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ABSTRACT Concavity and Schur-concavity are two of the important properties of any entropy. Since
Shannon’s classical entropy formulation, a number of generalized entropies have been proposed as param-
eterized generalizations of Shannon’s entropy. For such generalized entropies, the conditions under which
they are concave and/or Schur-concave have not always been determined or have been incompletely and
incorrectly reported in a variety of publications. This paper provides proofs of those two properties for the
various proposed generalized entropies using a unifying approach. First, a new three-parameter entropy is
introduced of which other proposed generalized entropies are particular members. Second, a proof is derived
for the concavity and Schur-concavity of the new entropy and the underlying conditions. Those results are
then applied to the particular one-parameter and two-parameter members. Some new such members are
also discussed as are some related inequalities. The various derivations are based on so-called generalized
probability distributions when the sum of component probabilities may be less than 1.

INDEX TERMS Entropy, concavity, Schur-concavity, generalized entropies, Gini’s means.

I. INTRODUCTION

Since Shannon (1948) introduced entropy as part of his theory
of information and communication, entropy as a measure of a
variety of attributes has had a profound influence on research
in a diverse range of scientific areas. Its popularity is partly
attributable to the various desirable properties of Shannon’s
entropy. Two of those important properties are concavity and
Schur-concavity as is the focus of the present paper.

The concavity property is essential for entropy maxi-
mization problems (e.g., [1]) and Schur-concavity ensures
that, among all probability distributions, no distribution can
have a higher entropy value than the uniform distribution
[2, pp. 101]. Schur-concavity also reflects the important
property that the entropy value increases as the components
of a probability distribution become ‘“‘more nearly equal”
or “less spread out” as formalized by majorization theory
[2, Ch. 1 and 3].

The influence of Shannon’s entropy is also reflected by
its various generalizations that have been proposed over the
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years [3], [4], [5], [6], [7]. Such generalizations typically
involve parameterized families of entropies such that Shan-
non’s entropy is a member for a particular parameter value.
The most popular of these are the one-parameter entropies
by Rényi [8] and Tsallis [9]. While most of the proposed
entropies have the Schur-concavity property, some lack the
concavity property because of its more restrictive parameter
constraints.

The concavity and Schur-concavity properties have often
been overlooked when new entropies have been proposed.
Subsequent discussions of these properties have not always
been correct or complete, some have been incorrectly
reported, and their proofs are simply lacking for some of the
entropies. The presentations of these properties for some of
the entropies have also been scattered between a wide range
of publications and sources. It is the purpose of the present
paper to carefully and systematically derive the conditions or
constraints under which various entropies have the concavity
and/or Schur-concavity properties.

The systematic approach of this paper is based on the
introduction of a most general three-parameter entropy or
family of entropies of which other proposed entropies are
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particular members. This new entropy is simply defined as
a power function of the well-known mean by Gini [10]
applied to the components of a probability distribution. The
parameter space or conditions for the concavity and Schur-
concavity of this new entropy are then derived and applied to
other established member entropies. Some novel members of
the new entropy are identified as being of potential interest.
Some interesting inequalities between entropies can also be
derived from the three-parameter entropy. All derivations are
based on the general case when a probability distribution
may possibly be incomplete in the sense that the probability
components may not necessarily sum to 1 (e.g., [8]).

Il. DEFINITIONS

Let P, = (p1, - .., pn) be some probability distribution with
each pj > Oand " ;p; < 1 in case P, is possibly
an incomplete distribution. An incomplete distribution with
> pi < 1 may occur if some events are not observable
or are ignored or if some data are not available (e.g., [8],
[11, Ch. IX], and [12]). For some generic entropy H taking
on the value H(P,) for the distribution P,, Schur-concavity
and majorization may be defined as follows [2]. If the p;’s
are ordered such that pj;y > ppp) > ... > pyuy, with g1 >
qr2] = ... = qpn for another distribution Q,, = (q1, . .., gn),
P, is majorized by Q,, denoted by P,, < Q,, if

J J n n
Yopia <Y qui=1...,n—land Y pa =Y qu.
i=1 i=1 i=1 i=1

ey

Then, an entropy H is Schur-concave if
Py < Q, implies H(Py) = H(Qp). @)

If the inequality in (2) is strict and P,, is not simply a permu-
tation of Q,, then H is strictly Schur-concave.

The Schur-concavity of H ensures that its value H(Pp)
increases as the components of P, become increasingly equal
or uniform, attaining its maximum value H(1/n, ... 1/n) for
the uniform discrete distribution (1/n, ..., 1/n) or for

HQY pi/n..... ) pi/n)
i=1 i=1

when )% ,p; < 1 since this uniform distribution is
majorized by any P, = (p1, ..., pn) as can be seen from (1).
Clearly, Schur-concavity is a necessary property of any H.

Schur-concavity is a somewhat milder condition than the
usual (in the sense of Jensen) concavity. If H is (permutation)
symmetric in its arguments and if H is concave, then it is
implied that H is also Schur-concave. However, the converse
implication does not necessarily hold.

In order to determine if some H is concave and under what
necessary conditions, it will be convenient to be able to refer
to the following set of composite functions h(P,) = g[f (Pn)]:

If f is concave and g is concave and nondecreasing,
then 4 is concave. (3a)
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If f is convex and g is concave and nonincreasing,
then % is concave. (3b)
If f is concave and g is convex and nonincreasing,
then 4 is convex. (3¢c)
If f is convex and g is convex and nondecreasing,
then # is convex. (3d)
Some of these relationships follow from the fact that f is
concave if and only if —f is convex. Similarly, f is Schur-

concave if and only if —f is Schur-convex (when the inequal-
ity in (2) is reversed) [2, Ch. 3].

