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ABSTRACT A multi-feature fusion tracking algorithm updated with a self-associative memory learning
mechanism is proposed to address the problems of short-time disappearance, re-emergence of the target
and instability of single features in the kernelized correlation filtering algorithm. When extracting features,
directional gradient histogram features, color features, and scale invariant features are fused instead of single
features to collect more features of the target and increase the feature robustness. In the detection stage,
the bimodal detection is proposed to judge whether the target model needs updating. Bimodal detection is
used to judge the maximum target response in the search domain and predict the location of the target in
the next frame. The self-associative memory learning mechanism was added into the updating template,
and the original algorithm framework was improved to cope with the change of target model. The new
algorithm update is biogenic, can recover fragment information, deal with complex and changeable tracking
situation. Simulation experiments were conducted on the OTB50, OTB100, and UAV123 video datasets for
the classical and new algorithms. The simulation verified that the proposed tracking algorithm has a high
success and accuracy rate, which has research value. The tracking success rate improved by 23.6% and the
accuracy rate improved by 18.8%.
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INDEX TERMS Self-associative memory mechanism, target tracking, correlation filter, template update,
multi-feature fusion.

I. INTRODUCTION17

The field of computer vision [1] includes many types of18

techniques researched for different application scenarios, and19

target tracking algorithms are one of the research directions20

used in this field for video content analysis. Target tracking21

technology is now used in many vision fields, such as virtual22

reality, intelligent surveillance, human-computer interaction23

and so on. In most scenarios, the conditions can be complex,24

such as target occlusion, light change, target scale change, and25

target pose change, which can render the tracking algorithm26

challenging. Therefore, it is important to develop a tracking27

algorithm that is adopted to real-life scenarios with a high28

success rate and accuracy.29

The associate editor coordinating the review of this manuscript and

approving it for publication was Abdullah Iliyasu .

The essence of target tracking is to analyze and predict 30

the possible location of the target in next the adjacent frame 31

based on known information about the current frame. Track- 32

ing algorithms can be divided into two categories, depend- 33

ing on the appearance model: generative and discriminative. 34

Generative tracking [2] learns online to model directly and 35

then searches for the closest candidate domain to the target 36

with the help of the model to determine the next position of 37

the target. However, the generative class of algorithms does 38

not consider background information regarding the target, 39

which is prone to tracking failure. To improve the algorithm 40

tracking success rate, extensive research has been conducted 41

on the use of background information and discriminative 42

tracking has been proposed. Discriminative transforms track- 43

ing into a binary classification problem [3], collecting back- 44

ground information and target information samples to train 45
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the classifier and obtain the target’s location. The discrimina-46

