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ABSTRACT Fault detection based on deep learning has been intensively investigated in the recent decade due
to increasing availability of data and its ability to engineer features with deep neural network architectures.
Despite much attention to its application, the major challenge is the lack of available labelled datasets to
build the models since maintenance is usually conducted regularly to avoid significant defects. This paper
aims to propose a successful real-time fault detection framework based on unsupervised deep learning using
only healthy normal data. The approach is based on autoencoder architecture and a one-class support vector
machine as a classifier. As a case study, large real-world datasets acquired from railway door systems have
been employed. The five different types of deep learning models and a one-class classifier are trained
and comprehensively validated based on performance metrics and sensitivity analysis. In addition, two
experiments have been carried out to verify the model’s adaptability and robustness to variational time-
series data. The result shows a typical autoencoder is the least sensitive to a decision boundary set by the
one-class classifier. However, the two experiments show that the fault detection accuracy for a bidirectional
long short-term memory-based autoencoder is considerably higher than other autoencoder-based models
at 0.970 and 0.966 as F1 score, meaning only this model is adaptable and robust to variational data. The
experimental result allows us to obtain the understandability of the deep learning models. Furthermore, the
regions of anomalies are localised with unsupervised models, which enables diagnosing the cause of failure.

INDEX TERMS Fault detection, PHM, signal processing, unsupervised deep learning, machine learning,
data-driven approach, AE, Bi-LSTM, railway, door systems.

I. INTRODUCTION

Prognostics and Health Management (PHM) is a compre-
hensive technology which enables engineers to turn data and
health states into information that will improve our knowl-
edge of the system and provide a strategy to maintain the
system in its originally intended function. While it has rooted
in the aerospace industry, it is now explored in many appli-
cations, including manufacturing, automotive, railway and
heavy industry [1]. PHM has significant benefits in reducing
support and operating costs. An unexpected one-day stoppage
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in the machinery industry may cost as much as up to 100,000
to 200,000 euros [2]. Furthermore, most importantly, mainte-
nance tasks are significant from a safety point of view. Inad-
equate maintenance can lead to a devastating incident. For
example, on the 10 May 2002, a train travelling from London
to Norfolk in the UK derailed at Potters Bar railway station,
causing seven deaths and injuring over seventy people. The
derailment was due to the failure of points; one of the main
factors is that points had been poorly maintained and were
out of adjustment in some respects [3]. Thus, an accident
related to inappropriate maintenance could be a significant
disaster that causes social anxiety and lead to the loss of social
credibility of the industry.
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Fault detection serves an important role in PHM and has
been investigated in recent decades. Researchers in such
diverse disciplines as medicine, engineering and sciences
have been developing methodologies to detect fault or
anomaly conditions, pinpoint or isolate which component or
object in a system or process is faulty, and decide on the
potential impact of a failing or failed component on the health
of the system [4].

In this area of study, the methodologies usually centre
on model-based or data-driven approaches. Model-based
approaches incorporate a physical understanding of the sys-
tems through mathematical representations and include sys-
tem modelling. The output of the model is then compared
with the actual output measurement throughout the residual
analysis [5], [6]. However, the mechanical system contains
many components interconnected with various uncertainties,
which makes the modelling approach of limited value. On the
other hand, data-driven approaches use statistical pattern
recognition and machine learning to detect changes [5]. Data-
driven approaches do not require mathematical modelling
of the systems and have gained much attention with the
increasing availability of data.

The data-driven approaches include traditional machine
learning (ML) and deep learning (DL) approaches. The
traditional ML approaches need several steps such as pre-
processing data, and feature extraction before building a
model. However, the manual feature extraction demands
expert domain knowledge, which makes traditional ML
approaches difficult. On the other hand, DL approaches
enable fault detection models to be created without hand-
crafted features employing a deep network architecture,
which is a remarkable advantage compared to traditional ML.

Fault detection techniques based on DL are categorised
into supervised and unsupervised learning approaches. The
supervised DL approaches require labelled datasets to train
a model. So far, much fault detection research has been
conducted based on supervised DL approaches, including
deep neural network (DNN) [7], [8], two-dimensional convo-
lutional neural network (2D CNN) [9], [10], [11], [12], one-
dimensional convolutional neural network (1D CNN) [13],
[14], gated recurrent units (GRU) [15], and long short-term
memory (LSTM) [16], [17]. However, the requirement of a
sufficient number of labelled datasets is a significant draw-
back of supervised approaches since faulty data is always
insufficient due to conservative maintenance to avoid catas-
trophic incidents. In addition, only anticipated faults can be
detected in the case of supervised learning approaches. More-
over, in general, supervised DL needs more training datasets
than traditional ML approaches because of deep network
architecture including many parameters to be learned.

Contrary to the supervised approaches, unsupervised DL
approaches do not require labelled datasets. In the case of
industrial data acquisition, healthy normal data is widely
available, while faulty data is scarce. The unsupervised DL
approach aims at extracting relevant characteristics of the
input data itself. If healthy data is used as a training dataset,
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engineered features with unsupervised DL models can rep-
resent characteristics of healthy data. Then, these features
can be used for classification tasks for the purpose of fault
detection. Previous research has been proposed based on
unsupervised learning approaches, such as stacked autoen-
coder [18], [19], denoising autoencoder (DAE) [20], sparse
autoencoder (SAE) [21], variational autoencoder (VAE) [22],
and deep belief network (DBN) [23]. However, in the litera-
ture described above, the following step of using the engi-
neered features is a supervised classification model, which
means there is still a need for labelled datasets even though
features are created in an unsupervised manner. Despite
the drawbacks, little research using only healthy data to
build an entire fault detection system can be found in the
literature [24], [25], [26].

In addition, it is crucial to build a reliable DL model based
on the rationale behind a network architecture. However,
it might be challenging to understand what the DL models
mean because Al models are black boxes in nature, mean-
ing that the inner mechanism to produce outputs in these
methods is unknown [27]. Despite the significance of under-
standability and reliability of the models, the unsupervised
DL algorithms found in [24], [25], and [26] are chosen and
validated empirically applying fault detection accuracy. It is
also pointed out in [28] that researchers have not explained
the reasons as to why or how these DL architectures have
been selected. In that case, it might be required to build DL
architectures comprehensively by only using fault detection
accuracy, which is impractical.

