant dictionary division, based on the equivalent
received signal of large aperture continuous difference co-array generated by sparse array, a DOA estimation
method using discrete Fourier transform (DFT) spectrum of signal for initial estimation is proposed in this
paper. After obtaining the DFT spectrum of the equivalent signal, based on the correspondence between the
DFT spectrum and the actual angle value, this paper proposes a new strategy for dividing the over-complete
redundant dictionary. In the process of fine angle search, this paper applies Taylor expansion to orthogonal
matching pursuit (OMP) algorithm to obtain higher estimation accuracy. Numerical simulation results

demonstrate the advantages of the proposed estimation method over the other methods.

INDEX TERMS Array signal processing, sparse array, DOA estimation, difference co-array.

I. INTRODUCTION

As an important branch of array signal processing, direction
of arrival (DOA) estimation is widely used in wireless com-
munication, radar, sonar, unmanned vehicles [1], [2], [3], [4]
and other fields. Experts and scholars from various coun-
tries have studied a large number of high-resolution esti-
mation algorithms for uniform linear array (ULA), such as
multiple signal classification (MUSIC) algorithm [5], esti-
mating signal parameter via rotational invariance techniques
(ESPRIT) [6] and their improved algorithms [7], [8], [9].
However, ULA consists of several sensors, the spacing of
which does not exceed half wavelength of impinging signal,
and there is a large mutual coupling interference between
them [10], [11]. In addition, the number of sources estimated
by ULA cannot exceed the total number of sensors. If a large
number of sources are estimated, it can only be achieved
by increasing the number of array sensors, which obviously
brings an increase in the cost of array design.
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The sensor spacing of sparse array is not limited by the
half-wavelength of the received signal, and compared with
ULA, it can provide a larger array aperture in the case of fewer
array sensors, thus achieving higher DOA estimation accu-
racy. At the same time, the co-array obtained by difference
of sparse array has more virtual sensors than the actual num-
ber of physical sensors, which can provide greater degrees
of freedom and increase the number of estimable sources.
In addition, under the same array aperture, the number of
sensors of sparse array is obviously less than that of ULA,
which greatly reduces the cost of array design. Therefore,
sparse array design and DOA estimation methods based on
sparse array have been widely concerned by experts and
scholars at home and abroad. A large number of sparse array
structures have been proposed, such as minimum redundant
array (MRA) [12], nested array (NA) [13], coprime array
(CA) [14] and various improved array structures [15], [16],
[17], [18]. Atthe same time, a series of algorithms to solve the
problem of sparse array DOA estimation, such as subspace
algorithms based on spatial smoothing (SS), like SS-ESPRIT
algorithm [19], algorithms based on DFT method [20], [21]
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and algorithms based on compressed sensing method [22],
have been proposed and improved successively, which form
the theoretical basis of sparse array DOA estimation.

In [19], an equivalent single snapshot received data of a
difference co-array is constructed by using the covariance
matrix of the received signal, and the full rank semidefinite
covariance matrix is constructed by using the spatial smooth-
ing method for the received data. The subspace class algo-
rithm can be used to estimate the DOA of the sparse array.
However, spatial smoothing reduces the degree of freedom
(DOF) of the sparse array by nearly half, which affects the
maximum number of estimable sources. The conventional
DFT estimation algorithm proposed in [20] was initially used
to solve the problem of DOA estimation of single snapshot
received data from large-scale ULAs. Because sparse arrays
can obtain co-arrays whose continuous array sensors are more
than the physical array sensors by difference method, the DFT
algorithm is also extended to the DOA estimation of sparse
arrays. However, the conventional DFT estimation algorithm
uses the method of phase deflection to finely search the
angles, whose estimation accuracy will no longer improve
with the decrease of the search step when it reaches the upper
limit. Reference [21] proposes an improved DFT algorithm
by Taylor expansion of the expression of the co-array equiv-
alent received signal, combined with the total least squares
(TLS) method. This algorithm avoids the fine search of angle
and achieves higher accuracy than the conventional DFT esti-
mation algorithm, but the performance of this algorithm is
poor under a large number of snapshots. In recent years,
the algorithms based on compressed sensing is the research
hotspot of DOA estimation of sparse array. Reference [22]
applies OMP algorithm to DOA estimation. By dividing the
over-complete redundant dictionary and using all virtual sen-
sors of difference co-array, it gives full play to the high DOF
of sparse array structure. However, the estimation accuracy of
the algorithm is related to the search step. The acquisition of
high estimation accuracy means more precise step, but also
brings higher computational complexity.