tive model considers both target and background information,47

which has obvious advantages over existing tracking meth-48

ods. As a result of the efforts of researchers, a correlation49

filter (CF) [4] was successfully introduced into the field of50

visual tracking.51

The classical algorithms of CF-based trackers are as follws:52

Henriques et al. [5] proposed a circulant structure with ker-53

nels (CSK) to improve the computational speed, but the54

grayscale features used can only adapt to simple environ-55

ments and are susceptible to complex image backgrounds56

and similar colors of the target backgrounds. Henriques et al.57

optimized CSK by replacing the Histogram of Oriented Gra-58

dient (HOG) features with grayscale and proposed a ker-59

nelized correlation filter (KCF) algorithm [6], which has60

the problems of not adapting to large target movements and61

single feature instability that have not been solved. The color62

names (CN) tracker [7] uses color attributes in the filter track-63

ing algorithm and adopts an adaptive dimensionality reduc-64

tion strategy to reduce eleven dimensional color features to65

two dimensional, which improves the algorithm performance66

while ensuring efficient tracking. The scale adaptive multiple67

feature (SAMF) [8] tracker based on multi-feature fusion68

simultaneously fuses the original image grayscale informa-69

tion, color attributes, and HOG multiple features to obtain70

more robust results. Danelljan et al. proposed a discriminative71

scale space tracker (DSST) [9] to study the scale problem72

and propose a solution algorithm. Balancing the weight ratio73

of the scale and location filters still needs to be studied. For74

complex illumination, background information, and the use75

of contextual information [10], [11], [12], [13] have been76

studied to propose the multiple kernelized correlation filters77

(MKCF) tracking algorithm, to make full use of the discrim-78

inative invariance of the power spectrums (power spectrums)79

of various features and further improve the performance of80

the algorithm. The multi-feature fusion algorithm STAPLE-81

CA uses two complementary features [14], HOG and global82

color histogram, to model the appearance of the target, and83

utilizes the inherent characteristics of each feature to be trans-84

formed into a ridge regression problem solver. The attentional85

correlation filter network for adaptive visual tracking [15]86

selects appropriate correlation filters that enable the algo-87

rithm to adaptively adjust the selected features according to88

the tracking situation.89

With the development of computer vision technology, deep90

learning has been used for target tracking to enhance the91

tracking effect. Its representative tracking algorithms are92

twinnetwork based tracker, recurrent tracker, attention-based93

classifier, convolutional neural network-based tracker, and94

unit learning-based tracker [16], where some deep learning95

tracks are improved on the basis of correlation filtering.96

Zhang et al. [17] proposed Siamese FC for target tracking,97

using a convolutional layer fusion strategy for target track-98

ing and obtained good feature representation. Based on this,99

Mueller et al. [18] can be considered as a special correlation100

filter added to the twin network, and back propagation is101

derived by defining the network output to output a prob- 102

abilistic heat map of target locations. Liu et al. [19] pro- 103

posed a dynamic twin network that enables efficient online 104

learning from historical frames by rapidly transforming the 105

learning model to learn target appearance changes and back- 106

ground suppression, and then integrate the network output 107

using multi-level deep features through elemental multilayer 108

fusion. The empirical verification of deep learning joins 109

tracking to achieve good performance. However, owing to 110

the complexity of deep learning networks, the algorithm 111

framework is complex to build and the computational speed 112

decreases. It is worth studying how to keep the algorithm 113

accurate and improve the computational speed at the same 114

time, so that the algorithm can accurately target real-life 115

situations. 116

To understand the human brain’s processing of complex 117

information, theoretical studies on memory learning mecha- 118

nisms have emerged one after another. The human brain has 119

been found to rely heavily on associative memory mecha- 120

nisms, which is a hot research topic at the intersection of 121

cognitive neuroscience and computer science. Associative 122

memory can be divided into self-associative and hetero- 123

associative memory, depending on the stimulus source. 124

Among them, the self-associative memory mechanism has 125

been an active research topic and has received extensive 126

attention from scholars in the fields of cognitive neuroscience 127

and neural networks [20]. Post first proposed the biological 128

associative memory model [21]. Sui et al. proposed the con- 129

cept of an associative machine to store entities represented 130

by bit patterns in a distributed manner and retrieve all entities 131

from a part of them [22]. Based on the signal processing 132

characteristics of the human brain, a self-organizing feature 133

mapping neural network was proposed [23], which mim- 134

ics the self-organization process of the brain for network 135

tuning of network neurons. Zhang et al. proposed a neuro- 136

biologically based concept of pattern association and self- 137

association [24]. Pattern association plays an important role 138

in the frontal lobe of the eye fossa cortex. This mechanism 139

also acts throughout the cerebral cortex and plays an impor- 140

tant role in visual memory recall processes. Subsequently, 141

Kelley andCassenti [25] gave a typical structure of the pattern 142

association memory network and explained the operation of 143

the pattern associators.In 2006, Cai et al. proposed a compu- 144

tational theory of hippocampal function, suggesting that the 145

hippocampus uses self-association to form situational mem- 146

ories [26]. The self-associative memory model is also called 147

an attractor neural network. This model enables memory and 148

efficient memory retrieval, and memory is stored in recurrent 149

synaptic connections between the network neurons. During 150

memory storage, each memory is represented by a neural 151

activity pattern. When a memory fragment is provided to the 152

model, the self-associative network [27] can recall associated 153

memory from the network. A self-associative network with 154

fast synaptic plasticity can learn from each memory in a 155

single trial. Owing to its fast learning ability, this type of 156

network is well suited for the storage of situational memories. 157
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Self-associative memory learning mechanisms mimic the158