IIl. GENERALIZED ENTROPIES

A. ONE-PARAMETER ENTROPIES

Among the entropies that involve one parameter, those of
Rényi [8] and Tsallis [9] are the best known and most fre-
quently referenced ones. Rényi’s entropy is defined as:

HR(x(Pn) =

1 n

l_alog;p?‘,a>0 (4a)
1=

where only positive values of the arbitrary parameter « is

considered in order for Hgy(P;) to be defined for all p; > 0.

For the more general case when P,, is a possibly incomplete

distribution with Y ", p; < 1, Rényi proposed the entropy

1

n n
-« IOg(ZP?/ sz), a>0. (4b)
i=1 i=1

Tsallis’ entropy is defined as

Hro(Py) = 1%(Zp?‘ ~1).0eR )

o

HRat(Pn) =

The entropy of Shannon [13] is the limiting case of both
Hpga(Py) and Hro(Py), i.e.,

n
lim Hro(Py) = lim Hro(Py) = — Epi log pi
1=
= Hg(P,) (6)

where the natural (base-e) logarithm is used throughout this

paper. Havrda and Charvat [14] introduced an entropy that,

instead of the term 1/(1—a) in (5), used the term 1/(1—2%"1).
Arimoto [15] proposed the following entropy:

Haa(Py) = ﬁ[(ip;)a ~t]a=0. @
i=1

Another form of this entropy, the R-norm entropy with
R = 1/a in (7), has been studied by [16].

Aczél and Daréezy [17] and Kapur [18] independently
introduced the entropy

n n
Huapgo(Pn) = — ZP? 10gpi/ pr’ a>0. (8
i=1 i=1

See also [12, pp.192]. However, as pointed out below, this
entropy does have an important restriction.
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Landsberg and Vedral [19] proposed the following entropy:

1 < 1
a—1\Y0 pf

Hiva(Py) = ~1), aeR O
This entropy as well as that in (5) have been defined for all
real values of the arbitrary parameter «, but require ¢ > 0

whenp; >0(@(=1,...,n).

B. TWO-PARAMETER ENTROPIES
Aczé€l and Darécezy [17] and Kapur [18] independently intro-
duced the following two-parameter entropy:

n
2im1 P

n B
dim1 Pi
where again, as throughout this paper, o and 8 are arbitrary
parameters subject to the given constraints.

Another entropy that has received considerable attention is
that of Sharma and Mittal [20] and defined as

1
Hapkap(P) = 5 log (S=75 ). @8> 0 (10)

1 " £
Hsprap(Py) = m[(ZP?) b 1], a, > 0.
i=1
(11)

By using a slightly different parameter expression, Rathie and
Taneja [21] proposed a unified entropy as

Hgrap(Pp) = m[(ipf‘)ﬂ - 1], a>08eR.
i=1 )

More recently, Hu and Ye [6] also considered this last entropy.

Other two-parameter entropies have been proposed as
extensions of one-parameter entropies by simply replacing a
parameter with one involving two parameters. However, such
extensions do not change the basic form of the entropy func-
tion. Examples of such parametric reformulations include
Nath [22] who basically proposed to replace « in (4) with
o/B or replace the « in the exponential term in (4) with
of . Rathie [23] suggested replacing p¥ in (4) with pf” for
i = 1,...,n More recently, Hooda and Ram [24] pro-
posed an entropy that corresponds to Arimoto’s entropy
when substituting the two-parameter term (2 — fS)/R
for o in (7). Also, substituting the three-parameter term
(2a — B)/R for « in (7) produces an entropy proposed by
Hooda and Sharma [25].

IV. CONDITIONS FOR CONCAVITY AND
SCHUR-CONCAVITY

A. GENERAL APPROACH

In order to consider a unified and systematic approach to
determining the conditions under which the various param-
eterized entropies possess the properties of concavity and
Schur-concavity, one could start off by considering an
entropy with additional generality. Thus, since various pro-
posed entropies are basically decreasing functions of some
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mean of the probabilities py, ..., p,, it would seem reason-
able to consider the most general (two-parameter) Gini means
defined by
n o 1
ﬁ) 7 BeR (13)
n B
i=1D;
after Gini [10] and as discussed by Bullen [26, pp. 248-251].
As a general decreasing power function of Gg(Py,), one could
define the following three-parameter entropy:

Gup(Po) =

HKaﬂy(Pn)
1 ~1
= E(Ggﬁ -1

1 noopYN g
T [(Zn_—lp}s) ﬂ_l]»aaﬂzo;yeR. (14)
—Y Zi:lpi

The parameters o and § in (14) are restricted to having
nonnegative values in order for this entropy to be defined
for pj > 0and i = 1,...,n. For generality sake, this
entropy is also defined for possibly incomplete distributions
when "7, p; < 1. Distributions with 7, p; < 1 may
occur when some events and the associated p;’s are miss-
ing, ignored, or simply unobservable. Such incomplete cases
include situations when the smallest p;’s are not available
individually, but are grouped into an ‘“‘all others” category.
Distributions with )/, p; < 1 are also referred to as gen-
eralized distributions (e.g., [8], [11], [12], and [27, Ch. 5]).
In the extreme case of a single event with P = (p), (14)
becomes (p¥ ~! — 1)/(1 — y) as the entropy of a single event.

The entropy in (14), or family of entropies, has the follow-
ing property:

Theorem 1: The Hkopy (Py) in (14) is concave if

0 < min{e, B} < 1 < max{«, B} 15)

and y > 2 and Schur-concave for any y € R.

