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ABSTRACT Offloading heavy virtual reality (VR) computational operations to a network edge computation
entity is receiving increasing attention as a tool to wirelessly and energy efficiently provide low-end client
devices with high-quality and immersive interactive VR services anytime and anywhere across the globe.
In this work, we aim to provide an understanding of various characteristics of VR computation offloading
through comprehensive experiments conducted using a prototype testbed for edge-assisted VR processing
and streaming. First, we investigate the benefits of VR offloading in terms of computational load and power
consumption reduction for a client device compared to standalone operation. Next, we measure VR traffic
patterns, including frame size and data and packet rates with various settings, such as different resolution and
encoding options. We also measure several performance metrics associated with the quality of experience,
namely, frame rate, packet loss rate, and image quality, with various configuration settings. Then, we present
latency measurement studies and investigate per-component latency with various settings. Furthermore,
we report the rigorous experiments performed to study the impacts of latency and motion patterns on the
black borders formed due to image reprojection and the overfilling technique used to eliminate these black
borders.

15 INDEX TERMS Virtual reality, edge computing, offloading, VR streaming, latency, overfilling.

I. INTRODUCTION16

Virtual reality (VR), a three-dimensional (3D) environment17

allowing a user to enter and interact with alternate realities [1]18

that are rendered through the utilization of audio-visual com-19

ponents coupled with other sensory devices [2], can exist20

in various forms. Such forms include interactive environ-21

ments, omnidirectional video, or a hybrid of the two forms22

combining computer-generated scenes with natural scenes.23

An interactive environment is a form of VR where data mod-24

els and algorithms are utilized to generate a synthetic scene25

in real-time in accordance with the user’s head pose and other26

input triggers. Omnidirectional video, however, is a form of27

VRwherein a special camera and several microphone devices28

The associate editor coordinating the review of this manuscript and

approving it for publication was Lei Shu .

are used to capture a natural scene to produce a panoramic 29

video resembling that presented by a conventional TV system 30

but having an unrestricted viewing arc. 31

To realize an interactive VR environment offering com- 32

plete user immersion, a high-quality visual experience and 33

seamless navigation in the virtual world are required tomimic 34

the user’s experience of the real world [3]. These require- 35

ments are fulfilled using dedicated graphics cards equipped 36

with abundant GPU cores to render the graphics. Although 37

VR technology is being rapidly adopted in the consumer 38

domain, a number of obstacles still hinder its massive-scale 39

overall adoption. The high costs of the computing and graph- 40

ics processing hardware, low visual quality and constrained 41

user mobility are among the notable bottlenecks [4]. The 42

conventional usage of tethered VR, where a wire harness 43

or a direct wireless link (e.g., VIVE wireless adapter [5]) 44
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connects the VR headset to a local PC, makes the approach45