information storage, recall, and recognition functions of the159

human brain, and are widely used in image processing.160

Our main contributions are as follows:161

1) HOG features, color features, and scale invariant fea-162

tures are fused instead of single feature extraction163

features.164

2) Double-peak detection is added to the detectionmodule165

to increase the detection accuracy.166

3) The self-associative memory learning mechanism is167

added to the update template to improve the original168

algorithm framework.169

II. RELATED WORK170

A. CORRELATION FILTERS171

The advantage of the KCF algorithm is that a circular matrix172

is used to densely sample the samples, and the introduc-173

tion of the kernel method makes the correlation filtering174

algorithm more robust and capable of handling nonlinear175

classification problems. Many algorithms have selected KCF176

as the basic algorithm framework to improve it and propose177

algorithms that can adapt to complex environment tracking.178

Mueller et al. [14] proposed the CACF tracking algorithm,179

which uses regularization to strengthen the target and weaken180

the background information. The disadvantage is that the181

tracker can make judgment errors, leading to tracking fail-182

ures. Henriques et al. [6] used multi channel features and183

kernel tricks in a DCF algorithm to improve the target model.184

Lukezic et al. [28] used a tracker to generate spatial relia-185

bility maps and proposed CSRDCF tracking, which led to186

improved target tracking accuracy. Dai et al. [29] proposed187

an adaptive spatial regularization correlation filtering algo-188

rithm (ASRCF), which makes the filter better adapted to the189

target morphology. Considering that the kernelized filter can190

be computed quickly, KCF filtering is selected as the basis191

of this study, and the maximum response value is obtained192

by double-peak detection for tracking using multi-feature193

modeling.194

B. FILTERING UPDATE MECHANISM195

The KCF algorithm uses linear weighting for template196

update, and updating after each detection leads to compu-197

tational degradation of the algorithm and redundant infor-198

mation. Some scholars use the interval method of updating,199

because we cannot tell whether the target is deformed or200

not; when the target is obscured or deformed in large cases,201

updating again will lead to tracking errors. Bolme et al. [30]202

proposed PSR detection, which measures whether to perform203

an update by the detection ratio. Wang et al. [31] proposed204

the APCE calculation, which selects the response value of205

the highest confidence in the next. Huang et al. [32] pro-206

posed ARCF to process a response map to improve the207

detection accuracy. It is clear from previous research results208

that the update mechanism is very important for the algo-209

rithm. Choosing an appropriate update mechanism leads to210

improved algorithm performance. By continuously studying 211

human brain memory, we found that the self-associative 212

memory mechanism has fast learning ability and is suitable 213

for use in situational learning. The literature [33] investigates 214

the self-associative memory learning mechanism from three 215

aspects: the learning algorithm, architecture and application 216

area. In [34], the self-associative memory algorithm was 217

used to solve problems in image scaling. The self-associative 218

memory learning mechanism simulates the information stor- 219

age, recall, and recognition functions of the human brain, and 220

is widely used in image processing [35]. In this study, a bionic 221

algorithm was selected to incorporate the self-associative 222

memory mechanism into the tracking algorithm. 223

After learning the KCF algorithm, it was found that its sin- 224

gle feature with HOG alone is not sufficient to copewith com- 225

plex environment tracking. To address this problem, multiple 226

features were proposed instead of single features to improve 227

the tracking accuracy of the algorithm. When the target is 228

occluded or in a complex environment, the tracking sample 229

may contain useless information. If information is accumu- 230

lated for non-targets, it will lead to an algorithm tracking fail- 231

ure. Inspired by human memory learning, a self-associative 232

memory learning mechanism is introduced to improve the 233

update module in the original tracking framework, which 234

allows the algorithm to have human-like memory to deal with 235

the problem that the algorithm disappears and recreates the 236

target for a short time. 237

III. ALGORITHM DESIGN 238

In response to the problems of single feature tracking, over 239

reliance on the appearance model, and inappropriate updates 240

leading to model drift and inability to cope with complex 241

environments in KCF algorithm, a multi-feature fusion track- 242

ing algorithm updated with a self-associative memory learn- 243