In order to take advantage of the high estimation accuracy
of the compressed sensing algorithm and avoid the increase of
computational complexity caused by the fine division search
step, in this paper, we propose a DOA estimation algorithm
based on the sparse array that can generate large aperture dif-
ference co-array: Firstly, the low complexity DFT algorithm
is used to estimate the DOA of the received signal, and the
initial estimation result with large error is obtained; Then,
based on the uneven distribution of data points and angle
values in DFT spectrum, a basic over-complete redundant
dictionary division strategy is proposed to construct a reason-
able complete over-complete redundant dictionary; Finally,
through an improved OMP algorithm based on the complete
over-complete redundant dictionary, the final DOA estima-
tion is obtained.

The remainder of this paper is presented as follows.
Section II introduces some preliminaries. Steps of the pro-
posed DOA estimation method are elaborated in Section III.
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Section IV compares and analyzes the computational com-
plexity of various sparse array DOA estimation algorithms.
Section V presents the results of the numerical simulation
experiments. Section VI summarizes the whole paper.

IIl. PRELIMINARY

A. SPARSE ARRAY RECEIVED SIGNAL MODEL

Suppose that K independent far-field narrowband signals are
received by a sparse array at the power {012, 022, ey 61%}
from the direction of {61, 65, ..., Ok}, respectively. If the
array sensor position set of a sparse array is recorded as
D ={d,ds, ...,dy}, where M is the total number of array
sensors, the received signal can be expressed as

X(1) =AS(1) + N (), ey
where the array manifold matrix A can be expressed as

A = [ap(61), ap(62), ..., ap(fk)], )

ap(6y) = [1’ eimdasin@r) =iy sin(@k)]T' 3)
The signal vector S(7) is
S@t) = [S1(t), $2(1), ..., Sk, 4

wheret = 1,2, ...,J, J represents the snapshots.
And the noise vector N (¢) is

N(@) = [N1(1), Na(0), ..., Nu(@)]". &)

In AWGN channel, the noise component satisfies the Gaus-
sian distribution with mean value 0 and variance 2.

Next, because the source signals are uncorrelated with each
other and they are uncorrelated with noise, the covariance

matrix Ry of the received signal is calculated by
Ry = E[XX"] = ARsA" + 621y, (©6)

where Ry = diag [012, 022, el 0’1%]. The column vectoriza-

tion of Rx can be obtained as
Z = vec(Rx) = (A* 0 A)p + o,7e,, @)
where p = [012, o, ..., UI%]H, e, = vec(Ipy). Define B =
A* o A, and o represents the Khatri-Rao product, then
B = [b(61),b(62), ...,b(0k)], (®)
b)) = [e_j”(dl_dl)sm(ek)’ e—jﬂ(dz—dl)sin(gk),
e dn)sin@h) -y (dy—dy) sin@01T

©))

As a result, the position difference set of physical array sen-
sors is defined as

Dy = {dy — dyldw € D, d, € D}. (10)

In this case, the elements in the set D, are regarded as the
sensor positions of a virtual linear array, and Eq.(7) can be
regarded as the received signal vector on the virtual array D,,.
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FIGURE 1. Structure of NA.

B. NESTED ARRAY
The DOA estimation method proposed in this paper is suit-
able for sparse arrays which can generate continuous dif-
ference co-array with large aperture. The more continuous
virtual array sensors can be generated by the array, the better
the DOA estimation performance of the method is. In order
to facilitate the experimental simulation, the classical NA is
chosen in this paper. This subsection gives a brief introduction
to NA.

As shown in Figure 1, NA consists of two ULAs.