cumbersome to set up, is relatively expensive and is not cost46

effective for single-use scenarios. The costs arise from the47

high price of VR headsets (both PC-based and console-based)48

in addition to the expensive high-end PC needed to play back49

the interactive content. Consequently, the audience is limited50

to only those in ownership of suitable platforms. Moreover,51

the wire harnessing a tethered VR headset to the process-52

ing PC restricts the user’s freedom of movement, and thus,53

impacts usability. In contrast, standalone (untethered) VR54

headsets make use of built-in processing units, and thus, offer55

greater convenience and portability of VR services. However,56

they require additional local processing capability and battery57

power to render VR content of high quality; otherwise, only58

limited-quality VR content is available on these devices.59

As a result of this, an approach for offloading all or most60

VR computational operations to one or more remote GPUs61

of a network edge computation entity, as depicted in Fig. 1,62

which we call edge VR in this paper, is receiving increasing63

attention.1 Offloading heavy VR computations to an edge64

computing entity possessing sufficient computational power65

reduces the need for local deployment of a powerful PC. This66

offers a promising approach for overcoming the highlighted67

obstacles hindering the large-scale adoption of VR by a larger68

audience wirelessly connected to the internet and allowing69

them to experience immersive services from their desired70

devices anytime and anywhere across the globe [4], [6]. The71

abundant processing and storage resources found at the edge72

can make high-quality and pay-as-you-go VR services avail-73

able to a large group of online VR users. With the edge pro-74

viding the necessary resources to execute and render scenes,75

the client headsets are left with only the task of displaying76

the content streamed over wireless networks. This makes it77

possible to manufacture lighter and cheaper thin client VR78

headsets that are more affordable and sustainable. Higher79

user mobility is facilitated, and with only light operations80

performed by the headsets, their battery life is also expected81

to be extended.82

However, the offloading of VR computations to the edge is83

susceptible to latency, which presents a major challenge [7],84

mainly due to the transmission of VR traffic over bandwidth-85

limited networks. Although new wireless technologies, such86

as fifth-generation (5G) New Radio (NR) [8] and IEEE87

802.11be [9] aim to increase bandwidth and reduce latency,88

the large volume of raw VR display data resulting from its89

ultrahigh resolution is still not fully compatible with the net-90

work bandwidths of present and near-future wireless network91

and internet systems. This situation inevitably necessitates92

the encoding (compression) and decoding (decompression)93

1The difference between wirelessly tethered VR and edge VR is the
capability of a networked connection between a VR headset and a computing
entity. Through a networked connection, edge VR is immediately applicable
to various network scenarios, allowing a VR headset to connect to the edge
anywhere anytime under Wi-Fi or cellular coverage and the edge located
anywhere in the network. In contrast, wirelessly tethered VR only provides a
direct connection between a VR headset and a local PC on a room scale and
is not immediately extensible to network scenarios.

FIGURE 1. Edge VR layered architecture.

FIGURE 2. VR image reprojection and resulting black borders.

of the raw VR display data on the edge and client sides, 94

respectively, incurring more latency in addition to the net- 95

work transport latency. As the latency increases, the incon- 96

sistency between the rendered VR image and the user’s view- 97

point at the time of scan-out also increases. A large mismatch 98

leads to unpleasant physiological symptoms due to the lag 99

between the sensory inputs and the visual and vestibular sys- 100

tems, commonly described asmotion sickness, and is likely to 101

cause the user to ultimately quit using the service. Up to 20ms 102

of motion-to-photon latency is widely considered acceptable 103

for VR applications, as this level of mismatch is undetectable 104

by the user, and thus, does not cause motion sickness [7], 105

[10]. Moreover, other forms of discomfort, such as unsat- 106

isfactory image clarity, image smearing, and dizziness, can 107

also be experienced in high-latency VR environments [11]. 108

The image reprojection technique (also called time warp- 109

ing) [12], [13], [14] is essential for minimizing the motion- 110

to-photon latency to remedy the motion sickness problem in 111

VR. As illustrated in Fig. 2, in this technique, a rendered 112

frame is reprojected before being scanned out to reflect the 113

movement in the head pose that occurs after the scene is 114

rendered [15]. With image reprojection, however, if the end- 115

to-end latency level is excessive, a large number of black 116

borders will be produced after reprojection, disrupting user 117

immersion [2]. 118
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To achieve smooth and comfortable immersion in VR,119

