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ABSTRACT Concavity and Schur-concavity are two of the important properties of any entropy. Since
Shannon’s classical entropy formulation, a number of generalized entropies have been proposed as param-
eterized generalizations of Shannon’s entropy. For such generalized entropies, the conditions under which
they are concave and/or Schur-concave have not always been determined or have been incompletely and
incorrectly reported in a variety of publications. This paper provides proofs of those two properties for the
various proposed generalized entropies using a unifying approach. First, a new three-parameter entropy is
introduced of which other proposed generalized entropies are particular members. Second, a proof is derived
for the concavity and Schur-concavity of the new entropy and the underlying conditions. Those results are
then applied to the particular one-parameter and two-parameter members. Some new such members are
also discussed as are some related inequalities. The various derivations are based on so-called generalized
probability distributions when the sum of component probabilities may be less than 1.

12 INDEX TERMS Entropy, concavity, Schur-concavity, generalized entropies, Gini’s means.

I. INTRODUCTION13

Since Shannon (1948) introduced entropy as part of his theory14

of information and communication, entropy as a measure of a15

variety of attributes has had a profound influence on research16

in a diverse range of scientific areas. Its popularity is partly17

attributable to the various desirable properties of Shannon’s18

entropy. Two of those important properties are concavity and19

Schur-concavity as is the focus of the present paper.20

The concavity property is essential for entropy maxi-21

mization problems (e.g., [1]) and Schur-concavity ensures22

that, among all probability distributions, no distribution can23

have a higher entropy value than the uniform distribution24

[2, pp. 101]. Schur-concavity also reflects the important25

property that the entropy value increases as the components26

of a probability distribution become ‘‘more nearly equal’’27

or ‘‘less spread out’’ as formalized by majorization theory28

[2, Ch. 1 and 3].29

The influence of Shannon’s entropy is also reflected by30

its various generalizations that have been proposed over the31

The associate editor coordinating the review of this manuscript and

approving it for publication was Md Asaduzzaman .

years [3], [4], [5], [6], [7]. Such generalizations typically 32

involve parameterized families of entropies such that Shan- 33

non’s entropy is a member for a particular parameter value. 34

The most popular of these are the one-parameter entropies 35

by Rényi [8] and Tsallis [9]. While most of the proposed 36

entropies have the Schur-concavity property, some lack the 37

concavity property because of its more restrictive parameter 38

constraints. 39

The concavity and Schur-concavity properties have often 40

been overlooked when new entropies have been proposed. 41

Subsequent discussions of these properties have not always 42

been correct or complete, some have been incorrectly 43

reported, and their proofs are simply lacking for some of the 44

entropies. The presentations of these properties for some of 45

the entropies have also been scattered between a wide range 46

of publications and sources. It is the purpose of the present 47

paper to carefully and systematically derive the conditions or 48

constraints under which various entropies have the concavity 49

and/or Schur-concavity properties. 50

The systematic approach of this paper is based on the 51

introduction of a most general three-parameter entropy or 52

family of entropies of which other proposed entropies are 53
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particular members. This new entropy is simply defined as54

a power function of the well-known mean by Gini [10]55

applied to the components of a probability distribution. The56

parameter space or conditions for the concavity and Schur-57

concavity of this new entropy are then derived and applied to58

other established member entropies. Some novel members of59

the new entropy are identified as being of potential interest.60

Some interesting inequalities between entropies can also be61

derived from the three-parameter entropy. All derivations are62

based on the general case when a probability distribution63

may possibly be incomplete in the sense that the probability64

components may not necessarily sum to 1 (e.g., [8]).65

II. DEFINITIONS66

Let Pn = (p1, . . . , pn) be some probability distribution with67

each pi ≥ 0 and
∑n

i=1 pi ≤ 1 in case Pn is possibly68

an incomplete distribution. An incomplete distribution with69 ∑n
i=1 pi < 1 may occur if some events are not observable70