Proof: The following result follows from Dresher’s
inequality ( [28]; see also [26, pp. 249]) for Gup in (13), for
any distributions P, and Q, (possibly incomplete), and for
any A € [0, 1]:

GoplAPp + (1 — 1))
< AGa,p(Py) + (1 = M)Gap(Qn), 0 <A <1 (16)

under the parameter constraint in (15). That is, Gyg subject to
(15) is a convex function of P,, with ) i, p; < 1. Then, since
Hkapgy(Py) in (14) is clearly a concave and nonincreasing
function of Gug(Py), it follows from (3b) that Hgagy (Py)
is a concave function of P, restricted to (15) and y > 2.
Furthermore, since Gyg(Py) subject to (15) is symmetric in
the p;’s, it is also Schur-concave, which makes Hgqpy (Py)
Schur-concave since it is decreasing in Gyg(P;) for all real
values of y. This completes the proof.

The Hgqpy(Py) in (14) contains all the entropies in
(4)-(12) as particular members. A two-parameter member of
Hk opy (Py) that also incorporates some of the other entropies
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is obtained for all y = o — 8 + 1 as follows:

HKaﬂ(Pn) =

1 (Z?:lp? _ 1)
p—a Z?:lpf

n
Y psLO0<psliazl+p (7

i=1

This entropy has the following property:

Theorem 2: The Hkog(Py,) in (17) is concave if 0 < B < 1

and @ > 1 + B and Schur-concave if 0 < 8 <l and o > 1.

Proof: With 0 < B < 1, the concavity of Hgqp(Py)
follows from Theorem 1 and the requirement that y = o —
B + 1 = 2. The Schur-concavity of Hgqg(Py) is implied by
Rup(Pn) = Y i P8/ iy p;.g being Schur-convex for 0 <
B <landa > 1[2,Ch. 3] and Hkqg(P,) being a decreasing
function of Ryg(Py) for o > B.

Comment: While Hggugy(Py) in (14) is symmetric in
the parameters o and g, this symmetry does not apply to
Hl(otﬁ (Pn).

For the case when 8 = 1 and er‘l:l pi = 1, (14) reduces to

Hgaly(Pn) = %[( i:ﬂ?)
i=1

which is seen to be equivalent to the entropy by Sharma and
Mittal [20], although they used the denominator 2!=% — 1
(instead of 1 — y). This entropy has the following property:

Theorem 3: The Hg 1, (Py) in (18) is concave if @ > 0 and

y > 2 — 1/« and Schur-concave if « > 0 and for all y € R.

Proof: It follows immediately from Minkowski’s

inequality (e.g., [26, pp. 189]) that, for the power sum

Sa(Pp) = (Z;’:lpi?‘) ¢ and for any A € [0, 1],

SalAPp 4 (1 = 2)0n] < ASa(Pn) + (1 = 1)Sa(Qn)  (19)

y—1
a—1

],aZO,yeR (18)

if @« > 1 and for any two (possibly incomplete) distributions
P,=i1,...,pn)and @, = (q1, - - . , qn), with the inequality
in (19) reversed for o« < 1. That is, the function S, is convex
for ¢ > 1 and concave for ¢ < 1. By expressing (18) as

1 aly=1)
Hgo1y(Pn) = 1—[(Sot(Pn)) el —1] (20)

-V
it is seen from the derivatives of Hgq1, (P,) with respect to
Sy (Py)in (20) that Hg 1, (P,) is a nondecreasing and concave
function of Sy(P,) for0 < @ < land y > 2 — I/« and
nonincreasing and concave for¢ > land y > 2 — 1/a.
Since Sy (Py) is concave for @ < 1 and Hggq1,(Py) is a
nondecreasing and concave function of S, (P,) for0 < o < 1
and y > 2 — 1/a, it follows from (3a) that Hgq1, (Py) is
concave under these parameter restrictions. Similarly, since
S (Py)is convex fora > 1 and Hg 1y (Py) is a nonincreasing
and concave function of Sq(P,) fora > landy > 2 — 1/a,
it follows from (3b) that Hk 1, (Py) is concave if o > 1 and
y = 2—1/a. Thatis, Hgy1, (Py) a concave function of P, if
o > 0and y > 2 — 1/a. The Schur-concavity in Theorem 3
follows from majorization theory [2, Ch. 3] as an immediate
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consequence of the fact that (a) To(P,) = Zl'-’zl p? is Schur-
concave for 0 < o < 1 and Schur-convex for & > 1 and (b)
Hg g1y (Py) is an increasing function of 74, (P,) for0 < a < 1
and decreasing for « > 1 and for all y € R. This completes
the proof.

Remark: The parameter restrictions in Theorem 3 are seen
to be an improvement over those obtained by simply setting
B = 1in Theorem 1.

B. PARTICULAR CASES
Theorem 4: Hgy(Py) in (4a) is concave if 0 < o < 1 and
Schur-concave if @ > 0.

Proof: This property of Hpge(P,) follows from

Theorem 3 with y = 1 since Hgy(Py;) = limy 1 Hg g1y (Pp).
Theorem 5: Hpy(Py) in (4b) is not concave for any «, but
is Schur-concave if @ > 1.

Proof: Since the entropy in (4b) is a particular member
of Hgapy(Py)in (14) with B = 1,31 pi < l,and y — 1,
it follows from Theorem 1 that Hg,(P,) in (4b) cannot be
concave since it violates the requirement of y > 2. However,
it meets the Schur-concavity condition for o« > 1 since that
of Theorem 1 applies to all real-valued y . This completes the
proof.