Suppose that the sensor number of two ULAs are M| and
M and the sensor spacing is /1 and [, respectively. /1 equals
half-wavelength of the received signal, [, = (M1 + 1)/1. Then
the set of sensor positions of NA can be expressed as

Lya = {mililmy =1,2,..., M1}
U {malhlmy = 1,2, ..., M>}. (11
According to [13], for an NA with total sensor number equals

to M, the optimal array arrangement and the available differ-
ence co-array aperture size are shown in Table 1.

TABLE 1. Sub-array sensor numbers and difference co-array aperture size
of the M-sensor NA.

M | Sub-array sensor numbers | difference co-array aperture size

2

odd | My = 1\/1271’M2 _ IMQ«H M24 + M
2

even My = My = % 1»1272 + M

C. CRAMER-RAO BOUND OF SPARSE ARRAY DOA
ESTIMATION

The Cramer-Rao Bound (CRB) of sparse array DOA estima-
tion has been fully studied and discussed in many existing
literatures. According to [23], [24], it can be expressed as:

CRBy = Ilv(Mgn,flsMg)”, (12)
where,
My = RTQR) 2A,P, (13)
Mg = (RT®R)"2 [A4 ], (14)
Oy =1—-MsM{Mg)~' MY, (15)
and,
Ay = A"0A +A*CA, (16)
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i [30(91) da(6) 3a(9K)] (17

T

Based on the above, the CRB of DOA estimation using sparse
array can be easily obtained.

lll. THE PROPOSED DOA ESTIMATION METHOD

The DOA estimation method proposed in this paper firstly
performs DFT on the received signal of the equivalent
continuous difference co-array obtained by vectorizing the
covariance matrix of the received signal to acquire the
initial estimated value of DOA; secondly, within a small
angle range around each initial estimated value construct a
basic over-complete redundant dictionary, and combine all
the obtained basic over-complete redundanct dictionaries to
form a complete over-complete redundant dictionary; finally,
based on the received signal of the equivalent difference co-
array, an improved OMP algorithm is used to fine-search the
angles, and the final DOA estimation results are obtained. The
flow of proposed method is as follows.

A. DOA INITIAL ESTIMATION BASED ON DFT

The equivalent received signal of the continuous difference
co-array part is intercepted from the difference co-array
equivalent received signal Z obtained from Eq.(7) to acquire
the vector Z1, which is expressed as

Z, =Bp +7é,. (18)

where, €, is the noise corresponding to the equivalent signal
received by the continuous difference co-array, and the array
manifold matrix B is

B = [b(61),b(62), ..., b#K)], (19)
l;(gk) — [1’ e—jﬂd sinGk/)L, . e—jﬂ(Tc—l)d sinﬁk/)\]T’ (20)

where, d is the sensor spacing of the continuous difference
co-array, which is equal to half the wavelength X of the signal
received by the array, and T is the sensor number of the con-
tinuous difference co-array. Therefore, I;(Qk) can be reduced
to

5(9[{) — [1 , e*j?‘[ SiI’IGk e e*j]'[(T,_‘fl)Sil’l gk]T‘ (2])
The normalized matrix F of DFT is expressed as

1 2 Te
Wr Wi ... Wp
2 1 c
Lo w2 owhoowy

F =
Ve

(22)
Te 2T, T.2
WTC WTC WT(,

where the element of the p-th row and g-th column is
WP = oITPa

3 B(6x) can be obtained by DFT of array flow pattern vector
b(6x), which is expressed as

B(6x) = Fb(6y). (23)
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where the g-th element is

. . el (22 g
s1n[%(2T—7:q+rr sinGp)]e T (14 sinb)

JT. sin[%(%q+rr sin 6y)]

It can be seen from Eq.(24) that only when ¢ =
—T,sin6 /2 is an integer, B(@k) has and only the gi-th ele-
ment is not zero, then all the power of the signal is concen-
trated at the gx-th point of the DFT spectrum, and the DOA
estimation of 6 can be obtained directly from the position of
that point.