This paper aims to propose a successful real-time fault
detection framework based on unsupervised DL using only
healthy normal data. The approach is based on autoen-
coders (AEs) and a one-class support vector machine (SVM)
as a classifier. As a case study, large real-world datasets
acquired from railway door systems have been employed. The
five different types of DL models and one-class SVM are
trained with healthy normal data and comprehensively val-
idated based on performance metrics and sensitivity analysis.
In addition, two experiments have been carried out in order to
verify the model’s adaptability and robustness to variational
time-series data. To our best knowledge, this is the first paper
to propose a fault detection framework based on unsupervised
DL for railway door systems. The main contributions of the
paper are summarised as follows:

1) We propose a real-time fault detection framework for
railway assets based on unsupervised DL approaches
using only healthy normal data.

2) We comprehensively build and compare representative
unsupervised DL models based on fault detection accu-
racy and sensitivity analysis.

3) We verify the model adaptability and robustness to vari-
ational time-series data and obtain understandability of
the DL models.

4) We visualise reconstructed profiles generated by DL
models and localise regions of anomalies, which
enables diagnosing the cause of failure.
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The remainder of this article is organised as follows.
Section II provides the proposed methodology. The result
and discussion are given in section III. Finally, section IV
concludes this article.

Il. PROPOSED METHODOLOGY

A. FAULT DETECTION WORKFLOW

The proposed real-time fault detection workflow for train
doors is shown in Figure 1. The workflow is divided into
two procedures, offline and online. In the offline, current
and encoder signals acquired from railway assets are used
as training datasets to train an unsupervised DL model and
a one-class SVM model to build a fault detection model.
In this approach, time-series current and encoder signals
are pre-processed to be aligned and eliminate noise by a
low pass filter, followed by segmentation into the opening
and closing operations. Then current and encoder signals
are standardised, which means signals are divided by the
standard deviation of each signal, in order to make each signal
have the same standard deviation. Once the training dataset
is prepared, the unsupervised DL model is trained with the
training dataset. The training data is then reconstructed with
the DL model. The sum of squared errors (SSE) between
input and reconstructed data is calculated. Finally, the one-
class classification model, which is a one-class SVM model,
is trained.

The DL model and the one-class classification model cre-
ated offline are implemented on the online procedure to detect
faults in real-time. The current and encoder signals are pre-
processed, segmented, and standardised in the same manner
as offline. Then the real-time input data is reconstructed with
the DL model built offline, followed by SSE calculation and
prediction with the one-class SVM model. The fault detec-
tion workflow can be executed once one door operation is
terminated so that faulty behaviour can be detected as early
as possible, which allows us to maintain machinery before
breakdown.

The proposed method offers remarkable advantages in
terms of practical fault detection applications available in
the industry. Firstly, fault detection models can be built by
using only healthy normal data acquired in the industry,
where labelled datasets are always insufficient. Secondly,
the proposed method enables fault detection models to be
created without handcrafted features employing a deep net-
work architecture. Thirdly, both anticipated and unanticipated
faults can be detected and localised due to its unsupervised
approaches. Fourthly, the fault detection model built offline
can be improved by additional operational data that enable
fault detection to be more accurate and reliable.

B. DATASET

1) DATA ACQUISITION

In this study, large real-world datasets acquired from railway
door systems have been employed. An electric door is con-
sidered, which is composed of a voltage power source, a DC
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FIGURE 1. The proposed real-time fault detection workflow.

motor, a door control unit (DCU), a transmission and door
leaves. In short, a DC motor, powered by a voltage source
and controlled by DCU, can output the specified shaft angular
velocity and torque, which are transmitted to transmission
so that the door leaves can move in a pre-designed manner.
The door data, which consists of current and encoder signals,
is collected through the communication port from the DCU at
a frequency of 50 Hz. The time lag is often observed between
the motion profile and the current. To align the time-series,
the dynamic time warping (DTW) method is used for the
first alignment. The low pass filter is applied on a window
of 0.25 seconds, representing five consecutive measurement
time intervals to reduce noise carried by both current and
encoder signals.

2) AN EXAMPLE OF THE SIGNAL PROFILE
An example of the signal profiles of the opening and closing
operations is shown in Figure 2. In the opening profile, the
speed and current increase steadily up to a maximum, fol-
lowed by a slight curve, and then decrease to zero. The closing
profile follows a similar pattern with two main differences in
the current. One is that the peak in the closing profile is lower
than the opening. The second is an abrupt change at the end
of the closing profile, followed by a slight bump of the speed,
which promotes pushing the door to its maximal reachable
position where a locking process can be triggered [29].

In this research, current signals from the closing operation
are used as an example for a fault detection purpose. It is
also possible to employ opening operation instead since the
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FIGURE 2. Door speed and current signals.

proposed method is unspecific to types of operations and
fault modes. The example of the normal and faulty signals
of closing operation is shown in Figure 3. The normal current
signal has flat curves from 3.2 seconds to 4.0 seconds, while
there are negative peaks and fluctuations in that of faulty data.
It should be noted that concrete fault types are unidentifi-
able in this research. The experimental current signals of the
representative fault modes for electro-mechanical actuators
(MAE:s) provided in [30] have been compared to the faulty
signals in the railway door operation. However, none of the
fault modes resembles the faulty signals in the railway door
operation. It is possible, therefore, that the observed faulty
behaviour could be accompanied by several fault modes
because the train door system contains many components.
The identification and diagnosis of fault modes are out of
the scope of this research. In order to apply DL models with
time-series data, it is crucial to make each current and door
speed profile in the dataset be the same length in time. Thus,
the profiles over 5.22 seconds are eliminated in the example
dataset, which means each profile includes 262 data points.

3) TRAIN AND TEST DATASET

The acquired operational current and encoder signals of clos-
ing operation are split into training and test datasets as given
in Table 1. It is noteworthy that the training dataset includes
only normal data because the DL models and one-class
classifier are trained with normal data in an unsupervised
manner. Then, the test dataset is employed to validate the fault
detection accuracy.