or are ignored or if some data are not available (e.g., [8],71

[11, Ch. IX], and [12]). For some generic entropy H taking72

on the value H (Pn) for the distribution Pn, Schur-concavity73

and majorization may be defined as follows [2]. If the pi’s74

are ordered such that p[1] ≥ p[2] ≥ . . . ≥ p[n], with q[1] ≥75

q[2] ≥ . . . ≥ q[n] for another distribution Qn = (q1, . . . , qn),76

Pn is majorized by Qn, denoted by Pn ≺ Qn, if77

j∑
i=1

p[i] ≤
j∑

i=1

q[i], j = 1, . . . , n− 1 and
n∑
i=1

p[i] =
n∑
i=1

q[i].78

(1)79

Then, an entropy H is Schur-concave if80

Pn ≺ Qn implies H (Pn) ≥ H (Qn). (2)81

If the inequality in (2) is strict and Pn is not simply a permu-82

tation of Qn, then H is strictly Schur-concave.83

The Schur-concavity of H ensures that its value H (Pn)84

increases as the components of Pn become increasingly equal85

or uniform, attaining its maximum value H (1/n, . . . 1/n) for86

the uniform discrete distribution (1/n, . . . , 1/n) or for87

H (
n∑
i=1

pi/n, . . . ,
n∑
i=1

pi/n)88

when
∑n

i=1 pi < 1 since this uniform distribution is89

majorized by any Pn = (p1, . . . , pn) as can be seen from (1).90

Clearly, Schur-concavity is a necessary property of any H .91

Schur-concavity is a somewhat milder condition than the92

usual (in the sense of Jensen) concavity. IfH is (permutation)93

symmetric in its arguments and if H is concave, then it is94

implied that H is also Schur-concave. However, the converse95

implication does not necessarily hold.96

In order to determine if someH is concave and under what97

necessary conditions, it will be convenient to be able to refer98

to the following set of composite functions h(Pn) = g[f (Pn)]:99

If f is concave and g is concave and nondecreasing,100

then h is concave. (3a)101

If f is convex and g is concave and nonincreasing, 102

then h is concave. (3b) 103

If f is concave and g is convex and nonincreasing, 104

then h is convex. (3c) 105

If f is convex and g is convex and nondecreasing, 106

then h is convex. (3d) 107

Some of these relationships follow from the fact that f is 108

concave if and only if −f is convex. Similarly, f is Schur- 109

concave if and only if−f is Schur-convex (when the inequal- 110

ity in (2) is reversed) [2, Ch. 3]. 111

III. GENERALIZED ENTROPIES 112

A. ONE-PARAMETER ENTROPIES 113

Among the entropies that involve one parameter, those of 114

Rényi [8] and Tsallis [9] are the best known and most fre- 115

quently referenced ones. Rényi’s entropy is defined as: 116

HRα(Pn) =
1

1− α
log

n∑
i=1

pαi , α > 0 (4a) 117

where only positive values of the arbitrary parameter α is 118

considered in order for HRα(Pn) to be defined for all pi ≥ 0. 119

For the more general case when Pn is a possibly incomplete 120

distribution with
∑n

i=1 pi ≤ 1, Rényi proposed the entropy 121

HRα(Pn) =
1

1− α
log

( n∑
i=1

pαi /
n∑
i=1

pi
)
, α > 0. (4b) 122

Tsallis’ entropy is defined as 123

HTα(Pn) =
1

1− α

(∑
pαi − 1

)
, α ∈ R. (5) 124

The entropy of Shannon [13] is the limiting case of both 125

HRα(Pn) and HTα(Pn), i.e., 126

lim
α→1

HRα(Pn) = lim
α→1

HTα(Pn) = −
n∑
i=1

pi log pi 127

= HS (Pn) (6) 128

where the natural (base-e) logarithm is used throughout this 129

paper. Havrda and Charvat [14] introduced an entropy that, 130

instead of the term 1/(1−α) in (5), used the term 1/(1−2α−1). 131

Arimoto [15] proposed the following entropy: 132

HAα(Pn) =
1

α − 1

[( n∑
i=1

p
1
α

i

)α
− 1

]
, α > 0. (7) 133

Another form of this entropy, the R-norm entropy with 134

R = 1/α in (7), has been studied by [16]. 135

Aczél and Daróczy [17] and Kapur [18] independently 136

introduced the entropy 137

HADKα(Pn) = −
n∑
i=1

pαi log pi
/ n∑

i=1

pαi , α > 0. (8) 138

See also [12, pp.192]. However, as pointed out below, this 139

entropy does have an important restriction. 140
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Landsberg andVedral [19] proposed the following entropy:141

