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ABSTRACT An efficient maintenance schedule for gas turbines of power plants ensures a reliable electricity
supply. This study addresses a generator maintenance scheduling problem arising from Taiwan’s combined
cycle power plant with two notable characteristics, i.e., a specific sequence of various maintenance types and
the concept of performing maintenance according to operational hours spent. The objective is to minimize
the total maintenance cost. The problem is formulated as a Mixed Integer Linear Program which is solvable
by an off-the-shelf exact solver, i.e., CPLEX. Moreover, a set of newly generated instances is proposed as
benchmark instances for the problem. The instances generated are based on the realistic conditions obtained
from the historical record of Taiwan’s combined cycle power plant. Computational studies are presented as
interesting insights regarding the complexity of the problem and the factors driving the total maintenance
costs.
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INDEX TERMS Combined cycle power plant, generator maintenance scheduling, mixed integer linear
programming.

I. INTRODUCTION13

Modern civilization depends heavily on reliable electrifica-14

tion which is, in part, a product of well-planned electricity15

generation tasks. While ensuring the generated electric-16

ity can meet requirements, another concern to be taken17

into account is the growing importance of sustainability-18

focused electricity-generating operations. As a result, renew-19

able energy sources and natural gas gain interest as20

environmentally viable electricity generation.21

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu Liu .

The Taiwan government has developed an energy policy 22

aiming to gradually increase the utilization of natural gas in 23

the energy system as a response to sustainability concerns. 24

The goal is to implement an integrated energy system in 25

which natural gas becomes the most significant contributing 26

source by 2025 [1]. To realize the plan, Taiwan is building 27

combined cycle power plants that utilize gas turbines and 28

steam turbines as generators to generate electricity [2]. 29

Gas turbines are of critical components in the combined 30

cycle power plants, thus scheduled maintenance plans are 31

required to avoid unexpected failures which may cause 32

negative experiences to public and private sectors. 33
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The maintenance decision of a gas turbine-based generator34

