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ABSTRACT A Stack-Pointer Network (StackPtr) parser is a pointer network with an internal stack on the
decoder. Several studies use the StackPtr as the backbone of a dependency parser because it can traverse
a parse tree depth-first without backtracking and can handle high-order parsing information easily thanks
to the internal stack. The parser can use information from previously derived subtrees stored in the internal
stack upon selecting a child node. In this work, we introduce a new StackPtr parser with Graph Attention
Networks (GATs) that can encode a previously derived subtree. We evaluated our proposed parser on the
Sejong and Everyone’s corpora for Korean and on the Penn Treebank and Universal Dependency corpora
for English. In addition, we analyzed and compared our proposed parser with other variants of the StackPtr
parser, examining the syntactic information that each parser can reference at every decoding step. We found
that Korean parse trees tend to have more consecutive immediate single-child nodes than English parse
trees. The proposed StackPtr parser with GATs performed best on almost all metrics for Korean because
it can utilize more context to analyze these parse trees by grasping Korean syntactic factors than any other
variants. However, for English, no particular variant of the StackPtr parser outperforms the others.

INDEX TERMS Dependency parsing, graph attention networks, natural language processing, stack-pointer
networks, high-order dependency parsing.

I. INTRODUCTION
Dependency parsing can identify a syntactical relationship

a biaffine parsing model [1]. In this model, a bi-directional
recurrent neural network converts a word from a sentence into

between words in a sentence; it is a basic method in natural
language processing. The main approaches to dependency
parsing can be divided into two categories: graph-based pars-
ing and transition-based parsing.

Graph-based parsing [1], [2], [3] scores every pair of words
in a sentence and then generates a fully connected parse
tree based on the scores in a greedy style. Scoring a word
pair is a key component of a graph-based parser. One of the
most common approaches to graph-based parsing is to use
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an embedded vector. Then, biaffine attention networks calcu-
late a dependency score for an edge between the parent and
child vectors. Connecting edges individually according to the
high scoring order can determine the final dependency tree.

Transition-based dependency parsers [4] build a depen-
dency tree incrementally by scanning the words of a sentence
individually and making a sequence of decisions. The key to
transition-based parsing models is to use as many features as
possible in each decision step to avoid leading to a wrong
dependency tree.

A recent approach in transition-based dependency parsing
is to use Stack-Pointer Networks (StackPtr) [5], which this
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work aims to upgrade. A StackPtr parser analyzes a sen-
tence in an incremental, top-down, and depth-first fashion.
A dependency parser based on the StackPtr consists of an
encoder and a decoder. The encoder encodes every word of
an input sentence while the decoder chooses a dependency
in each step. This is done by pointing to a child word in the
encoder given a parent word in a stack of the decoder. The
stack of the decoder maintains the parent information from
previously derived subtrees in parsing. Therefore, the parser
can easily utilize high-order information in the decoding step
by using parent, grandparent, and sibling words as the parser’s
features.

Thanks to the success of the StackPtr parser, sev-
eral variants of the StackPtr parse, including Hierarchical
StackPtr [6], and the left-to-right version of the StackPtr
parser [7] have been proposed.

In this paper, we introduce Graph Attention Networks
(GATs) [8] into the StackPtr parser to take advantage of
a previously derived subtree structure in a decoding phase.
The GATs can encode a subtree maintained in the decoder’s
internal stack, and then the decoder takes the encoded subtree
information as input.

As the GATs increase the number of layers, they can eas-
ily encode multi-hop neighboring information from a graph.
Therefore, by stacking multiple layers of the GATs, the
proposed parser can gradually utilize various higher-order
features more easily than other variants of StackPtr parsers.

Moreover, GATs can represent a node by aggregating its
neighboring nodes according to their attention values, indi-
cating the importance between nodes. Therefore, the StackPtr
parser with the GATs can encode a subtree taking into account
the importance of the nodes. However, other variants of
StackPtr parsers incorporate high-order information merely
by summing node vectors in a stack without considering
structure or importance values.

