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ABSTRACT A Stack-Pointer Network (StackPtr) parser is a pointer network with an internal stack on the
decoder. Several studies use the StackPtr as the backbone of a dependency parser because it can traverse
a parse tree depth-first without backtracking and can handle high-order parsing information easily thanks
to the internal stack. The parser can use information from previously derived subtrees stored in the internal
stack upon selecting a child node. In this work, we introduce a new StackPtr parser with Graph Attention
Networks (GATs) that can encode a previously derived subtree. We evaluated our proposed parser on the
Sejong and Everyone’s corpora for Korean and on the Penn Treebank and Universal Dependency corpora
for English. In addition, we analyzed and compared our proposed parser with other variants of the StackPtr
parser, examining the syntactic information that each parser can reference at every decoding step. We found
that Korean parse trees tend to have more consecutive immediate single-child nodes than English parse
trees. The proposed StackPtr parser with GATs performed best on almost all metrics for Korean because
it can utilize more context to analyze these parse trees by grasping Korean syntactic factors than any other
variants. However, for English, no particular variant of the StackPtr parser outperforms the others.
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INDEX TERMS Dependency parsing, graph attention networks, natural language processing, stack-pointer
networks, high-order dependency parsing.

I. INTRODUCTION16

Dependency parsing can identify a syntactical relationship17

between words in a sentence; it is a basic method in natural18

language processing. The main approaches to dependency19

parsing can be divided into two categories: graph-based pars-20

ing and transition-based parsing.21

Graph-based parsing [1], [2], [3] scores every pair of words22

in a sentence and then generates a fully connected parse23

tree based on the scores in a greedy style. Scoring a word24

pair is a key component of a graph-based parser. One of the25

most common approaches to graph-based parsing is to use26

The associate editor coordinating the review of this manuscript and

approving it for publication was Juan Wang .

a biaffine parsing model [1]. In this model, a bi-directional 27

recurrent neural network converts a word from a sentence into 28

an embedded vector. Then, biaffine attention networks calcu- 29

late a dependency score for an edge between the parent and 30

child vectors. Connecting edges individually according to the 31

high scoring order can determine the final dependency tree. 32

Transition-based dependency parsers [4] build a depen- 33

dency tree incrementally by scanning the words of a sentence 34

individually and making a sequence of decisions. The key to 35

transition-based parsing models is to use as many features as 36

possible in each decision step to avoid leading to a wrong 37

dependency tree. 38

A recent approach in transition-based dependency parsing 39

is to use Stack-Pointer Networks (StackPtr) [5], which this 40
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work aims to upgrade. A StackPtr parser analyzes a sen-41