is different from that of general coal-fired and nuclear power35

generators. Unlike coal-fired and nuclear power generators,36

that follow fixed service time (periodic maintenance), the37

maintenance decision of a gas turbine generator is based on38

its operational hours [3]. The operational hours here refer39

to the actual operating hours and equivalent operating hours40

resulted from other events, e.g., startup time, starting fre-41

quency, load, to mention but a few. Thus, the above equivalent42

operating hours are added to the actual operating hours to43

obtain the total equivalent operating hours (EOH).44

Optimizing decisions of maintenance schedules for gener-45

ators has been studied for a few decades. Section II is further46

dedicated to explain the recent developments in this area.47

Despite the numerous works on this field, the literature on the48

optimization of maintenance schedules that involve the con-49

cept of EOH is still scarce. To the best of authors’ knowledge,50

Fattahi et al. [4] is so far the only work that considers the51

concept of operating hours in determining the maintenance52

schedules for generators in North America. However, the53

developed model in Fattahi et al. [4] cannot be adopted to for54

the case of generators in Taiwan due to the presence of several55

unique characteristics.56

Realizing the importance of producing appropriate main-57

tenance schedules and the limitation on the current litera-58

tures, we consider a new variant of generator maintenance59

scheduling problem arising in the combined cycle power60

plant. Each maintenance task needs to be executed at a gas61

turbine within the range of allowable time interval which is62

calculated based on the EOH of the gas turbine. A unique63

characteristic presented by the combined cycle power plant is64

that a set of different maintenance tasks is available and their65

executions must follow a specific sequence. The objective of66

this study is to minimize the long-term maintenance cost of67

gas turbines. The mixed integer linear programming (MILP)68

model is formulated for the problem. To this end, our works69

contribute to the literature by adding a new generator mainte-70

nance scheduling problem that involves the concept of EOH.71

Finally, the contributions of this research work can be sum-72

marized as follows.73

1. Develop a new variant of the Generator Maintenance74

Scheduling (GMS) problem by considering the real con-75

dition of Taiwan’s combined cycle power plant76

2. Formulate a MILP model for the problem77

3. Present computational results regarding the impact of78

problem size and sensitivity analyses associatedwith vary-79

ing electricity demands and maintenance time intervals.80

II. LITERATURE REVIEW81

The GMS problem has been widely studied and mainly82

involves deciding the time to perform preventive mainte-83

nances to generating units to achieve operational excel-84

lence [5]. The two common objectives commonly proposed85

for GMS are (1) reliability that has a measurement in terms86

of net reserves along the planning horizon, and (2) opera-87

tional cost. The leveling of net reserves over the planning88

horizon is translated into the maximization of the minimum 89

net reserves from all generating units for any period [6] or 90

minimization of the squares of the reserves over the planning 91

period [7], [8]. The operational costs may be of several types, 92

e.g., refueling cost, production cost, and maintenance cost 93

[9], [10], [11]. In addition, residual fuel refund can also be 94

considered [9], [10]. Given these two important objectives, 95

Lindner et al. [12] analyzed the trade-off between reliability 96

and operational cost by proposing a bi-objective GMS prob- 97

lem in which the squares of the reserves and production cost 98

were minimized. 99

Some extensions are considered in the GMS problem 100

to address realistic situations. Abirami et al. [13] addressed 101

an Integrated Maintenance Scheduling (IMS) for both 102

generator and transmission line maintenance scheduling. 103

Fattahi et al. [4] developed an original model for deciding 104

the maintenance time of generating units based on their 105

operational hours. The proposed approach in Fattahi et al. [4] 106

is inspired by particular types of generating units, e.g. gas 107

turbines [14]. Generators may experience unexpected break- 108

downs causing forced outages. Several studies have proposed 109

various approaches to deal with uncertainty in unexpected 110

breakdown events. Eygelaar et al. [15] extended the GMS 111

problem by incorporating the failure rate of each gener- 112

ating unit. The adopted GMS problem thus considers the 113

probability that no generating unit will fail during the time 114

interval between the time a unit was activated upon its previ- 115

ous maintenance up to the time the unit needed to undergo 116

the next maintenance as the objective function. Suresh 117

and Kumarappan [8] dealt with an integrated maintenance 118

scheduling and economic load dispatch problem considering 119

random outages of generators and electrical demand varia- 120

tion. The economic load dispatch is another crucial planning 121

task that requires decisions for allocating electricity demand 122

between available generating units [16], [17]. Recent devel- 123

opments of technology have enabled advanced techniques, 124

such as combining classical generator maintenance schedul- 125

ing models with sensor-driven predictive techniques [18]. 126

Given the importance of sustainability, more coun- 127

tries have fostered the utilization of renewable energy 128

sources, such as wind power, hydropower, and solar power. 129

Perez-Canto and Rubio-Romero [19] proposed a mathemati- 130

cal model for maintenance scheduling considering the inte- 131

gration of wind farms into the existing generator system. 132

The operations and maintenance tasks of offshore wind tur- 133

bines involve not only the scheduling of maintenance but 134

also the routing of available resources—that is, the main- 135

tenance crews, due to the dynamically changing weather & 136

environmental restrictions at sites. These two problems are 137

commonly integrated to achieve higher economic benefits, 138

often mentioned as the maintenance scheduling and routing 139

problem [20], [21]. Foong et al. [22] optimized maintenance 140

schedules for a real case study of five hydropower systems by 141

developing an Ant Colony Optimization. The recent literature 142

on renewable energy sources–based generator maintenance 143

scheduling focuses on optimizing systems with generators 144
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TABLE 1. Summary of literature review.