We compared our proposed parser and the variants on
evaluation of Korean and English treebanks. The experi-
mental results showed that the proposed parser performs
best on almost all metrics for Korean and no variant of the
StackPtr parser performs overwhelmingly better than others
for English. We conducted a comprehensible error analysis
and investigated which factors of the GATSs contribute to
improving Korean parsing accuracy. Korean parse trees tend
to have more consecutive immediate single-child nodes than
English parse trees. The GATs allow the StackPtr parser to
leverage more contextual information when analyzing these
Korean parse trees than when analyzing English parse trees.

The contributions of this paper are as follows:

1) We introduce GATs into the StackPtr parser to encode
a previously derived subtree structure.

2) We show that the StackPtr parser with the GATs can
achieve state-of-the-art performance for Korean.

3) We explore the syntactic factors that affect the perfor-
mance of the proposed parser by comparing it with
other variants of StackPtr parsers and analyzing the
characteristics of Korean syntactic trees.
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The rest of the paper is organized as follows. We first
explore related studies in Section 2, and we propose a
StackPtr parser with the GATs in Section 3. Section 4 and 5
present an experimental environment and its main results.
Finally, Section 5 describes the conclusion of this study.

Il. RELATED WORKS

There are two mainstream methods in the dependency parsing
research domain. One is graph-based parsing and the other is
transition-based parsing.

Graph-based parsers normally score all word pairs to deter-
mine the dependency relationship between a word pair. The
scoring function calculates relatedness based on two vectors
corresponding to parent and child nodes in a dependency tree.
Therefore, how to represent a node is a key component of
graph-based parsers.

[2] used graph neural networks(GNNs) to learn the
node representations. GNNs can embed a node by aggregat-
ing node information on its neighbors and collecting more
neighbors with multiple hops incrementally. To differentiate
between a parent and child node, they adopted two multilayer
perceptrons to generate a parent node and child node for a
node pair, respectively. The scoring function is basically a
bilinear function of a parent and child node. Given a complete
graph, the scoring function can provide different weights
to all possible edges. By starting with a complete graph,
different weights on the edges can convert the complete graph
into a soft parse tree in each layer.

The biaffine parser proposed in [1] is one of the most pop-
ular graph-based dependency parsers. Although the biaffine
parser is simple and efficient, it supports only first-order
parsing that can decide every dependency by considering
only a parent and child pair. [3] proposed an efficient and
effective tri-affine operation for scoring second-order sub-
trees to extend the biaffine parser to a high-order parsing
model. In addition, they adopted a second-order TreeCRF
for structural learning in dependency parsers. They demon-
strated that structural learning and high-order modeling can
enhance the state-of-the-art biaffine parser by conducting
several experiments using 13 languages.

Transition-based parsers build a dependency tree by apply-
ing transition operations incrementally. Their advantage lies
in linear time complexity, however, their main weakness is
the lack of access to global context information, which leads
to error propagation. There are many previous studies to
alleviate the error propagation problem in transition-based
dependency parsing. One of the successful approaches is a
StackPtr parser [5] that adopts a top-down depth-first strategy
to perform the syntactic analysis. The StackPtr parser using
a pointer network has achieved state-of-the-art performance
because the pointer network with an internal stack can capture
information of the input sentence and all the paths previously
traversed. After the successful implementation of StackPtr
in dependency parsing, several subsequent studies have been
conducted.
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[6] proposed a dependency parser based on hierarchical
StackPtr. The parser has the same encoder-decoder architec-
ture as the original StackPtr parser except that each decoding
state is conditioned directly on a hierarchical tree structure
albeit its sequential processing. Therefore, their parser could
explicitly model the parent-child and sibling relationships in
the decoding steps.

Another variant of the StackPtr parser is a left-to-right
dependency parser using StackPtr, proposed in [7]. While
the original StackPtr parser analyzes a sentence in a top-
down depth-first manner, the left-to-right StackPtr parser
processes an input sentence one by one from left to right. In a
decoding phase, the original StackPtr parser points to a child
word, however, the decoder of the left-to-right StackPtr parser
points to a parent word for each hidden state. This results
in a straightforward transition system that can reduce the
number of transition operations, without the need of any addi-
tional data structures. Instead, the left-to-right StackPtr parser
might generate a cycle, therefore, it needs an additional cycle
detection step. In spite of the simplicity of the algorithm,
surprisingly, the parser achieved the better performance than
the original StackPtr parser.