good platform designs are vital for meeting a range of appli-120

cation requirements at acceptable levels of latency [16]. This121

first requires a deep quantitative understanding of the charac-122

teristics of VR offloading systems. However, there has been123

no in-depth empirical study of edge VR in the literature.124

In addition, the expected benefits of edge VR also need to125

be proven and measured through empirical studies. There126

have been a few testbed studies of VR offloading and stream-127

ing [7], [17], but they only provided brief results focusing on128

overall performance. Moreover, no study has demonstrated129

the impact of latency on perceived quality in VR. Empirical130

studies on cloud gaming [18], [19] have not considered VR131

applications, and thus, do not provide VR-specific insights.132

Therefore, comprehensive empirical studies spanning a range133

of VR-specific application requirements for interactive VR134

environments are needed to gain an understanding and sup-135

port the design of edge VR systems.136

In this work, we aim to provide an understanding of137

VR computation offloading through comprehensive testbed138

experiments addressing various aspects of the situation. For139

the experiments, we prototype a testbed of a VR computa-140

tion offloading system using existing technologies and use141

it to conduct measurement studies. First, we investigate the142

benefits of VR offloading in terms of computational load and143

power consumption reduction for a client device compared to144

standalone operation. Next, we measure VR traffic patterns,145

including frame size and data and packet rates under various146

settings, such as various resolution and encoding options.147

We alsomeasure several performancemetrics associated with148

the quality of experience, namely, frame rate, packet loss rate,149

and image quality under various configuration settings. Then,150

we conduct latency measurement studies and investigate the151

per-component latency under various settings. Furthermore,152

we perform rigorous experiments to study the impacts of153

latency and motion patterns on the black borders formed due154

to image reprojection and the overfilling technique used to155

eliminate these black borders.156

The main contributions of our work and the insights157

obtained from the experimental results are summarized as158

follows:159

• We prototype a testbed of a VR computation offload-160

ing system using the image reprojection and overfilling161

techniques to combat latency and black borders and to162

conduct experimental measurements based on real VR163

user motion data.164

• We investigate the benefits of VR offloading in terms165

of computational load and power consumption reduction166

compared to standalone operation, which shows that VR167

offloading can reduce computational load by up to 74%168

and power consumption by up to 27%.169

• We measure VR traffic patterns, quality metrics, and170

latency.We demonstrate that both the VR traffic patterns171

and quality are strongly affected by the encoder con-172

figuration. We also show that the encoding and decod-173

ing latencies predominate, while the network transport 174

latency is also not negligible. 175

• We study the impacts of latency and motion patterns 176

on the formation of black borders. Next, we show that 177

angular changes increase with increasing latency, lead- 178

ing to increasing black borders, and that overfilling suc- 179

cessfully reduces black borders at the cost of increasing 180

computational overhead with increasing latency. 181

The rest of this paper is organized as follows. Recent 182

studies related to edge-computing-assisted VR services are 183

reviewed and discussed in Section II. The testbed system used 184

for experiments andmeasurements is described in Section III. 185

Section IV reports the VR traffic pattern results. Sections VI 186

and VII present the quality and latency results, respectively. 187

Experimental results illustrating the influence of motion pat- 188

terns, the phenomenon of black borders, and the effect of 189

overfilling are provided in Section VIII, and the conclusion 190

is given in Section IX. 191

II. RELATED WORKS 192

A. CLOUD COMPUTING FOR GAMING AND VR 193

Cloud and edge computing has been extensively studied for a 194

wide range of tasks, such as big data processing [20], task 195

offloading for the Internet of Things (IoT) combined with 196

blockchain technology [21], [22], and offloading of gen- 197

eral tasks while leveraging between throughput and fairness 198

[23]. Another use case is gaming for providing high-quality 199

services with lightweight user-side computing [24]. Shar- 200

ing computing resources, such as CPU and GPU resources 201

between virtual machines for cloud gaming was discussed 202

in [25] and [26]. In addition, it has been demonstrated that a 203

cloud gaming platform can provide a 3D gaming experience 204

at an acceptable latency [27]. Interactive remote rendering 205

systems that have been proposed in the literature were sur- 206

veyed in [28]. 207

There have been several proposals aimed at reducing 208

latency in cloud gaming and VR. Outatime [29] predicts 209

future user actions and renders multiple frames for proba- 210

ble actions in the near future based on the user’s historical 211

and recent behavior. The side effects of prediction failures 212

are prevented by a process checkpoint and rollback service. 213

Furion [30], Kahawai [31] and Cloud Baking [32] distribute 214

the rendering loads between the server and the client to 215

reduce latency and save network bandwidth for streaming. 216

FlashBack [33] relies on an installed cache to store a set of 217

costly prerendered frames identified by camera poses. If a 218

user encounters a scene matching one of the cached frames, 219

the scene in the nearest-placed cache is retrieved to avoid the 220

rendering cost for that frame. 221

B. VR OFFLOADING 222

Offloading VR processing to a remote host and bandwidth- 223

efficient streaming of VR contents to user devices have been 224

studied mostly for 360-degree VR video [34]. To reduce the 225

heavy bandwidth consumption resulting from the provision 226
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of full-degree information, each picture frame of a 360 video227