C. DEEP LEARNING MODELS

1) AUTO-ENCODER

Many unsupervised DL algorithms are based on the idea of
an autoencoder (AE). The AE is a special case of a feed-
forward neural network that is trained to attempt to copy its
input to its output. The network consists of two parts: an
encoder and a decoder, as shown in Figure 4. The encoder is
a function that maps the input into lower-dimensional space,
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FIGURE 3. Normal and faulty signals of closing operation.

TABLE 1. The train and test dataset.

Normal Anomaly Total
Train 100 0 100
Test 100 100 200

where compressed data is used as an internal representation
of the original input. The decoder is a reverse process of
the encode that produces a reconstruction by using internal
representation. The AE is trained the same as a feedforward
neural network, where a back-propagation algorithm com-
putes gradients of a loss function, and gradient descent is used
to optimise parameters.

The encoding and decoding process can be represented
using the following equations [31]:

h =f(WeX +b,) (D
Y = g(Wyh +by) (2)
X=0@x2x3 ... ™ A3)
Y =0 y?2y% Y™ @)

where X and Y are n by m matrices containing n by
1-dimensional column vector x’ (i =1,...,m), and m
observations, W, and Wy, and b, and b, are weight matrices
and biases, respectively, and f and g are activation functions.
If X% is used as a training dataset, the AE is trained to
optimise weight parameters and biases to minimise the loss
function given in the following equation:

n m
train ., ytrain\ __ train __ ytrain
L(X 2 )_ZZHXU Y
roJ

FANWel> + 1Wal?)  (5)

2

where Y74 s a prediction calculated by equations (1) and
(2), 1 is a L2 regularisation hyperparameter, which controls
the strength to force weight parameters to be small to avoid
overfitting. As a definition of the loss function, the optimi-
sation goal is to minimise the difference between X" and
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Y4in while preventing weight parameters from being large.
The optimisation process makes Y74 identical to X"

Once the AE is trained, the model can be used to obtain the
difference between input and output data. The difference is
called a reconstruction error. The reconstruction error is cal-
culated as the sum of squared error (SSE), the mean squared
error (MSE), and the mean of SSE (MSSE), given in the
following equations:

. 12
i i

SSE! = |x' —y (6)
, 1 .
MSE' = ~SSE! (7
n
1 m .
MSSE = — > SSE! )
j=1

It is noteworthy that the reconstruction error differs
depending on input data characteristics. For instance, suppose
the input data resembles training data, meaning the character-
istics of input data are equivalent to those of training data, the
reconstruction error can be small enough to be the same as
that of training data. However, the reconstruction error can
be larger if input data have a different tendency from training
data. In this research, the capability of AEs relating to the
reconstruction error is employed for fault detection purposes.

The typical AE model is built to compare representative
DL models, as given in Table 2. Firstly, the standardised
current and encoder signals, described in Figure 1, are con-
catenated as a 1 by 524 column vector. Then, the concatenated
data is used to train the AE model. The activation function
for an encoder and a decoder layer is the sigmoid function.
Notably, the dimension of the input layer, 1 by 524, is deter-
mined depending on current and door speed signals, whose
profiles include 262 data points, respectively. Suppose the
proposed AE architecture is employed in another example.
Then, the input dimension is modifiable according to the
signal profiles.

2) BIDIRECTIONAL LONG SHORT-TERM MEMORY
AUTOENCODER

Long short-term memory (LSTM) is one of the most popular
types of recurrent neural networks (RNNs), enabling infor-
mation to be preserved over many time steps, and was initially
proposed by Hochreiter and Schmidhuber [32]. The LSTM
includes gating units, which control the flow of information
in the LSTM [33]. The forward propagation process can be
expressed as the following equations:

5t = tanh(Wchy—1 + Ucxt + be) )
St =0Wghi_1 + Upx; + by) (10)
ir =o(Wih—1 +Uixs + by) (11)
0 = o (Wohi—_1 + Uyxt +by) (12)
St =8-10f; +ir O (13)
hy = tanh(s;) © oy (14)
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FIGURE 4. AE architecture.

TABLE 2. The AE architecture.

No. Layer Output shape Learnable parameter #
1 Input 1 x524 0

2 Encoder 1x10 5250

3 Decoder 1x524 5764

4 Output 1 x524 0

where x; and h; are input and hidden state, f;, i, and o
are forget gate, input gate and output gate, s, is state unit at
time step ¢, correspondingly. The b, by, b;, and b, are bias
vectors, o is an activation function, and W, Wy, W;, W,,
U., Ur, Uj, and U, are weight matrices, respectively. The
® symbol denotes element-wise multiplication. The forget
gate f; determines if each element of s, is remembered
or forgotten. The input gate i; determines if each element
of the state unit §; is updated by the latest information at
the current time step. The output gate o; determines if each
element of the state unit is transferred to the hidden state [33].
The calculation flow can be described as an LSTM block
diagram, as shown in Figure 5.

A remarkable advantage of the LSTM compared to RNNs
is making the weight parameters controlled by gating units.
In this case, the time scale of integration with past information
can be changed dynamically because gating units are also
determined by sequential input itself.

In addition, the LSTM also mitigates vanishing and explod-
ing gradients. The state unit is essentially copied from time
step to time step, given that forget gate and input gate are
close to zero and one, respectively, as shown in equation (13).
In this way, gradient expression does not accumulate over
time, which enables preventing gradients from vanishing or
exploding. That allows LSTM networks to learn long-term
dependencies.

The LSTM captures the past information, which are xy,
Xx2,..., xy—1 and the present input x,. However, in many
applications, the whole input sequence needs to be used to
output accurate predictions. Bidirectional LSTM (Bi-LSTM)
can be applied to address that need. As the name suggests,
Bi-LSTM combines an LSTM that moves forward through
time beginning from the start of the sequence with another
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LSTM that moves backwards through time beginning from
the end of the sequence, as described in Figure 6. The calcu-
lation is written in the following equations:

hBiLS ™ _ [ hforward , hbackward ] (15)

y¢ = tanh(Wyhpir sty + by) (16)

where Bforverd and pbackward are hidden states of a forward
LSTM and a backward LSTM, by and Wy, are a bias vector
and a weight matrix for activation of bidirectional LSTM
¥, respectively. The #orv@d and pbackward cap be calculated
separately based on equations (9-14). This allows the bidirec-
tional LSTM to compute activation y; depending on both the
past and future information.