ingmechanism is proposed and named the SMFCF algorithm. 244

The new algorithm ensures the robustness of sample detection 245

and improves tracking accuracy. The self-associativememory 246

learning mechanism has the features of fast learning, large 247

storage space, and the recovery of fragmented images, which 248

can solve the problem of transient disappearance and reap- 249

pearance. Therefore, the new algorithm uses a multi-feature 250

fusion method to extract the target features, and obtaining 251

more information can increase the robustness of the tar- 252

get appearance model. Combining multifeature fusion and 253

self-associative memory learning mechanisms, the feature 254

and update modules of the traditional tracking framework are 255

improved to enhance the tracking effect. 256

A. MULTI-FEATURE MODELING 257

Although the HOG feature can adapt to different lighting 258

situations, it is a local search and lacks rotational invariance, 259

which is still difficult in the face of complex tracking envi- 260

ronment challenges. Therefore, the color, HOG, and SIFT 261

features were extracted from the image, and the three fea- 262

tures were fused to obtain the maximum response value for 263

tracking. 264
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1) HISTOGRAM OF ORIENTED GRADIENTS FEATURE265

The target tracking map is segmented into multiple small266

blocks to extract features, resulting in an HOG that is resistant267

to illumination changes and geometric deformations but is not268

applicable to large scale changes. The HOG features [36] can269

cope with small physical changes in passersby when the gen-270

eral pose of the human body is constant. First-order discrete271

differential equations for pixel points in the horizontal and272

vertical directions.273 {
Gx(x, y) = I (x + 1, y)− I (x − 1, y) = A
Gy(x, y) = I (x, y+ 1)− I (x, y− 1) = B

(1)274

In the above equation, I(x,y) is the input pixel value, andGx275

(x,y) and Gy (x,y) are the horizontal and vertical gradients of276

(x,y), respectively. A amplitude and direction of the gradient277

equations.278

G(x, y) =
√
A2 + B2 (2)279

α(x, y) = tan−1 A
/
B (3)280

2) COLOR (CN) FEATURES281

CN features are target-oriented to perform global acquisition,282

and the common extraction method is the color histogram,283

where the color distribution is calculated for the target appear-284

ance map to obtain the frequency information of individual285

colors. Image appearance and shape changes did not affect286

the extraction of CN features, and showed scale invariance.287

Hue, saturation and brightness are common characteristics of288

the human eye to observe things, so (hue, saturation, value)289

HSV space is used to extract color to the target.290

3) SCALE INVARIANT TRANSFORMATION FEATURES291

SIFT features are local features that describe the target. The292

extreme value point was found in the domain and scale,293

and the scale, position and rotation of this point were also294

captured. First, the convolution kernel is smoothed on the295

source image to construct the target scale space L.296

L(x, y, σ ) = G(x, y, σ )⊗ I(x, y) (4)297

G(x, y, σ ) = exp
x2 + y2

2σ 2 /2πσ 2 (5)298

In Eq.(5), the scale coordinate σ expresses the smoothness299

of the image.300

Next, two adjacent Gaussian scale maps were subtracted to301

obtain the difference of gaussian (DOG). The local maxima302

are searched in the DOG, and the adjacent two-layer maps303

are compared with the key points to determine the function304

maxima. Finally, the descriptor is calculated using a Gaussian305

function.306

4) INTEGRATION OF MULTIPLE FEATURES307

Select the video image at moment t, the target for different308

feature acquisitions, to obtain mHOGt ,mHSVt and mSIFTt . The309

three extracted features are fast fourier calculation, to obtain310

the corresponding response values rHOGt , rHSVt and rSIFTt .311

After calculating the response value linear weighting to 312

obtain the final response value rt , the formula is as follows 313

The formula is as follows. 314

rt = αrHOGt + βrHSVt + ϑrSIFTt (6) 315

In the formula,rt is the integrated response value, α, β 316

and ϑ are the weight parameters of HOG, HSV, and SIFT 317

response values respectively. rt.max is considered as the maxi- 318

mumvalue of the integrated response value, which is themost 319

likely location of the next position of the target for subsequent 320

tracking. α + β + ϑ = 1,,α = 0.5, β = 0.3 and ϑ = 0.2. 321

B. CONSTRUCTING FILTERS 322

The KCF algorithm constructs the sample set via cyclic shift- 323

ing after selecting the target image, associates the shifted 324

samples with the filter, learns the RLS classifier, solves it to 325

obtain the filter template, and filters it in the candidate area 326

until the desired target is obtained. The objective functionwas 327

obtained from the circular sample set training. 328

f (x) = W T x (7) 329

Find the minimum error sum of squares for Equation 1. 330

min
W

∑
i
(f (xi)−yi)