can be spatially split into rectangular regions, called tiles in228

H.265 [35], and only a minimal subset of the tiles covering229

the user’s current viewpoint can be transferred by a VR video230

server [36], [37], [38], [39], [40]. Simultaneously, transfer-231

ring a low-resolution layer of the video for a wider area or for232

the entire area can also be considered [41], [42]. Moreover, a233

heuristic method of probabilistic viewpoint prediction using234

curve fitting was proposed in [43]. In [44], the probability235

distribution of the fixation-point prediction error was derived236

as a normal distribution under certain assumptions, and the237

region where the future viewpoint was likely to exist at238

a given confidence level was obtained in a closed form.239

Feng et al. [45] proposed adaptive user preference model-240

ing and word embedding to dynamically select the video241

viewpoint at runtime based on the user’s head orientation.242

Mehrabi et al. [46] proposed utilizing multiaccess edge com-243

puting to jointly optimize the tradeoff between the average244

video quality and delivery latency by controlling the amount245

and quality of the streamed content.246

Enhancing streaming protocols is another way to reduce247

the latency and bandwidth consumption of cloud VR. Adap-248

tive video streaming [47] is an application-layer stream-249

ing protocol for cloud gaming that exploits selective frame250

transmission (dropping low-weight frames) and forward251

error correction for high-weight frames (I and P frames).252

Shi et al. [48] designed a method of selecting key frames to253

be encoded at a high bit rate, while others are encoded at a254

low bit rate, thereby reducing resource consumption. A mul-255

tipath Transmission Control Protocol (TCP)-based stream-256

ing framework for 360-degree VR videos that dynamically257

selected the appropriate tile bit rate in accordance with the258

bandwidths and transmission delays of different subflows259

was proposed in [49]. Chen et al. [50] proposed a streaming260

framework for 3D assets in VR services based on user gaze261

behaviors.262

Some research works solved radio resource management263

problems for the offloading of VR services [51], [52], [53],264

[54]. Chen et al. [55] solved the resource management prob-265

lem for wireless VR in cellular networks by exploiting the266

potential spatial data correlations among users due to their267

engagement in the same VR environment to reduce the268

traffic loads in both the uplink and downlink directions.269

Guo et al. [54] solved a similar problem using distributed270

learning in millimeter wave (mmWave)-enabled wireless net-271

works with mobile edge computing. Dang and Peng [52]272

solved a joint radio communication, caching and computing273

decision problem to maximize the average delay tolerance274

at both mobile VR devices and fog access points. Huang275

and Zhang [56] proposed a multiuser medium access control276

(MAC) scheduling scheme with a low-complexity downlink277

user selection algorithm for VR services in a 5G system.278

C. WIRELESS VR279

There have been recent attempts to design communication280

and networking schemes for wireless VR in unlicensed spec-281