of various energy sources. Wang et al. [23] developed an145

optimization model for multi-type renewable energy gen-146

erator maintenance scheduling problems by simultaneously147

considering hydropower systems and wind power genera-148

tors. Further, Shayesteh et al. [24] performed a simulation149

to evaluate the impact of adding renewable energy sources150

(e.g., hydropower, wind power, and solar power generators)151

into a system consisting of conventional generators. At the152

operational level, Salkuti [25] tackled the multi-objective unit153

commitment problem by considering uncertainty and various154

renewable energy sources.155

The solution approach for the GMS problem is categorized156

into three classes: (1) mathematical model, (2) heuristic,157

and (3) hybrid methods [13]. For the mathematical model, the158

benders decomposition approach and mixed integer linear/159

nonlinear programming are generally used [4], [26], [27].160

For heuristic, population-based heuristics are most often161

developed, such as Genetic Algorithm [6], [25], particle162

swarm optimization [8], ant colony optimization [22], cuckoo163

search [28], and flower pollination algorithm [17]. Hybrid164

methods can be further categorized as hybridization between165

mathematical model and heuristic [29], [30], [31], and166

hybridization between heuristics [6], [32].167

Based on the above-discussed studies, our research shares168

similar characteristics with Fattahi et al. [4]. Particularly,169

we considered a condition inwhichmaintenance is performed170

based on cumulative operational hours since the case study171

is obtained from the Taiwan combined cycle plant which172

harnesses gas turbines for generating electricity. The notable 173

difference from the case of Fattahi et al. [4] is that we con- 174

sidered a pattern for a set of maintenance tasks adopted from 175

the real condition of Taiwan’s combined cycle power plant. 176

Table 1 provides a summary of features considered in various 177

GMS problems discussed in the previous literature. The table 178

shows the novel features of our GMS problem, which has 179

never been addressed in the previous literature (as far as the 180

authors’ knowledge is concerned)—that is, the maintenance 181

pattern. 182

III. THE MATHEMATICAL MODEL 183

A. PROBLEM DEFINITION 184

In this study, we address the GMS of Taiwan’s combined 185

cycle gas turbines that feature different maintenance types 186

with a specific execution sequence and EOH concept by 187

developing a mathematical model. Classical GMS problems 188

generally set either a predefined time range for perform- 189

ing a maintenance task for a generating unit or a number 190

of maintenance tasks to be performed throughout a given 191

planning period [7], [8], [12], [33]. The concept of EOH 192

explained in Section Introduction has a different perspective 193

in determining the schedule of a maintenance task. In par- 194

ticular, a maintenance task is performed on a generating unit 195

whenever the EOH measured from the last maintenance task 196

was performed has reached a value between theminimum and 197

the maximum operating time. Thus, in terms of modeling per- 198

spective, the involvement of EOH presents a new challenge, 199
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FIGURE 1. Illustration of a solution to the GMS problem of a gas turbine.

i.e., the decisions of whether a generating unit (in our case,200

a gas turbine) is operated or not at each time unit considering201

the requirement of the range of operating time.202

In order to take into account the EOH concept to the clas-203

sical GMS problem, we develop a novel mixed integer linear204

program based on the model presented by Fattahi et al. [4].205

In this article, we use the term of gas turbine and generating206

unit interchangeably and hence mean the same.207

B. PROBLEM ASSUMPTION208

The following assumptions weremade to build themathemat-209

ical model:210

1. The three maintenance types include combustion inspec-211

tion (C), turbine inspection (T), and major overhaul (M).212

Type C maintenance requires 3 weeks, type T mainte-213

nance requires 6 weeks, and type M maintenance requires214

12 weeks215

2. The maintenance execution of each gas turbine depends216

on its EOH. There exists a range of EOH in which a217

maintenance task must be carried out. Note that EOH in218

the model is expressed in terms of the week instead of the219

hour220

3. The maintenance tasks are conducted based on the prede- 221

termined sequence: C-T-C-T-C-M 222

4. Only one gas turbine can be maintained every week 223

5. The cost of each maintenance type is different 224

C. SOLUTION ILLUSTRATION 225

FIGURE 1 illustrates how different maintenance types with a 226

specific execution sequence and EOH concept are integrated 227

into the GMS program. This figure shows that the mainte- 228

nance window is set between 4 to 8 weeks. Three types of 229

maintenance programs—C-type, T-type, and M-type—need 230

1, 2, and 3 weeks, respectively. In addition, we limit the 231

planning period to 52 weeks, as shown in Figure 1. Three 232

columns express the GMS program: (1) Week, (2) Main- 233

tenance program, and (3) UC program. The maintenance 234

program shows whether the gas turbine is available or under 235

maintenance, while the UC program shows whether the gas 236

turbine is online or offline. 237

The EOH concept is illustrated through the weeks in which 238

the gas turbine is available. The first maintenance type— 239

C-type maintenance—takes place in Week 7. The EOH of 240

the gas turbine can be seen in the UC program column. 241
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Although the gas turbine has spent 6 weeks in the available242