Theorem 6: Hr, in (5) is concave and Schur-concave if
o> 0.

Proof: This entropy is the particular member of
Hgy1y(Py) in (18) with ¥y = « so that the condition y >
2 — 1/a reduces to (o — 1)2 > 0, which is obviously met by
all real values of «. Thus, from Theorem 3, Hr,(P,) is both
concave and Schur-concave for « > 0.

Theorem 7: Hpo(Py) in (7) is concave and Schur-concave
ifa > 0.

Proof: The entropy in (7) can be considered a particular
case of Hgq1y(Py) in (18) by simply substituting 1/a for o
and 2—a for y. Then, it follows from Theorem 3 that H4, (Py,)
is concave and Schur-concave for @ > 0 since, besides 1 /o >
0, the parameter condition y > 2 — 1/« after substitution
becomes (2 — o) = (2 — «), which holds for all @ > 0. This
completes the proof.

Theorem 8: Hapg o (Py) in (8) is neither concave nor Schur-
concave for all « > 0.

Proof: The entropy in (8) is a limiting member of
Hgopy(Py) in (14) when B — o and y — 1. However,
Theorem 1 requires y > 2 for concavity of Hgqg, (P,) with
o, B > 0so that Hypgx (Pn) = Hgaa1(P,) cannot be concave
or Schur-concave for all « > 0, completing the proof.

Comment: Stolarsky [29] and Clausing [30] explored the
problem of determining the minimum value ¢« of the param-
eter o such that

Hapga(Pn) < Hapxo(1/n, ..., 1/n) =logn
for all P,, and o > «

which is a Schur-concavity requirement. Those authors
showed that oy depends on 7.

Theorem 9: Hryo(Py) in (9) is concave if 0 < « < 1 and
Schur-concave if o > 0.
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Proof: This entropy is a particular member of Hg 1 (Py)
in (18) with y = 2 — «. It then follows from Theorem 3 that
Hyy(Py) is Schur-concave for « > 0 and concave if @ > 0
and 2 —a) > 2 —1/a,ie., a? <1lor0 < a < 1, which
completes the proof.

Theorem 10: Hppgap(Py) in (10) is not concave for o,
B > 0, but it is Schur-concave subject to the parameter
constraint in (15).

Proof: Since this entropy is a limiting case of Hg gy (Py)
in (14) as y — 1 and since the concavity of Theorem 1
requires y > 2, Hapkap(Py) is not concave. However, it
is Schur-concave as a consequence of Theorem 1, which
completes the proof.

Theorem 11: Hgprq8(Py) in (11) is concave if @ > 0 and
B > 2 — 1/a and Schur-concave if « > 0 and for all § € R.

Proof: With y = B in (18), Hspag(Pn) = CHga18(Pp)
with C = (1 — B)/(2'=# — 1), so that from Theorem 3 it
follows that Hgpyqp(Py) has the same concavity condition as
Hgq15(Py) since concavity is invariant under multiplication
with a constant C > 0.

The Schur-concavity of Hgyap(Py) is implied by
Theorem 3 and the fact that Hgpyrq8(Py) is a strictly increasing
function of the Schur-concave Hgy1, (P,) with y = 8 (with
Hspap(Po) = [(1 — 8)/(2"7F — D]Hka15(Pn)).

Theorem 12: Hrrop(Py) in (12) is concave if o > 0 and
a(e — 1)B > a — 1 and Schur-concave if @ > 0 and for all
B eR.

Proof: This property is an immediate consequence of the
fact that Hrrap(Py) is equivalent to Hkg1y, (Py) in (18) with
y = (a—1)B+1. Therestriction y > 2—1/a for Hg o1y (Py)
becomes a(a — 1)B > o — 1 for Hrrap(Pn).

Remark: Rathie and Taneja [21] proved the concavity of
Hgrap(Py) under the following constraints: 0 < o < 1,
af < lora > 1, af > 1. However, these two constraints
are equivalent to a(¢ — 1) > o — 1 forall « > O.
Hu and Ye [6] presented the same proof as that of Rathie and
Taneja [21]. See also Kapur [3, pp. 122-124].

V. EXPLORATIONS OF Hy,z IN (17)
Besides the two-parameter unifying property of Hgqg(Pp)
in (17), this entropy is also defined for distributions

P, = (p1,...,pn) that may possibly be incomplete, i.e.,
Y, pi < 1.In the extreme case of a single event P| = (p),
H = a=F _q
Kap (P) B—« P )
1 —_ ‘f = 2 = 1
_ p ta=2 p @1
—logp iff — a.

The Hgp(P,) becomes the following weighted mean of (21):

Heap(P) = Y (Zf—fﬁ)Hm(p,-)

i=1 =1

- ﬂ%‘x(%’:—ii; — 1). (22)

96010

Some potentially interesting one-parameter members of
Hgo5(Py) can be outlined as follows:

Hiat(P) = (1 =)' Q_pf/ D pi— 1),

i=1 i=1

n
Yopi<la>l(>2; (23)

i=1

Hia1(Py) = (1 =)' O pfr = 1),
i=1

Zpizl,(x>0(a>0); (24)

i=1

HiipP) = (B —1D7'Q pi/ Y ol = D,
i=1 i=1

Y i< B=00<p=1); (25

i=1

Hiip(P) = (B — 7'/ Y pl = 1),

i=1

Ypi=1B>00<p=1; (26

i=1

n n
Hkaa(Pn) = — ) _p{logpi/ Y _pf,
i=1 i=1

Y pi< 1 o> am); @7

i=1

n n
Hiaa1(Pp) = 1= pf/ Y pi~,
i=1 i=1

n
Ypi<ll<a<2(l<a<2. (28
i=1
The parameter restrictions in (23)-(28) are those for which
the entropies are Schur-concave (and concave in parenthe-
ses). Those parameter restrictions follow from Theorem 2 in
the case of (23) and (28), from Theorem 6 for (24), from
Theorem 9 for (26), from Theorem 8 for (27), and from
Theorem 2 for the concavity condition of (25). The Schur-
concavity condition for (25) results from Y 7, p;/ Y%, Pf
being Schur-convex and (8 — 1)™! < 0for0 < B < 1 and
i pil > p? being Schur-concave and (8 — 1)™! > 0
for B > 1.
It is apparent from the majorization definition in (1) that,
for any possibly incomplete or generalized distribution Py,

n n
P;i = (Zpi/n’-nzpi/n) <Pn
i=1

i=1
n n
<O pi0.....0=P Y pi<1l. (29
i=1 i=1

Consequently, from the Schur-concavity of Hgapg(Py)
together with (29),

et = 5 () 1]
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< Hgap(Py)
< HKa,B(P,b
- lER ) e

The corresponding upper and lower bounds on members of
Hyqp(Py) follow from (30) and the Schur-concavity parame-
ter values in (23)-(28).

The Hkqpg(Py) in (17) is basically an immediate general-
ization of Tsallis’ entropy Hrq(Py) in (5), i.e., Hxy1(Pp) in
(24) and of the Landsberg-Vedral entropy Hry, in (9), i.e.,
Hg18(Py) in (26). In fact, Hgop(P,) can be expressed as the
following combination of the two:

HKozﬂ(Pn)

=<I31a>

[{a-onraEn+i}{e-DHwsE)+1}-1]- 6D

VI. EXPLORATIONS OF Hy(,z, (Pn) IN (14) FOR § = 1
For 8 = 1 and setting y = (¢ — 1)é + 1, the three-parameter
entropy in (14) reduces to

Hgo15(Pn) = a —1a)8 [(é{éﬁj)g - 1], épi <L
(32)

This entropy represents an immediate extension of that in
(12) to include distributions with Z:': 1pi < 1.Foré =1,
it reduces to the entropy in (23), which is an extension of
Tsallis’ entropy in (5). It has the following property:

Theorem 13: The entropy in (32) is concave if @ > 0 and
(e — 1)§ > 1 and Schur-concave if « > 0 and § € R.

Proof: This theorem is an immediate consequence of
Theorem 1 for 8 = 1 and the condition that y = (o« — 1)é +
1>2.

The entropy in (32) includes some potentially interesting
members with ¢ = 2, including the limiting case when
§ — 0,1.e.,

n n
Hi210(Py) = —log Y " p}/ Y pi. (33)
i=1 i=1
However, from Theorem 13, this entropy is not concave since
it does not meet the parameter condition (¢ — 1)§ > 1. It s,

however, Schur-concave from Theorem 13.
For o =2 and § = 1, (32) reduces to

n n
Hion(P) =1-Y_"p}/ Y pi (34)
i=1 i=1

which, from Theorem 13, is both concave and Schur-concave.
Also, consider the case when o« = 2 and § = —1 when (32)
becomes

n n
Hia1-1)(Pp) = ZP:’/ ZP,Z -1 (35)
i=1 =l
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which, however, from Theorem 13, is not concave, but is
Schur-concave. The entropies in (33)-(35), with the assump-
tion that Z:’I 1 pi = 1, and their normalized forms are well-
known measures of diversity and evenness used in biology
(e.g., [31]). The entropy in (34) with >/ ,p; < 1is a
simple extension of the so-called quadratic entropy (e.g., [32],
[4, pp. 174-176]). The entropy in (34) with Y %, p; = 1 has
also been called the logical entropy and studied extensively
by Ellerman [33], [34].

Another particular case of (32) is the following entropy for
a=1/2,=1,and 6 = 2:

n N\ 2
Hg 1/2,12(Pp) = (M) -1 (36)
D i1 Pi

which, for Z?:l pi = 1, Arimoto [15] discussed as a member
of this entropy in (7). From Theorem 13, the entropy in (36) is
not concave since the condition (o — 1)§ > 1 is not met, but it
is Schur-concave. However, when ) 7, p; = 1, this entropy
is concave from Theorem 7. A related entropy has also been
advocated by [35].

As another particular member of Hg g, (P,) in (14), con-
sider the so-called min-entropy defined as

Hy(Py) = —10g pmax, Pmax = ml?lx{pl, N 2 1))

This entropy is typically identified as the limit of Rényi’s
entropy Hpy(P,) in (4a) as ¢ — oo (see, e.g., [36],
[371, [38]). Since, for B = 1 (or forany 0 < 8 < 1),
limy— 00 Go1(Pr) = Pmax. it follows from (14) that

. 1 _
lim Hga1y(Pn) = Hpy (Pr) = ——@lar — 1) (38)
oa—00 1 — y

and defined for ) 7 p; < 1. The entropy in (37) is the
limiting case H,,1(P;,).

