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ABSTRACT A multi-feature fusion tracking algorithm updated with a self-associative memory learning
mechanism is proposed to address the problems of short-time disappearance, re-emergence of the target
and instability of single features in the kernelized correlation filtering algorithm. When extracting features,
directional gradient histogram features, color features, and scale invariant features are fused instead of single
features to collect more features of the target and increase the feature robustness. In the detection stage,
the bimodal detection is proposed to judge whether the target model needs updating. Bimodal detection is
used to judge the maximum target response in the search domain and predict the location of the target in
the next frame. The self-associative memory learning mechanism was added into the updating template,
and the original algorithm framework was improved to cope with the change of target model. The new
algorithm update is biogenic, can recover fragment information, deal with complex and changeable tracking
situation. Simulation experiments were conducted on the OTB50, OTB100, and UAV 123 video datasets for
the classical and new algorithms. The simulation verified that the proposed tracking algorithm has a high
success and accuracy rate, which has research value. The tracking success rate improved by 23.6% and the
accuracy rate improved by 18.8%.

INDEX TERMS Self-associative memory mechanism, target tracking, correlation filter, template update,
multi-feature fusion.

I. INTRODUCTION

The field of computer vision [1] includes many types of
techniques researched for different application scenarios, and
target tracking algorithms are one of the research directions
used in this field for video content analysis. Target tracking
technology is now used in many vision fields, such as virtual
reality, intelligent surveillance, human-computer interaction
and so on. In most scenarios, the conditions can be complex,
such as target occlusion, light change, target scale change, and
target pose change, which can render the tracking algorithm
challenging. Therefore, it is important to develop a tracking
algorithm that is adopted to real-life scenarios with a high
success rate and accuracy.
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The essence of target tracking is to analyze and predict
the possible location of the target in next the adjacent frame
based on known information about the current frame. Track-
ing algorithms can be divided into two categories, depend-
ing on the appearance model: generative and discriminative.
Generative tracking [2] learns online to model directly and
then searches for the closest candidate domain to the target
with the help of the model to determine the next position of
the target. However, the generative class of algorithms does
not consider background information regarding the target,
which is prone to tracking failure. To improve the algorithm
tracking success rate, extensive research has been conducted
on the use of background information and discriminative
tracking has been proposed. Discriminative transforms track-
ing into a binary classification problem [3], collecting back-
ground information and target information samples to train
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the classifier and obtain the target’s location. The discrimina-
tive model considers both target and background information,
which has obvious advantages over existing tracking meth-
ods. As a result of the efforts of researchers, a correlation
filter (CF) [4] was successfully introduced into the field of
visual tracking.

The classical algorithms of CF-based trackers are as follws:
Henriques et al. [5] proposed a circulant structure with ker-
nels (CSK) to improve the computational speed, but the
grayscale features used can only adapt to simple environ-
ments and are susceptible to complex image backgrounds
and similar colors of the target backgrounds. Henriques et al.
optimized CSK by replacing the Histogram of Oriented Gra-
dient (HOG) features with grayscale and proposed a ker-
nelized correlation filter (KCF) algorithm [6], which has
the problems of not adapting to large target movements and
single feature instability that have not been solved. The color
names (CN) tracker [7] uses color attributes in the filter track-
ing algorithm and adopts an adaptive dimensionality reduc-
tion strategy to reduce eleven dimensional color features to
two dimensional, which improves the algorithm performance
while ensuring efficient tracking. The scale adaptive multiple
feature (SAMF) [8] tracker based on multi-feature fusion
simultaneously fuses the original image grayscale informa-
tion, color attributes, and HOG multiple features to obtain
more robust results. Danelljan ef al. proposed a discriminative
scale space tracker (DSST) [9] to study the scale problem
and propose a solution algorithm. Balancing the weight ratio
of the scale and location filters still needs to be studied. For
complex illumination, background information, and the use
of contextual information [10], [11], [12], [13] have been
studied to propose the multiple kernelized correlation filters
(MKCEF) tracking algorithm, to make full use of the discrim-
inative invariance of the power spectrums (power spectrums)
of various features and further improve the performance of
the algorithm. The multi-feature fusion algorithm STAPLE-
CA uses two complementary features [14], HOG and global
color histogram, to model the appearance of the target, and
utilizes the inherent characteristics of each feature to be trans-
formed into a ridge regression problem solver. The attentional
correlation filter network for adaptive visual tracking [15]
selects appropriate correlation filters that enable the algo-
rithm to adaptively adjust the selected features according to
the tracking situation.