Ill. PARSER BASED ON STACK-POINTER NETWORKS
WITH GRAPH ATTENTION NETWORKS

The StackPtr parser [5] consisting of an encoder and a
decoder scans a complete sentence and encodes each word
into an encoder hidden state s;. The StackPtr parser then
initializes an internal stack of the decoder with a root sym-
bol “$” and generates a dependency tree in a top-down
fashion by pointing to a hidden state of the encoder one by
one, as shown in Fig. 1.

At the top of the internal stack of the decoder is the most
recently derived child word of a sub-tree, which becomes a
parent word in the next decoding step. In each decoding step,
an embedding vector corresponding to the top word of the
stack becomes an input of the decoder and attention scores
between the embedding and all hidden states of the encoder
are calculated. The decoder points out the hidden state with
the highest attention score as a child word and then pushes the
child word to the top of the stack for the next step. When the
decoder points to the same word as the top word, it indicates
that all children of the top word have already been derived.
In this case, the decoder pops the top element from the stack
and parsing continues to the next step.

How to represent an embedding vector corresponding to
the top word of the internal stack is the main concern of this
paper. For a first-order parsing model, the original StackPtr
parser uses the encoder’s hidden state corresponding to the
parent word. The parser uses a summation of the correspond-
ing hidden states for a second- or third-order model that uses
a sibling or grand-parent word and a parent word.

In this study, we adopted the GATs [8] to generate an
embedding vector for a top word of the stack. The GATs
can generate an embedding of a previously derived subtree
centered on a top word. In each decoding step, an
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embedding for a partially derived subtree becomes an input
of the decoder.

A. StackPtr PARSER WITH GATs

In this section, we describe a dependency parser using the
StackPtr as a backbone and the BERT [9] pre-trained lan-
guage model and then introduce the GATs into the StackPtr
parser.

The StackPtr parser consists of an encoder and a decoder.
The decoder has an internal stack that controls its inputs. The
main role of the encoder built on long short-term memory
(LSTM) networks [10] is to generate contextualized word
embeddings from an input sentence. We used the BERT
pre-trained model to obtain basic word embeddings in this
work. A unit the BERT model uses is a WordPiece [11], which
is different from a word that is an input unit of a syntactic
parser.

Given that a word usually consists of several wordpieces,
they should be converted into one input embedding for
parser’s inputs. Let W = wy, wp, ..., wy be an input sen-
tence with M words and X = {x1, x2, ..., xny} be a sequence
of N wordpieces of the sentence W split for the BERT [9]
model. When Z = {z1,z2,...,2zn} is the BERT output
embedding of input X, we can obtain an embedding of word
w; by summing up embedding z; corresponding to x; con-

tained in w; (1).
=) M

Xt EW;

The encoder of the StackPtr parser is a bi-directional
LSTM network whose z-th hidden state s, is obtained as (2).
Let S = {s1, 52, ..., sy} be the hidden state of the encoder.

W, =LSTMG:, §1-1), 5 =LSTMG, ¥ 141),

s =[5 2)

The main role of the decoder built on LSTM networks is
to determine a child word in every decoding step in a top-
down way. From a parser’s pointer of view, a hidden state
of the decoder indicates a parent word and a hidden state of
the encoder pointed out by the decoder is a child word. The
encoder’s hidden states S are also used as inputs of a hidden
state of the decoder. If the hidden state at decoding step t was
h; and s; was an encoder’s hidden state of a candidate child
word, a biaffine attention mechanism was applied to calculate
an attention score e§ between two hidden states /; and s; that
correspond to a parent and a child word, respectively.
et =hI'Wsi+UTh +VTs;i+b (3)

l

p' = softmax(e’), 4)

where W,U,V, and b are learnable parameters, and the atten-
tion scores e’ collected for S are transformed to probabilities
by the softmax function. The encoder’s hidden state with
the highest probability is determined as a child word. As we
need dependency labels besides the dependency relationship,
we adopted an additional biaffine attention network [1] with
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FIGURE 1. Dependency parsing using a StackPtr with the GATs for the sentence “They planted fruit trees”. (a) is the correct dependency
tree of the input sentence, and (b) is the architecture of the StackPtr parser with GATs. The hidden state hg of the decoder has a parent
node corresponding to “planted” in the top of the stack and GATs can encode the parent node corresponding to the state s5 using a
previously derived subtree. The hidden state hg can point at its child node, which is the state s, of the encoder in this case.

the same architecture as that in (3) to generate dependency
labels. To utilize higher-order information in dependency
parsing, the original StackPtr parser uses a summed vector
of hidden states corresponding to a parent, grandparent, and
sibling word.