A Bi-LSTM autoencoder (Bi-LSTM-AE) is an autoen-
coder whose encoder and decoder employ Bi-LSTM architec-
tures. The proposed Bi-LSTM-AE architecture is described
in Figure 7 and Table 3. The encoder architecture is con-
structed using a Bi-LSTM, a fully connected (FC) layer,
and a ReLU layer, which consists of No. 2, 3 and 4 in
Table 3. The Bi-LSTM layer includes forward LSTM and
backward LSTM layers. By contrast, the decoder architecture
is a reverse process of the encode that produces reconstructed
data, which consists of No. 5, 6 and 7 in Table 3. The scaling
layer rescales the output of Bi-LSTM to be ranged same as
input data since the output from the Bi-LSTM is ranged from
—1 to +1 due to tanh activation function. The scale factor is
set as 5 in this research, meaning the output from Bi-LSTM
is multiplied by 5 in the scaling layer. The hyperparameters
are given in Table 4.

As for the FC layers, each column of an input matrix is fed
into the fully connected layer. For example, in the case of the
first fully connected layer in Figure 7, the calculation can be
described as the following equation:

X = (xl x2 x3 . xtimestep) (17)
h =o0(WX +b)
= o{(Wx1 Wx? Wtimestepy 4 py  (18)

where X is a 32 by timestep input matrix, W and b are a
weight matrix and a bias, whose sizes are 10 by 32 and

VOLUME 10, 2022

FIGURE 6. Bidirectional LSTM.

TABLE 3. Proposed Bi-LSTM-AE architecture.

No. Layer Output shape Learnable parameter #
1 Input 2 %262 0

2 Bi-LSTM 32 %262 2432

3 FC layer 10 x 262 330

4 ReLU 10 x 262 0

5 FC layer 32 x262 352

6 ReLu 32 x262 0

7 Bi-LSTM 2x262 272

8 Scaling layer 2 x262 0

9 Output 2x262 0

10 by 1, o is the Relu function, and % is 10 by timestep output
matrix. Notably, each column vector xt (i =1, ..., timestep)
of the input matrix is fed into the fc layer and then mapped
with the same W and b, accordingly.

3) ONE DIMENSIONAL CONVOLUTIONAL NEURAL
NETWORK AUTOENCODER

Convolutional neural networks (CNNs) are a specialised kind
of neural network for processing grid-like data, such as image
data, which can be a 2D grid of pixels [31].

CNNs consist of convolution layers which employ several
filters called kernels. The kernels convolve input, and then
convolved input is passed to a nonlinear activation function,
such as hyperbolic tangent, sigmoid or rectified linear unit
(ReLU) function. The convolution and activation operation
can be expressed as follows:

2=fGxxk)+b (19)

where x and k are input data and a [-by-/ kernel, f is an
activation function, b and z are a bias and a mapped feature
matrix, respectively. The x denotes convolution operation.

CNNs have been tremendously successful in practical
applications such as image recognition and object detection,
where a 2D grid of input data and 2D kernels are used. In that
case, the CNNs can be called 2D CNNs. On the other hand,
CNNs are also proven promising for 1D input data such
as time-series data, where one-dimensional vector kernels
are applied for convolution operation instead of 2D kernels,
whose CNNs can be categorised as 1D CNN.
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TABLE 4. Hyperparameters of Bi-LSTM-AE.

TABLE 5. Constructed 1D CNN-AE architecture.

Layer Parameter name Parameter No. Layer Output shape Learnable parameter #
Whole layers Optimiser Adam 1 Input 262 x2 x 1 0
Max Epoch 2000 2 ID CNN 1 85x1x10 190
Learning rate 0.001 3 ReLU 85x1x10 0
L2 regularisation 0.001 4 1D CNN 2 26 x 1 x10 1620
Bi-LSTM Activation function tanh 5 ReLU 26 x 1 x10 0
for the hidden state 6 FC layer 26x1x6 126
Activation function sigmoid 7 RelLU 26%1%6 0
for the gates
8 FC layer 6x1x10 140
Current and door speed signals ? Rel.U 6110 0
10 1D TCNN 1 26 x1x10 1810
11 ReLU 26 x1x10 0
12 1D TCNN 2 262 x2x1 262
! 13 Output 262x2x 1 0

2 x timestep

32 x timestep

10 x timestep

32 x timestep 10 x timestep

2 X timestep

C Scaling layer D)

2 X timestep

Reconstructed signals
" ! ! TF

,(,.“,.":-_._.-,....__ - n =
U

i
)
1
1
v '

FIGURE 7. Proposed Bi-LSTM AE architecture.

A 1D CNN autoencoder (1D CNN-AE) is an autoencoder
whose encoder and decoder employ 1D CNN architectures.
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The constructed 1D CNN-AE is described in Figure 8 and
Table 5. The encoder architecture is constructed using a 1D
CNN, an FC layer, and a ReLU layer, which are from No. 2 to
No. 7 in Table 5. On the other hand, the decoder architecture
is a reverse process of the encode, including 1D transposed
convolutional neural networks (1D TCNNSs), which are from
No. 8 to 12 in Table 5. 1D TCNN enables upsampling the
input data. That means the output dimensions are greater than
the input dimension in 1D TCNN, initially proposed in [34].
The hyperparameters are given in Table 6.

4) STACKED AUTO ENCODER AND MULTILAYER
AUTOENCODER

The stacked autoencoders (SAEs) are autoencoders which
have multiple hidden layers. Instead of training whole SAEs,
the same as training a neural network (NN) with multiple
hidden layers, it is possible to train one shallow AEs, and then
stack all hidden layers to be a single SAE, as described in
Figure 9. This training is called greedy layer-wise training.
In that case, the first autoencoder is trained to reconstruct
training input data. Then the whole training dataset is encoded
by using the first encoder. The encoded training dataset is
utilised for training the second autoencoder to reconstruct
the encoded training dataset. Finally, trained shallow AEs are
stacked to be a single SAE.