However, in practice, gx is not an integer in most
cases, and the signal power will be leaked from the
(—T¢ sin 6y /2)-th point to the surrounding points and it will
appear on the DFT spectrum that several elements adjacent
to g are not zero, and the remaining elements are close to
zero. Therefore, the 6 can be initially estimated by finding
the peak position g of the non-zero elements in 8(6).

Since the angles of source signals are unknown quantities,
the array flow pattern vector b(Hy) cannot be obtained directly,
and the angles estimation can only be obtained by perform-
ing DFT transformation on Z;. Assuming thaty = FZ; is
obtained by performing DFT transformation on the equiva-
lent received signal of the continuous difference co-array. The
positions of the large peaks are found in the DFT spectrum,
which are marked as g, and the number of the peaks equal to
the source signal number K. Then the initial DOA estimation
is expressed as

BBy = (24)

O = arcsin(—2x/T.), k=1,2,...,K. (25)
B. OVER-COMPLETE REDUNDANT DICTIONARY DIVISION
STRATEGY
Because the corresponding angle difference between any
point in the DFT spectrum and its previous point and
the corresponding angle difference between this point and
its latter point are not equal, a simple average allocation
strategy cannot be adopted to determine the range of the
basic over-complete redundant dictionaries around the ini-
tial estimation angles. In this section, a division strategy of
over-complete redundant dictionary is designed as follows.
Itis known that the peak position of the k-th angle of source
signals is gi. Take the two adjacent locations g — 1 and
gx + 1 and calculate their corresponding angles, which are
recorded as

(26)

¢ = arcsin[—2(gx — 1)/T,]
Y = arcsin[—2(gx + 1)/T¢].

Then, the range of the basic over-complete redundant dic-
tionary obtained by 6 is [M, GHTW]. By combining K
basic over-complete redundant dictionaries, the complete
over-complete redundant dictionary needed for accurate esti-
mation is obtained as

01+ é1 01+

B¢ = {[ T

[§2+¢2 6> + v

2 3 2 ’ 2 ]7
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[ék + ¢ Ok + Yk Ok +ox Ok +Vk
R} ) 5 ) FIUIR) ) ) 2

1}
27)

where G denotes the number of elements in complete
over-complete redundant dictionary. Because the range of
each basic over-complete redundant dictionary varies, it can
be known that the number of elements in them may be differ-
ent. Then, the ® can be abbreviated as

O =1{01,62,...,06). (28)

C. ACCURATE ESTIMATION BASED ON IMPROVED OMP
ALGORITHM

The extended flow pattern matrix A g is constructed accord-
ing to O, that is,

Ao, = lap,(61), ap, (), . .., ap,(66))

— {e—]anV sm(91/)L’ e—]2ndv sm@z/)h’ o e—]2miv sm(?g/k}.

(29)

where d, is a column vector indicating the position of differ-
ence co-array sensors. The signal model shown in Eq.(7) can
be transformed into a sparse representation problem, that is,

Z =Ap,pe +0len. (30)

where pg € RS*1 is a sparse vector with sparse degree K.
If there are source signals incident in the 6,(g = 1,2, ..., G)
direction, then the g-th element of pg is p, # 0, otherwise
pe =0. )

Taylor expansion is performed on ap, (6% ), when the search
step is small, its higher-order term can be ignored, then

. dap, (¢r)
ap, (6) = ap, (p) + 2PN (31)
ok
where Ay, = ék — k. Therefore, Ag,; can be expressed as
0Aeg(p)
Ao; = Aeg(p) + #Aw
= Aog(@) + XpAy, (32)

where

06 —wpc).  (33)

Let p% = Aypg, then Eq.(30) can be approximately
expressed as

A, = diagli — ¢1,62 — 92, ..

Z = Aog(@pe + X P +0nen. (34)

Therefore, a sparse reconstruction problem can be obtained
as

min || v ||12
v,02
s.t.Z =Aog(@Peo + X Pb + 0ren, (35)

wherev = [pg, p‘g)].This problem can be solved by the OMP
algorithm and its specific solving steps are as follows.