tence in an incremental, top-down, and depth-first fashion.42

A dependency parser based on the StackPtr consists of an43

encoder and a decoder. The encoder encodes every word of44

an input sentence while the decoder chooses a dependency45

in each step. This is done by pointing to a child word in the46

encoder given a parent word in a stack of the decoder. The47

stack of the decoder maintains the parent information from48

previously derived subtrees in parsing. Therefore, the parser49

can easily utilize high-order information in the decoding step50

by using parent, grandparent, and siblingwords as the parser’s51

features.52

Thanks to the success of the StackPtr parser, sev-53

eral variants of the StackPtr parse, including Hierarchical54

StackPtr [6], and the left-to-right version of the StackPtr55

parser [7] have been proposed.56

In this paper, we introduce Graph Attention Networks57

(GATs) [8] into the StackPtr parser to take advantage of58

a previously derived subtree structure in a decoding phase.59

The GATs can encode a subtree maintained in the decoder’s60

internal stack, and then the decoder takes the encoded subtree61

information as input.62

As the GATs increase the number of layers, they can eas-63

ily encode multi-hop neighboring information from a graph.64

Therefore, by stacking multiple layers of the GATs, the65

proposed parser can gradually utilize various higher-order66

features more easily than other variants of StackPtr parsers.67

Moreover, GATs can represent a node by aggregating its68

neighboring nodes according to their attention values, indi-69

cating the importance between nodes. Therefore, the StackPtr70

parser with theGATs can encode a subtree taking into account71

the importance of the nodes. However, other variants of72

StackPtr parsers incorporate high-order information merely73

by summing node vectors in a stack without considering74

structure or importance values.75

We compared our proposed parser and the variants on76

evaluation of Korean and English treebanks. The experi-77

mental results showed that the proposed parser performs78

best on almost all metrics for Korean and no variant of the79

StackPtr parser performs overwhelmingly better than others80

for English. We conducted a comprehensible error analysis81

and investigated which factors of the GATs contribute to82

improving Korean parsing accuracy. Korean parse trees tend83

to have more consecutive immediate single-child nodes than84

English parse trees. The GATs allow the StackPtr parser to85

leverage more contextual information when analyzing these86

Korean parse trees than when analyzing English parse trees.87

The contributions of this paper are as follows:88

1) We introduce GATs into the StackPtr parser to encode89

a previously derived subtree structure.90

2) We show that the StackPtr parser with the GATs can91

achieve state-of-the-art performance for Korean.92

3) We explore the syntactic factors that affect the perfor-93

mance of the proposed parser by comparing it with94

other variants of StackPtr parsers and analyzing the95

characteristics of Korean syntactic trees.96

The rest of the paper is organized as follows. We first 97

explore related studies in Section 2, and we propose a 98

StackPtr parser with the GATs in Section 3. Section 4 and 5 99

present an experimental environment and its main results. 100

Finally, Section 5 describes the conclusion of this study. 101

II. RELATED WORKS 102

There are twomainstreammethods in the dependency parsing 103

research domain. One is graph-based parsing and the other is 104

transition-based parsing. 105

Graph-based parsers normally score all word pairs to deter- 106

mine the dependency relationship between a word pair. The 107

scoring function calculates relatedness based on two vectors 108

corresponding to parent and child nodes in a dependency tree. 109

Therefore, how to represent a node is a key component of 110

graph-based parsers. 111

[2] used graph neural networks(GNNs) to learn the 112

node representations. GNNs can embed a node by aggregat- 113

ing node information on its neighbors and collecting more 114

neighbors with multiple hops incrementally. To differentiate 115

between a parent and child node, they adopted two multilayer 116

perceptrons to generate a parent node and child node for a 117

node pair, respectively. The scoring function is basically a 118

bilinear function of a parent and child node. Given a complete 119

graph, the scoring function can provide different weights 120

to all possible edges. By starting with a complete graph, 121

different weights on the edges can convert the complete graph 122

into a soft parse tree in each layer. 123

The biaffine parser proposed in [1] is one of the most pop- 124

ular graph-based dependency parsers. Although the biaffine 125

parser is simple and efficient, it supports only first-order 126

parsing that can decide every dependency by considering 127

only a parent and child pair. [3] proposed an efficient and 128

effective tri-affine operation for scoring second-order sub- 129

trees to extend the biaffine parser to a high-order parsing 130

model. In addition, they adopted a second-order TreeCRF 131

for structural learning in dependency parsers. They demon- 132

strated that structural learning and high-order modeling can 133

enhance the state-of-the-art biaffine parser by conducting 134

several experiments using 13 languages. 135

Transition-based parsers build a dependency tree by apply- 136

ing transition operations incrementally. Their advantage lies 137

in linear time complexity, however, their main weakness is 138

the lack of access to global context information, which leads 139

to error propagation. There are many previous studies to 140

alleviate the error propagation problem in transition-based 141

dependency parsing. One of the successful approaches is a 142

StackPtr parser [5] that adopts a top-down depth-first strategy 143

to perform the syntactic analysis. The StackPtr parser using 144

a pointer network has achieved state-of-the-art performance 145

because the pointer networkwith an internal stack can capture 146

information of the input sentence and all the paths previously 147

traversed. After the successful implementation of StackPtr 148

in dependency parsing, several subsequent studies have been 149

conducted. 150
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[6] proposed a dependency parser based on hierarchical151