With the development of computer vision technology, deep
learning has been used for target tracking to enhance the
tracking effect. Its representative tracking algorithms are
twinnetwork based tracker, recurrent tracker, attention-based
classifier, convolutional neural network-based tracker, and
unit learning-based tracker [16], where some deep learning
tracks are improved on the basis of correlation filtering.
Zhang et al. [17] proposed Siamese FC for target tracking,
using a convolutional layer fusion strategy for target track-
ing and obtained good feature representation. Based on this,
Mueller et al. [18] can be considered as a special correlation
filter added to the twin network, and back propagation is
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derived by defining the network output to output a prob-
abilistic heat map of target locations. Liu et al. [19] pro-
posed a dynamic twin network that enables efficient online
learning from historical frames by rapidly transforming the
learning model to learn target appearance changes and back-
ground suppression, and then integrate the network output
using multi-level deep features through elemental multilayer
fusion. The empirical verification of deep learning joins
tracking to achieve good performance. However, owing to
the complexity of deep learning networks, the algorithm
framework is complex to build and the computational speed
decreases. It is worth studying how to keep the algorithm
accurate and improve the computational speed at the same
time, so that the algorithm can accurately target real-life
situations.

To understand the human brain’s processing of complex
information, theoretical studies on memory learning mecha-
nisms have emerged one after another. The human brain has
been found to rely heavily on associative memory mecha-
nisms, which is a hot research topic at the intersection of
cognitive neuroscience and computer science. Associative
memory can be divided into self-associative and hetero-
associative memory, depending on the stimulus source.
Among them, the self-associative memory mechanism has
been an active research topic and has received extensive
attention from scholars in the fields of cognitive neuroscience
and neural networks [20]. Post first proposed the biological
associative memory model [21]. Sui et al. proposed the con-
cept of an associative machine to store entities represented
by bit patterns in a distributed manner and retrieve all entities
from a part of them [22]. Based on the signal processing
characteristics of the human brain, a self-organizing feature
mapping neural network was proposed [23], which mim-
ics the self-organization process of the brain for network
tuning of network neurons. Zhang et al. proposed a neuro-
biologically based concept of pattern association and self-
association [24]. Pattern association plays an important role
in the frontal lobe of the eye fossa cortex. This mechanism
also acts throughout the cerebral cortex and plays an impor-
tant role in visual memory recall processes. Subsequently,
Kelley and Cassenti [25] gave a typical structure of the pattern
association memory network and explained the operation of
the pattern associators.In 2006, Cai et al. proposed a compu-
tational theory of hippocampal function, suggesting that the
hippocampus uses self-association to form situational mem-
ories [26]. The self-associative memory model is also called
an attractor neural network. This model enables memory and
efficient memory retrieval, and memory is stored in recurrent
synaptic connections between the network neurons. During
memory storage, each memory is represented by a neural
activity pattern. When a memory fragment is provided to the
model, the self-associative network [27] can recall associated
memory from the network. A self-associative network with
fast synaptic plasticity can learn from each memory in a
single trial. Owing to its fast learning ability, this type of
network is well suited for the storage of situational memories.
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Self-associative memory learning mechanisms mimic the
information storage, recall, and recognition functions of the
human brain, and are widely used in image processing.

Our main contributions are as follows:

1) HOG features, color features, and scale invariant fea-
tures are fused instead of single feature extraction
features.

2) Double-peak detection is added to the detection module
to increase the detection accuracy.

3) The self-associative memory learning mechanism is
added to the update template to improve the original
algorithm framework.