However, using the simple summed vector of the hidden
states is not enough to perform high-order parsing. Therefore,
in this study, we introduce GATsS [8] to a parsing model to
encode higher-order syntactic information. The GATs take
an encoder’s hidden states S and a subtree 7(;,—1) derived up
to t+ — 1 step as inputs and produce a node representation
d; stuffed with the subtree’s structural information. The new
node representation is fed into the LSTM cell in the decoding
step ¢, as shown in (5) and (6). We will describe this in detail
in the following section.

dr = GATs(S, T;-1) %)
hy = LSTM(d;, hy—1) (6)

B. REPRESENTING A SUBTREE USING THE GATs IN THE
StackPtr PARSER

Fig. 2 shows the method to generate a node d( sy for the
t-step hidden state of the decoder. For brevity, we drop a
step subscript 7 in Fig. 2 and the following explanation. The
GATs [8] generate an embedding for node ds by aggregating
neighboring nodes according to their attention score . As the
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FIGURE 2. Node representation using the GATs for input into the 6th step
(hidden state hg) of the decoder in Fig. 1. A node d’.° in the zero-th layer
is the hidden state s; of the encoder.

GATs have two layers in this example, all neighboring nodes
within two hops affect ds, which is notated as d52. Given an
undirected graph G, the GATs that are a multilayer network
provide us with a node representation contextualized by its
neighboring nodes in graph G. As the number of layers in
the GAT's increases, the number of contextualized nodes also
increases. A node representation can be obtained by calcu-
lating the attention scores between two adjacent nodes and
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then aggregating adjacent nodes according to their attention
scores.

We will start by describing the GATs with a single attention
and then extend it to multi-head attention to stabilize the
learning process of attentions.

In (7), g; is an attention coefficient that indicates the
importance of node j’s features to node i, where W €
Rimouxdiminp g 3 weight matrix applying the same linear
transformation to every node and A € R*®™ou is a shared
weight matrix for computing the attention coefficient. We set
dimjpp to 512 and dimy,, to 32 in the experiments. In (8), o
is an attention score normalized by all its neighboring nodes
and N; is a set of neighboring nodes of node i (including node
i) in the graph.

f(AT [Wd;||Wd;]) @)

exp(gij)
v 8
ZkeNi exp(gik) ( )

i

a;i = softmax(g;;) =

In (9), di’ represents node d; in layer / of the GATs. Nodes
in the zero-th layer are defined as d° = {s1, ..., sy}, which
denotes the hidden states of the encoder. W/ and afj are a
weight matrix W and an attention score «;; corresponding to
the layer /, respectively. The node embedding dl.l is calculated
by aggregating the embeddings of the adjacent nodes of node
d; by the attention values. Now, we enhance the model to
include H multi-head attentions in the GATs. The embedding
dl.l is concatenated by the outputs of the multi-head attentions,
as shown in (10). The embedding dl.l becomes an ¢-step input
d; to the LSTM cell of the decoder.

dl = o) alW'al™h) ()
JEN;
df =l e Qo' WHai™hy (o)
JEN;

C. TRAINING OBJECTIVES

The training objective function of the proposed parser is
the same as that of the original StackPtr parser. The parser
predicts an arc first and then predicts a label for the arc. The
objective function is to minimize a weighted combination of
arc prediction (Lgc) and label prediction (Ljgpe;) as in (13).!
The loss function of arc prediction is (11), in which x is an
input and p; denotes the preceding paths that have already
been generated prior to time ¢ and p; is a child node repre-
sentation predicted by the parser at time z. Given a head node
representation /4, at time ¢ and a predicted child p,, a label
classifier is optimized using the cross-entropy loss in (12).
Both objectives are calculated based on a biaffine attention
score between two vectors corresponding to a head word and
child word.

T
Lare = — Y _10gPy(pi|p<i. X) (11)

t=1
1)\1 =Xt =1
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TABLE 1. Information from the Sejong, Everyone’s, Penn Treebank, and
UD corpora.