StackPtr. The parser has the same encoder-decoder architec-152

ture as the original StackPtr parser except that each decoding153

state is conditioned directly on a hierarchical tree structure154

albeit its sequential processing. Therefore, their parser could155

explicitly model the parent-child and sibling relationships in156

the decoding steps.157

Another variant of the StackPtr parser is a left-to-right158

dependency parser using StackPtr, proposed in [7]. While159

the original StackPtr parser analyzes a sentence in a top-160

down depth-first manner, the left-to-right StackPtr parser161

processes an input sentence one by one from left to right. In a162

decoding phase, the original StackPtr parser points to a child163

word, however, the decoder of the left-to-right StackPtr parser164

points to a parent word for each hidden state. This results165

in a straightforward transition system that can reduce the166

number of transition operations, without the need of any addi-167

tional data structures. Instead, the left-to-right StackPtr parser168

might generate a cycle, therefore, it needs an additional cycle169

detection step. In spite of the simplicity of the algorithm,170

surprisingly, the parser achieved the better performance than171

the original StackPtr parser.172

III. PARSER BASED ON STACK-POINTER NETWORKS173

WITH GRAPH ATTENTION NETWORKS174

The StackPtr parser [5] consisting of an encoder and a175

decoder scans a complete sentence and encodes each word176

into an encoder hidden state si. The StackPtr parser then177

initializes an internal stack of the decoder with a root sym-178

bol ‘‘$’’ and generates a dependency tree in a top-down179

fashion by pointing to a hidden state of the encoder one by180

one, as shown in Fig. 1.181

At the top of the internal stack of the decoder is the most182

recently derived child word of a sub-tree, which becomes a183

parent word in the next decoding step. In each decoding step,184

an embedding vector corresponding to the top word of the185

stack becomes an input of the decoder and attention scores186

between the embedding and all hidden states of the encoder187

are calculated. The decoder points out the hidden state with188

the highest attention score as a child word and then pushes the189

child word to the top of the stack for the next step. When the190

decoder points to the same word as the top word, it indicates191

that all children of the top word have already been derived.192

In this case, the decoder pops the top element from the stack193

and parsing continues to the next step.194

How to represent an embedding vector corresponding to195

the top word of the internal stack is the main concern of this196

paper. For a first-order parsing model, the original StackPtr197

parser uses the encoder’s hidden state corresponding to the198

parent word. The parser uses a summation of the correspond-199

ing hidden states for a second- or third-order model that uses200

a sibling or grand-parent word and a parent word.201

In this study, we adopted the GATs [8] to generate an202

embedding vector for a top word of the stack. The GATs203

can generate an embedding of a previously derived subtree204

centered on a top word. In each decoding step, an205

embedding for a partially derived subtree becomes an input 206

of the decoder. 207

A. StackPtr PARSER WITH GATs 208

In this section, we describe a dependency parser using the 209

StackPtr as a backbone and the BERT [9] pre-trained lan- 210

guage model and then introduce the GATs into the StackPtr 211

parser. 212

The StackPtr parser consists of an encoder and a decoder. 213

The decoder has an internal stack that controls its inputs. The 214

main role of the encoder built on long short-term memory 215

(LSTM) networks [10] is to generate contextualized word 216

embeddings from an input sentence. We used the BERT 217

pre-trained model to obtain basic word embeddings in this 218

work. A unit the BERTmodel uses is aWordPiece [11], which 219

is different from a word that is an input unit of a syntactic 220

parser. 221

Given that a word usually consists of several wordpieces, 222

they should be converted into one input embedding for 223

parser’s inputs. Let W = w1,w2, . . . ,wM be an input sen- 224

tence withM words and X = {x1, x2, . . . , xN } be a sequence 225

of N wordpieces of the sentence W split for the BERT [9] 226