Il. RELATED WORK

A. CORRELATION FILTERS

The advantage of the KCF algorithm is that a circular matrix
is used to densely sample the samples, and the introduc-
tion of the kernel method makes the correlation filtering
algorithm more robust and capable of handling nonlinear
classification problems. Many algorithms have selected KCF
as the basic algorithm framework to improve it and propose
algorithms that can adapt to complex environment tracking.
Mueller et al. [14] proposed the CACF tracking algorithm,
which uses regularization to strengthen the target and weaken
the background information. The disadvantage is that the
tracker can make judgment errors, leading to tracking fail-
ures. Henriques et al. [6] used multi channel features and
kernel tricks in a DCF algorithm to improve the target model.
Lukezic er al. [28] used a tracker to generate spatial relia-
bility maps and proposed CSRDCF tracking, which led to
improved target tracking accuracy. Dai et al. [29] proposed
an adaptive spatial regularization correlation filtering algo-
rithm (ASRCF), which makes the filter better adapted to the
target morphology. Considering that the kernelized filter can
be computed quickly, KCF filtering is selected as the basis
of this study, and the maximum response value is obtained
by double-peak detection for tracking using multi-feature
modeling.

B. FILTERING UPDATE MECHANISM

The KCF algorithm uses linear weighting for template
update, and updating after each detection leads to compu-
tational degradation of the algorithm and redundant infor-
mation. Some scholars use the interval method of updating,
because we cannot tell whether the target is deformed or
not; when the target is obscured or deformed in large cases,
updating again will lead to tracking errors. Bolme ez al. [30]
proposed PSR detection, which measures whether to perform
an update by the detection ratio. Wang et al. [31] proposed
the APCE calculation, which selects the response value of
the highest confidence in the next. Huang et al. [32] pro-
posed ARCF to process a response map to improve the
detection accuracy. It is clear from previous research results
that the update mechanism is very important for the algo-
rithm. Choosing an appropriate update mechanism leads to
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improved algorithm performance. By continuously studying
human brain memory, we found that the self-associative
memory mechanism has fast learning ability and is suitable
for use in situational learning. The literature [33] investigates
the self-associative memory learning mechanism from three
aspects: the learning algorithm, architecture and application
area. In [34], the self-associative memory algorithm was
used to solve problems in image scaling. The self-associative
memory learning mechanism simulates the information stor-
age, recall, and recognition functions of the human brain, and
is widely used in image processing [35]. In this study, a bionic
algorithm was selected to incorporate the self-associative
memory mechanism into the tracking algorithm.

After learning the KCF algorithm, it was found that its sin-
gle feature with HOG alone is not sufficient to cope with com-
plex environment tracking. To address this problem, multiple
features were proposed instead of single features to improve
the tracking accuracy of the algorithm. When the target is
occluded or in a complex environment, the tracking sample
may contain useless information. If information is accumu-
lated for non-targets, it will lead to an algorithm tracking fail-
ure. Inspired by human memory learning, a self-associative
memory learning mechanism is introduced to improve the
update module in the original tracking framework, which
allows the algorithm to have human-like memory to deal with
the problem that the algorithm disappears and recreates the
target for a short time.

lll. ALGORITHM DESIGN

In response to the problems of single feature tracking, over
reliance on the appearance model, and inappropriate updates
leading to model drift and inability to cope with complex
environments in KCF algorithm, a multi-feature fusion track-
ing algorithm updated with a self-associative memory learn-
ing mechanism is proposed and named the SMFCF algorithm.
The new algorithm ensures the robustness of sample detection
and improves tracking accuracy. The self-associative memory
learning mechanism has the features of fast learning, large
storage space, and the recovery of fragmented images, which
can solve the problem of transient disappearance and reap-
pearance. Therefore, the new algorithm uses a multi-feature
fusion method to extract the target features, and obtaining
more information can increase the robustness of the tar-
get appearance model. Combining multifeature fusion and
self-associative memory learning mechanisms, the feature
and update modules of the traditional tracking framework are
improved to enhance the tracking effect.