Step 1: Initialize ro = Z, A%G = Aogs Xgy = Xyand
sparsity K, index value set 2 = @, iteration times i = 1;
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Step 2: Calculate u = Ag, or;_1 and store the index value
corresponding to the maximum value in u into 2 in the i-th
iteration;

Step 3: Take the columns corresponding to the index values
of Ag; and x, to obtainA%G and xg;

Step 4: Calculate u; = ([p, ph, €a)'Z;

Step 5: Updater; = Z — m@,pﬁ), enlp;;

Step 6: If i < K, seti = i+ 1 and return to Step 2;
Otherwise, stop iteration and obtain sparse vector fLg .

JLg represents the estimated value of theoretical sparse
vector and noise power, which can be expressed as

nx = pe) . 05", 621", (36)

Its first K elements are 13}2 = {[:9(1(?1, f?f()pz e ﬁgp},(’ and the
K + l.to 2K elements are pg, = {Pe PG Po } Th.en,
the estimation result of the modified value of the estimation
of the k-th angle of DOA is

Ay = D8 /- (37)

The angle value in the over-complete redundant dictionary
corresponding to the k-th angle of arrival can be determined
by the k-th element in the set of index values €2, that is

Pk = OG(S0). (38)

Therefore, the accurate estimation result of the k-th angle
of arrival based on the improved OMP algorithm is

bk = @ + Ag,. (39)

As mentioned above, this is the flow of the DOA esti-
mation method proposed in this paper. Compared with the
Conventional DFT method using phase deflection for fine
search, the proposed method has higher estimation accu-
racy because of the using of improved OMP method. Com-
pared with the estimation method based on spatial smoothing,
since the array aperture loss caused by spatial smoothing is
avoided, the proposed method has higher estimation accuracy
due to the use of all virtual sensors of difference co-array.
Compared with the direct OMP method that divides the
searching grids in all directions, the proposed method further
estimates the results of grid search through Taylor expansion,
and improves the accuracy of the estimation results. Com-
pared with the improved DFT method proposed in [21], the
proposed method can be infinitely close to the actual source
signal angles by dividing a finer search grid with no upper
limit. In a word, by using the DFT spectrum of the signal for
initial estimation and using the OMP algorithm based on Tay-
lor expansion for accurate estimation, the proposed method
has some advantages in estimation accuracy compared with
the other methods.

IV. ANALYSIS OF COMPUTATIONAL COMPLEXITY

In this section, the number of complex multiplication times
is used as the evaluation standard, and the computational
complexity of the conventional DFT estimation algorithm,
the OMP algorithm, the SS-ESPRIT algorithm, the improved
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DFT algorithm proposed in the [21] and the algorithm pro-
posed in this paper are analyzed.

Suppose that the number of physical sensors of the sparse
array is M, the length of the equivalent difference co-array
is T, the length of its continuous part is 7, the source number
of received signal by the array is K, the snapshots of received
data is J, and the search time of algorithms using searching
mrthod is G.

The mentioned algorithms are all based on the virtualiza-
tion of signal covariance matrix, and the complex multipli-
cation times of the process of calculating covariance matrix
are M2J; The complex multiplication times of the equivalent
received signal of the continuous difference co-array by DFT
transform are TCZ; The complex multiplication times of fine
search using phase rotation method are KGT,; The complex
multiplication times of fine search using the method of the
improved DFT algorithm proposed in [21] are (8K 24 2K)T,;
The complex multiplication times for using the SS-ESPRIT
algorithm to estimate the DOA of the continuous differ-
ence co-array equivalent received signal are (T, + 1)3/4 +
2(T. + 1K? + 11K3; The complex multiplication times in
the iterative process of solving DOA by OMP algorithm are
KGT +K(K + DH[K(K +1)/442(K +2)T /3]; The complex
multiplication times of fine search using the method of the
proposed algorithm in this paper are KGT +K (K +1)[2K (K +
3)+ @BK + 10)T /3 + 9] + T + 1. Therefore, the computa-
tional complexity expressions of each algorithm are shown in
Table 2.

TABLE 2. Computational Complexity Expressions for Different Estimation
Algorithms.

Algorithm Computational Complexity

Conventional DFT | O(M2J + T2 + KGT.)

Improved DFT O(M?J + T2 + (8K? + 2K)T.)