HLVα(Pn) =
1

α − 1

( 1∑n
i=1 p

α
i
− 1

)
, α ∈ R. (9)142

This entropy as well as that in (5) have been defined for all143

real values of the arbitrary parameter α, but require α > 0144

when pi ≥ 0 (i = 1, . . . , n).145

B. TWO-PARAMETER ENTROPIES146

Aczél and Daróczy [17] and Kapur [18] independently intro-147

duced the following two-parameter entropy:148

HADKαβ (Pn) =
1

β − α
log

(∑n
i=1 p

α
i∑n

i=1 p
β
i

)
, α, β > 0 (10)149

where again, as throughout this paper, α and β are arbitrary150

parameters subject to the given constraints.151

Another entropy that has received considerable attention is152

that of Sharma and Mittal [20] and defined as153

HSMαβ (Pn) =
1

2(1−α) − 1

[( n∑
i=1

pαi
) β−1
α−1
− 1

]
, α, β > 0.154

(11)155

By using a slightly different parameter expression, Rathie and156

Taneja [21] proposed a unified entropy as157

HRTαβ (Pn) =
1

(1− α)β

[( n∑
i=1

pαi
)β
− 1

]
, α > 0, β ∈ R.158

(12)159

More recently, Hu andYe [6] also considered this last entropy.160

Other two-parameter entropies have been proposed as161

extensions of one-parameter entropies by simply replacing a162

parameter with one involving two parameters. However, such163

extensions do not change the basic form of the entropy func-164

tion. Examples of such parametric reformulations include165

Nath [22] who basically proposed to replace α in (4) with166

α/β or replace the α in the exponential term in (4) with167

αβ . Rathie [23] suggested replacing pαi in (4) with pαii for168

i = 1, . . . , n. More recently, Hooda and Ram [24] pro-169

posed an entropy that corresponds to Arimoto’s entropy170

when substituting the two-parameter term (2 − β)/R171

for α in (7). Also, substituting the three-parameter term172

(2α − β)/R for α in (7) produces an entropy proposed by173

Hooda and Sharma [25].174

IV. CONDITIONS FOR CONCAVITY AND175

SCHUR-CONCAVITY176

A. GENERAL APPROACH177

In order to consider a unified and systematic approach to178

determining the conditions under which the various param-179

eterized entropies possess the properties of concavity and180

Schur-concavity, one could start off by considering an181

entropy with additional generality. Thus, since various pro-182

posed entropies are basically decreasing functions of some183

mean of the probabilities p1, . . . , pn, it would seem reason- 184

able to consider the most general (two-parameter) Gini means 185

defined by 186

Gαβ (Pn) =
(∑n

i=1 p
α
i∑n

i=1 p
β
i

) 1
α−β
, α, β ∈ R (13) 187

after Gini [10] and as discussed by Bullen [26, pp. 248-251]. 188

As a general decreasing power function ofGαβ (Pn), one could 189

define the following three-parameter entropy: 190

HKαβγ (Pn) 191

=
1

1− γ
(Gγ−1αβ − 1) 192

=
1

1− γ

[(∑n
i=1 p

α
i∑n

i=1 p
β
i

) γ−1
α−β
− 1

]
, α, β ≥ 0; γ ∈ R. (14) 193

The parameters α and β in (14) are restricted to having 194

nonnegative values in order for this entropy to be defined 195

for pi ≥ 0 and i = 1, . . . , n. For generality sake, this 196

entropy is also defined for possibly incomplete distributions 197

when
∑n

i=1 pi ≤ 1. Distributions with
∑n

i=1 pi < 1 may 198

occur when some events and the associated pi’s are miss- 199

ing, ignored, or simply unobservable. Such incomplete cases 200

include situations when the smallest pi’s are not available 201

individually, but are grouped into an ‘‘all others’’ category. 202

Distributions with
∑n

i=1 pi ≤ 1 are also referred to as gen- 203

eralized distributions (e.g., [8], [11], [12], and [27, Ch. 5]). 204

In the extreme case of a single event with P1 = (p), (14) 205

becomes (pγ−1− 1)/(1− γ ) as the entropy of a single event. 206

The entropy in (14), or family of entropies, has the follow- 207

ing property: 208

Theorem 1: The HKαβγ (Pn) in (14) is concave if 209

0 ≤ min{α, β} ≤ 1 ≤ max{α, β} (15) 210

and γ ≥ 2 and Schur-concave for any γ ∈ R. 211

Proof: The following result follows from Dresher’s 212

inequality ( [28]; see also [26, pp. 249]) for Gαβ in (13), for 213

any distributions Pn and Qn (possibly incomplete), and for 214

any λ ∈ [0, 1]: 215

Gαβ [λPn + (1− λ)Qn] 216

≤ λGα,β (Pn)+ (1− λ)Gαβ (Qn), 0 ≤ λ ≤ 1 (16) 217

under the parameter constraint in (15). That is,Gαβ subject to 218

(15) is a convex function ofPn, with
∑n

i=1 pi ≤ 1. Then, since 219

HKαβγ (Pn) in (14) is clearly a concave and nonincreasing 220

function of Gαβ (Pn), it follows from (3b) that HKαβγ (Pn) 221

is a concave function of Pn restricted to (15) and γ ≥ 2. 222

Furthermore, since Gαβ (Pn) subject to (15) is symmetric in 223

the pi’s, it is also Schur-concave, which makes HKαβγ (Pn) 224

Schur-concave since it is decreasing in Gαβ (Pn) for all real 225

values of γ . This completes the proof. 226

The HKαβγ (Pn) in (14) contains all the entropies in 227

(4)-(12) as particular members. A two-parameter member of 228

HKαβγ (Pn) that also incorporates some of the other entropies 229
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is obtained for all γ = α − β + 1 as follows:230

HKαβ (Pn) =
1

β − α

(∑n
i=1 p

α
i∑n

i=1 p
β
i

− 1
)
,231

n∑
i=1

pi ≤ 1, 0 < β ≤ 1, α ≥ 1+ β. (17)232

This entropy has the following property:233

Theorem 2: The HKαβ (Pn) in (17) is concave if 0 < β ≤ 1234

and α ≥ 1+ β and Schur-concave if 0 < β ≤ 1 and α ≥ 1.235

Proof: With 0 < β ≤ 1, the concavity of HKαβ (Pn)236

follows from Theorem 1 and the requirement that γ = α −237

β + 1 ≥ 2. The Schur-concavity of HKαβ (Pn) is implied by238

Rαβ (Pn) =
∑n

i=1 p
α
i /
∑n

i=1 p
β
i being Schur-convex for 0 <239

β ≤ 1 and α ≥ 1 [2, Ch. 3] and HKαβ (Pn) being a decreasing240

function of Rαβ (Pn) for α > β.241

Comment: While HKαβγ (Pn) in (14) is symmetric in242

the parameters α and β, this symmetry does not apply to243

HKαβ (Pn).244

For the case when β = 1 and
∑n

i=1 pi = 1, (14) reduces to245

HKα1γ (Pn) =
1

1− γ

[( n∑
i=1

pαi
) γ−1
α−1
]
, α ≥ 0, γ ∈ R (18)246

which is seen to be equivalent to the entropy by Sharma and247

Mittal [20], although they used the denominator 21−γ − 1248

(instead of 1− γ ). This entropy has the following property:249

Theorem 3: TheHKα1γ (Pn) in (18) is concave if α > 0 and250

γ ≥ 2− 1/α and Schur-concave if α > 0 and for all γ ∈ R.251

Proof: It follows immediately from Minkowski’s252

inequality (e.g., [26, pp. 189]) that, for the power sum253

Sα(Pn) =
(∑n

i=1 p
α
i

)1/α
and for any λ ∈ [0, 1],254

Sα[λPn + (1− λ)Qn] ≤ λSα(Pn)+ (1− λ)Sα(Qn) (19)255

if α > 1 and for any two (possibly incomplete) distributions256

Pn = (p1, . . . , pn) andQn = (q1, . . . , qn), with the inequality257

in (19) reversed for α < 1. That is, the function Sα is convex258

for α > 1 and concave for α < 1. By expressing (18) as259

HKα1γ (Pn) =
1

1− γ
[(Sα(Pn))