model. When Z = {z1, z2, . . . , zN } is the BERT output 227

embedding of input X, we can obtain an embedding of word 228

wi by summing up embedding zt corresponding to xt con- 229

tained in wi (1). 230

ẑi =
∑
xt∈wi

zt (1) 231

The encoder of the StackPtr parser is a bi-directional 232

LSTM network whose t-th hidden state st is obtained as (2). 233

Let S = {s1, s2, . . . , sM } be the hidden state of the encoder. 234

−→s t = LSTM(ẑt ,
−→s t−1),

←−s t = LSTM(ẑt ,
←−s t+1), 235

st = [−→s t ||
←−s t ] (2) 236

The main role of the decoder built on LSTM networks is 237

to determine a child word in every decoding step in a top- 238

down way. From a parser’s pointer of view, a hidden state 239

of the decoder indicates a parent word and a hidden state of 240

the encoder pointed out by the decoder is a child word. The 241

encoder’s hidden states S are also used as inputs of a hidden 242

state of the decoder. If the hidden state at decoding step t was 243

ht and si was an encoder’s hidden state of a candidate child 244

word, a biaffine attention mechanismwas applied to calculate 245

an attention score eti between two hidden states ht and si that 246

correspond to a parent and a child word, respectively. 247

eti = hTt Wsi + U
T ht + V T si + b (3) 248

pt = softmax(et ), (4) 249

whereW ,U ,V , and b are learnable parameters, and the atten- 250

tion scores et collected for S are transformed to probabilities 251

by the softmax function. The encoder’s hidden state with 252

the highest probability is determined as a child word. As we 253

need dependency labels besides the dependency relationship, 254

we adopted an additional biaffine attention network [1] with 255
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FIGURE 1. Dependency parsing using a StackPtr with the GATs for the sentence ‘‘They planted fruit trees’’. (a) is the correct dependency
tree of the input sentence, and (b) is the architecture of the StackPtr parser with GATs. The hidden state h6 of the decoder has a parent
node corresponding to ‘‘planted’’ in the top of the stack and GATs can encode the parent node corresponding to the state s5 using a
previously derived subtree. The hidden state h6 can point at its child node, which is the state s2 of the encoder in this case.

the same architecture as that in (3) to generate dependency256

labels. To utilize higher-order information in dependency257

parsing, the original StackPtr parser uses a summed vector258

of hidden states corresponding to a parent, grandparent, and259

sibling word.260

However, using the simple summed vector of the hidden261

states is not enough to perform high-order parsing. Therefore,262

in this study, we introduce GATs [8] to a parsing model to263

encode higher-order syntactic information. The GATs take264

an encoder’s hidden states S and a subtree T(t−1) derived up265

to t − 1 step as inputs and produce a node representation266

dt stuffed with the subtree’s structural information. The new267

node representation is fed into the LSTM cell in the decoding268

step t , as shown in (5) and (6). We will describe this in detail269

in the following section.270

dt = GATs(S,Tt−1) (5)271

ht = LSTM(dt , ht−1) (6)272

B. REPRESENTING A SUBTREE USING THE GATs IN THE273

StackPtr PARSER274

Fig. 2 shows the method to generate a node d(t,5) for the275

t-step hidden state of the decoder. For brevity, we drop a276

step subscript t in Fig. 2 and the following explanation. The277

GATs [8] generate an embedding for node d5 by aggregating278

neighboring nodes according to their attention score α. As the279

FIGURE 2. Node representation using the GATs for input into the 6th step
(hidden state h6) of the decoder in Fig. 1. A node d0

i in the zero-th layer
is the hidden state si of the encoder.

GATs have two layers in this example, all neighboring nodes 280

within two hops affect d5, which is notated as d25 . Given an 281

undirected graph G, the GATs that are a multilayer network 282

provide us with a node representation contextualized by its 283

neighboring nodes in graph G. As the number of layers in 284

the GATs increases, the number of contextualized nodes also 285

increases. A node representation can be obtained by calcu- 286

lating the attention scores between two adjacent nodes and 287
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then aggregating adjacent nodes according to their attention288