A. MULTI-FEATURE MODELING

Although the HOG feature can adapt to different lighting
situations, it is a local search and lacks rotational invariance,
which is still difficult in the face of complex tracking envi-
ronment challenges. Therefore, the color, HOG, and SIFT
features were extracted from the image, and the three fea-
tures were fused to obtain the maximum response value for
tracking.
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1) HISTOGRAM OF ORIENTED GRADIENTS FEATURE

The target tracking map is segmented into multiple small
blocks to extract features, resulting in an HOG that is resistant
to illumination changes and geometric deformations but is not
applicable to large scale changes. The HOG features [36] can
cope with small physical changes in passersby when the gen-
eral pose of the human body is constant. First-order discrete
differential equations for pixel points in the horizontal and
vertical directions.

{Gx(x,y)zl(x+l,y)—I(x—l,y)zA

1
Gy(x’)’)ZI(x,)"l‘l)—I(x,y—1)=B ()

In the above equation, I(x,y) is the input pixel value, and Gy
(x,y) and Gy (x,y) are the horizontal and vertical gradients of
(x,y), respectively. A amplitude and direction of the gradient
equations.

G(x,y) = VA2 + B2 2)

a(x,y) = tan ' A/B 3)

2) COLOR (CN) FEATURES

CN features are target-oriented to perform global acquisition,
and the common extraction method is the color histogram,
where the color distribution is calculated for the target appear-
ance map to obtain the frequency information of individual
colors. Image appearance and shape changes did not affect
the extraction of CN features, and showed scale invariance.
Hue, saturation and brightness are common characteristics of
the human eye to observe things, so (hue, saturation, value)
HSV space is used to extract color to the target.

3) SCALE INVARIANT TRANSFORMATION FEATURES

SIFT features are local features that describe the target. The
extreme value point was found in the domain and scale,
and the scale, position and rotation of this point were also
captured. First, the convolution kernel is smoothed on the
source image to construct the target scale space L.

Lx,y,0) = G(x,y,0) ® I(x, y) @
2 2
G(x,y, o) = exp = +2y J2no? )
o

In Eq.(5), the scale coordinate o expresses the smoothness
of the image.

Next, two adjacent Gaussian scale maps were subtracted to
obtain the difference of gaussian (DOG). The local maxima
are searched in the DOG, and the adjacent two-layer maps
are compared with the key points to determine the function
maxima. Finally, the descriptor is calculated using a Gaussian
function.

4) INTEGRATION OF MULTIPLE FEATURES

Select the video image at moment t, the target for different
feature acquisitions, to obtain m7%C¢, mH#SV and m>'FT . The
three extracted features are fast fourier calculation, to obtain

the corresponding response values rtHOG, rtHSV and rtSIF T,
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After calculating the response value linear weighting to
obtain the final response value r;, the formula is as follows
The formula is as follows.

re = arf 09 4 BV + o)t (6)

In the formula,r; is the integrated response value, o, §
and ¥ are the weight parameters of HOG, HSV, and SIFT
response values respectively. 7,4y 1S considered as the maxi-
mum value of the integrated response value, which is the most
likely location of the next position of the target for subsequent
tracking. « + 8+ 9 = 1,, = 0.5, =03 and ¥ = 0.2.

B. CONSTRUCTING FILTERS

The KCF algorithm constructs the sample set via cyclic shift-
ing after selecting the target image, associates the shifted
samples with the filter, learns the RLS classifier, solves it to
obtain the filter template, and filters it in the candidate area
until the desired target is obtained. The objective function was
obtained from the circular sample set training.

f@) =w'x @)
Find the minimum error sum of squares for Equation 1.
min ) (FG)=y)* + A WP ®)

W is the weight matrix, x; is the sample set, A is the
regularization parameter, f(x;) is the classifier, and y; is the
actual output sample set. If the samples are linearly divisible,
the derivative of Eq. (8) is set to zero. The ridge regression is
then solved.

W=x'x+1) 'xTy 9)
Diagonalization properties of circular matrices:
X = Fdiag (x) Fi (10)
Combining equations (9) and (10):
W=%9/G -5+ (1)

In the above equation, X* is the complex conjugate of X and
- is the corresponding element multiplication.