tra. Abari et al. [57] proposed MoVR to solve the signal 282

blocking problem in the 60-GHz band by reflecting signals 283

toward the user. Kim et al. [58] proposed a dynamic and 284

adaptive algorithm that could control the power allocation 285

in 60-GHz transceivers to achieve time-averaged energy effi- 286

ciency for VR data delivery while preserving queue stability. 287

In [59], the feasibility of wireless VR using WiGig was 288

examined through performance measurements and simula- 289

tion studies. In [60], the feasibility of wireless VR over Wi-Fi 290

was examined via testbed experiments, and the challenges 291

were discussed. Ahn et al. [61] proposed securing timely 292

transmission opportunities by using trigger-based transmis- 293

sion. Tan et al. [62] proposed several enhancement schemes 294

for the Wi-Fi MAC protocol to better support motion feed- 295

back for wireless VR, including prioritizing older motion 296

data, obtaining motion feedback using the reverse direction, 297

and limiting the aggregation size. Kim et al. [63] proposed 298

a motion-aware interplay mechanism for WiGig and Wi-Fi 299

to achieve higher perceived quality and connection reliabil- 300

ity. Considerations regarding the delivery of VR services 301

over cellular networks, such as 5G systems have also been 302

addressed. Elbamby et al. [16] discussed the challenges and 303

enablers for ultrareliable low-latency wireless VR, including 304

edge computing and proactive caching in mmWave cellular 305

networks. 306

D. VR STREAMING TESTBED 307

There have been a few testbed studies of VR offloading 308

and streaming. In [7], a VR streaming platform was pro- 309

totyped, and performance measurements were made. The 310

authors suggested optimizations for higher frame rates and 311

lower bandwidth consumption. In addition, they proposed a 312

dynamic transfer of small objects to the client device at run 313

time to provide shorter interaction latency. Rohloff et al. [17] 314

implemented an open-source framework with a customized 315

network stack to eliminate unnecessary memory operations 316

incurred by mismatching data formats in each layer. Further- 317

more, Xiao et al. [64] implemented a VR streaming frame- 318

work using Unreal Engine 4 and applied fixed-foveated 319

rendering technology. Through experimental results, they 320

showed that it reduces overall latency and increases the frame 321

rate. 322

However, these studies provided only brief and general per- 323

formance results. Moreover, no study has shown the impact 324

of latency on perceived quality in VR and the effect of 325

the overfilling technique for varying latency. Therefore, the 326

salient point of our work is an in-depth investigation of 327

the characteristics of VR offloading in various aspects, for 328

which a testbed of a VR computation offloading system using 329

the image reprojection and overfilling techniques is proto- 330

typed and the characteristics and performance benefits are 331

measured. 332

III. VR OFFLOADING SYSTEM TESTBED 333

The architectural components of our testbed system are dis- 334

played in Fig. 3. The upper part of the figure shows the 335
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FIGURE 3. Experimental VR offloading testbed system.