Corpus Number of | Avg. number Avg. number
sentences of words of morphemes
EVERYONE’s | Train 119,500 13.29 30.31
NIKL Test 15,000 13.33 30.50
(2020,ver 1.0) Dev 14,830 13.03 29.72
SEJONG Train 53,842 11.19 24.89
(2010) Test 5,817 9.93 22.21
PENN Train 39,832 23.85 NA
Treebank Test 2,416 23.46 NA
(v3.0) Dev 1,700 23.59 NA
UD Train 12,543 16.31 NA
Treebank Test 2,077 12.08 NA
(v2.3) Dev 2,002 12.56 NA
T
Liabet = =y _ 1ogPo(r|p:, hy) (12)
=1
L = MLare + A2Liabel (13)

IV. EXPERIMENTS
A. TRAINING CORPORA
We used two versions of the Korean treebank — the Sejong
corpus [12] and the Everyone’s corpus [13], [14] — which
were published by National Institute of Korean Language
(NIKL). Given that the syntactic annotation scheme of the
Sejong corpus consists of phrase structures, we converted the
structures into dependency structures. Table 1 describes the
statistical information on the Everyone’s and Sejong corpora.
We evaluated our model on the English Penn Treebank
(PTB v3.0) [15], which was converted into the Stanford
dependencies format [16]. In addition, we performed exper-
iments on the English language from the Universal Depen-
dency (UD) treebanks.> The UD treebanks were built to
facilitate multilingual parser development. The UD treebanks
provide a universal inventory of categories and guidelines to
facilitate consistent annotation of similar constructions across
languages while allowing language-specific extensions when
necessary. As of November 2019, the UD treebanks version 2
(UD v2.3) 3 is available. In the experiments, we adopted
the standard training/dev/test splits and used the universal
POS tags provided in the English UD treebank (UD v2.3).
Table 1 describes the statistical information on the Penn and
UD treebanks.

B. PRE-TRAINED WORD EMBEDDINGS

To initialize word vectors, we used the pre-trained word
representation model, BERT [9]. As Korean is an aggluti-
native language in which suffixes generally take a syntac-
tic role, those suffixes need to be separated from the rest
of a word for efficient parsing. Therefore, we performed a
morphological analysis of Korean sentences before parsing.
Then, we applied the KorBERT morphology version built on
morphologically analyzed sentences to obtain the initial word

2http://uniw:rsaldependencies.org
3 https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105
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FIGURE 3. The wordpieces of the sentence, “They planted fruit trees” for
input into KorBERT and the parser. (NNG and NP are parts of speech of
general nouns and pronouns, respectively; JX and JKO are auxiliary and
objective case particles, respectively; XSN is a noun-derived suffix; EP and
EF are past-tense endings and final endings, respectively.)

vectors of a sentence. The morphology version of KorBERT,
which uses WordPiece as a unit, contains 30,349 wordpieces.
Fig. 3 provides an example of an input to the parser.

We did not use the BERT model for English sentences;
instead, we used structed-skipgram word embeddings [17]
adopted in the StackPtr parser [S] to compare with previous
research.

C. TRAINING

The model parameters and the training hyper-parameters used
in the experiments are shown in Table 2. We used the same
experimental settings as [5]; therefore, the same experiments
are conducted with three repetitions to report the average
accuracy for the UD treebank, Sejong, and Everyone’s cor-
pora, and with five repetitions for the Penn treebank.

TABLE 2. Model parameters of the StackPtr parser with GATs and
hyper-parameters for training setup.

Modules | Parameters | Values
Mode Bi-LSTM
Encoder Number of layers 3
Hidden dimension 256
Mode Uni-LSTM
Number of layers 2
Decoder Hidden dimension 256
Arc dimension 512
Label dimension 128
GATs Hidden dimension 512
Number of attention heads 16
Dropout 0.1
Batch size 32
Training Optimizer Adam
(hyper- Maximum learning rate of encoder 2e-5
parameters) | Maximum learning rate of decoder le-3
Betal, Beta2 0.9, 0.998
Learning rate scheduler Exponential LR
Warm-up steps 40