scores.289

Wewill start by describing the GATswith a single attention290

and then extend it to multi-head attention to stabilize the291

learning process of attentions.292

In (7), gij is an attention coefficient that indicates the293

importance of node j’s features to node i, where W ∈294

Rdimout×diminp is a weight matrix applying the same linear295

transformation to every node and A ∈ R2∗dimout is a shared296

weight matrix for computing the attention coefficient. We set297

diminp to 512 and dimout to 32 in the experiments. In (8), αij298

is an attention score normalized by all its neighboring nodes299

and Ni is a set of neighboring nodes of node i (including node300

i) in the graph.301

gij = f(AT [Wdi||Wdj]) (7)302

αij = softmax(gij) =
exp(gij)∑

k∈Ni exp(gik )
(8)303

In (9), d li represents node di in layer l of the GATs. Nodes304

in the zero-th layer are defined as d0 = {s1, . . . , sM }, which305

denotes the hidden states of the encoder. W l and αlij are a306

weight matrix W and an attention score αij corresponding to307

the layer l, respectively. The node embedding d li is calculated308

by aggregating the embeddings of the adjacent nodes of node309

di by the attention values. Now, we enhance the model to310

includeH multi-head attentions in the GATs. The embedding311

d li is concatenated by the outputs of the multi-head attentions,312

as shown in (10). The embedding d li becomes an t-step input313

dt to the LSTM cell of the decoder.314

d li = σ (
∑
j∈Ni

αlij(W
ld l−1j )) (9)315

d li = ‖
H
h=1 σ (

∑
j∈Ni

α
h,l
ij (W h,ld l−1j )) (10)316

C. TRAINING OBJECTIVES317

The training objective function of the proposed parser is318

the same as that of the original StackPtr parser. The parser319

predicts an arc first and then predicts a label for the arc. The320

objective function is to minimize a weighted combination of321

arc prediction (Larc) and label prediction (Llabel) as in (13).1322

The loss function of arc prediction is (11), in which x is an323

input and p<t denotes the preceding paths that have already324

been generated prior to time t and pt is a child node repre-325

sentation predicted by the parser at time t . Given a head node326

representation ht at time t and a predicted child pt , a label327

classifier is optimized using the cross-entropy loss in (12).328

Both objectives are calculated based on a biaffine attention329

score between two vectors corresponding to a head word and330

child word.331

Larc = −
T∑
t=1

logPθ (pt |p<t , x) (11)332

1λ1 = λ2 = 1

TABLE 1. Information from the Sejong, Everyone’s, Penn Treebank, and
UD corpora.

Llabel = −
T∑
t=1

logPθ (r|pt , ht ) (12) 333

L = λ1Larc + λ2Llabel (13) 334

IV. EXPERIMENTS 335

A. TRAINING CORPORA 336

We used two versions of the Korean treebank – the Sejong 337

corpus [12] and the Everyone’s corpus [13], [14] – which 338

were published by National Institute of Korean Language 339

(NIKL). Given that the syntactic annotation scheme of the 340

Sejong corpus consists of phrase structures, we converted the 341

structures into dependency structures. Table 1 describes the 342

statistical information on the Everyone’s and Sejong corpora. 343

We evaluated our model on the English Penn Treebank 344

(PTB v3.0) [15], which was converted into the Stanford 345

dependencies format [16]. In addition, we performed exper- 346

iments on the English language from the Universal Depen- 347

dency (UD) treebanks.2 The UD treebanks were built to 348

facilitate multilingual parser development. The UD treebanks 349

provide a universal inventory of categories and guidelines to 350

facilitate consistent annotation of similar constructions across 351

languages while allowing language-specific extensions when 352

necessary. As of November 2019, the UD treebanks version 2 353

(UD v2.3) 3 is available. In the experiments, we adopted 354

the standard training/dev/test splits and used the universal 355

POS tags provided in the English UD treebank (UD v2.3). 356

Table 1 describes the statistical information on the Penn and 357

UD treebanks. 358

B. PRE-TRAINED WORD EMBEDDINGS 359

To initialize word vectors, we used the pre-trained word 360

representation model, BERT [9]. As Korean is an aggluti- 361

native language in which suffixes generally take a syntac- 362

tic role, those suffixes need to be separated from the rest 363

of a word for efficient parsing. Therefore, we performed a 364

morphological analysis of Korean sentences before parsing. 365

Then, we applied the KorBERT morphology version built on 366

morphologically analyzed sentences to obtain the initial word 367

2http://universaldependencies.org
3https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105
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FIGURE 3. The wordpieces of the sentence, ’’They planted fruit trees’’ for
input into KorBERT and the parser. (NNG and NP are parts of speech of
general nouns and pronouns, respectively; JX and JKO are auxiliary and
objective case particles, respectively; XSN is a noun-derived suffix; EP and
EF are past-tense endings and final endings, respectively.)

vectors of a sentence. The morphology version of KorBERT,368

which uses WordPiece as a unit, contains 30,349 wordpieces.369

Fig. 3 provides an example of an input to the parser.370

We did not use the BERT model for English sentences;371

instead, we used structed-skipgram word embeddings [17]372

adopted in the StackPtr parser [5] to compare with previous373

research.374

C. TRAINING375

Themodel parameters and the training hyper-parameters used376

in the experiments are shown in Table 2. We used the same377

experimental settings as [5]; therefore, the same experiments378

are conducted with three repetitions to report the average379

accuracy for the UD treebank, Sejong, and Everyone’s cor-380

pora, and with five repetitions for the Penn treebank.381

TABLE 2. Model parameters of the StackPtr parser with GATs and
hyper-parameters for training setup.