OMP O(M?J+ KGT + K(K +1)[K(K +1)/4+
2(K +2)T/3))

SS-ESPRIT O(M2J+(Te+1)3 /4+2(T.+1) K2 +11K3)

Proposed O(M?J + KGT + K(K + 1)[2K (K + 3) +

(8K +10)T/3+ 9] +T + 1)

In the case of comprehensively considering the search
accuracy and computational complexity of each grid search
algorithm, the search times of the conventional DFT algo-
rithm are set to G = 180 and G = 900, the search times of
the OMP algorithm are set to G = 1800, and the search times
of the algorithm proposed in this paper are set to G = 180.
Using a 17-sensor NA, the estimated sources number K varies
from 1 to 30, and when the snapshots J is 2000, the com-
putational complexity of each DOA estimation algorithm is
varying as shown in Figure 2.

As can be seen from Figure 2, the computational complex-
ity of the proposed algorithm increases exponentially with the
increase of the source number. When the source number is
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FIGURE 2. Variation of Computational Complexity of Different Algorithms
with Source Numbers.

much less than sensor number (K < 11), the computational
complexity of the proposed algorithm is at a low level, which
is only higher than the conventional DFT algorithm with
180 search times and the improved DFT algorithm proposed
in [21]. When the source number is close to sensor number
(11<K < 17), the computational complexity of the proposed
algorithm is higher than that of the SS-ESPRIT algorithm and
is gradually close to the conventional DFT algorithm with
900 search times. When the source number exceeds sensor
number (K>17), the computational complexity of the pro-
posed algorithm increases rapidly and gradually surpasses the
OMP algorithm with 1800 search times.

V. NUMERICAL SIMULATION EXPERIMENTS

In order to verify the performance of the proposed DOA
estimation algorithm, based on the classical NA introduced in
Section II, simulation experiments are carried out to compare
the proposed algorithm with the conventional DFT algorithm,
the OMP algorithm, the improved DFT algorithm proposed
in [21] and the SS-ESPRIT algorithm.

A. SUCCESS RATE OF DOA ESTIMATION
One of the advantages of sparse array over ULA is that it can
achieve underdetermined estimation. DOA estimation algo-
rithm needs to make full use of its underdetermined esti-
mation ability. This subsection compares and simulates the
success rate of signal DOA estimation of each algorithm.

Simulation parameters: 17-sensor NA, snapshots J =
2000, SNR = 5dB, the source number K varies from
1 to 56 at intervals of 5, the elements of arrival angle vec-
tor 6 is uniformly distributed in the range of [—60°, 60°], the
search times G of search class algorithms are set according
to the parameters in Section IV, and Monte Carlo simulation
times B is 200.

In this paper, the conditions for judging the success of a
single DOA estimation are set as

K
1 N °
AG = e /?_1 |Or — 6| <0.05°. (40)
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If the number of experiments in which DOA estimation is suc-
cessfully realized in B Monte Carlo experiments is recorded
as C, then the success rate of estimation is ry = C/B.

According to the above simulation parameters, the results
that the estimated success rate of each algorithm varies with
source number is shown in Figure 3.

—&— Conventional DFT(G=180)
—&— Conventional DFT(G=900)
OMP(G=1800)

—O— SS-ESPRIT

——%— ImpDFT

Proposed Method(G=180)

0 10 20 30
Source Number

FIGURE 3. Variation of Success Rate of DOA Estimation with Different
Algorithms with Source Numbers.

The simulation results show that the DOA estimation suc-
cess rate of the proposed algorithm is significantly better
than that of other comparison algorithms, indicating that the
proposed algorithm can give full play to the aperture advan-
tage of sparse arrays and achieve DOA estimation of more
targets.

B. ROOT MEAN SQUARE ERROR

This subsection presents the Root Mean Square Error
(RMSE) of DOA estimation results of various algorithms
under different source number. This paper uses the definition
of RMSE as

K B
RMSE = é PIBCIEAS! (41)
k=1 b=1
where, K represents the source number, B is the Monte Carlo
simulation times, the estimated angle of the k-th source dur-
ing the b-th Monte Carlo simulation is expressed as ék,b and
Oy represents the actual angle of the k-th source.