2
+ λ ‖W‖2 (8) 331

W is the weight matrix, xi is the sample set, λ is the 332

regularization parameter, f(xi) is the classifier, and yi is the 333

actual output sample set. If the samples are linearly divisible, 334

the derivative of Eq. (8) is set to zero. The ridge regression is 335

then solved. 336

W = (XTX + λI )
−1
XTY (9) 337

Diagonalization properties of circular matrices: 338

X = Fdiag
(
X̂
)
FH (10) 339

Combining equations (9) and (10): 340

Ŵ = x̂∗ · ŷ
/
(x̂∗ · ŷ+ λ) (11) 341

In the above equation, x̂∗ is the complex conjugate of x̂ and 342

· is the corresponding element multiplication. 343

C. TWIN-PEAK DETECTION 344

When the target disappears or only partially appears in the 345

frame, KCF cannot obtain an accurate tracking response 346

value in the detection phase. When the target disappears for a 347

short period of time or when a similar tracked object appears, 348

the response image shows a multi peaked response [37], 349

as shown in Figure 1. If the wrong response value is selected, 350

it leads to tracking failure. Therefore in the detection module, 351

multi-peak detection of the response image is added. 352

In Figure 1, (b) and (d) are the response plots correspond- 353

ing to the different cases when (a) and (c) are targets tracked, 354

respectively. As can be seen from the plots, the corresponding 355

maximum response values are not singular after the short 356

disappearance of the tracked target. In this case, alternative 357
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FIGURE 1. Response image comparison chart.