The whole SAEs can be trained in the same manner as NN
and greedy layer-wise training. The terminology of SAEs can
refer to the models trained by both methods. For the sake of
clarity, we define the SAEs trained in the same manner as
NN as multilayer AEs (MLAE), whereas defining the SAEs
trained by greedy layer-wise as SAEs in this research. The
constructed SAE and MLAE architectures are equivalent to
each other, as given in Table 7, though the training scheme
differs.

D. ONE-CLASS SUPPORT VECTOR MACHINE
The one-class SVM is a variant of the SVM algorithm.
Basically, the SVM is a binary linear classifier. The SVM is
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TABLE 6. Hyperparameters of 1D CNN-AE.

Output |- -Copy parameters - QOutput

Layer Parameter name Parameter
Whole layers Optimiser Adam | TR e
Max Epoch 2000
Learning rate oootr | TTEEERepmmmmmmm
L2 regularisation 0.0001
IDCNN 1 Filter size 9x 1 N
Number of filters 10 T
Stride 3
1D CNN 2 Filter size 8x1 First autoencoder Second autoencoder Stacked autoencoder
Number of filters 20
Stride 3 FIGURE 9. Structure of SAEs.
1D TCNN 1 Filter size 9x1
TABLE 7. Constructed SAE and MLAE architecture.
Number of filters 10
Stride 3 No. Layer Output shape Learnable parameter #
1D TCNN 2 Filter size 13x1 1 Input 1x524 0
Number of filters 2 2 Encoder 1 1x50 26,250
Stride 3 3 Encoder 2 1x10 510
4 Decoder 1 1x50 550
262 %2 5 Decoder 2 1x524 26,724
6 Output 1x524 0
85x1x10 26x1x10

CNN + RelLU

CNN + RelLU

262x2

FIGURE 8. 1D CNN-AE architecture

also called maximum margin classifiers because the model
constructs a decision boundary so as to have a maximum
margin from training samples. The SVM is also capable of
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generating a nonlinear decision boundary by using a kernel
function called the kernel trick. In that case, the original data
is mapped into a higher dimensional feature space with a ker-
nel function, and then the SVM model sets a linear classifier
in this feature space. Then, the original data can be separated
by a nonlinear function even though the decision boundary is
a linear function in the feature space. The decision boundary
in the feature space is also called a hyperplane.

The one-class SVM resembles the SVM for binary classifi-
cation. The one-class SVM is trained with kernel trick using a
dataset which has only one class label. The assumption is that
all the training data sample belongs to the positive class and
the origin of the feature space belongs to the negative class.
Hence, the objective is to maximise separation between the
origin and hyperplane in the feature space. However, it is not
always practical to generate a decision boundary completely
separating all the training data samples and the origin because
the exact separation of the training data can lead to poor
generalisation [35]. Therefore, the one-class SVM allows
some of the training samples to be negative. The optimisation
problem can be written as follows:

, 1 1 «
argmmw,s,bz Iwl? + o Z& +b (20)
i=1

st.w® (xj))+b+& >0,

& >0foralli=1,...,mQ21)

where w and b are weight and bias, &; is the slack variable,
m is the number of training samples, and @ is a function
mapping x; into the higher dimensional feature space. The
variable v € (0, 1) corresponds to both an upper bound on
the fraction of outliers and a lower bound on the fractions
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of support vectors. It can be interpreted as the proportion of
outlier fraction the one-class SVM allow to be negative. The
lagrangian corresponding to the minimisation subject to the
constraints is given as follows [36]:

1
Lw§b) =3 [[wl|*

1 m m
+%;$i+b—2ai(w¢(xi)+b+§i)

i=1

— Y niki (22)
i=1

oL "

S =0 w= lg;ald)(xi) (23)
L 1
—=0—-0ai=——n;,n€(0,1) (24
&; vm

oL -

%=O—>Za,~=l (25)

where, &; 2 0 and n; 2 0 are lagrange multipliers. As a result,
the lagrangian can be written as follows:

argming oo K (xi, xj) (26)
m

st. 05 ; £1, Za,-:vm 27)
i=1

K(x,-,xj) =D (x;)- D (xj) (28)

where K is called kernel function such as gaussian kernel,
written as the following equation

K (x;, xj) = el*iill/2 (29)

The o is a parameter meaning variation of Gaussian distri-
bution. The optimisation problem is solved for «;, 1;, i =
1, ..., m, followed by computation of w and b to generate
hyperplane in the feature space. Then, the nonlinear decision
boundary is set in the original space.

For the sake of convenience, we call hyperparameter v
outlier fraction in the paper. In this research, outlier fraction
v is optimised so as to make fault detection accuracy highest
in the test dataset. The outlier fraction v needs to be searched
in the vicinity of 0 to make the number of misclassified sam-
ples as small as possible. Otherwise, fault detection accuracy
could be worse than expected. Thus, we chose the grid search
in logarithmic scale, which enables candidates of v to be
exponentially distributed nearby 0, as given in Table 8.

E. VALIDATION

1) VALIDATION WORKFLOW

The proposed validation workflow is described in Figure 10.
First, a dataset, which are time-series current and encoder
signals of closing operation, are pre-processed to be aligned
and eliminate noise by a low pass filter, followed by stan-
dardisation, which is the same procedure of health monitor-
ing workflow described in Figure 1. Then, a pre-processed
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TABLE 8. The candidates of outlier fraction.

Hyper parameter candidate
outlier 107
hyperparameter v

y €[2,-19,-18,-1.7,-1.6,-1.5,-1.4, -1.3,-1.2,
-1.1,-1.0,-0.9, -0.8, 0.7, -0.6, -0.5, -0.4, -0.3, -0.2,
-0.1,]

dataset is split into training and test dataset. By using the
training dataset, the unsupervised DL model and the one-class
SVM are trained, and the reconstruction SSE is calculated.

In test procedure, test data is modified according to experi-
mental conditions, as described in detail in 4) of Section IL.E.
Then, the test data is reconstructed with the DL model built
with training data, followed by SSE calculation and predic-
tion with the one-class SVM model. Finally, the prediction
result is validated with performance metrics.

It is notable that the fault detection accuracy differs accord-
ing to a decision boundary set by one-class SVM. The deci-
sion boundary is determined with an outlier fraction, which
is a hyperparameter of one-class SVM. In this research, the
candidates of the outlier fraction are applied to set decision
boundaries, as given in Table 8. Then, the highest classifica-
tion accuracy is chosen among the candidates.