α(γ−1)
α−1 − 1] (20)260

it is seen from the derivatives of HKα1γ (Pn) with respect to261

Sα(Pn) in (20) thatHKα1γ (Pn) is a nondecreasing and concave262

function of Sα(Pn) for 0 < α ≤ 1 and γ ≥ 2 − 1/α and263

nonincreasing and concave for α ≥ 1 and γ ≥ 2 − 1/α.264

Since Sα(Pn) is concave for α < 1 and HKα1γ (Pn) is a265

nondecreasing and concave function of Sα(Pn) for 0 < α ≤ 1266

and γ ≥ 2 − 1/α, it follows from (3a) that HKα1γ (Pn) is267

concave under these parameter restrictions. Similarly, since268

Sα(Pn) is convex for α > 1 andHKα1γ (Pn) is a nonincreasing269

and concave function of Sα(Pn) for α ≥ 1 and γ ≥ 2− 1/α,270

it follows from (3b) that HKα1γ (Pn) is concave if α ≥ 1 and271

γ ≥ 2− 1/α. That is, HKα1γ (Pn) a concave function of Pn if272

α > 0 and γ ≥ 2− 1/α. The Schur-concavity in Theorem 3273

follows from majorization theory [2, Ch. 3] as an immediate274

consequence of the fact that (a) Tα(Pn) =
∑n

i=1 p
α
i is Schur- 275

concave for 0 < α ≤ 1 and Schur-convex for α ≥ 1 and (b) 276

HKα1γ (Pn) is an increasing function of Tα(Pn) for 0 < α ≤ 1 277

and decreasing for α ≥ 1 and for all γ ∈ R. This completes 278

the proof. 279

Remark: The parameter restrictions in Theorem 3 are seen 280

to be an improvement over those obtained by simply setting 281

β = 1 in Theorem 1. 282

B. PARTICULAR CASES 283

Theorem 4: HRα(Pn) in (4a) is concave if 0 < α ≤ 1 and 284

Schur-concave if α > 0. 285

Proof: This property of HRα(Pn) follows from 286

Theorem 3 with γ = 1 sinceHRα(Pn) = limγ→1 HKα1γ (Pn). 287

Theorem 5: HRα(Pn) in (4b) is not concave for any α, but 288

is Schur-concave if α ≥ 1. 289

Proof: Since the entropy in (4b) is a particular member 290

of HKαβγ (Pn) in (14) with β = 1,
∑n

i=1 pi ≤ 1, and γ → 1, 291

it follows from Theorem 1 that HRα(Pn) in (4b) cannot be 292

concave since it violates the requirement of γ ≥ 2. However, 293

it meets the Schur-concavity condition for α ≥ 1 since that 294

of Theorem 1 applies to all real-valued γ . This completes the 295

proof. 296

Theorem 6: HTα in (5) is concave and Schur-concave if 297

α > 0. 298

Proof: This entropy is the particular member of 299

HKα1γ (Pn) in (18) with γ = α so that the condition γ ≥ 300

2− 1/α reduces to (α − 1)2 ≥ 0, which is obviously met by 301

all real values of α. Thus, from Theorem 3, HTα(Pn) is both 302

concave and Schur-concave for α > 0. 303

Theorem 7: HAα(Pn) in (7) is concave and Schur-concave 304

if α > 0. 305

Proof: The entropy in (7) can be considered a particular 306

case of HKα1γ (Pn) in (18) by simply substituting 1/α for α 307

and 2−α for γ . Then, it follows fromTheorem 3 thatHAα(Pn) 308

is concave and Schur-concave for α > 0 since, besides 1/α > 309

0, the parameter condition γ ≥ 2 − 1/α after substitution 310

becomes (2− α) = (2− α), which holds for all α ≥ 0. This 311

completes the proof. 312

Theorem 8: HADKα(Pn) in (8) is neither concave nor Schur- 313

concave for all α > 0. 314

Proof: The entropy in (8) is a limiting member of 315

HKαβγ (Pn) in (14) when β → α and γ → 1. However, 316

Theorem 1 requires γ ≥ 2 for concavity of HKαβγ (Pn) with 317

α, β > 0 so that HADK (Pn) = HKαα1(Pn) cannot be concave 318

or Schur-concave for all α > 0, completing the proof. 319

Comment: Stolarsky [29] and Clausing [30] explored the 320

problem of determining the minimum value α0 of the param- 321

eter α such that 322

HADKα(Pn) ≤ HADKα(1/n, . . . , 1/n) = log n 323

for all Pn and α ≥ α0 324

which is a Schur-concavity requirement. Those authors 325

showed that α0 depends on n. 326

Theorem 9: HLVα(Pn) in (9) is concave if 0 < α ≤ 1 and 327

Schur-concave if α > 0. 328
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Proof:This entropy is a particularmember ofHKα1γ (Pn)329

in (18) with γ = 2− α. It then follows from Theorem 3 that330

HLVα(Pn) is Schur-concave for α > 0 and concave if α > 0331

and (2 − α) ≥ 2 − 1/α, i.e., α2 ≤ 1 or 0 < α ≤ 1, which332

completes the proof.333

Theorem 10: HADKαβ (Pn) in (10) is not concave for α,334

β > 0, but it is Schur-concave subject to the parameter335

constraint in (15).336

Proof: Since this entropy is a limiting case ofHKαβγ (Pn)337

in (14) as γ → 1 and since the concavity of Theorem 1338

requires γ ≥ 2, HADKαβ (Pn) is not concave. However, it339

is Schur-concave as a consequence of Theorem 1, which340

completes the proof.341

Theorem 11: HSMαβ (Pn) in (11) is concave if α > 0 and342

β ≥ 2− 1/α and Schur-concave if α > 0 and for all β ∈ R.343

Proof:With γ = β in (18), HSMαβ (Pn) = CHKα1β (Pn)344

with C = (1 − β)/(21−β − 1), so that from Theorem 3 it345

follows that HSMαβ (Pn) has the same concavity condition as346

HKα1β (Pn) since concavity is invariant under multiplication347

with a constant C ≥ 0.348

The Schur-concavity of HSMαβ (Pn) is implied by349

Theorem 3 and the fact thatHSMαβ (Pn) is a strictly increasing350

function of the Schur-concave HKα1γ (Pn) with γ = β (with351

HSMαβ (Pn) = [(1− β)/(21−β − 1)]HKα1β (Pn)).352

Theorem 12: HRTαβ (Pn) in (12) is concave if α > 0 and353

α(α − 1)β ≥ α − 1 and Schur-concave if α > 0 and for all354

β ∈ R.355

Proof: This property is an immediate consequence of the356

fact that HRTαβ (Pn) is equivalent to HKα1γ (Pn) in (18) with357

γ = (α−1)β+1. The restriction γ ≥ 2−1/α forHKα1γ (Pn)358

becomes α(α − 1)β ≥ α − 1 for HRTαβ (Pn).359

Remark: Rathie and Taneja [21] proved the concavity of360

HRTαβ (Pn) under the following constraints: 0 < α ≤ 1,361

αβ ≤ 1 or α ≥ 1, αβ ≥ 1. However, these two constraints362

are equivalent to α(α − 1)β ≥ α − 1 for all α > 0.363

Hu and Ye [6] presented the same proof as that of Rathie and364

Taneja [21]. See also Kapur [3, pp. 122-124].365

V. EXPLORATIONS OF HKαβ IN (17)366

Besides the two-parameter unifying property of HKαβ (Pn)367

in (17), this entropy is also defined for distributions368

Pn = (p1, . . . , pn) that may possibly be incomplete, i.e.,369 ∑n
i=1 pi ≤ 1. In the extreme case of a single event P1 = (p),370

HKαβ (p) =
1

β − α
(pα−β − 1)371

=

{
1− p if α = 2, β = 1
− log p if β → α.