state of the maintenance program, it has only been in the243

online state for 4 weeks in the UC program. FIGURE 1244

shows that the gas turbine is scheduled for the offline state245

in Weeks 3 and 4. Thus, the first maintenance cannot be246

scheduled earlier than Week 7 because the EOH of the gas247

turbine has not reached the lower bound of the maintenance248

window—that is, 4 weeks. FIGURE 1 also shows the new249

feature considered in this research work—the maintenance250

pattern. The C-T-C-T-C-M sequence takes place in Week 7,251

Weeks 18 – 19, Week 25, Weeks 32 – 33, Week 43, and252

Weeks 49 – 51, respectively.253

D. FORMULATION254

Sets
U Set of gas turbine units.
T Set of maintenance weeks.
Parameters
Dc Weeks required by type C

maintenance.
Dt Weeks required by type T

maintenance.
Dm Weeks required by type M

maintenance.
Qt Demand at week t
Ltmax The maximum allowable operating

weeks for a gas turbine between the
last maintenance outage and the next
one.

Ltmin The minimum allowable operating
weeks for a gas turbine between the
last maintenance outage and the next
one.

Pmax Maximum power generation of a gas
turbine.

Pmin Minimum power generation of a gas
turbine.

CC Type C maintenance cost.
CT Type T maintenance cost.
CM Type M maintenance cost.
N Maximum number of units for main-

tenance outage in a week.
L An arbitrary large positive number.
Decision variables
ciu,t The binary variable that shows the

i-th type C maintenance status of
unit u in week t (if unit u is on main-
tenance, the value is 1; otherwise 0),
u ∈ U , t ∈ T , i ∈ {1, 2, 3}.

qju,t The binary variable that shows the
j-th type T maintenance status of
unit u in week t (if unit u is on main-
tenance, the value is 1; otherwise 0),
u ∈ U , t ∈ T , j ∈ {1, 2}.

255

mu,t The binary variable that shows the typeMmain-
tenance status of unit u in week t (if unit u is
on maintenance, the value is 1; otherwise 0),
u ∈ U , t ∈ T .

sciu,t The binary variable that shows the i-th type C
maintenance status of unit u at the beginning of
week t (if the maintenance outage of unit u is
started in week t , the value is 1; otherwise 0),
u ∈ U , t ∈ T , i ∈ {1, 2, 3}.

stju,t The binary variable that shows the j-th type T
maintenance status of unit u at the beginning of
the week t (if the maintenance outage of unit u
is started in week t , the value is 1; otherwise 0),
u ∈ U , t ∈ T , j ∈ {1, 2}.

smu,t The binary variable that shows the typeMmain-
tenance status of unit u at the beginning of the
week t (if the maintenance outage of unit u is
started in week t , the value is 1; otherwise 0),
u ∈ U , t ∈ T .

vu,t The binary variable that shows the online status
of unit u in week t (if unit u is online, the value
is 1; otherwise 0), u ∈ U , t ∈ T .

pu,t Power generation dispatch of unit u in week
t, u ∈ U , t ∈ T .

pendu,t Operational weeks of unit u at the beginning of
week t after the last maintenance outage, if a
maintenance outage is started in week t , u ∈ U ,
t ∈ T .