C. TWIN-PEAK DETECTION

When the target disappears or only partially appears in the
frame, KCF cannot obtain an accurate tracking response
value in the detection phase. When the target disappears for a
short period of time or when a similar tracked object appears,
the response image shows a multi peaked response [37],
as shown in Figure 1. If the wrong response value is selected,
it leads to tracking failure. Therefore in the detection module,
multi-peak detection of the response image is added.

In Figure 1, (b) and (d) are the response plots correspond-
ing to the different cases when (a) and (c) are targets tracked,
respectively. As can be seen from the plots, the corresponding
maximum response values are not singular after the short
disappearance of the tracked target. In this case, alternative
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FIGURE 1. Response image comparison chart.

sample ranges are redetected to obtain the possible locations
of the target. Because the peak response is the main influenc-
ing factor in determining the location, the peaks are sorted
from the largest to smallest, and the first two peak values in
the response map are saved. The judgment is made using the
following formula.

r
P(rmaxl)s rmax; > ;
= rmax (12)
1
P(rmax1, Prmax2), RaAs <¢
"max2

In formula (12), ' is the final maximum response value
used for tracking, P(r;,4x1) is the highest peak response posi-
tion, and P(rax1, Prmax2) 1S the pooled region of the two peak
positions. If the ratio of the highest peak to the second highest
peak is greater than ¢, the output is based on the highest peak
position, and vice versa, the output is based on the pooled area
of the two peak positions.

The set of alternative samples consists of an image and its
cyclically shifted samples at time t. The formula is:

Z, = P'Z (13)

P is the permutation matrix and Z is the initial input sample.
In the detection module, the responses of the selected region
and the filter are calculated.

f(Z) = KH)Ta (14)
In the frequency domain the equation is as follows.
K% = &(Z) - d(Z) = C(kK*) (15)

KZ is the kernel matrix of the training sample and the
sample to be tested.

D. THE UPDATE MODULE

KCF using only a linear weighted update is not sufficient
to cope with complicated tracking situation, and the self-
associative memory learning mechanism is used to update
the strategy to ensure tracking accuracy and improve the
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robustness of the KCF algorithm. The self-associative mem-
ory learning mechanism is a method to simulate human brain
memory using neural networks [38]. When there is a similar
fragment or a missing fragment, self-association can retrieve
the relevant memory from the repository and recover the
original complete features, to complete the delayed match-
ing and recognition tracking tasks. In summary, the self-
associative memory learning mechanism was selected for
updating, which made the algorithm more robust.

The learning memory of things is abstracted from concrete
objects, and the sample vector pairs (xP, y9) are stored in
the self-associative memory matrix A. An association matrix
associative memory model stores two corresponding vectors,
in the form of an association matrix. As shown in Equa-
tion (16).

A=Y G ") Y =3 ) Y a6

When there is a sample x¥ input, the output sample is
shown in Equation (17).

y’ =Ax’ =C, (y}’)T y'x¥ + Zp# Cp (xP)T yPx¥ (17)

If the input samples are orthogonal to each other, the
formula changes.

. 2 . .
X = <" i (18)
0. i#]
¥ =[x |*yre, (19)

For Y=AX, A = YX~! is only available when X is a full
rank matrix. The mathematical formula is more idealized, and
there are always unknown factors that interfer with the actual
problem. Assume that W is an sxq matrix of rank r, then a
generalized inverse of W is a qxs array G, such that X=GY
is a solution of the equation WX=Y, so that G = W, which
is the generalized inverse of W.

Let Y; be an nxk array, which represents the ith output
sample; X, which is an sxk array, represents Y; with the
corresponding input sample. The generalized inverse formula
for the input sample Xz = (Xj—1 ’Xk) is Equation (20).

X} = (Zi/o* " (20)

where X} is the input kth sample and X]i] is the generalized
inverse of X;_1.

X=X, =X xR b /boE s (21)
The self-associative memory matrix A expression is equa-
tion (22).
Ak = Axot — Ao 1x5by + yRbi (22)
-1
b = ¢ +(1—¢; c)(1+didi) dfdf Xk
Ck = Xk — Xk—ldk
dx = X]:]xk
(23)
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Learning the first set of sample vectors (x!, y!), the formula
is as follows.