(21)372

TheHKαβ (Pn) becomes the following weighted mean of (21):373

HKαβ (Pn) =
n∑
i=1

( pβi∑n
i=1 p

β
i

)
HKαβ (pi)374

=
1

β − α

(∑n
i=1 p

α
i∑n

i=1 p
β
i

− 1
)
. (22)375

Some potentially interesting one-parameter members of 376

HKαβ (Pn) can be outlined as follows: 377

HKα1(Pn) = (1− α)−1(
n∑
i=1

pαi /
n∑
i=1

pi − 1), 378

n∑
i=1

pi ≤ 1, α > 1 (α > 2); (23) 379

HKα1(Pn) = (1− α)−1(
n∑
i=1

pαi − 1), 380

n∑
i=1

pi = 1, α > 0 (α > 0); (24) 381

HK1β (Pn) = (β − 1)−1(
n∑
i=1

pi/
n∑
i=1

pβi − 1), 382

n∑
i=1

pi ≤ 1, β > 0 (0 < β ≤ 1); (25) 383

HK1β (Pn) = (β − 1)−1(1/
n∑
i=1

pβi − 1), 384

n∑
i=1

pi = 1, β > 0 (0 < β ≤ 1); (26) 385

HKαα(Pn) = −
n∑
i=1

pαi log pi/
n∑
i=1

pαi , 386

n∑
i=1

pi ≤ 1, α > α0(n); (27) 387

HKα,α−1(Pn) = 1−
n∑
i=1

pαi /
n∑
i=1

pα−1i , 388

n∑
i=1

pi ≤ 1, 1 < α ≤ 2 (1 < α ≤ 2). (28) 389

The parameter restrictions in (23)-(28) are those for which 390

the entropies are Schur-concave (and concave in parenthe- 391

ses). Those parameter restrictions follow from Theorem 2 in 392

the case of (23) and (28), from Theorem 6 for (24), from 393

Theorem 9 for (26), from Theorem 8 for (27), and from 394

Theorem 2 for the concavity condition of (25). The Schur- 395

concavity condition for (25) results from
∑n

i=1 pi/
∑n

i=1 p
β
i 396

being Schur-convex and (β − 1)−1 < 0 for 0 < β < 1 and 397∑n
i=1 pi/

∑n
i=1 p

β
i being Schur-concave and (β − 1)−1 > 0 398

for β > 1. 399

It is apparent from the majorization definition in (1) that, 400

for any possibly incomplete or generalized distribution Pn, 401

P1n = (
n∑
i=1

pi/n, . . .
n∑
i=1

pi/n) ≺ Pn 402

≺ (
n∑
i=1

pi, 0, . . . , 0) = P0n,
n∑
i=1

pi ≤ 1. (29) 403

Consequently, from the Schur-concavity of HKαβ (Pn) 404

together with (29), 405

HKαβ (P0n) =
1

β − α

[( n∑
i=1

pi
)α−β

− 1
]

406
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≤ HKαβ (Pn)407

≤ HKαβ (P1n)408

=
1

β − α

[(∑n
i=1 pi
n

)α−β
− 1

]
. (30)409

The corresponding upper and lower bounds on members of410

HKαβ (Pn) follow from (30) and the Schur-concavity parame-411

ter values in (23)-(28).412

The HKαβ (Pn) in (17) is basically an immediate general-413

ization of Tsallis’ entropy HTα(Pn) in (5), i.e., HKα1(Pn) in414

(24) and of the Landsberg-Vedral entropy HLVα in (9), i.e.,415

HK1β (Pn) in (26). In fact, HKαβ (Pn) can be expressed as the416

following combination of the two:417

HKαβ (Pn)418

=

( 1
β − α

)
419

·

[{
(1−α)HTα(Pn)+1

}{
(β−1)HLVβ (Pn)+1

}
−1
]
. (31)420

VI. EXPLORATIONS OF HKαβγ (Pn) IN (14) FOR β = 1421

For β = 1 and setting γ = (α− 1)δ+ 1, the three-parameter422

entropy in (14) reduces to423

HKα1δ(Pn) =
1

(1− α)δ

[(∑n
i=1 p

α
i∑n

i=1 pi

)δ
− 1

]
,

n∑
i=1

pi ≤ 1.424

(32)425

This entropy represents an immediate extension of that in426

(12) to include distributions with
∑n

i=1 pi ≤ 1. For δ = 1,427

it reduces to the entropy in (23), which is an extension of428

Tsallis’ entropy in (5). It has the following property:429

Theorem 13: The entropy in (32) is concave if α ≥ 0 and430

(α − 1)δ ≥ 1 and Schur-concave if α ≥ 0 and δ ∈ R.431

Proof: This theorem is an immediate consequence of432

Theorem 1 for β = 1 and the condition that γ = (α − 1)δ +433

1 ≥ 2.434

The entropy in (32) includes some potentially interesting435

members with α = 2, including the limiting case when436

δ→ 0, i.e.,437

HK210(Pn) = − log
n∑
i=1

p2i /
n∑
i=1

pi. (33)438

However, from Theorem 13, this entropy is not concave since439

it does not meet the parameter condition (α − 1)δ ≥ 1. It is,440

however, Schur-concave from Theorem 13.441

For α = 2 and δ = 1, (32) reduces to442

HK211(Pn) = 1−
n∑
i=1

p2i /
n∑
i=1

pi (34)443

which, fromTheorem 13, is both concave and Schur-concave.444

Also, consider the case when α = 2 and δ = −1 when (32)445

becomes446

HK21(−1)(Pn) =
n∑
i=1

pi/
n∑
i=1

p2i − 1 (35)447

which, however, from Theorem 13, is not concave, but is 448

Schur-concave. The entropies in (33)-(35), with the assump- 449

tion that
∑n

i=1 pi = 1, and their normalized forms are well- 450

known measures of diversity and evenness used in biology 451

(e.g., [31]). The entropy in (34) with
∑n

i=1 pi ≤ 1 is a 452

simple extension of the so-called quadratic entropy (e.g., [32], 453

[4, pp. 174-176]). The entropy in (34) with
∑n

i=1 pi = 1 has 454

also been called the logical entropy and studied extensively 455

by Ellerman [33], [34]. 456

Another particular case of (32) is the following entropy for 457

α = 1/2, β = 1, and δ = 2: 458

HK ,1/2,1,2(Pn) =
(∑n

i=1
√
pi∑n

i=1 pi

)2
− 1 (36) 459

which, for
∑n

i=1 pi = 1, Arimoto [15] discussed as a member 460

of this entropy in (7). From Theorem 13, the entropy in (36) is 461

not concave since the condition (α−1)δ ≥ 1 is not met, but it 462

is Schur-concave. However, when
∑n

i=1 pi = 1, this entropy 463

is concave from Theorem 7. A related entropy has also been 464

advocated by [35]. 465

As another particular member of HKαβγ (Pn) in (14), con- 466

sider the so-called min-entropy defined as 467

Hm(Pn) = − log pmax, pmax = max
i
{p1, . . . , pn}. (37) 468

This entropy is typically identified as the limit of Rényi’s 469

entropy HRα(Pn) in (4a) as α → ∞ (see, e.g., [36], 470

[37], [38]). Since, for β = 1 (or for any 0 ≤ β ≤ 1), 471

limα→∞ Gα1(Pn) = pmax, it follows from (14) that 472

lim
α→∞

HKα1γ (Pn) = Hmγ (Pn) =
1

1− γ
(pγ−1max − 1) (38) 473

and defined for
∑n

i=1 pi ≤ 1. The entropy in (37) is the 474

limiting case Hm1(Pn). 475

It follows from Theorem 1 that, with β = 1 and α → ∞, 476

Hmγ (Pn) in (38) is concave for γ ≥ 2 and Schur-concave for 477

all γ ∈ R. However, with γ = 1, the min-entropy in (37) 478

is not concave. An interesting member of (38) is the one for 479

γ = 2, i.e., 480

Hm2(Pn) = 1− pmax (39) 481

which is concave and Schur-concave and known as the vari- 482

ation ratio in statistics and used as a measure of qualitative 483

variation (e.g., [39, pp. 68]). Also, since Hmγ (Pn) is strictly 484

decreasing in γ for any given Pn, the following inequality 485

may be pointed out: 486

1− pmax ≤ − log pmax ≤ p−1max − 1 487

where the only concave term is 1− pmax. 488

Consider also the case of α = β = 1 whenGαβ (Pn) in (13) 489

becomes the self-weighted geometric mean and the entropy 490

in (14) for the generalized distribution with
∑n

i=1 pi ≤ 1 491

becomes 492

HK11γ (Pn) =
1

1− γ

[( n∏
i=1

ppii
) γ−1∑n

i=1 pi − 1
]
, γ ∈ R. (40) 493
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From Theorem 1, this entropy is concave if γ ≥ 2 and Schur-494