From the complexity analysis results of section IV, it can
be seen that when the relationship between the source num-
ber and the sensor number changes, the relationship between
the computational complexity of the proposed algorithm and
other algorithms is also constantly changing. In this section,
by setting different parameters of source number, the DOA
estimation performance of the proposed algorithm is verified
by simulation.

1) DOA ESTIMATION WHEN SOURCE NUMBER IS MUCH
FEWER THAN SENSOR NUMBER

According to Figure 2, when source number is much fewer
than sensor number, the computational complexity of the pro-
posed algorithm is only higher than that of the conventional
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DFT algorithm with 180 search times and the improved DFT
algorithm proposed in [21]. Therefore, the computational
complexity of each algorithm and the RMSEs of the DOA
estimation results vary with SNR and snapshots, as shown in
Figures 4, 5 and 6.

Simulation parameters: 17-sensor NA, source number
K = 9, the elements of arrival angle vector @ is uniformly
distributed in the range of [—60°, 60°], the search times G of
search class algorithms are set according to the parameters in
section IV. According to Table 2, in the computational com-
plexity expressions of different algorithms, the snapshots J
only exists in the computational complexity of the covariance
matrix process O(M 27), and the value of this item is equal in
the expressions of all algorithms. Therefore, the value of the
snapshots J does not affect the comparison of computational
complexity, so the snapshot is taken as a fixed value, which
is the same in the subsequent simulation and will not be
described again.

(1) Parameters for computational complexity: SNR = 5dB,
snapshots J = 2000.

(2) Parameters for RMSE vs. SNR: SNR varies from
—10dB to 16dB at 2dB intervals, snapshots J = 2000, Monte
Carlo simulation times B = 200.

(3) Parameters for RMSE vs. snapshots: snapshots J =
[20, 50, 100, 500, 1000, 2000, 3000, 4000, 5000], SNR =
5dB, Monte Carlo simulation times B = 200.
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FIGURE 4. Computational Complexity of Different Algorithms with Source
Numbers K = 9.

The simulation results show that when source num-
ber is much fewer than sensor number, the computa-
tional complexity of the proposed algorithm is low, but its
DOA estimation accuracy is higher than that of the other
algorithms.

2) DOA ESTIMATION WHEN SOURCE NUMBER IS CLOSE TO
SENSOR NUMBER

According to Figure 2, when source number is close to sen-
sor number, computational complexity of the proposed algo-
rithm is higher than that of the SS-ESPRIT algorithm and
close to the traditional DFT algorithm with 900 search times.
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FIGURE 6. Variation of RMSE for Different Algorithms with Snapshots,
when Source Number K = 9.

Therefore, the computational complexity of each algorithm
and the RMSEs of the DOA estimation results vary with SNR
and snapshots, as shown in Figures 7, 8 and 9.

Simulation parameters: 17-sensor NA, source number
K = 15, the elements of arrival angle vector @ is uniformly
distributed in the range of [—60°, 60°], the search times G of
search class algorithms are set according to the parameters in
section IV.

(1) Parameters for computational complexity: SNR = 5dB,
snapshots J = 2000.

(2) Parameters for RMSE vs. SNR: SNR varies from
—10dB to 16dB at 2dB intervals, snapshots J = 2000, Monte
Carlo simulation times B = 200.

(3) Parameters for RMSE vs. snapshots: snapshots J =
[20, 50, 100, 500, 1000, 2000, 3000, 4000, 5000], SNR =
5dB, Monte Carlo simulation times B = 200.

The simulation results show that the computational com-
plexity of the proposed algorithm increases when source
number is close to sensor number, and the DOA estimation
accuracy of the proposed algorithm is a little lower than that
of other algorithms under low SNR and few snapshots, but
the estimation accuracy of the proposed algorithm is still the
highest under most conditions.
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FIGURE 7. Computational Complexity of Different Algorithms with Source
Numbers K = 15.
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FIGURE 8. Variation of RMSE for Different Algorithms with SNR, when
Source Number K = 15.