general experimental setup with all pieces of the hardware336

equipment used and their interconnections, whereas the bot-337

tom part depicts the data flow across the different components338

of the system. Unless specified otherwise, the host computer339

is equipped with an Intel Core i9-10900K CPU @ 3.7 GHz340

(10 cores), 32 GB of RAM running on a solid-state drive341

(SSD), Windows 10 and an NVIDIA graphics card (RTX342

3080) that is capable of hardware acceleration for video343

encoding. The rendering engine and encoder are set to gen-344

erate 60 frames per second, i.e., one frame every 16.7 ms.345

The host computer is connected to a wireless router using a346

Gigabit Ethernet connection. The client VR headset is the347

Oculus Quest and is connected to a wireless router via an348

IEEE 802.11ac Wi-Fi interface. It is located close to the349

router so that the highest link speed of the Wi-Fi interface350

is always used. The headset periodically sends the user’s351

latest pose information to the host computer at 60 Hz. The352

streaming protocol of VR frames (including audio data) is353

a custom-built protocol using the User Datagram Protocol354

(UDP) and that of the pose information is the TCP-based355

ZeroMQ messaging protocol [65].356

As illustrated in Fig. 4, the operational pipeline of the357

system begins with the user’s motion being sensed using358

built-in motion tracking sensors in the VR headset. The359

sensor data samples are forwarded to the pose estimation360

engine to determine the user’s current pose [66]. The pose361

data are then transmitted to the application server, based on362

which the server performs 3D simulation and renders a VR363

viewpoint image corresponding to the pose. The image output364

by the renderer is fed into a video encoder to be compressed365

prior to being transmitted back to the client headset. At the366

client headset, frame packets are received and assembled into367

frames. The frame data are then passed to the video decoder368

of the headset. After being decoded, the current frame image369

is read from the decoder’s output buffer and reprojected370

based on the latest pose information retrieved from the pose371

estimation engine. The reprojected image is then placed in the372

FIGURE 4. Operational pipeline of the VR streaming testbed system.

TABLE 1. Experimental setup.

frame buffer and is finally scanned out via the headset display 373

at the native refresh rate of the display. 374

IV. OFFLOADING EFFECTS IN TERMS OF 375

COMPUTATIONAL LOAD AND POWER CONSUMPTION 376

We present comparisons of the computational loads and 377

power consumption for two different operating modes of 378

the client when playing VR games, namely, the standalone 379

and offloading modes, which are also compared against 380

the idle state (no content being played). To evaluate the 381

computational and power performance of the two modes 382

on the same computing platform, a x86 single-board com- 383

puter (an Intel Z8350 Quad Core CPU operating at up to 384

1.92 GHz with 4 GB of RAM) is used. Three different games 385

(Armagetron Advanced [67], Great Power [68] and Roller 386

Coaster [69]) are used for experimentation. During gameplay, 387

the CPU and power metrics are logged by the HWiNFO diag- 388

nostic software tool [70] and a Wattman power meter [71], 389

respectively. 390

The experimental results in Fig. 5, presented in the form 391

of the cumulative distribution function (CDF) curves and the 392

corresponding average bar charts in Fig. 6 both show that the 393

offloading mode substantially reduces both CPU and power 394

resource consumption compared to the standalone mode. 395

Regardless of the played contents, the levels of dissipation of 396

CPU and power resources are lower in the offloading mode. 397

Fig. 6 shows that the offloading mode consumes from 23% 398
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FIGURE 5. CDFs of CPU load (top) and power consumption (bottom) for a
client device operating in standalone vs. offloading mode.

FIGURE 6. Mean values of CPU utilization (top) and power consumption
(bottom) for different games in different operating modes.

(Roller Coaster) to 74% (Armagetron) less CPU power and399

from 5% (Roller Coaster) to 27% (Armagetron) less battery400

power than the standalonemode for playing the same content.401

These gains suggest that the offloading mode is a promising402

tool for solving the CPU and the battery power problems of403

VR services. Notably, the CPU loads in the standalone mode404

show marked variations among the different games, as seen405

in Fig. 5, whereas the power consumption in the standalone406

mode is similar for all three games.407

V. VR STREAMING TRAFFIC PATTERNS408

We present observations of the characteristics of VR stream-409

ing traffic from the server to the client, including packet410

rates, bit rates and frame sizes. To evaluate traffic patterns411

in VR streaming, we play the Showdown VR demo [72]2412

2Results gathered from the ShowdownVR demo [72] and from the Acan’s
Call VR game [73] demonstrate quite similar patterns. Thus, only the results
for the Showdown VR demo are presented.