2) PERFORMANCE METRICS

A confusion matrix is used to analyse the performance
of a fault detection system. A confusion matrix is a
two-dimensional table of counts of how often each category
is classified or misclassified as each other category. In the
case of binary classification for fault detection, the confusion
matrix has the following four elements: positive (faulty) sets
are either detected or not; similarly, negative (normal) sets are
either detected or not. These elements are true positive (TP),
false negative (FN), true negative (TN) and false positive
(FP), respectively, as given in Table 9. Once populated, this
matrix is then used to derive performance metrics commonly
used in the industry [37] as given in the following equations:

. P
Precision (P) = ——— 30)
TP + FP
TP
Recall (R) = —— 3D
TP + FN
2PR
F1 score = —— (32)
P+R
. FP
False positive rate (FPR) = ———=1—P (33)
TP + FP
True positive rate (TPR) = Recall (R) (34)

In the context of fault detection, the practitioners have
two concerns [24]. The first one is the minimisation of false
alarm occurrences. Too many of them will make the fault
detection systems unreliable and impractical. The second one
is that actual faulty samples should be detected as positive and
collected as accurately as possible since undetected actual
faulty behaviour might have catastrophic consequences in the
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FIGURE 10. Validation workflow.

industry. The two corresponding indicators are the false posi-
tive rate (FPR) and recall (R). Precision (P) needs to be as high
as possible to minimise FPR. Thus, the two practitioners’
concerns can be expressed to maximise P and R.

In general, precision measures how many of the samples
predicted as positive are actual positive. Recall, on the other
hand, measures how many of the positive samples are cap-
tured by the positive predictions. There is a trade-off between
optimising precision and optimising recall [38]. A perfect
recall can be obtained given that all samples are predicted as
positive class, and therefore the precision can be very low,
which means there are too many false alarm occurrences.
On the contrary, precision can be perfect if a model predicts
only a single sample which is the most likely to be positive
as positive and the rest as negative. In that case, however,
recall can be very low. One way to take precision and recall
into account and summarise them is the calculation of the
harmonic mean of P and R, which is the F1 score given in
equation (32). In this research, the F1 score is applied to eval-
uate fault detection accuracy, which is ranging from O to 1.
A high F1 score means high fault detection accuracy and vice
versa.

3) SENSITIVITY ANALYSIS
The practice of sensitivity analysis is widespread in techno-
logical disciplines. It means analysing how much the output
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TABLE 9. Confusion matrix.

Predicted Class
Faulty Normal
Actual Faulty True Positive (TP) False Negative (FN)
Class Normal | False Positive (FP) True Negative (TN)

of a model is affected as the model parameters are changed
[33]. A receiver operating characteristic (ROC) curve is used
in order to validate the model sensitivity against the threshold
set by one-class SVM. ROC gives a comprehensive overview
of the trade-off between FPR and true positive rate (TPR),
as described in Figure 11. The ideal ROC curve has zero
FPR and one TPR. A metric called area under the ROC
curve (AUC) is the area underneath the entire ROC curve
from (0, 0) to (1, 1). The AUC provides a single-number
summary of the ROC curve, which becomes one given the
ideal ROC curve. In this research, the ROC curve is plotted
corresponding to the threshold set by one-class SVM. The
threshold is determined by the outlier fraction, which is a
hyperparameter of one-class SVM.

4) EXPERIMENT

In order to verify the fault detection model’s adaptability to
variational time series data, two experiments are proposed.
The first experiment is a time-shifted modification to the test
dataset. In the first experiment, we have shifted the current
and door speed signals of the test dataset over time dimension
by 0.4 second, as shown in Figure 12.

On the other hand, we have expanded the current and door
speed signals over time dimension by 0.4 second, in which
door operation status is steady-state in the second experiment,
as described in Figure 13. The steady-state means door speed
and current signals are stable and constant. The assumption
for both experiments is that normal and faulty profiles modi-
fied according to each experimental condition should also be
predicted as normal and fault, respectively.

The test data with no modification is also used to validate
fault detection accuracy as a default setting. This test is
defined as the default test in this paper.

5) LOCALISATION OF REGIONS OF ANOMALIES

The reconstruction error is utilised to localise anomalous
regions in time series data. The general idea is that if some
region’s reconstruction MSE calculated with the DL model
is relatively larger than the MSE of the whole region, those
regions are considered anomalous. The steps of localisation
of regions of anomalies are the followings.

1. Define the time step window whose size is set to
0.3 second. the initial position of the left side of the
windows is assigned to O second.

2. Calculate the mse of the window

3. If the mse of the window has over 15 times above the
mse of the whole region, the window is labelled an
anomalous region. In this research, the term ‘the mse
threshold’ is used to refer to parameter 15.
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4. Slide the window by 0.02 second

5. Repeat steps 2, 3 and 4 until the right side of the
window reaches the end of the time series region

6. Identify windows which are labelled anomalous
regions

Ill. RESULTS AND DISCUSSION

A. PERFORMANCE METRICS AND SENSITIVITY ANALYSIS
The fault detection performance metrics are given in Table 10.
As for the default test, Bi-LSTM-AE has the highest F1 score
among the models at 0.971, followed by AE and 1D CNN-AE
at 0.962 and 0.961, respectively. Meanwhile, the F1 scores
for SAE and MLAE are comparatively lower than those for
other models at 0.947. However, overall, it is noteworthy that
anomalies can be detected at more than 0.940 F1 score by
using unsupervised DL models compared in this research.
As shown in Figure 15 and Figure 16, normal profiles are
well reconstructed with all AE-based models, while anomaly
profiles are not well reconstructed. As a result, the recon-
struction errors of anomaly data become larger than normal
profiles, which is the reason why the unsupervised model
enables detecting faulty behaviours by using reconstruction
errors. However, the F1 scores of Bi-LSTM-AE, 1D CNN-AE
and AE are relatively resembling, so it might be challenging
to choose the appropriate model by using only performance
metrics. This is because fault detection accuracy could be
lower with other operational data, whose distribution is varied
due to different operating conditions as training and test
dataset.