256

Objective function 257

Min z =
∑

t∈T

(
CC

∑
u∈U

∑3

i=1
sciu,t 258

+CT
∑

u∈U

∑2

j=1
stju,t + CM

∑
u∈U

smu,t

)
259

(1) 260

The objective function (1) minimizes the total maintenance 261

cost of all maintenance types. 262

Constraints 263∑
u∈U

(∑3

i=1
ciu,t +

∑2

j=1
qju,t+mu,t

)
≤N ∀t ∈T (2) 264

Constraint (2) limits the number of gas turbines allowed to be 265

offline. 266

sciu,tDc≤
n=min(t+Dc−1,T )∑

n=t

ciu,n ∀u∈U , t ∈T , i∈{1, 2, 3} 267

(3) 268

stju,tDt ≤
n=min(t+Dt−1,T )∑

n=t

qju,n ∀u ∈ U , t ∈ T , i ∈ {1, 2} 269

(4) 270

smu,tDm≤
n=min(t+Dm−1,T )∑

n=t

mu,n ∀u ∈ U , t ∈ T 271

(5) 272

98876 VOLUME 10, 2022



V. F. Yu et al.: Optimizing the Maintenance Schedule of a Combined Cycle Gas Turbine

Constraints (3), (4), and (5) ensure that an offline state is273

maintained for a particular period, depending on the per-274

formed maintenance type.275 ∑
u∈U

pu,t ≥ Qt ∀t ∈ T (6)276

Constraint (6) guarantees that the total generated amount of277

electricity meets the demand every week.278

Pminvu,t ≤ pu,t ∀u ∈ U , t ∈ T (7)279

pu,t ≤ Pmaxvu,t ∀u ∈ U , t ∈ T (8)280

Constraints (7) and (8) define the minimum and maximum281

generated electrical power of a gas turbine respectively.282 (∑3

i=1
sciu,t +

∑2

j=1
stju,t + smu,t

)
283

×Ltmin ≤ pendu,t ∀u ∈ U , t ∈ T (9)284

pendu,t ≤
(∑3

i=1
sciu,t +

∑2

j=1
stju,t + smu,t

)
285

×Ltmin ∀u ∈ U , t ∈ T (10)286

Constraints (9) and (10) define the maintenance window of287

each gas turbine.288 (∑3

i=1
ciu,t+

∑2

j=1
qju,t + mu,t

)
+vu,t≤1 ∀u∈U , t ∈T289

(11)290

Constraint (11) restricts the gas turbine from either staying in291

an offline or online state.292 ∑t−1

n=1
vu,n −

∑t

w=1
pendu,w293

≤

(
1−

(∑3

i=1
sciu,t +

∑2

j=1
stju,t + smu,t

))
294

×L ∀u ∈ U , t ∈ T (12)295 ∑t−1

n=1
vu,n −

∑t

w=1
pendu,w296

≥

((∑3

i=1
sciu,t +

∑2

j=1
stju,t + smu,t

)
− 1

)
297

×L ∀u ∈ U , t ∈ T (13)298

Constraints (12) and (13) ensure that each gas turbine is299

maintained only during the maintenance window.300

pendu,t ≥
(∑3

i=1
sciu,t +

∑2

j=1
stju,t + smu,t

)
301

×L ∀u ∈ U , t ∈ T (14)302

Constraint (14) ensures that pendu,t can take a nonzero value303

if and only if a maintenance outage starts at week t .304 ∑3

i=1
sciu,t +

∑2

j=1
stju,t + smu,t305

≤

(∑t−1
n=1 vu,n −

∑t−1
n=1 pendu,n

)
306

×Ltmin ∀u ∈ U , t ∈ T (15)307 ∑3

i=1
sciu,t +

∑2

j=1
stju,t + smu,t308

≥

(∑t−1
n=1 vu,n −

∑t−1
n=1 pendu,n − Ltmax

)
309

×L ∀u ∈ U , t ∈ T (16) 310

Constraints (15) and (16) ensure that a particular maintenance 311

type is performed if and only if the total number of online 312

weeks is between the minimum and the maximum number of 313

allowable operating weeks. 314

0≤
∑3

i=1
sciu,t +

∑2

j=1
stju,t+smu,t ≤ 1 ∀u∈U , t ∈T 315

(17) 316

Constraint (17) guarantees that only one maintenance type is 317

performed on each gas turbine each week. 318∑T

t=1
sciu,t ≤ 1 ∀u ∈ U , i ∈ {1, 2, 3} (18) 319∑T

t=1
stju,t ≤ 1 ∀u ∈ U , j ∈ {1, 2} (19) 320∑T

t=1
smu,t ≤ 1 ∀u ∈ U (20) 321

Constraints (18), (19), and (20) ensure that each maintenance 322

type occurs once at most. 323∑t

n=1
sc1u,n ≥ st1u,t+1 ∀u ∈ U , t = {1, 2, . . . ,T − 1} 324

(21) 325∑t

n=1
st1u,n ≥ sc2u,t+1 ∀u ∈ U , t = {1, 2, . . . ,T − 1} 326

(22) 327∑t

n=1
sc2u,n ≥ st2u,t+1 ∀u ∈ U , t = {1, 2, . . . ,T − 1} 328

(23) 329∑t

n=1
st2u,n ≥ sc3u,t+1 ∀u ∈ U , t = {1, 2, . . . ,T − 1} 330

(24) 331∑t

n=1
sc3u,n ≥ smu,t+1 ∀u ∈ U , t = {1, 2, . . . ,T − 1} 332

(25) 333

Constraints (21), (22), (23), (24), and (25) ensure that the 334

maintenance task of each combined cycle gas turbine can 335

be performed following a predetermined maintenance cycle 336

(C-T-C-T-C-M). 337

IV. EXPERIMENTS AND ANALYSIS 338

This section explains the methodology to address the prob- 339

lem, involving the development of benchmark instances and 340

TABLE 2. Parameters’ values for the proposed mathematical model.
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TABLE 3. The computational result of solving benchmark instances.