sample ranges are redetected to obtain the possible locations358

of the target. Because the peak response is the main influenc-359

ing factor in determining the location, the peaks are sorted360

from the largest to smallest, and the first two peak values in361

the response map are saved. The judgment is made using the362

following formula.363

0 =


P(rmax1),

rmax1
rmax2

> ζ

P(rmax1,Prmax2),
rmax1
rmax2

≤ ζ
(12)364

In formula (12), 0 is the final maximum response value365

used for tracking, P(rmax1) is the highest peak response posi-366

tion, andP(rmax1,Prmax2) is the pooled region of the two peak367

positions. If the ratio of the highest peak to the second highest368

peak is greater than ζ , the output is based on the highest peak369

position, and vice versa, the output is based on the pooled area370

of the two peak positions.371

The set of alternative samples consists of an image and its372

cyclically shifted samples at time t. The formula is:373

Zi = PiZ (13)374

P is the permutationmatrix and Z is the initial input sample.375

In the detection module, the responses of the selected region376

and the filter are calculated.377

f(Z) = (KZ)Tα (14)378

In the frequency domain the equation is as follows.379

KZ
= 8(Z) ·8(Z) = C(kxz) (15)380

KZ is the kernel matrix of the training sample and the381

sample to be tested.382

D. THE UPDATE MODULE383

KCF using only a linear weighted update is not sufficient384

to cope with complicated tracking situation, and the self-385

associative memory learning mechanism is used to update386

the strategy to ensure tracking accuracy and improve the387

robustness of the KCF algorithm. The self-associative mem- 388

ory learning mechanism is a method to simulate human brain 389

memory using neural networks [38]. When there is a similar 390

fragment or a missing fragment, self-association can retrieve 391

the relevant memory from the repository and recover the 392

original complete features, to complete the delayed match- 393

ing and recognition tracking tasks. In summary, the self- 394

associative memory learning mechanism was selected for 395

updating, which made the algorithm more robust. 396

The learning memory of things is abstracted from concrete 397

objects, and the sample vector pairs (xp, yq) are stored in 398

the self-associative memory matrix A. An association matrix 399

associative memory model stores two corresponding vectors, 400

in the form of an association matrix. As shown in Equa- 401

tion (16). 402

A =
∑

P
Cp
(
xp
)T yp =∑

P

∥∥xp∥∥−2 (xp)T yp (16) 403

When there is a sample xγ input, the output sample is 404

shown in Equation (17). 405

yγ =Axγ =Cγ
(
yγ
)T yγ xγ +∑

p6=γ
Cp
(
xp
)T ypxγ (17) 406

If the input samples are orthogonal to each other, the 407

formula changes. 408

(xi)
T
x
j
=


∥∥∥xi∥∥∥2 , i = j

0, i 6= j
(18) 409

yγ =
∥∥xγ ∥∥2 yγCγ (19) 410

For Y=AX, A = YX−1 is only available when X is a full 411

rankmatrix. Themathematical formula is more idealized, and 412

there are always unknown factors that interfer with the actual 413

problem. Assume that W is an s×q matrix of rank r, then a 414

generalized inverse of W is a q×s array G, such that X=GY 415

is a solution of the equation WX=Y, so that G =W+, which 416

is the generalized inverse of W. 417

Let Yk be an n×k array, which represents the ith output 418

sample; Xk , which is an s×k array, represents Yk with the 419

corresponding input sample. The generalized inverse formula 420

for the input sample Xk = (Xk−1
∣∣xk ) is Equation (20). 421

X+k = (Zk/bk)(k−1)ss (20) 422

where Xk is the input kth sample and X+k−1 is the generalized 423

inverse of Xk−1. 424

X+k = (X+k−1 − X+k−1x
kbk/bk)(k−1)ss (21) 425

The self-associative memory matrix Ak expression is equa- 426

tion (22). 427

Ak = Ak−1 − Ak−1xkbk + ykbk (22) 428
bk = c+k +(1−c

+

k ck)(1+d
T
kdk)

−1
dTkd
+

k Xk−1

ck = xk − Xk−1dk
dk = X+k−1x

k

429

(23) 430

VOLUME 10, 2022 100609



H. Ren et al.: Multifeature Fusion Tracking Algorithm Based on Self-Associative Memory Learning Mechanism

Learning the first set of sample vectors (x1, y1), the formula431

is as follows.432

X+1 = ((x1)T(x1)−1)(x1)T (24)433

A1 = y1((x1)T(x1)−1)(x1)T (25)434

Starting from equations (24) and (25), the storage is con-435

tinuously iterated until it stops including all features of the436

sample, thus forming self-association matrix A. The module437

is updated using equations (17) to (19), and when a defect438

occurs in the tracker, the stored features are called or the439

search is delayed by virtue of the existing information to440

ensure the accuracy of the tracking.441

E. ALGORITHMIC FRAMEWORK442

From the above theoretical derivation and formula learn-443

ing, Flowchart 2 of the SMFCF algorithm is shown as fol-444

lows: initialize the target and input the first frame image.445

HOG, CN and SIFT features were extracted from the image.446

After constructing the robust appearance model, the response447

values of the three features were calculated separately and448

accumulated using certain weights to obtain the integrated449

response values. Bimodal detection was performed on the450

response map to determine the maximum integrated response451

value for the target detection. The self-associative memory452

mechanism was added to the update module to complete the453

main framework of the new algorithm.Determinewhether the454

video is in the last frame, and end if it is. Otherwise, multi-455

feature extraction is performed again, and the above process456

is repeated until the end of the video playback to complete457

the tracking task.458

IV. ANALYSIS OF SIMULATION RESULTS459

CSK [5], KCF [6], DSST [9], STAPLE_CA [14], ACFN [15]460

and the new algorithm are compared on the OTB50 [39],461

OTB100 [40] and UAV123 [41] datasets to verify whether462

the proposed algorithm can achieve the desired criteria. The463

experimental device is an Intel(R) Core(TM) i7-10870HCPU464

@ 2.20GHz 2.21GHz, simulated with MATLAB R2019b465

software. The parameters were set as follows: linear adap-466

tive rate of 0.06, Gaussian kernel standard deviation of 0.7,467

regularization of 10−3. feature fusion parameters α = 0.5,468

β = 0.3, ϑ = 0.2.469

A. ANALYSIS OF THE RESULTS OF THE OTB50470

The dataset provides both grayscale and color image471

sequences, and the sample categories in the set contain472

11 common problem cases in tracking tasks. It contains illu-473

mination variation(IV), scale change(SV), occlusion(OCC),474

deformation(DEF), motion blur(MB), fast motion(FM),475

in plane rotation(IPR), low resolution(LR),out of field(OV),476

background clutter(BC), and out of plane rotation(OPR).477

Each of these image sequences corresponds to two or more478

difficult problems and is often used to check whether the479

algorithm tracking is accurate.480

FIGURE 2. SMFCF algorithm flow chart.