concave for all real-valued γ . However, for the limiting case495

when γ = 1 and
∑n

i=1 pi = 1, (40) reduces to Shannon’s496

entropy −
∑n

i=1 pi log pi, which (being a sum of concave497

terms) is concave. SinceHK11γ (Pn) is strictly decreasing in γ ,498

the following interesting inequality follows from (40) when499 ∑n
i=1 pi = 1:500

1−
n∏
i=1

ppii ≤ −
n∑
i=1

pi log pi ≤
( n∏
i=1

ppii
)−1
− 1. (41)501

The upper bound in (41), although Schur-concave, is not502

concave when γ = 0. For the discrete uniform distribu-503

tion (1/n, . . . , 1/n), (41) becomes the following well-known504

inequality:505

1− 1/n ≤ log n ≤ n− 1.506

VII. COMBINATIONS OF ENTROPIES507

Besides the various entropies discussed above, one could also508

consider combinations of those individual entropies. This was509

done by Wondie and Kumar [40] for their proposed entropy510

HWKα =
1

α−1 − α

[
log

n∑
i=1

pαi +
n∑
i=1

pαi − 1
]
, α > 0 (42)511

as a combination of Rényi’s entropy in (4a) and Tsallis’512

entropy in (5). Alternatively, one could consider the mean or513

the sum of those two entropies as514

HRTα(Pn) =
1

1− α

(
log

n∑
i=1

pαi +
n∑
i=1

pαi − 1
)
. (43)515

Both (42) and (43) relate to Shannon’s entropy as516

−

n∑
i=1

pi log pi = lim
α→1

HWKα(Pn)517

= (1/2) lim
α→1

HRTα(Pn). (44)518

As a consequence of Theorems 4 and 6, the entropies in (42)519

and (43) are concave for 0 < α ≤ 1 and Schur-concave for520

all α > 0.521

Another potentially interesting entropy could be based522

on Tsallis’ entropy in (5) and Arimoto’s entropy in (7) as523

follows:524

HTAα(Pn) =
1

1− α

[ n∑
i=1

pαi −
( n∑
i=1

p1/αi

)α]
, α > 0 (45)525

which, from Theorems 6 and 7 and since sums of concave526

functions are concave, is concave and Schur-concave for all527

α > 0. Note that HTA1(Pn) = 2(−
∑n

i=1 pi log pi). Two528

notable members of (45) are529

HTA2(Pn) =
( n∑
i=1

√
pi
)2
−

n∑
i=1

p2i ;530

HTA(1/2)(Pn) = 2
( n∑

i=1

√
pi −

√√√√ n∑
i=1

p2i

)
. (46)531

An interesting comparison can bemade between the entropies 532

in (46) and those in (34)-(36) for the general case when 533∑n
i=1 pi ≤ 1. 534

VIII. STRICT SCHUR-CONCAVITY CONDITIONS 535

A. GENERAL CASE 536

The discussion in this paper so far has focused on the con- 537

cavity and Schur-concavity of an entropy H , with the Schur- 538

concavity being defined by (2). In order for H to be strictly 539

Schur-concave, the inequality in (2) has to be a strict one. 540

In that case, if one probability distribution is majorized by 541

another one, their entropy values will necessarily be dif- 542

ferent. As an extreme consequence, the maximum value of 543

H is then taken on by and only by the uniform distribu- 544

tion (
∑n

i=1 pi/n, . . . ,
∑n

i=1 pi/n) for the possibly incomplete 545

(generalized) case of
∑n

i=1 pi ≤ 1 or (1/n, . . . , 1/n) when 546∑n
i=1 pi = 1. 547

It is to be expected that the conditions for strict Schur- 548

concavity will differ slightly from those of Schur-concavity 549

and that those for
∑n

i=1 pi ≤ 1 will differ from those when 550

β = 1 and
∑n

i=1 pi = 1. For the most general entropy in 551

(14), the strict Schur-concavity property can be expressed as 552

follows: 553

Theorem 14: The entropy HKαβγ (Pn) in (14) with 554∑n
i=1 pi ≤ 1 is strictly Schur-concave if 555

0 ≤ min{α, β} ≤ 1 < max{α, β} or 556

0 < min{α, β} < 1 ≤ max{α, β} (47) 557

and for any γ ∈ R. 558

Theorem 15: The entropy HKαβγ (Pn) in (14) with β = 1 559

and
∑n

i=1 pi = 1 is strictly Schur-concave if α > 0 and for 560

any γ ∈ R. 561

Proofs: It follows from the theory of majorization 562

[2, Ch. 3] that, for the ratio Rαβ (Pn) =
∑n

i=1 p
α
i /
∑n

i=1 p
β
i , 563

564

Rαβ is strictly Schur-convex if 0 ≤ β ≤ 1 < α 565

or 0 < β < 1 ≤ α, (48a) 566

Rαβ is strictly Schur-concave if 0 ≤ α ≤ 1 < β 567

or 0 < α < 1 ≤ β. (48b) 568

From (48a)-(48b) and the fact that HKαβγ (Pn) as a function 569

of Rαβ (Pn) is seen to be strictly increasing for β > α and 570

strictly decreasing for β < α and for all γ ∈ R, it follows 571

thatHKαβγ (Pn) is strictly Schur-concave under the parameter 572

constraints in (47). This completes the proof of Theorem 14. 573

Consider now the case when β = 1 and
∑n

i=1 pi = 1 574

when
∑n

i=1 p
α
i is strictly Schur-concave for 0 < α < 1 and 575

strictly Schur-convex for α > 1 [2, pp. 138-139]. Then, since 576

HKα1γ (Pn) as a function of
∑n

i=1 p
α
i is strictly increasing for 577

0 < α < 1 and strictly decreasing for α > 1 and for all 578

γ ∈ R, HKα1γ (Pn) is necessarily strictly Schur-concave for 579

α > 0 and γ ∈ R, completing the proof of Theorem 15. 580

B. PARTICULAR CASES 581

It follows immediately from Theorem 15, with the obvi- 582

ous parameter conversions, that the following one-parameter 583
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entropies are strictly Schur-concave for α > 0: HRα(Pn)584