It follows from Theorem 1 that, with 8 = 1 and ¢ — o0,
Hyyy, (Py) in (38) is concave for y > 2 and Schur-concave for
all y € R. However, with y = 1, the min-entropy in (37)
is not concave. An interesting member of (38) is the one for
y =2,ie.,

Hyp(Pp) = 1 — pmax (39)

which is concave and Schur-concave and known as the vari-
ation ratio in statistics and used as a measure of qualitative
variation (e.g., [39, pp. 68]). Also, since H,,, (Py) is strictly
decreasing in y for any given P,, the following inequality
may be pointed out:

1 — Pmax = _IngmaX = pr:l?}lx -1

where the only concave term is 1 — ppax.

Consider also the case of & = 8 = 1 when Gug(Py,) in (13)
becomes the self-weighted geometric mean and the entropy
in (14) for the generalized distribution with ) ;' ; p; < 1
becomes

Hy11y(Py) = ﬁ[(ﬁpp)zﬁ.lz ~1], v eR @0
i=1
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From Theorem 1, this entropy is concave if y > 2 and Schur-
concave for all real-valued y. However, for the limiting case
when y = 1 and Z;’:I pi = 1, (40) reduces to Shannon’s
entropy — » ., pilogp;, which (being a sum of concave
terms) is concave. Since Hg 11, (Py) is strictly decreasing in y,
the following interesting inequality follows from (40) when

Z?:]Pi =1

n n n
. N —1
L=TTe = = Ypitogpi = (TTF) -1, @
i=1 i=1 i=1

The upper bound in (41), although Schur-concave, is not

concave when y = 0. For the discrete uniform distribu-
tion (1/n, ..., 1/n), (41) becomes the following well-known
inequality:

1—1/n<logn <n-—1.

VIl. COMBINATIONS OF ENTROPIES

Besides the various entropies discussed above, one could also
consider combinations of those individual entropies. This was
done by Wondie and Kumar [40] for their proposed entropy

1 n n
Hyko = m[logzp? +y Pk 1], a>0 (42)
i=1 i=1

as a combination of Rényi’s entropy in (4a) and Tsallis’
entropy in (5). Alternatively, one could consider the mean or
the sum of those two entropies as

1 n n
Hrra(Pr) = 7= (log )_pf + )_pi = 1), @3)
i=1 i=1
Both (42) and (43) relate to Shannon’s entropy as

n
— Zpt logpi = lim HWK“(P")
P a—1

= (1/2) lim Hgro(Pp). (44)

As a consequence of Theorems 4 and 6, the entropies in (42)
and (43) are concave for 0 < o« < 1 and Schur-concave for
allo > 0.

Another potentially interesting entropy could be based
on Tsallis’ entropy in (5) and Arimoto’s entropy in (7) as
follows:

1 e ! o
Hrpa(Py) = E[Zp;" —(Xp) ] az0 @3
i=1 i=1

which, from Theorems 6 and 7 and since sums of concave
functions are concave, is concave and Schur-concave for all
o > 0. Note that Hya1(P,) = 2(— Y i, pilogp). Two
notable members of (45) are

Hrar(Py) = (Xn: \/171‘)2 - Xn:l?iz;
i=1 i=1

> or? ) (46)

i=1

n
Hrya2)(Py) = 2(2 VPi —
=1
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An interesting comparison can be made between the entropies
in (46) and those in (34)-(36) for the general case when

VIIl. STRICT SCHUR-CONCAVITY CONDITIONS

A. GENERAL CASE

The discussion in this paper so far has focused on the con-
cavity and Schur-concavity of an entropy H, with the Schur-
concavity being defined by (2). In order for H to be strictly
Schur-concave, the inequality in (2) has to be a strict one.
In that case, if one probability distribution is majorized by
another one, their entropy values will necessarily be dif-
ferent. As an extreme consequence, the maximum value of
H is then taken on by and only by the uniform distribu-
tion (31, pi/n, ..., > i, pi/n) for the possibly incomplete
(generalized) case of ) /' p; < 1 or (1/n,...,1/n) when
2imipi=1.

It is to be expected that the conditions for strict Schur-
concavity will differ slightly from those of Schur-concavity
and that those for > i, p; < 1 will differ from those when
B = 1land ) !, p; = 1. For the most general entropy in
(14), the strict Schur-concavity property can be expressed as
follows:

Theorem 14: The entropy Hgggy(Py) in (14) with
Yo, pi < lisstrictly Schur-concave if

0 < min{e, B} <1 < max{«, B} or
0 < min{e, 8} < 1 < max{«a, B} 47

and for any y € R.

Theorem 15: The entropy Hgqpy (Py) in (14) with 8 = 1
and Y 7, p; = 1 is strictly Schur-concave if « > 0 and for
any y € R.

Proofs: 1t follows from the theory of majorization
[2, Ch. 3] that, for the ratio Rog(Py) = Y i, Y/ Y pf},

Ryp is strictly Schur-convexif 0 < 8 <1 < «

or0< B <1<uq, (48a)
Ryp is strictly Schur-concave if 0 <o <1 <
or0<a<1<8g. (48b)

From (48a)-(48b) and the fact that Hgyg, (Py) as a function
of Ryp(Py) is seen to be strictly increasing for 8 > o and
strictly decreasing for 8 < « and for all y € R, it follows
that Hg o, (Py) is strictly Schur-concave under the parameter
constraints in (47). This completes the proof of Theorem 14.

Consider now the case when 8 = 1 and ), p;i = 1
when )i p¥ is strictly Schur-concave for 0 < o < 1 and
strictly Schur-convex for @ > 1 [2, pp. 138-139]. Then, since
Hg g1y (Py) as a function of Z:’zl p¥ is strictly increasing for
0 < a < 1 and strictly decreasing for « > 1 and for all
vy € R, Hgq1y(Py) is necessarily strictly Schur-concave for
o > 0and y € R, completing the proof of Theorem 15.