Graphs of the success rate and accuracy of SMFCF and the 481

other five algorithms were obtained by simulation, as shown 482

in Figure 3. 483

FIGURE 3. Success plots and precision plots of algorithms on OTB50.

From Figure 3 and Table 1, it can be seen that the SMFCF 484

algorithm is in the leading position, and its success rate 485

of accuracy is the best among the selected algorithms. the 486

success rate of SMFCF is 0.766 and the success rate of KCF 487

is 0.607, with a difference of 0.159; the accuracy rate of 488

SMFCF is 0.784 and the accuracy rate of KCF is 0.647, with a 489
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TABLE 1. Data summary of various algorithms on OTB50.

difference of 0.137. The data confirm that the improved algo-490

rithm is more accurate for tracking targets, and the success491

possibility is improved.492

B. ANALYSIS OF THE RESULTS OF THE OTB100493

The dataset contains 100 videos, providing both grayscale494

and color image sequences, and the sample categories in the495

set contain common 11 problem cases in tracking tasks. It is496

often used as a dataset for tracking algorithms for validation.497

The experimental results of the six algorithms on this dataset498

are shown in Figure 4.499

FIGURE 4. Success plots and precision plots of algorithms on OTB100.

The experimental data after running on 100 videos, are500

shown in Fig. 4 and Table 2. It can be seen that the success501

rate and precision rate of SMFCF are 0.786 and 0.809, respec-502

tively, while the success rate of KCF has a precision rate of503

0.621 and 0.684, respectively. The new algorithm improved504

the success rate of KCF by 26.6% and a precision rate of505

13.3% in terms of performance.506

TABLE 2. Data summary of various algorithms on OTB100.

C. ANALYSIS OF THE RESULTS OF THE UAV123507

The image sequences provided by the UAV123 dataset are508

all colored. This dataset is mainly used in the field of UAV509

target tracking research, in which image data are captured by510

UAV photography. The filming angles of the dataset were511

highly variable, and the backgrounds are relatively clean.512

In addition, the tracking targets in the video sequences are 513

small and the videos are too long, which tends to degrade the 514

target model and requires a high performance of the tracking 515

algorithm. 516

The experimental results of multiple algorithms on the 517

UAV123 dataset are shown in Figure 5. Table 4 shows the 518

specific values of success rate and precision rate of each 519

algorithm. The numerical comparison shows that the SMFCF 520

tracking success rate is 0.607, and the accuracy rate is 521

0.675, which ranks first compared with other algorithms. 522

The SMFCF algorithm incorporates SIFT features and can 523

successfully lock the target even after the target has changed. 524

There is experimental data to know that proposed SMFCF 525

algorithm builded an effective appearance model for tracking 526

and detection in long tracking videos of small targets as a way 527

to ensure algorithm accuracy. 528

FIGURE 5. Data summary of various algorithms on UAV123.

D. COMPARISON OF THE NEW ALGORITHM WITH KCF 529

Figure 6 shows the graphs obtained after running SMFCF and 530

KCF on the 20 videos. In the figure, the success rate of the 531

SMFCF algorithm is 0.691, which is a 0.132 improvement on 532

the original algorithm, and the accuracy rate is 0.851, which 533

is an improvement of 0.135 for the original algorithm. 534

FIGURE 6. Success plots and precision plots of KCF improvement.

In summary, the comparison shows that SMFCF improves 535

the KCF algorithm, and the robustness and success possibility 536

are greatly improved. Compared with the STAPLE-CA algo- 537

rithm, which also has feature fusion, the new algorithm 538

exhibits a slightly higher performance in each case. Com- 539

pared to CSK and DSST, the addition of multi-feature fusion 540

and self-associative memory learning mechanisms was found 541

to improve the speed and accuracy of the algorithm. Com- 542

pared with the ACFN by the attention mechanism, it is con- 543

cluded that the self-associative memory learning mechanism 544

in the new algorithm deepens the memory of the target more 545
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TABLE 3. Video of some experiments in 11 tracking situations.

TABLE 4. Data summary of various algorithms on UAV123.