and observe the resulting patterns in the bandwidth being 413

consumed, the size of the video frames and the packet rate 414

during streaming. We conduct experiments under different 415

configurations in terms of the bit rate, the encoding standard 416

and the video resolution with which compression is applied 417

prior to streaming the content. The H.264 advanced video 418

coding and H.265 high efficiency video coding standards are 419

used for video compression, while 1, 30, and 100 Mbps are 420

selected as representative encoding bit rates. We consider 421

2K (2560 × 1440) and 4K (3840 × 2160) resolutions. The 422

primary goal of video encoding is to save as many bits 423

as possible relative to the original data while maintaining 424

acceptable quality. The method used for rate control plays a 425

vital role in establishing the tradeoff between the payload size 426

and the quality of the resulting video. Among the many rate 427

control methods available, we consider the constant bit rate 428

(CBR) mode and the constant quantization parameter (QP) 429

mode as one possible form of a variable bit rate mode in our 430

experiments. The metrics we obtain from the experiments to 431

characterize VR traffic patterns are listed below: 432

• Encoded frame size: This is the data size of each VR 433

frame after encoding, which is expressed as the number 434

of bytes. 435

• Bandwidth usage (data rate): This is the number of data 436

bytes streamed over the VR service connection per unit 437

time. It corresponds to the network bandwidth required 438

to transmit the VR video stream. 439

• Packet rate: This is the number of packets generated for 440

the VR video stream per unit time. 441

Fig. 7 displays the time evolution and CDFs of the encoded 442

frame sizes for the different codecs and for different bit rates 443

in the CBR mode. From these curves, we can see that the 444

applied bit rate for CBR encoding considerably affects the 445

encoded frame size, but the sizes of the produced frames also 446

show strong fluctuations over time. The fluctuation in the 447

frame sizes becomes more severe at 4K resolution. The CDFs 448

also show that the distribution of the frame sizes is more dis- 449

persed for a higher bit rate and a higher resolution. Moreover, 450

the results indicate that the frames generated by the H.264 451

encoder are slightly larger than those encoded with H.265, 452

a trend that is observed for both the 2K and 4K resolutions. 453

The bar charts in Fig. 8 illustrate a summary of the average 454

sizes of the frames generated under different configurations. 455

The findings demonstrate that the CBR mode is effective 456

in the average sense and that the resolution only minimally 457

affects the average frame size under a CBR configuration. 458

While H.264 tends to generate larger frames than H.265, the 459

difference is quite small. We observe that when the constant 460

QP mode is used for rate control, as seen in Fig. 9, lower QP 461

values result in larger frames, while the fluctuation trends are 462

similar for different QP values. 463

The experimental results therefore indicate that when more 464

bits are used for encoding, larger frames are produced, and the 465

graphics quality is consequently better at the expense of more 466

bandwidth being consumed. However, large QP values imply 467
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FIGURE 7. Frame size evolution and CDF curves for comparison of
compression at 2K (top) and 4K (bottom) resolutions under different
encoder and bit rate configurations.

FIGURE 8. Average frame size comparison between the H.264 (top) and
H.265 (bottom) encoders under different encoding bit rates and
resolution settings.

FIGURE 9. Comparison of frame sizes when the constant QP mode is
used to control the data rate and H.265 is used for encoding.

that more compression is applied, which leads to smaller468

frames and quality degradation. Moreover, it can also be469

seen that the H.265 encoder produces smaller frames than470

its H.264 counterpart, making it a better choice for efficient471

bandwidth utilization.472

FIGURE 10. Data rate comparisons when 4K VR videos are streamed after
compression using different configured bit rates and encoding standards
(top) and when the common codec H.265 is used to encode 2K and 4K
videos at 1 and 100 Mbps bit rates (bottom).

FIGURE 11. Average data rates when streaming VR contents at various
resolutions under different bit rates using H.264 (top) or H.265 (bottom)
for content compression.