in (4), HTα(Pn) in (5), HAα(Pn) in (7), and HLV (Pn) in (9).585

With respect to the two-parameter entropies, it follows from586

Theorem 15 that HSMαβ (Pn) in (11), and HRTαβ (Pn) in (12)587

are strictly Schur-concave if α > 0 and for all real-valued588

β. In the case of HADKαβ (Pn) in (10), which is the limiting589

case of HKαβγ (Pn) in (14) as γ → 1, it follows from590

Theorem 14 that the entropy in (10) is strictly Schur-concave591

when the parameters meet the condition in (47). Similarly,592

fromTheorem 14with γ = α−β+1 it follows thatHKαβ (Pn)593

in (17) is strictly Schur-concave subject to (47).594

For the two-parameter entropy HKα1δ(Pn) in (32) with595 ∑n
i=1 pi ≤ 1, it follows from Theorem 14 with β = 1596

and δ = (γ − 1)/(α − 1) that HKα1δ(Pn) is strictly597

Schur-concave if α > 0 and for all δ ∈ R. This result598

implies that the particular member entropies in (33)-(36) are599

all strictly Schur-concave. Also, the entropies in (42)-(46)600

are strictly Schur-concave for α > 0 since they are sums of601

strictly Schur-concave functions.602

IX. DISCUSSION603

A. SOME ENTROPY INEQUALITIES604

Besides using the generalized entropy in (14) to derive condi-605

tions for concavity and Schur-concavity of individual mem-606

bers of HKαβγ (Pn), this family of entropies may also serve607

other purposes such as deriving inequalities between family608

members. Such derivations can conveniently be based on the609

fact that HKαβγ (Pn) is strictly decreasing in α, β, and γ for610

any given Pn. In the case of α and β (with γ fixed), this611

property of HKαβγ (Pn) follows from Gαβ (Pn) in (13) being612

a strictly increasing function of α and β for any given Pn613

[26, pp. 249] and from HKαβγ (Pn) being a strictly decreas-614

ing function of Gαβ (Pn) for any given real value of γ . The615

effect of varying γ on HKαβγ (Pn) for fixed α, β, and Pn is616

determined from the following partial derivative:617

∂HKαβγ (Pn)
∂γ

= (1− γ )−2618

·

[
Gγ−1αβ (Pn)−1−G

γ−1
αβ (Pn) logG

γ−1
αβ (Pn)

]
≤0619

with the bracketed term being nonpositive from the well-620

known inequality x−1−x log x ≤ 0 for x > 0. Consequently,621

HKα1β1γ1 (Pn) ≥ HKα2β2γ2;622

α1 ≤ α2, β1 ≤ β2, γ1 ≤ γ2. (49)623

An interesting inequality from (49) may be between the624

entropies of Shannon, Rényi, and Tsallis for the general case625

when
∑n

i=1 pi ≤ 1. Since those entropies are the respective626

members of HKα1γ (Pn) with γ = α = 1, γ = 1, and γ = α,627

the following inequalities follow directly from (49):628

−

n∑
i=1

pi log pi/
n∑
i=1

pi629

≤
1

1− α
log

( n∑
i=1

pαi /
n∑
i=1

pi
)

630

≤
1

1− α

( n∑
i=1

pαi /
n∑
i=1

pi − 1
)
, 0 ≤ α ≤ 1 (50)631

with the inequalities reversed if α ≥ 1. Equalities in (50) 632

occur only in the limiting case of α → 1 when the three 633

entropies are the same. Similarly, for Tsallis entropy (5) and 634

the Landsberg-Vedral entropy in (9) and for
∑n

i=1 pi ≤ 1 635

when those entropies become (23) and (25) corresponding to 636

γ = α and γ = 2−α, it follows from (49) with β1 = β2 = 1 637

that 638

1
α − 1

( n∑
i=1

pi/
n∑
i=1

pαi − 1
)

639

≤
1

1− α

( n∑
i=1

pαi /
n∑
i=1

pi − 1
)
, 0 ≤ α ≤ 1, (51) 640

with the reverse inequality if α ≥ 1. 641

As another example, consider the two entropies in (8) 642

and (10). Since the entropy in (8) is themember ofHKαβγ (Pn) 643

in (14) for γ = 1 and α = β and that of (10) corresponds to 644

γ = 1, the following inequality is an immediate consequence 645

of (49): 646

−

n∑
i=1

pαi log pi/
n∑
i=1

pαi 647

≤
1

β − α
log

( n∑
i=1

pαi /
n∑
i=1

pβi
)
, 0 ≤ β ≤ α. (52) 648

B. SOME APPLICATION IMPLICATIONS 649

Since entropies have no fixed upper bounds unless n is fixed, 650

interpretations of results when using entropies as summary 651

measures become difficult. It is easier to interpret the extent of 652

a characteristic (attribute) reflected by the distribution Pn = 653

(p1, . . . , pn) and represented by a summary measure if the 654

measure has a fixed range such as the [0, 1]-interval. Conse- 655

quently, normalized entropies are sometimes being used. 656

Examples of normalized entropies include the following 657

form of Shannon’s entropy [13]: 658

H∗s (Pn) = −
n∑
i=1

pi log pi/ log n ∈ [0, 1] (53) 659

and the normalized form of the quadratic entropy in (34): 660

H∗Q(Pn) =
(
1−

n∑
i=1

p2i
)
/(1− 1/n) ∈ [0, 1] (54) 661

for complete distributions with
∑n

i=1 pi = 1. Both of these 662

measures have been used for measuring evenness (unifor- 663

mity) among biological species (e.g., [31]) and for measuring 664

variation of nominal categorical data (e.g., [41]). 665

The most general entropy introduced in (14) can similarly 666

be normalized. From Theorem 1, HKαβγ is Schur-concave so 667

that, from the majorization in (29), the bounds on HKαβγ (Pn) 668

are as follows: 669

0 ≤ HKαβγ (Pn) ≤
1

1− γ

[( n∑
i=1

pi/n
)γ−1

− 1
]
. (55) 670
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Then, the normalized form becomes671