V. MAIN RESULTS

A. PARSING ACCURACY

Parsing performances were measured using the following
metrics: unlabeled attachment score (UAS), labeled attach-
ment score (LAS), unlabeled complete match (UCM), and
labeled complete match (LCM), which are the de facto stan-
dard to evaluate performance of syntactic parsers. The UCM
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FIGURE 4. Contextual information on the high-order StackPtr parser.
Assume the leftmost one is a partially derived sub-tree up to the
decoding step t and (1)-(4) show the possible high-order parsing in the
decoding step t + 1. A node labeled “P” is a parent word, and a node with
a question mark is a candidate of a child word in the decoding step £ + 1.
From a parsing perspective, nodes used as features to decide a child node
in the step t + 1 are shown in red.

and LCM indicate how completely a parser can analyze an
input sentence.

Table 3 summarizes the performance results of the StackPtr
parsers applied to both Korean and English. The experiments
are conducted on the Sejong corpus [12] and the Everyone’s
corpus [13], [14] for Korean and on the Penn Treebank [18]
and the UD treebanks for English. We have six variants,
(a) — (f) of the StackPtr parsers to compare. The StackPtr
parsers (a), (b), and (c) are from [5]. The basic StackPtr parser
(a) only utilizes a parent word when deciding its child, (b) uti-
lizes a parent and an additional sibling node, and (c) utilizes
a parent, sibling, and grandparent together. The hierarchical
StackPtr parser (d) is from [6], and the left-to-right StackPtr
(e) is from [7]. The StackPtr with GATs (f) is ours, and “L”
is the number of layers of the graph attention networks.

In Korean, the proposed parser, “StackPtr + GATS,”
mostly achieved higher scores than the other variants of
the StackPtr parser according to most metrics. However,
in English, we cannot assert that any specific StackPtr parser
remarkably outperforms the other StackPtr variants.

B. COMPARISON OF StackPtr PARSERS

Fig. 4 compares of the original StackPtr parser and the
proposed parser in terms of the parsing order, which is the
number of dependencies referenced in parsing. (1) and (2) are
the first- and third-order parsing of the basic StackPtr parser,
respectively. (3) and (4) are the higher-order parsing of the
StackPtr using GATs with one and two layers, respectively.

he = LSTM(ss, hs) (14)
he = LSTM(s| D s5 D 54, hs) (15)
he = LSTM(dZ, hs) (16)
he = LSTM(ss, f(hs, hy, hy)) (17
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TABLE 3. Comparison of parsing performance of the proposed model. For the parsing results on the PennTree bank, the scores of (a), (b) and (c) are
from [5] and those of (d) are from [6] and those of (e) are from [7], respectively.

Parsers
(a) (b) (©) (V) (e) (
StackPtr  StackPtr  StackPtr StackPtr Left-to-Right StackPtr
Lang. Corpus  Metrics (+sib) (+full) + Hierarchical StackPtr + GAT (L=2)

decoder (ours)

UAS 94.13 94.31 94.36 94.33 94.26 94.39

Sejong LAS 92.46 92.56 92.62 92.65 92.67 92.71

UCM 66.31 66.96 66.99 67.13 66.77 67.27

LCM 59.86 59.36 59.12 59.69 59.53 59.58
Korean

UAS 93.05 93.46 93.51 93.55 93.60 93.76

Every LAS 90.71 91.34 91.32 91.39 91.45 91.63

one’s UCM 49.36 49.62 49.83 50.12 50.18 51.62

LCM 38.65 39.85 39.87 40.16 40.35 41.79

Penn UAS 95.77 95.85 95.87 96.09 96.04 95.71

. Tree LAS 94.12 94.18 94.19 95.03 94.43 94.52
English

UD UAS 91.45 91.36 90.97 91.03 91.31 90.96

(2.3) LAS 89.25 89.24 89.06 89.07 89.20 88.65

To show the difference between the original StackPtr
and hierarchical StackPtr parser [6], (14) — (17) specifically
describe the calculation of the hidden state /¢ of the decoder
in Fig. 1.

Equation (14) shows the basic original StackPtr parser,
in which the decoder’s hidden state ¢ is the output of the
LSTM cell computed with the previous hidden state /s and
the parent state s5 of the encoder.