analyses of the results. CPLEX was utilized to solve the341

mathematical model proposed in Section III. A Microsoft342

Windows 7 Professional operating system and a computer343

with an Intel (R) Core (TM) CPU i7-10700 @ 2.90GHz and344

memory of 128GB were used for all the experiments.345

A. BENCHMARK INSTANCES346

We generated three sets of instances -small, medium, and347

large- based on historical records of combined cycle gas348

turbines in Taiwan. The small, medium, and large instances349

have different planning periods, i.e., 133 weeks, 237 weeks,350

and 343 weeks, respectively. Each set consists of 12 instances351

with different weekly electrical demands, minimum andmax-352

imum allowable operatingweeks, and the number of available353

gas turbines. Two pairs of minimum and maximum allowable354

operatingweeks are considered, i.e., (36, 48) and (48, 60), and355

three numbers of available gas turbines are considered, i.e., 3,356

6, and 8. The values of the remaining necessary parameters357

for the model are listed in TABLE 2.358

Based on generated instances, we present three types of359

analyses. First, an analysis of the impact of instances’ dimen-360

sions toward the computational time required for solving such361

a problem is presented. Second, the impact of minimum and362

maximum allowable operating weeks toward the total main-363

tenance costs, and third, the impact of electricity demands on364

the total maintenance costs are explained. The analyses are365

presented in Sections IV.B and IV.C.366

B. COMPUTATIONAL RESULTS367

TABLE 3 presents the results obtained by solving all gen-368

erated instances. The meaning of an instance’s name can be369

explained as follows. The first number (i.e., 1, 2, or 3) states370

the number of gas turbines considered, that is: (1) 1 means371

3 gas turbines, (2) 2 means 6 gas turbines, and (3) means372

8 gas turbines. The second and third numbers (i.e. 6 & 8,373

or 8 & 10) represent the pair of minimum and maximum374

allowable operating weeks: (1) 6 and 8 mean (36, 48) and (2) 375

8&10 means (48, 60). The last two characters represent the 376

size of the instance and type of electricity demand: (1) ‘‘s’’, 377

‘‘m’’, and ‘‘l’’ mean small, medium, and large, respectively, 378

and (2) ‘‘h’’ and ‘‘l’’ means high and low electricity demands, 379

respectively. 380

Based on TABLE 3, the computation increases signifi- 381

cantly as the size of the instance grows. The problem size 382

also influences the capability of CPLEX to obtain optimal 383

solutions. The CPLEX can obtain all optimal solutions for 384

solving small instances and only needs 6.56 s, on average. 385

For medium-size instances, 6 out of 12 solutions are opti- 386

mal. Lastly, 2 out of 12 instances were solved to optimality 387

for large-size instances. However, the CPLEX managed to 388

obtain feasible solutions for the remaining medium and large 389

instances within 36,000 s. Based on Table 2, we can also 390

observe that the larger the size of an instance, the larger the 391

computational time required to provide a solution. 392

C. ANALYSES AND DISCUSSIONS 393

This section elaborates on the impact of minimum and 394

maximum allowable operating weeks and the magnitude of 395

electricity demands. As explained before, we provided two 396

pairs of minimum and maximum allowable operating weeks, 397

i.e., (36, 48) and (48, 60). In addition, there were two types, 398

i.e., high and low electricity demand scenarios. 399

TABLE 4 shows the impact of minimum and maximum 400

allowable operating weeks on the total maintenance cost. 401

When the values of minimum and maximum allowable oper- 402

ating weeks are lower, the total maintenance costs are higher. 403

The average maintenance costs of small, medium, and large 404

instanceswith lowerminimum andmaximum allowable oper- 405

ating weeks are 61.11%, 43.54 %, and 38.01% higher com- 406

pared to those of higher minimum and maximum allowable 407