3) DOA ESTIMATION WHEN SOURCE NUMBER EXCEEDS
SENSOR NUMBER

According to Figure 2, when source number exceeds sen-
sor number, the computational complexity of the proposed
algorithm is higher than that of the SS-ESPRIT algorithm
and close to the conventional DFT algorithm with 900 search
times. Therefore, the computational complexity of each algo-
rithm and the RMSESs of the DOA estimation results vary with
SNR and snapshots, as shown in Figures 10, 11 and 12.

Simulation parameters: 17-sensor NA, source number
K = 15, the elements of arrival angle vector @ is uniformly
distributed in the range of [—60°, 60°], the search times G of
search class algorithms are set according to the parameters in
section I'V.

(1) Parameters for computational complexity: SNR = 5dB,
snapshots J = 2000.

(2) Parameters for RMSE vs. SNR: SNR varies from
—10dB to 16dB at 2dB intervals, snapshots J = 2000, Monte
Carlo simulation times B = 200.

(3) Parameters for RMSE vs. snapshots: snapshots J =
[20, 50, 100, 500, 1000, 2000, 3000, 4000, 5000], SNR =
5dB, Monte Carlo simulation times B = 200.

The simulation results show that when source number
exceeds sensor number, the computational complexity of the
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FIGURE 10. Computational Complexity of Different Algorithms with
Source Numbers K = 29.
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FIGURE 11. Variation of RMSE for Different Algorithms with SNR, when
Source Number K = 29.

proposed algorithm is much higher than that of the other
algorithms, and the DOA estimation accuracy of the proposed
algorithm is worse than that of SS-ESPRIT algorithm and
OMP algorithm when the SNR is low as well as the snapshots
are few; when the SNR is high and the snapshots are many,
the DOA estimation accuracy of the proposed algorithm is
better than that of the other algorithms.
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Through a comprehensive analysis of the above three
groups of comparative simulation experiments, we can draw
the following conclusions: compared with the traditional
DFT algorithm, OMP algorithm, SS-ESPRIT algorithm and
the improved DFT algorithm proposed in [21], the pro-
posed algorithm can achieve relatively higher DOA estima-
tion accuracy under the condition that the source number is
close to or fewer than the sensor number. When the source
number increases, the DOA estimation accuracy of the pro-
posed algorithm will be lower than that of SS-ESPRIT and
OMP algorithms under low SNR and few snapshots. The
reason for the above phenomenon is that in order to reduce
the complexity caused by search times, the proposed algo-
rithm initially estimates the angles by calculating the DFT
spectrum of the equivalent received signal. The number of
sources that this method can distinguish is limited by the
length of the array, and under low SNR and few snapshots, the
DFT spectrum will produce more pseudo-peaks, which will
affect the result of DOA estimation. Therefore, the traditional
DFT algorithm and the improved DFT algorithm proposed
in [21] are also affected by low SNR and few snapshots, while
SS-ESPRIT and OMP algorithms that do not use DFT for
initial estimation are not significantly affected by low SNR
and few snapshots.

VI. CONCLUSION

In this paper, aiming at the problem of signal DOA estima-
tion of sparse array, based on the large aperture continuous
difference co-array generated by sparse array, a high preci-
sion DOA estimation algorithm is proposed. After the initial
estimation result is obtained by using the DFT spectrum,
the over-complete redundant dictionary is divided according
to the initial estimation angles. Finally, the accurate DOA
estimation result is obtained by using the improved OMP
algorithm. The simulation results show that, compared with
the conventional DFT algorithm, the improved DFT algo-
rithm, the OMP algorithm and the SS-ESPRIT algorithm,
the proposed algorithm can give full play to the large aper-
ture advantage of sparse array and achieve the DOA estima-
tion of more sources, and the proposed algorithm has higher
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estimation accuracy when the snapshots are many and the
SNR is high.

However, due to the limitation of DFT, the estimation accu-
racy of the proposed algorithm will be affected under the
conditions of large number of sources, few snapshots and
low SNR. Subsequently, the estimation performance of the
proposed algorithm can be further improved by improving the
accuracy of the initial estimation.
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