B. PARTICULAR CASES
It follows immediately from Theorem 15, with the obvi-
ous parameter conversions, that the following one-parameter
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entropies are strictly Schur-concave for « > 0: Hpy(Pp)
in (4), Hro(Py) in (5), Hoq(Py) in (7), and Hpy (Py) in (9).
With respect to the two-parameter entropies, it follows from
Theorem 15 that Hsprap(Py) in (11), and Hrreg(Py) in (12)
are strictly Schur-concave if @ > 0 and for all real-valued
B. In the case of Hapkap(Py) in (10), which is the limiting
case of Hgupy(Py) in (14) as y — 1, it follows from
Theorem 14 that the entropy in (10) is strictly Schur-concave
when the parameters meet the condition in (47). Similarly,
from Theorem 14 with y = a— B+ 1 it follows that Hg og(Py)
in (17) is strictly Schur-concave subject to (47).

For the two-parameter entropy Hky15(P,) in (32) with
Y ypi < 1, it follows from Theorem 14 with 8 = 1
and § = (y — D)/(e — 1) that Hgq15(P,) is strictly
Schur-concave if « > 0 and for all § € R. This result
implies that the particular member entropies in (33)-(36) are
all strictly Schur-concave. Also, the entropies in (42)-(46)
are strictly Schur-concave for o > 0 since they are sums of
strictly Schur-concave functions.

IX. DISCUSSION

A. SOME ENTROPY INEQUALITIES

Besides using the generalized entropy in (14) to derive condi-
tions for concavity and Schur-concavity of individual mem-
bers of Hgapy (Py), this family of entropies may also serve
other purposes such as deriving inequalities between family
members. Such derivations can conveniently be based on the
fact that Hg g, (Py) is strictly decreasing in «, 8, and y for
any given P,. In the case of o and B (with y fixed), this
property of Hgqgy (Py) follows from Gyg(P,) in (13) being
a strictly increasing function of « and g for any given P,
[26, pp. 249] and from Hgqg, (P,) being a strictly decreas-
ing function of Gug(P,) for any given real value of y. The
effect of varying y on Hkggy (Py) for fixed «, B, and Py is
determined from the following partial derivative:

aHKozﬂy(Pn) :(1 . J/)72

dy

-1 -1 -1
|6z Po—1-a615 Py 10g 6Ly P)] <0
with the bracketed term being nonpositive from the well-
known inequality x —1—xlogx < O forx > 0. Consequently,

Higop1y1 (Pn) = Hkay 75

ar < az, B < B2, y1 < 0. (49)
An interesting inequality from (49) may be between the
entropies of Shannon, Rényi, and Tsallis for the general case
when Y%, pi < 1. Since those entropies are the respective
members of Hgy1y(Py) withy =a =1,y =1l,and y = a,

the following inequalities follow directly from (49):

n n
—Y pilogpi/ Y pi
i=1 i=1

1

n n
1 —a log (ZP?/Zpi)
i=1 i=1
1 " n
o
SI_O[(_XI:Pi/X;Pi—l),O_agl (50)
= 1=

IA
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with the inequalities reversed if @ > 1. Equalities in (50)
occur only in the limiting case of « — 1 when the three
entropies are the same. Similarly, for Tsallis entropy (5) and
the Landsberg-Vedral entropy in (9) and for > i, p; < 1
when those entropies become (23) and (25) corresponding to
y =aand y = 2—aq, it follows from (49) with 1 = B> =1
that

1 n n
. o —
— (,-;pl/;pi 1)

1 n n
< 1_0(219?‘/2;91—1), 0sasl (D
i= i=

with the reverse inequality if @ > 1.

As another example, consider the two entropies in (8)
and (10). Since the entropy in (8) is the member of Hg o, (Py)
in (14) for y = 1 and ¢ = B and that of (10) corresponds to
y = 1, the following inequality is an immediate consequence
of (49):

n n
= pilogpi/ Y b}
i=1 1 l:ln .
s e (o p) ospa 6
i=1 i=1

B. SOME APPLICATION IMPLICATIONS
Since entropies have no fixed upper bounds unless 7 is fixed,
interpretations of results when using entropies as summary
measures become difficult. It is easier to interpret the extent of
a characteristic (attribute) reflected by the distribution P, =
(p1, - .., pn) and represented by a summary measure if the
measure has a fixed range such as the [0, 1]-interval. Conse-
quently, normalized entropies are sometimes being used.
Examples of normalized entropies include the following
form of Shannon’s entropy [13]:

=

n
H(Py) == _pilogpi/logn € [0,1] (53)
i=1

and the normalized form of the quadratic entropy in (34):
n
HyPo = (1= D p})/0 = 1/mel0.1] (54
i=1

for complete distributions with Y 7, p; = 1. Both of these
measures have been used for measuring evenness (unifor-
mity) among biological species (e.g., [31]) and for measuring
variation of nominal categorical data (e.g., [41]).

The most general entropy introduced in (14) can similarly
be normalized. From Theorem 1, Hg g, is Schur-concave so
that, from the majorization in (29), the bounds on Hg o, (Py)
are as follows:

0 = HKaﬁy(Pn) =<

[(gpi/n)y_l - 1}. (55)
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Then, the normalized form becomes

y—1

S Y ) T -1
( )
(Z?:ll’i/”y_l -1

subject to the parameter constraints on « and 8 in (15), but
for any real-valued y. Various other normalized entropies are
then particular cases of (56). For example, it can be verified
(using L"Hospital’s rules) that (53) is the member of (56) for
B=1lLy=2—0a > ,pi=1and @ = 1 (in the limit
as o — 1). Similarly, Hé(Pn) in (54) is the particular case
of (56) wheno = 2,8 =1,% 7" pi = l,and y = 2.
The evenness index proposed by Chao and Ricotta [42] is a
member of (56) for =1,Y " pi=l,andy =2 —a.