X = @HTxH HhahT (24)
A =y HTxh HxhT (25)

Starting from equations (24) and (25), the storage is con-
tinuously iterated until it stops including all features of the
sample, thus forming self-association matrix A. The module
is updated using equations (17) to (19), and when a defect
occurs in the tracker, the stored features are called or the
search is delayed by virtue of the existing information to
ensure the accuracy of the tracking.

E. ALGORITHMIC FRAMEWORK

From the above theoretical derivation and formula learn-
ing, Flowchart 2 of the SMFCF algorithm is shown as fol-
lows: initialize the target and input the first frame image.
HOG, CN and SIFT features were extracted from the image.
After constructing the robust appearance model, the response
values of the three features were calculated separately and
accumulated using certain weights to obtain the integrated
response values. Bimodal detection was performed on the
response map to determine the maximum integrated response
value for the target detection. The self-associative memory
mechanism was added to the update module to complete the
main framework of the new algorithm. Determine whether the
video is in the last frame, and end if it is. Otherwise, multi-
feature extraction is performed again, and the above process
is repeated until the end of the video playback to complete
the tracking task.

IV. ANALYSIS OF SIMULATION RESULTS

CSK [5], KCF [6], DSST [9], STAPLE_CA [14], ACEN [15]
and the new algorithm are compared on the OTB50 [39],
OTB100 [40] and UAV123 [41] datasets to verify whether
the proposed algorithm can achieve the desired criteria. The
experimental device is an Intel(R) Core(TM) 17-10870H CPU
@ 2.20GHz 2.21GHz, simulated with MATLAB R2019b
software. The parameters were set as follows: linear adap-
tive rate of 0.06, Gaussian kernel standard deviation of 0.7,
regularization of 1073, feature fusion parameters o = 0.5,
p=03,9=0.2.

A. ANALYSIS OF THE RESULTS OF THE OTB50

The dataset provides both grayscale and color image
sequences, and the sample categories in the set contain
11 common problem cases in tracking tasks. It contains illu-
mination variation(I'V), scale change(SV), occlusion(OCC),
deformation(DEF), motion blur(MB), fast motion(FM),
in plane rotation(IPR), low resolution(LR),out of field(OV),
background clutter(BC), and out of plane rotation(OPR).
Each of these image sequences corresponds to two or more
difficult problems and is often used to check whether the
algorithm tracking is accurate.
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FIGURE 2. SMFCF algorithm flow chart.

Graphs of the success rate and accuracy of SMFCF and the
other five algorithms were obtained by simulation, as shown
in Figure 3.

Success plots of OPE
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FIGURE 3. Success plots and precision plots of algorithms on OTB50.

From Figure 3 and Table 1, it can be seen that the SMFCF
algorithm is in the leading position, and its success rate
of accuracy is the best among the selected algorithms. the
success rate of SMFCF is 0.766 and the success rate of KCF
is 0.607, with a difference of 0.159; the accuracy rate of
SMFCF is 0.784 and the accuracy rate of KCF is 0.647, with a
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TABLE 1. Data summary of various algorithms on OTB50.

Percentages SMFCF  STAPLE- ACFN DSST KCF CSK
CA

Success 0.766 0.723 0.687  0.624  0.607 0.456

Precision 0.784 0.772 0.768  0.655 0.647 0.489

difference of 0.137. The data confirm that the improved algo-
rithm is more accurate for tracking targets, and the success
possibility is improved.

B. ANALYSIS OF THE RESULTS OF THE OTB100

The dataset contains 100 videos, providing both grayscale
and color image sequences, and the sample categories in the
set contain common 11 problem cases in tracking tasks. It is
often used as a dataset for tracking algorithms for validation.
The experimental results of the six algorithms on this dataset
are shown in Figure 4.

Success plots of OPE

Ty Precision plots of OPE
e SMFCF [0.756] 08 e
= STAPLEGA [0.766]

o SUIFCF [0.505]
= 1STAPLE CAID.B04]

Success rate
Precision

® 01 02 03 04 05 06 07 08 09 5 0 15 W &/ N B 0 5 %
Qverlap threshold Location error threshold

FIGURE 4. Success plots and precision plots of algorithms on OTB100.