H∗Kαβγ (Pn) =

(∑n
i=1 p

α
i )/

∑n
i=1 p

β
i

) γ−1
α−β
−1(∑n

i=1 pi/n
)γ−1

− 1
∈ [0, 1] (56)672

subject to the parameter constraints on α and β in (15), but673

for any real-valued γ . Various other normalized entropies are674

then particular cases of (56). For example, it can be verified675

(using L’Hospital’s rules) that (53) is the member of (56) for676

β = 1, γ = 2 − α,
∑n

i=1 pi = 1, and α = 1 (in the limit677

as α → 1). Similarly, H∗Q(Pn) in (54) is the particular case678

of (56) when α = 2, β = 1,
∑n

i=1 pi = 1, and γ = 2.679

The evenness index proposed by Chao and Ricotta [42] is a680

member of (56) for β = 1,
∑n

i=1 pi = 1, and γ = 2− α.681

The parameters α and β affect the weights given to the682

different pi’s, emphasizing the larger pi’s over the smaller683

ones or vice versa. Consider, for example, the entropy in (17)684

that can be expressed as follows:685

HKαβ (Pn)=
n∑
i=1

wipi,wi=
1

β−α

(
pα−1i /

n∑
i=1

pβi − 1
)

(57)686

indicating the effect of α and β on the set of weights {wi}.687

For some real data Pn, instead of using a simgle entropy688

value based on fixed parameter values, entropy values can be689

computed as functions of the varying parameters, producing690

entropy profiles.691

In the case of a two-parameter entropy such as HKαβ (Pn)692

in (17) or (57), the graph of HKαβ (Pn) as a function of α693

and β for given Pn would be a surface whereas for one-694

parameter entropies such as those in (4a)-(9), the graph would695

be a curve. For the measurement of biological diversity and696

evenness, for example, the application of such one-parameter697

profiles have been emphasized by some (e.g., [42] and [43]).698

However, a limitation on the use of such profiles arises if the699

profiles of Pn = (p1, . . . , pn) and Qm = (q1, . . . , qm) cross,700

making comparisons difficult or meaningless.701

Besides concavity and Schur-concavity, there are, of702

course, other important properties required of an entropy,703

especially when a particular entropy is used as a sum-704

mary measure for real data. For the generic entropy H ,705

such additional properties include symmetry: H (Pn) is (per-706

mutation) symmetric in its arguments; zero-indifference707

(expansibility): H (p1, . . . , pn, 0, . . . , 0) = H (p1, . . . , pn);708

non-negativity: H (Pn) ≥ 0 for all Pn; continuity: H is a709

continuous function of all pi(i = 1, . . . , n); maximality:710

H (p1, . . . , pn) ≤ H (1/n, . . . , 1/n) for all complete Pn;711

monotonicity: H (1/n, . . . , 1/n) is strictly increasing in n.712

Many of the entropies discussed above can be verified as713

having such additional properties. See also [44].714

C. QUANTUM ENTROPIES715

All the entropies discused in this paper are viewed as func-716

tions of a probability distribution Pn = (p1, . . . , pn) where717

pi ≥ 0 for i = 1, . . . , n and
∑n

i=1 pi = 1 or more generally718

∑n
i=1 pi ≤ 1. While not the subject of this paper, a brief men- 719

tion of quantum entropies may be appropriate. The equivalent 720

quantum entropies could also be formulated by substituting 721

traces of density matrices for the probability summations in 722

the entropies discussed above as done, for example, by Hu 723

and Ye [6] when expressing the quantum equivalent of the 724

Rathie-Taneja entropy in (12). See also [36] for the quantum 725

equivalents of some other entropies. Thus, if ρ is a density 726

matrix of a system of interest involving a finite dimensional 727

Hilbert space, one could define the quantum equivalent to the 728

most general entropy in (14) as follows: 729

HKαβγ (ρ) =
1

1− γ

[(Tr(ρα)
Tr(ρβ )

) γ−1
α−β
− 1

]
, α, β ≥ 0, γ ∈ R 730

(58) 731

where Tr is the trace. 732

The quantum entropy studied by Hu and Ye [6] would be 733

a member of HKα1γ (ρ) in (58) for γ = β(α − 1) + 1 if 734

Tr(ρ) = 1. Those authors gave a proof of the concavity of 735

their quantum entropy with parameter constraints equivalent 736

to those of Theorem 12. Ultimately, if β = 1, γ = α, and 737

Tr(ρ) = 1, then (58) reduces to the following limitating case: 738

HK111(ρ) = lim
α→1

HKα1α(ρ) = −Tr(ρ log ρ) 739

which is the von Neumann entropy and the quantum version 740

of Shannon’s entropy. 741

X. CONCLUSION 742

The focus of this paper is on two important properties of 743

an entropy: concavity and Schur-concavity. In order to make 744

the analysis comprehensive and systematic, a new three- 745

parameter entropy that includes other entropies as particular 746

cases is being introduced. The parameter conditions under 747

which this most general entropy is concave, Schur-concave, 748

or both can then be used as a basis for exploring those 749

properties for other entropies. The analysis throughout this 750

paper is sufficiently general to include the potential of a 751

probability distribution Pn = (p1, . . . , pn) being incomplete 752

with
∑n

i=1 pi < 1. 753

An argument in favor of generalized entropies is that they 754

offer flexibility by means of the choice of parameter values 755

appropriate for different situations. Furthermore, such gener- 756

alizations serve to systematize or unify entropies and their 757

properties as in the case of the three-parameter entropy in 758

(14) or (58). The popularity of generalized entropies has been 759

demonstrated by the large number of relevant publications 760

and citations (e.g., Google Scholar lists about 10,000 citations 761

to Tsallis [9] and 6,500 to Rényi [8]). 762

Besides introducing parameters to entropy functions, an 763

alternative way of generalization would be to generalize the 764

probability distribution itself by the use of so-called escort 765

distributions introduced by Beck and Schögle [45]. By defi- 766

nition, such a distribution is given by 767

pεi =
pεi∑n
i=1 p

ε
i
, i = 1, . . . , n,−∞ < ε <∞ 768
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with negative values of the parameter ε requiring all pi > 0.769

While beyond the scope of the present paper, the effect of770

substituting the distribution {pεi} for the original distribution771

{pi} in entropy formulations may be a worthwhile analysis.772

The flexibility offered by generalized entropies and gen-773

eralized probability distributions (
∑n

i=1 pi ≤ 1), assuming774

such important properties as Schur-concavity and concavity,775

provides for interesting and potentially important theoretical776

explorations as indicated by the extensive published litera-777

ture. In terms of real applications, however, the utility of778

such generalization may so far seem less convincing. Further779

applied work is warranted.780
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