The parameters o and B affect the weights given to the
different p;’s, emphasizing the larger p;’s over the smaller
ones or vice versa. Consider, for example, the entropy in (17)
that can be expressed as follows:

Hyop, (Pn) = e[0,11 (56)

n n
1 _
Hiap(Pr) =Y wipiwi= 5= (o 3o =1) 57
i=1 i=1

indicating the effect of o and B on the set of weights {w;}.
For some real data P, instead of using a simgle entropy
value based on fixed parameter values, entropy values can be
computed as functions of the varying parameters, producing
entropy profiles.

In the case of a two-parameter entropy such as Hgqg(Py)
in (17) or (57), the graph of Hkag(Py,) as a function of o
and B for given P, would be a surface whereas for one-
parameter entropies such as those in (4a)-(9), the graph would
be a curve. For the measurement of biological diversity and
evenness, for example, the application of such one-parameter
profiles have been emphasized by some (e.g., [42] and [43]).
However, a limitation on the use of such profiles arises if the
profiles of P, = (p1,...,pn) and Q,,, = (q1, - - -, gm) CIOSS,
making comparisons difficult or meaningless.

Besides concavity and Schur-concavity, there are, of
course, other important properties required of an entropy,
especially when a particular entropy is used as a sum-
mary measure for real data. For the generic entropy H,
such additional properties include symmetry: H(Py) is (per-
mutation) symmetric in its arguments; zero-indifference
(expansibility): H(p1,...,pn,0,...,0) = H(p1,...,pn);
non-negativity: H(P,) > 0 for all Py,; continuity: H is a

continuous function of all p;(i = 1,...,n); maximality:
Hpi,...,pn) < H(/n,...,1/n) for all complete Pp;
monotonicity: H(1/n, ..., 1/n) is strictly increasing in n.

Many of the entropies discussed above can be verified as
having such additional properties. See also [44].

C. QUANTUM ENTROPIES

All the entropies discused in this paper are viewed as func-
tions of a probability distribution P, = (py, ..., pn) Where
pi>0fori=1,...,nand ) | p; = 1 or more generally

96014

>, pi < 1. While not the subject of this paper, a brief men-
tion of quantum entropies may be appropriate. The equivalent
quantum entropies could also be formulated by substituting
traces of density matrices for the probability summations in
the entropies discussed above as done, for example, by Hu
and Ye [6] when expressing the quantum equivalent of the
Rathie-Taneja entropy in (12). See also [36] for the quantum
equivalents of some other entropies. Thus, if p is a density
matrix of a system of interest involving a finite dimensional
Hilbert space, one could define the quantum equivalent to the
most general entropy in (14) as follows:

1/ Te(p®)
Hiapy () = 7— [(Tr(pﬁ)

y=1
)aiﬂ_l:lv a’ﬁz()?yeR
-V

(58)

where Tr is the trace.

The quantum entropy studied by Hu and Ye [6] would be
a member of Hgy1y(p) in (58) for y = B(a — 1) + 1 if
Tr(p) = 1. Those authors gave a proof of the concavity of
their quantum entropy with parameter constraints equivalent
to those of Theorem 12. Ultimately, if 8 = 1, y = «, and
Tr(p) = 1, then (58) reduces to the following limitating case:

Hg111(p) = ilgll Hgq1a(p) = —Tr(plog p)

which is the von Neumann entropy and the quantum version
of Shannon’s entropy.

X. CONCLUSION

The focus of this paper is on two important properties of
an entropy: concavity and Schur-concavity. In order to make
the analysis comprehensive and systematic, a new three-
parameter entropy that includes other entropies as particular
cases is being introduced. The parameter conditions under
which this most general entropy is concave, Schur-concave,
or both can then be used as a basis for exploring those
properties for other entropies. The analysis throughout this
paper is sufficiently general to include the potential of a
probability distribution P,, = (p1, ..., p,) being incomplete
with Y% pi < 1.

An argument in favor of generalized entropies is that they
offer flexibility by means of the choice of parameter values
appropriate for different situations. Furthermore, such gener-
alizations serve to systematize or unify entropies and their
properties as in the case of the three-parameter entropy in
(14) or (58). The popularity of generalized entropies has been
demonstrated by the large number of relevant publications
and citations (e.g., Google Scholar lists about 10,000 citations
to Tsallis [9] and 6,500 to Rényi [8]).

Besides introducing parameters to entropy functions, an
alternative way of generalization would be to generalize the
probability distribution itself by the use of so-called escort
distributions introduced by Beck and Schogle [45]. By defi-
nition, such a distribution is given by

Pei = Pf
€1 — k)
Z?:ll’f

i=1,...,n,—-00 <€ <
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with negative values of the parameter € requiring all p; > 0.
While beyond the scope of the present paper, the effect of
substituting the distribution {p;} for the original distribution
{pi} in entropy formulations may be a worthwhile analysis.

The flexibility offered by generalized entropies and gen-
eralized probability distributions (3", p; < 1), assuming
such important properties as Schur-concavity and concavity,
provides for interesting and potentially important theoretical
explorations as indicated by the extensive published litera-
ture. In terms of real applications, however, the utility of
such generalization may so far seem less convincing. Further
applied work is warranted.
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