V. MAIN RESULTS382

A. PARSING ACCURACY383

Parsing performances were measured using the following384

metrics: unlabeled attachment score (UAS), labeled attach-385

ment score (LAS), unlabeled complete match (UCM), and386

labeled complete match (LCM), which are the de facto stan-387

dard to evaluate performance of syntactic parsers. The UCM388

FIGURE 4. Contextual information on the high-order StackPtr parser.
Assume the leftmost one is a partially derived sub-tree up to the
decoding step t and (1)-(4) show the possible high-order parsing in the
decoding step t + 1. A node labeled ‘‘P’’ is a parent word, and a node with
a question mark is a candidate of a child word in the decoding step t + 1.
From a parsing perspective, nodes used as features to decide a child node
in the step t + 1 are shown in red.

and LCM indicate how completely a parser can analyze an 389

input sentence. 390

Table 3 summarizes the performance results of the StackPtr 391

parsers applied to both Korean and English. The experiments 392

are conducted on the Sejong corpus [12] and the Everyone’s 393

corpus [13], [14] for Korean and on the Penn Treebank [18] 394

and the UD treebanks for English. We have six variants, 395

(a) – (f) of the StackPtr parsers to compare. The StackPtr 396

parsers (a), (b), and (c) are from [5]. The basic StackPtr parser 397

(a) only utilizes a parent word when deciding its child, (b) uti- 398

lizes a parent and an additional sibling node, and (c) utilizes 399

a parent, sibling, and grandparent together. The hierarchical 400

StackPtr parser (d) is from [6], and the left-to-right StackPtr 401

(e) is from [7]. The StackPtr with GATs (f) is ours, and ‘‘L’’ 402

is the number of layers of the graph attention networks. 403

In Korean, the proposed parser, ‘‘StackPtr + GATs,’’ 404

mostly achieved higher scores than the other variants of 405

the StackPtr parser according to most metrics. However, 406

in English, we cannot assert that any specific StackPtr parser 407

remarkably outperforms the other StackPtr variants. 408

B. COMPARISON OF StackPtr PARSERS 409

Fig. 4 compares of the original StackPtr parser and the 410

proposed parser in terms of the parsing order, which is the 411

number of dependencies referenced in parsing. (1) and (2) are 412

the first- and third-order parsing of the basic StackPtr parser, 413

respectively. (3) and (4) are the higher-order parsing of the 414

StackPtr using GATs with one and two layers, respectively. 415

h6 = LSTM(s5, h5) (14) 416

h6 = LSTM(s1 ⊕ s5 ⊕ s4, h5) (15) 417

h6 = LSTM(d25 , h5) (16) 418

h6 = LSTM(s5, f(h5, h1, h2)) (17) 419
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TABLE 3. Comparison of parsing performance of the proposed model. For the parsing results on the PennTree bank, the scores of (a), (b) and (c) are
from [5] and those of (d) are from [6] and those of (e) are from [7], respectively.