Furthermore, it is also crucial that the fault detection mod-
els need to be less sensitive to the threshold set by one-class
SVM, which means the fault detection accuracy needs to
be unaffected by the variation of the threshold. As shown
in Figure 14 and Table 11, the ROC curve for AE is the
closest to the ideal ROC curve at 0.9993 for AUC, followed by
Bi-LSTM-AE, 1D CNN-AE at 0.9962 and 0.9916 for AUC,
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respectively. By contrast, ROC curves for SAE and MLAE
are relatively differentiated from the ideal ROC curve than
other models at 0.9651 and 0.9607. The result shows that AE
is the least sensitive to the threshold, which means the AE
model is the most robust against the variation of the threshold.
Hence, AE can be the most appropriate fault detection model
in the default test despite a lower F1 score than Bi-LSTM-AE.

However, as for the first and second experiments, only
Bi-LSTM-AE has adequate F1 scores at 0.970 and 0.966,
correspondingly, while other models have 0.500 precision
and 1.00 recall, as given in Table 10. The result for other
models except for Bi-LSTM-AE means that entire test data
are predicted as anomalies, which is impractical for fault
detection purposes. The profiles for the first and second
experiments, as shown in Figure 17 and Figure 18, are well
reconstructed with Bi-LSTM-AE, whereas the reconstructed
data is quite noisy with 1D CNN-AE. In addition, the AE,
SAE and MLAE are not adaptable to modified experimental
test data since reconstructed profiles are neither shifted nor
expanded in time.
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TABLE 10. Fault detection performance metrics.

Model Default First Experiment Second Experiment
Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score
Bi-LSTM-AE 0.943 1.00 0.971 0.943 1.00 0.970 0.934 1.00 0.966
1D CNN-AE 0.942 0.980 0.961 0.500 1.00 0.666 0.500 1.00 0.666
AE 0.926 1.00 0.962 0.500 1.00 0.666 0.500 1.00 0.666
SAE 0.916 0.980 0.947 0.500 1.00 0.666 0.500 1.00 0.666
MLAE 0.908 0.990 0.947 0.500 1.00 0.666 0.500 1.00 0.666

ROC curve for default test
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FIGURE 14. ROC curve for default test.

TABLE 11. AUC for default test.

Model Bi-LSTM 1D CNN AE SAE MLAE
-AE -AE
AUC 0.9962 0.9916 0.9993 0.9651 0.9607

The result for Bi-LSTM-AE can be attributed to its param-
eter sharing and sequential network architecture, taking past
and future information into consideration, as explained in
2) of Section II.C. The parameter sharing means that the same
weight and bias parameters are employed in LSTM layers.
That makes it possible to apply the model to samples of
different forms and generalise across them [31]. In the case of
separate parameters for each time index, the model cannot be
generalised to samples whose characteristics are not observed
in the training dataset. Those models need to learn all possible
samples they would observe. That is the reason why the
AE, SAE and MLAE are unadaptable to the profiles for the
first and second experiments. On the other hand, parameter
sharing allows the DL model to capture features which can
occur at different time indices.

Furthermore, the sequential network architecture enables
past and future time-series information to be taken into con-
sideration by using memory cells and gating units. Certainly,
1D CNN is also sharing parameters as kernels. That enables
1D CNN-AE to reconstruct profiles more accurately than
AE, SAE and MLAE for the first and second experiments,
as shown in Figure 17 and Figure 18. However, 1D CNN
does not take past and future information into consideration.
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The convolution operation capture features of a specific
timestep range specified as filter size, while kernels keep
sliding over the time dimension, taking no past and future
information. The better results of Bi-LSTM-AE for the first
and second experiments than 1D CNN-AE could attribute to
its sequential network architecture.

B. RECONSTRUCTED ERROR DISTRIBUTION

The reconstruction errors of DL models for the default test,
first and second experiments are described in Figure 19. The
threshold is set by one class SVM as a decision boundary,
above which observations are predicted as anomalies. The
SSE distributions of the default setting, the first and second
experiments for Bi-LSTM-AE are almost identical since each
normal profile of the first and second experiments is well
reconstructed, as seen in Figure 17 and Figure 18. The MSSE
rates of the first and second experiments for Bi-LSTM-AE
are 0.998 and 1.002, respectively, as given in Table 12,
respectively. Thus, it is confirmed that the SSEs of the
first and second experiments for Bi-LSTM-AE are approx-
imately equivalent to the SSE of the default test, as shown
in Figure 19. The result means that the thresholds for the
first and second experiments can accurately separate normal
and faulty test data. That is the reason why Bi-LSTM-AE
has high faulty detection accuracies for the first and second
experiments.

On the other hand, the SSE distributions of 1D CNN-AE,
AE, SAE and MLAE for the first and second experiments
differ considerably from those for the default test, as shown
in Figure 19. The MSSE rates of those DL models are far
larger than those of the Bi-LSTM-AE, as given in Table 12.
It is attributed that the current and door speed profiles are
not well reconstructed for the first and second experiments
by using 1D CNN-AE, AE, SAE and MLAE, as shown
in Figure 17 and Figure 18. Consequently, as described in
Figure 19, whole observations of the test dataset are above
the threshold and predicted as anomalies. That is the reason
why other DL models, except for the Bi-LSTM-AE have
0.500 precision and 1.00 recall.

Therefore, the reconstruction distribution result shows the
adaptability and robustness of the Bi-LSTM-AE model to
time-series variation, as demonstrated in the first and second
experiments.

C. LOCALISATION OF REGIONS OF ANOMALIES

The regions of anomalies can be localised with MSEs gener-
ated by unsupervised DL models, as described in Figure 20.
The fundamental idea is that given some regions’ MSE is
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considerably larger, those regions are considered anomalous, The result reveals that the fault region can be localised
which is intuitively straightforward. The localised anomalous with unsupervised DL-based fault detection approaches,
regions are given in bold red lines in Figure 20. which is also beneficial in order to diagnose the cause
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TABLE 12. MSSE and MSSE rate.
Model MSSE MSSE of normal data of test set MSSE rate
Training data First exp Second exp First exp/train data Second exp/train data
Bi-LSTM-AE 0.529 0.528 0.530 0.998 1.002
1D CNN-AE 0.783 10.685 9.476 13.643 12.100
AE 0.820 273.122 118.125 332919 143.987
SAE 2.759 277.694 115.549 100.650 41.881
MLAE 2.699 248.644 112.627 92.118 41.726

of failure. Furthermore, it is remarkable that unanticipated
faults can also be detected and localised since the pro-
posed method does not require labelled datasets. In the
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case of supervised learning techniques, on the other hand,
fault needs to be detected and localised based on labelled
training datasets. Consequently, only anticipated fault can
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TABLE 13. Computational times.