Equation (15) shows the original StackPtr (4full) version
with the sum of the parent s5, grandparent s, and sibling
s4 states. Equation (16) shows the StackPtr parser + GATs
(L = 2), in which ds2 is illustrated in Fig. 2. The node d52 is
the parent state ss aggregated with the neighboring nodes
(s1, s4, and s3) using the GATs introduced in this study.
In the hierarchical StackPtr parser [6], the next hidden state
of the decoding step depends not only on the previous hidden
state but also the parent’s and sibling’s decoder states. Equa-
tion (17) shows the hierarchical StackPtr parser, in which £ is
the parent’s hidden state and /4, is the sibling’s hidden state,
respectively.

C. ERROR ANALYSIS AND DISCUSSION

From the results displayed in Table 3, we intend to determine
through our analysis why the StackPtr 4+ GATs parser out-
performs the hierarchical StackPtr and the StackPtr (4-full)
parsers in Korean.

Fig. 5 shows the comparison of characteristics of depen-
dency trees between Korean and English. Surprisingly,
57.64 — 60.45% of all nodes in the Korean dependency
trees have immediate adjacent parents in sentences, whereas
37.54 — 43.01% of nodes have adjacent parents in English.
In addition, Korean has more only-child nodes (without sib-
lings) than English. About 46% of all nodes are only-child
nodes in the Korean dependency trees, while 16.15 — 24.85%
are only-child nodes in English. Korean is known to be a
head-final language in which a parent follows its children in
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FIGURE 5. Comparison of the characteristics of dependency trees of
Korean (Everyone’s and Sejong corpora) and English (Penn Treebank and
UD corpora). (a) The proportion of the distance between a node and its
parent in a sentence; (b) the proportion of the number of sibling nodes in
a dependency tree according to the corpus.

a sentence. Based on Korean’s head-final property, we can
draw a typical Korean dependency tree (a) (or (b)) as shown in
Fig. 6, whose characteristics correspond to the facts observed
in Fig. 5.

In Fig. 6, when node g attaches to node f as a single child,
the information that each parser can exploit is quite different,
especially when a dependency tree has sequential single-
child nodes. The hierarchical StackPtr parser can only refer
to the encoder’s state sp and the decoder’s hidden state hg,
as shown in Equation (f). The StackPtr (4-full) parser can use
the encoder states s, and s3, and the hidden state /9, as shown
in Equation (g). The StackPtr + GATs (L = 2) can refer to
a node d22 and the hidden state hg as shown in Equation (e).
The node c122 is constructed by the GATs using the encoder
states sp, 53, and s7. We can reason that the StackPtr +
GATs can utilize more information to determine a correct
dependency relation than the hierarchical StackPtr and the
StackPtr (4+full) can when sentences have linear structures
that are more common in Korean. Therefore, we cautiously
conclude that the StackPtr + GATSs can perform better in
Korean than other variants of StackPtr parsers.
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FIGURE 6. lllustration of the StackPtr parser’s processing of trees (a) and (b), which are the same. Tree (a) is
an example of a dependency tree with several immediate adjacent parents and single-child nodes. (c) is the
status of an encoder and decoder of a basic StackPtr parser. (d) is the GAT node constructed by the StackPtr
+ GATs. Equations (e), (f), and (g) are for the hidden state h;(, calculated by StackPtr + GATs, Hierarchical

StackPtr and the StackPtr(+full).

VI. CONCLUSION
This paper proposed a StackPtr parser with the GATs to
encode a sub-tree derived up for every decoding step.

The GATS can support a node representation in a graph,
in which each node is calculated using its neighboring nodes
multiplied by weights indicating their importance. When the
GATs have several layers, more neighboring nodes with mul-
tiple hops can be used to represent the node. From a parsing
perspective, the StackPtr parser with the GATs can deal with
parent, child, and sibling nodes different by considering their
importance. It can also incorporate high-order parsing infor-
mation easily.

Several variants of the StackPtr parser have been proposed,
including ours, and their relative performances are com-
pared herein. Through error analysis of the parsing results,
we found that Korean dependency trees tend to have consec-
utive immediate single-child nodes and the StackPtr parser
can be used with the GATs to parse these trees. Therefore,
the proposed StackPtr parser with GATs achieved the best
performance for Korean. However, the original StackPtr and
the hierarchical StackPtr parsers outperform the proposed
StackPtr parser in English.

Our future study will include how to find syntactic factors,
if any, that affect performance of parsers.
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