To show the difference between the original StackPtr420

and hierarchical StackPtr parser [6], (14) – (17) specifically421

describe the calculation of the hidden state h6 of the decoder422

in Fig. 1.423

Equation (14) shows the basic original StackPtr parser,424

in which the decoder’s hidden state h6 is the output of the425

LSTM cell computed with the previous hidden state h5 and426

the parent state s5 of the encoder.427

Equation (15) shows the original StackPtr (+full) version428

with the sum of the parent s5, grandparent s1, and sibling429

s4 states. Equation (16) shows the StackPtr parser + GATs430

(L = 2), in which d25 is illustrated in Fig. 2. The node d25 is431

the parent state s5 aggregated with the neighboring nodes432

(s1, s4, and s3) using the GATs introduced in this study.433

In the hierarchical StackPtr parser [6], the next hidden state434

of the decoding step depends not only on the previous hidden435

state but also the parent’s and sibling’s decoder states. Equa-436

tion (17) shows the hierarchical StackPtr parser, in which h1 is437

the parent’s hidden state and h2 is the sibling’s hidden state,438

respectively.439

C. ERROR ANALYSIS AND DISCUSSION440

From the results displayed in Table 3, we intend to determine441

through our analysis why the StackPtr + GATs parser out-442

performs the hierarchical StackPtr and the StackPtr (+full)443

parsers in Korean.444

Fig. 5 shows the comparison of characteristics of depen-445

dency trees between Korean and English. Surprisingly,446

57.64 – 60.45% of all nodes in the Korean dependency447

trees have immediate adjacent parents in sentences, whereas448

37.54 – 43.01% of nodes have adjacent parents in English.449

In addition, Korean has more only-child nodes (without sib-450

lings) than English. About 46% of all nodes are only-child451

nodes in the Korean dependency trees, while 16.15 – 24.85%452

are only-child nodes in English. Korean is known to be a453

head-final language in which a parent follows its children in454

FIGURE 5. Comparison of the characteristics of dependency trees of
Korean (Everyone’s and Sejong corpora) and English (Penn Treebank and
UD corpora). (a) The proportion of the distance between a node and its
parent in a sentence; (b) the proportion of the number of sibling nodes in
a dependency tree according to the corpus.

a sentence. Based on Korean’s head-final property, we can 455

draw a typical Korean dependency tree (a) (or (b)) as shown in 456

Fig. 6, whose characteristics correspond to the facts observed 457

in Fig. 5. 458

In Fig. 6, when node g attaches to node f as a single child, 459

the information that each parser can exploit is quite different, 460

especially when a dependency tree has sequential single- 461

child nodes. The hierarchical StackPtr parser can only refer 462

to the encoder’s state s2 and the decoder’s hidden state h9, 463

as shown in Equation (f). The StackPtr (+full) parser can use 464

the encoder states s2 and s3, and the hidden state h9, as shown 465

in Equation (g). The StackPtr + GATs (L = 2) can refer to 466

a node d22 and the hidden state h9 as shown in Equation (e). 467

The node d22 is constructed by the GATs using the encoder 468

states s2, s3, and s7. We can reason that the StackPtr + 469

GATs can utilize more information to determine a correct 470

dependency relation than the hierarchical StackPtr and the 471

StackPtr (+full) can when sentences have linear structures 472

that are more common in Korean. Therefore, we cautiously 473

conclude that the StackPtr + GATs can perform better in 474

Korean than other variants of StackPtr parsers. 475
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FIGURE 6. Illustration of the StackPtr parser’s processing of trees (a) and (b), which are the same. Tree (a) is
an example of a dependency tree with several immediate adjacent parents and single-child nodes. (c) is the
status of an encoder and decoder of a basic StackPtr parser. (d) is the GAT node constructed by the StackPtr
+ GATs. Equations (e), (f), and (g) are for the hidden state h10, calculated by StackPtr + GATs, Hierarchical
StackPtr and the StackPtr(+full).

VI. CONCLUSION476

This paper proposed a StackPtr parser with the GATs to477

encode a sub-tree derived up for every decoding step.478

The GATs can support a node representation in a graph,479

in which each node is calculated using its neighboring nodes480

multiplied by weights indicating their importance. When the481

GATs have several layers, more neighboring nodes with mul-482

tiple hops can be used to represent the node. From a parsing483

perspective, the StackPtr parser with the GATs can deal with484

parent, child, and sibling nodes different by considering their485

importance. It can also incorporate high-order parsing infor-486

mation easily.487

Several variants of the StackPtr parser have been proposed,488

including ours, and their relative performances are com-489

pared herein. Through error analysis of the parsing results,490

we found that Korean dependency trees tend to have consec-491

utive immediate single-child nodes and the StackPtr parser492

can be used with the GATs to parse these trees. Therefore,493

the proposed StackPtr parser with GATs achieved the best494

performance for Korean. However, the original StackPtr and495

the hierarchical StackPtr parsers outperform the proposed496

StackPtr parser in English.497

Our future study will include how to find syntactic factors,498

if any, that affect performance of parsers.499
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