The experimental data after running on 100 videos, are
shown in Fig. 4 and Table 2. It can be seen that the success
rate and precision rate of SMFCF are 0.786 and 0.809, respec-
tively, while the success rate of KCF has a precision rate of
0.621 and 0.684, respectively. The new algorithm improved
the success rate of KCF by 26.6% and a precision rate of
13.3% in terms of performance.

TABLE 2. Data summary of various algorithms on OTB100.

Percentage SMFCF STAPLE- ACFN DSST KCF CSK
CA

Success 0.786 0.766 0.725  0.643  0.621  0.485

Precision 0.809 0.804 0.801  0.692 0.684 0.537

C. ANALYSIS OF THE RESULTS OF THE UAV123

The image sequences provided by the UAV123 dataset are
all colored. This dataset is mainly used in the field of UAV
target tracking research, in which image data are captured by
UAV photography. The filming angles of the dataset were
highly variable, and the backgrounds are relatively clean.
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In addition, the tracking targets in the video sequences are
small and the videos are too long, which tends to degrade the
target model and requires a high performance of the tracking
algorithm.

The experimental results of multiple algorithms on the
UAV 123 dataset are shown in Figure 5. Table 4 shows the
specific values of success rate and precision rate of each
algorithm. The numerical comparison shows that the SMFCF
tracking success rate is 0.607, and the accuracy rate is
0.675, which ranks first compared with other algorithms.
The SMFECF algorithm incorporates SIFT features and can
successfully lock the target even after the target has changed.
There is experimental data to know that proposed SMFCF
algorithm builded an effective appearance model for tracking
and detection in long tracking videos of small targets as a way
to ensure algorithm accuracy.

Success plots of OPE
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FIGURE 5. Data summary of various algorithms on UAV123.

D. COMPARISON OF THE NEW ALGORITHM WITH KCF
Figure 6 shows the graphs obtained after running SMFCF and
KCF on the 20 videos. In the figure, the success rate of the
SMFCEF algorithm is 0.691, which is a 0.132 improvement on
the original algorithm, and the accuracy rate is 0.851, which
is an improvement of 0.135 for the original algorithm.

Success plots of OPE Precision plots of OPE

‘—5!-4‘CF [0.691]
| = kcr sse)

[ SAFF [0.251]
- KCF 0716 M

"E:::—' __._’__"’._ &R S

Precision

Success rate

w‘
|
|
\
|
|
|

TR 8 0 o8 o m % % % 0 @ @
Location error threshold

03 04 05 o8 o
Overlap threshold

FIGURE 6. Success plots and precision plots of KCF improvement.

In summary, the comparison shows that SMFCF improves
the KCF algorithm, and the robustness and success possibility
are greatly improved. Compared with the STAPLE-CA algo-
rithm, which also has feature fusion, the new algorithm
exhibits a slightly higher performance in each case. Com-
pared to CSK and DSST, the addition of multi-feature fusion
and self-associative memory learning mechanisms was found
to improve the speed and accuracy of the algorithm. Com-
pared with the ACFN by the attention mechanism, it is con-
cluded that the self-associative memory learning mechanism
in the new algorithm deepens the memory of the target more
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TABLE 3. Video of some experiments in 11 tracking situations.

v OPR SV OoCC DEF MB FM IPR oV BC LR
Box N v N v N N N N N
Carl N N N N N N
Couple v v v v v
Dancer N N N N
Doll N N N v N
DragonBaby N N N v N N N
Girl N N v N
Humman6 N N N N N N
Liquor N v N v N N N N
Matrix N N N N J N J
Shaking N N N J J
Tigerl v v v v N N J

TABLE 4. Data summary of various algorithms on UAV123.

Percentage =~ SMFCF STAPLE- ACFN DSST KCF CSK
CA

Success 0.607 0.581 0.535 0.510 0474 0.470

Precision 0.675 0.619 0.536 0453 0427 0.413
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FIGURE 7. Comparison of deep learning algorithm and SMFCF algorithm.

than increasing the attention of the target enables the algo-
rithm to capture the target quickly.