FIGURE 7. Comparison of deep learning algorithm and SMFCF algorithm.

than increasing the attention of the target enables the algo-546

rithm to capture the target quickly.547

E. COMPARISON OF SOME DEEP LEARNING TRACKING548

ALGORITHMS WITH SMFCF ALGORITHMS549

With the continuous development of deep neural networks,550

deep learning With the continuous development of deep551

neural networks, deep learning tracking algorithms appear.552

Danelljan et al. [42] proposed Continuous Convolution553

Operator Tracker (C-COT). In order to improve efficiency,554

he proposed an Efficient model update strategy [43], Effi-555

cient Convolution Operators (ECO). This tracking algorithm556

simplifies the feature information of C-COT to achieve the557

purpose of speed improvement. Bertinetto et al. proposed558

SiamFC [27], which opened the way for deep learning meth-559

ods to gradually overtake correlation filtering methods.In560

summary, these three deep tracking algorithms are selected561

for experimental simulation on the OTB dataset with the562

algorithm proposed in this paper.563

TABLE 5. Data summary between deep learning algorithm and SMFCF
algorithm.

FIGURE 8. Rotating video multi-algorithm comparison.

The simulation results are shown in Figure 5. Although 564

SMFCF algorithm is not the fastest, it ranks the second 565

among the four algorithms. The difference between the 566

success rate of SMFCF algorithm and the success rate of 567

the first place is 0.022, which is not big and needs to be 568

improved. 569

F. ANALYSIS OF SOME SPECIFIC VIDEO RESULTS 570

In the video where the experiment was conducted, three 571

groups were selected for comparison to demonstrate the per- 572

formance of the algorithm under different tracking situations. 573

The first two groups are multi-algorithm comparisons and the 574

last group is a comparison chart before and after the KCF 575

algorithm improvement. 576

The video is of a singer performing on stage, and at the 577

beginning as shown in frame 45, all algorithms can determine 578

the tracker. Then as the stage lights change from dark to 579
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FIGURE 9. Beverage video multi-algorithm comparison.

FIGURE 10. Comparison of algorithms for mobile girl video.

bright, as shown in frame 83, the singer is exposed, and580

the intense lighting causes some of the algorithms to fail in581

tracking. Finally, after the stage lights return to normal again,582

as shown in frame 202, the SMFCF algorithms always track583

the target accurately, but some algorithms show a tracking584

drift.585

The video shows a person moving continuously with a586

cola drink in hand to verify the tracking success of the algo-587

rithm. In frame 13, the algorithm was successful in locating588

the tracking target. At frame 255, the drink is artificially589

placed behind the plant, presenting a situation where the590

tracking object is obscured, at which point the SMFCF accu-591

rately locates the drink. The video person then takes the592

drink out from behind the plant and finds that the multi-593

algorithm tracking occurs in a chaotic scene, whereas the594

SMFCF algorithm is able to successfully track the cola595

drink.596

This video shows a girl playing freely using a pulley car.597

The KCF algorithm before and after the improvement is used598

to track the girl in this video to verify its superiority of the599

improved algorithm. Both old and new algorithm successfully600

tracked a target when there was no occlusion. Around frame601

109, a pedestrian cart walks and blocks the target girl with her602

body. The old and new algorithm tracking appear different;603

SMFCF can determine the girl’s position, but KCF’s tracking604

frame contains most of the background information, which605

affects tracking. Waiting for the pedestrian to walk by, the606

girl driving the scooter undergoes a position change, as shown607

in frame 353, presenting the new algorithm tracking success608

and KCF tracking failure. Observing three sets of photos with609

different situations and tracking targets, the SMFCF algo-610

rithm demonstrates its robustness and success in dealing with611

lighting changes, object reappearance after brief occlusion,612

and scale changes.613

V. CONCLUSION 614

The SMFCF algorithm is a multi-feature fusion and self- 615

associative memory learning mechanism update. For the 616

shor-t time disappearing and reappearing problem, the self- 617

asso- ciative memory learning mechanism is introduced as an 618

update; facing the complex tracking background situation, the 619

algorithm uses multi-feature fusion for appearance modeling 620

to ensure tracking stability. The experimental results after 621

the simulation indicate that the tracking is more accurate for 622

the short-time disappearing and reappearing problem of the 623

target, which is convenient for the tracking algorithm to be 624

used in practice. 625
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