Model Testing time consumption (ms)
Bi-LSTM-AE 19.6
1D CNN-AE 315
AE 70.8
SAE 194.5
MLAE 216.3

be detected and localised with supervised learning-based
approaches.

Thus, the unsupervised learning-based approach is bene-
ficial not only for tackling the issue relating to the lack of
available labelled datasets but also for detecting and localis-
ing unanticipated faults.

Certainly, it is important to bear in mind that there is a
potential bias to test dataset because the MSE threshold is
optimised empirically with test dataset. However, the possible
bias could be avoidable if some amount of faulty data is avail-
able as a validation dataset to optimise the MSE threshold.

D. REAL-TIME PERFORMANCE

It is crucial for real-time applications to guarantee response
times within a specified time. We have validated computa-
tional efficiency for each fault detection model, as given in
Table 13. The training process could be done off-line and
hence will not affect real-time fault detection performance.
The result of this study shows that testing can be conducted
in less than 250 milliseconds for five DL models. The term
‘testing’ is used to refer to the fault detection process for
single door operation. This means that fault detection results
can be obtained prior to another door operation since intervals
between door operations are typically more than minutes.
Thus, the fault behaviour can be detected in real-time once
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one door operation is terminated, which allows us to maintain
machinery before breakdown.

Indeed, the proposed method entails a limitation if the
fault detection needs to be executed on the edge device
implemented on the train. In that case, the fault detection DL
model could not be embedded on the device due to its com-
putational resource constraints. The hardware device, whose
specifications are Intel(R) Core (TM) i7-10750H CPU @
2.60 GHz processor and 8 gigabytes RAM, is employed for
this validation. However, it might be one of the possible
options that fault detection procedure could be executed with
cloud computing resources since the amount of sensor read-
ing data is considerably low at approximately 97.0 megabytes
as an assumption per day for a single train. Therefore, the
railway data can be transferred to the cloud servers by a
mobile network. Thus, the fault detection model could be
executed on cloud servers with enough computing resources.
Besides, there is a possibility to have edge devices, which
have rich computing resources depending on the industrial
situations.

Certainly, it might also be arguable that the proposed
method is not a real-time application because the fault
detection models require an entire single door operation for
decision making. But we insist it is possible to guarantee
that fault detection can be conducted between the last door
operation and the next one. This satisfaction is enough for
a practical real-time fault detection application because the
door closing operation time is less than 6.0 sec, so there is
no need to detect faulty behaviour while the door is being
operated.

IV. CONCLUSION

This paper aims to propose a successful real-time fault detec-
tion framework based on unsupervised DL using only healthy
normal data. The approach is based on AEs and one-class
SVM as a classifier. As a case study, large real-world datasets
acquired from railway door systems have been employed.
The datasets include motor current and encoder signals with
opening and closing operation status.

First, the time-series current and encoder signals are pre-
processed to be aligned, noises are reduced by using a low
pass filter technique, followed by segmentation and standard-
isation. Secondly, the AEs and one-class SVM are trained
with healthy normal data and comprehensively validated
based on performance metrics and sensitivity analysis. Lastly,
two experiments have been carried out to verify the model’s
adaptability and robustness to variational time-series data.

The result shows a typical AE has the highest AUC
at 0.9993, which means the AE is the least sensitive to
the threshold set by one-class SVM with the default test
dataset. However, as for the first and second experiments,
F1 scores for Bi-LSTM-AE are considerably higher than
other AE-based models at 0.970 and 0.966, respectively.
It means that only Bi-LSTM-AE is adaptable and robust to
variational time series data among the DL models due to its
parameter sharing and sequential network architecture, taking
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past and future information into consideration. The experi-
mental results also enable obtaining the understandability and
explainability of the DL models. Furthermore, the regions
of anomalies are localised with Bi-LSTM-AE, which is also
beneficial in diagnosing the cause of failure.

The proposed method offers remarkable advantages in
terms of practical fault detection applications available in
the industry. Firstly, fault detection models can be built by
using only healthy normal data acquired in the industry,
where labelled datasets are always insufficient. Secondly, the
proposed method enables fault detection models to be created
without handcrafted features utilising a deep network archi-
tecture. Thirdly, the proposed Bi-LSTM-AE is adaptable and
robust to variational time-series data, which is crucial for the
purpose of practical PHM applications. Fourthly, both antic-
ipated and unanticipated faults can be detected and localised
due to unsupervised approaches. Fifthly, the fault detection
model built offline can be improved by additional operational
data that enable fault detection to be more accurate.

For future work, a priori hyperparameter optimisation is
still an open question. In this research, hyperparameters of
DL models and a one-class classifier are set empirically
based on fault detection accuracy. However, it is significant
for practitioners to optimise hyperparameters prior to fault
occurrence. The augmentation of faulty data could be one
of the methods to address the issue. As for unsupervised
fault detection, the augmented faulty data is used to validate
the model accuracy. Compared to training the supervised
model, the amount of faulty data necessary for unsupervised
models could be considerably smaller, which is one of the
advantages of unsupervised fault detection. In addition, it is
required to obtain more understandability and explainability
of unsupervised DL models in order to build a reliable fault
detection model. The understandability and explainability of
supervised DL have been investigated in recent years. The
faulty representation could be derived from the supervised
models, which have learned faulty data characteristics during
the training process. However, unsupervised models have no
information from faulty data by nature. Hence understand-
ability and explainability of unsupervised DL models entail
more difficulty than supervised DL models from a fault detec-
tion perspective. The black-box experiments demonstrated in
this paper are practical because they can explain the DL mod-
els without being aware of the exact mechanism of network
architectures. Therefore, understandability and explainability
of unsupervised DL based on black box experiments could be
the next research direction in the future.
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