operating weeks. The main rationale of this phenomenon is 408

that a lower number of maintenances are required for a higher 409
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TABLE 4. The impact of time requirement for performing maintenance tasks on a generating unit toward the total maintenance cost.

TABLE 5. The impact of the magnitude of electricity demand toward the total maintenance cost.

number of minimum and maximum allowable operating410

weeks. As seen in TABLE 4, the averages of maintenances411

required by scenarios with (36, 48) as the minimum and412

maximum allowable operating weeks are higher than that413

of scenarios with (48, 60) as the minimum and maximum414

allowable operating weeks. The aforementioned observation415

provides a motive for the generator company to consider416

the investment of a more advanced technology in order to417

increase the value ofminimum andmaximum allowable oper-418

ating weeks.419

TABLE 5 describes the impact of electricity demand on the420

total maintenance cost. The total maintenance cost increases421

when the electricity demand is higher. This occurs because422

the number of active gas turbines is higher to meet the423

requirement of electricity demand. Since the maintenance424

of a gas turbine is determined by EOH, the longer a gas425

turbine is active, the shorter is the inspection interval time426

required by a gas turbine to be maintained. The result in427

TABLE 5 validates our arguments. The averages of main-428

tenance tasks performed are 2.67, 8.17, and 14.5 for small,429

medium, and large instances with low electricity demand,430

respectively, and 5, 12.17, and 20.67 for small, medium,431

and large instances with high electricity demand. The num-432

bers of maintenance tasks for instances with high electricity433

demand are higher than that of instances with low electricity434

demand. The second observation regarding the impact of435

electricity demand leads to an alternative for the generator436

company to analyze demand sharing schemes in order to437

find the most beneficial strategy in terms of operational 438

cost. 439

V. CONCLUSION 440

To address the challenge of providing a reliable electricity 441

supply, a GMS of Taiwan’s combined cycle power plant was 442

addressed. A novel mathematical model incorporating two 443

realistic features, i.e., maintenance of each gas turbine based 444

on a given sequence of maintenance types (C-T-C-T-C-M) 445

and the maintenance task of each gas turbine based on its 446

EOH, was established and solved by CPLEX, an off-the-shelf 447

exact solver. A set of realistic instances is generated based 448

on the historical record in Taiwan’s combined cycle power 449

plant. 450

The results show several interesting insights. First, the 451

size of an instance significantly affects the computational 452

time required by the CPLEX. As shown in TABLE 3, the 453

larger the size of an instance, the higher is the compu- 454

tational time. Second, the total maintenance cost depends 455

on two factors: (1) the minimum and the maximum allow- 456

able operating weeks, and (2) the magnitude of electricity 457

demand. The higher the values of the minimum and the 458

maximum allowable operating weeks, the lower is the total 459

maintenance cost. On the contrary, the higher the magnitude 460

of electricity demand, the higher is the total maintenance 461

cost. 462

Some studies in the future are proposed as follows. 463

First, the computational time of an exact solver increases 464
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significantly as the instance grows in size. Therefore, an alter-465

native solution is to propose a heuristic to obtain a nearly466

optimal solution. The uncertainty factor can also be included467

to further analyze the optimization results. Different objective468

functions can be considered to analyze the trade-off between469

those objectives.470
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