E. COMPARISON OF SOME DEEP LEARNING TRACKING
ALGORITHMS WITH SMFCF ALGORITHMS

With the continuous development of deep neural networks,
deep learning With the continuous development of deep
neural networks, deep learning tracking algorithms appear.
Danelljan et al. [42] proposed Continuous Convolution
Operator Tracker (C-COT). In order to improve efficiency,
he proposed an Efficient model update strategy [43], Effi-
cient Convolution Operators (ECO). This tracking algorithm
simplifies the feature information of C-COT to achieve the
purpose of speed improvement. Bertinetto et al. proposed
SiamFC [27], which opened the way for deep learning meth-
ods to gradually overtake correlation filtering methods.In
summary, these three deep tracking algorithms are selected
for experimental simulation on the OTB dataset with the
algorithm proposed in this paper.

100612

TABLE 5. Data summary between deep learning algorithm and SMFCF
algorithm.

Percentage  SiamFC SMFCF ECO C-COT
Success 0.803 0.781 0.748 0.680
Precision 0.821 0.802 0.796 0.749
— SMECF == (STAPLE-CA SSE®IACFN =mmmmDSST === :KCF csK

m-mnum““
(b)

FIGURE 8. Rotating video multi-algorithm comparison.

The simulation results are shown in Figure 5. Although
SMFCF algorithm is not the fastest, it ranks the second
among the four algorithms. The difference between the
success rate of SMFCF algorithm and the success rate of
the first place is 0.022, which is not big and needs to be
improved.

F. ANALYSIS OF SOME SPECIFIC VIDEO RESULTS
In the video where the experiment was conducted, three
groups were selected for comparison to demonstrate the per-
formance of the algorithm under different tracking situations.
The first two groups are multi-algorithm comparisons and the
last group is a comparison chart before and after the KCF
algorithm improvement.

The video is of a singer performing on stage, and at the
beginning as shown in frame 45, all algorithms can determine
the tracker. Then as the stage lights change from dark to
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SMFCF - KCF

FIGURE 10. Comparison of algorithms for mobile girl video.

bright, as shown in frame 83, the singer is exposed, and
the intense lighting causes some of the algorithms to fail in
tracking. Finally, after the stage lights return to normal again,
as shown in frame 202, the SMFCF algorithms always track
the target accurately, but some algorithms show a tracking
drift.

The video shows a person moving continuously with a
cola drink in hand to verify the tracking success of the algo-
rithm. In frame 13, the algorithm was successful in locating
the tracking target. At frame 255, the drink is artificially
placed behind the plant, presenting a situation where the
tracking object is obscured, at which point the SMFCF accu-
rately locates the drink. The video person then takes the
drink out from behind the plant and finds that the multi-
algorithm tracking occurs in a chaotic scene, whereas the
SMEFCEF algorithm is able to successfully track the cola
drink.

This video shows a girl playing freely using a pulley car.
The KCF algorithm before and after the improvement is used
to track the girl in this video to verify its superiority of the
improved algorithm. Both old and new algorithm successfully
tracked a target when there was no occlusion. Around frame
109, a pedestrian cart walks and blocks the target girl with her
body. The old and new algorithm tracking appear different;
SMEFCEF can determine the girl’s position, but KCF’s tracking
frame contains most of the background information, which
affects tracking. Waiting for the pedestrian to walk by, the
girl driving the scooter undergoes a position change, as shown
in frame 353, presenting the new algorithm tracking success
and KCF tracking failure. Observing three sets of photos with
different situations and tracking targets, the SMFCF algo-
rithm demonstrates its robustness and success in dealing with
lighting changes, object reappearance after brief occlusion,
and scale changes.
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V. CONCLUSION

The SMFCF algorithm is a multi-feature fusion and self-
associative memory learning mechanism update. For the
shor-t time disappearing and reappearing problem, the self-
asso- ciative memory learning mechanism is introduced as an
update; facing the complex tracking background situation, the
algorithm uses multi-feature fusion for appearance modeling
to ensure tracking stability. The experimental results after
the simulation indicate that the tracking is more accurate for
the short-time disappearing and reappearing problem of the
target, which is convenient for the tracking algorithm to be
used in practice.
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