Fig. 10 depicts the time evolution and the CDF curves 473

of the data rates when the VR streams are transmitted after 474

being encoded using various settings in terms of bit rate, 475

resolution and encoding standard. The average results are 476

given in Fig. 11. H.265 shows slightly lower bandwidth usage 477

than H.264 at 1 and 30 Mbps. However, the gap increases 478

substantially at 100 Mbps and 4K resolution, which is the 479

result of a reduced frame rate, as is shown in the next section. 480

When 4K videos are encoded at 1Mbps, they tend to consume 481

more bandwidth than videos at 2K resolution. 482

Fig. 12 reveals the general trend of the rate at which the 483

packets are transmitted from the server to the VR device 484

during streaming. It can be observed that the packet rate of 485

H.264 increases with an increase in resolution at 1Mbps even 486

though the configured rate is fixed at 1 Mbps. In comparison, 487

H.265 shows a much lower increase in the packet rate with 488

an increasing resolution. Meanwhile, the trends at 100 Mbps 489
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FIGURE 12. Packet rate statistics under different configurations in terms
of resolution and encoding standard when configured bit rates of 1 Mbps
(top) and 100 Mbps (bottom) are used.

are different. Both codecs show decreasing packet rates with490

increasing resolution. This is again attributed to a decreasing491

frame rate. H.265 shows a larger decrease than H.264 because492

it has a larger decrease in its frame rate.493

VI. VR STREAMING QUALITY OF EXPERIENCE494

The quality of experience for VR services is also affected495

by the quality of the graphics displayed to the user [18],496

[74]. To quantify the graphical quality of VR streaming,497

we consider the following metrics:498

• Frame rate: This is the number of VR frames received499

by the user device over the VR video stream, measured500

in frames per second (FPS). To measure the frame rate,501

the user device counts the total number of received VR502

frames during a play and divides it by the play time as503

follows:504

Rframe =
Nclient-received-frames

1tplaytime
. (1)505

VR content delivered at a sufficiently high frame rate506

is able to convince the user’s brain that the user is507

fully immersed in the virtual world [75], [76]. A typi-508

cal minimum target frame rate is 60 FPS, while 90 or509

120 FPS is preferred for higher immersion. We set the510

frame generation rate of the VR server to 60 FPS in our511

experiments.512

• Packet loss rate: Packet losses result in missing data in513

the corresponding VR frame. Large packet losses may514

produce visual artifacts in the decoded frames. If packet515

losses become excessive, decoding failure of the corre-516

sponding or consecutive VR frame(s) is also possible.517

• Image quality: We use the peak signal-to-noise ratio518

(PSNR) and the structural similarity index (SSIM) as519

metrics for evaluation. When conducting these experi-520

ments, we compare a minute-long segment of the orig-521

inal VR video content prior to compression with a522

compressed video of the same length as each is being523

FIGURE 13. Server (top) and client (bottom) frame rate statistics when
H.264 (left) and H.265 (right) are used at different resolutions and bit
rates for encoding.

streamed to the client under different settings. The met- 524

rics are measured using FFmpeg [77]. 525

A. FRAME RATE 526

Fig. 13 presents the frame rate statistics generated by the 527

server and is received by the client during streaming under 528

different settings in terms of resolution, encoding standard 529

and bit rate of encoding. It is clear from this figure that when 530

compression is performed using a bit rate of 1 Mbps, a frame 531

rate of 60 FPS is consistently achieved for both encoder types 532

at all resolutions and at both the client and server ends. For 533

2K and 4K resolutions, bit rate settings of 1 and 30 Mbps 534

result in frame rates of 60 FPS at the server and 59-60 FPS at 535

the client. At a bit rate of 100 Mbps, a frame rate of 59 FPS 536

is achieved at the server, but a slightly lower frame rate 537

of 58 FPS is observed on the client side. However, for 4K 538

resolution at 100 Mbps, the frame rate at the server drops 539

to 56 FPS for H.264 and 49 FPS for H.265. This is because the 540

processing overhead of encoding becomes excessive; thus, 541

the server fails to generate frames at the target frame rate. 542

In this case, H.265 has a lower frame rate than H.264 due to 543

its higher processing overhead and possible suboptimality of 544

the codec implementation. The client receives the data at a 545

frame rate that is 1 FPS lower than the generated frame rate 546

due to packet losses. 547

B. PACKET LOSS RATE 548

Fig. 14 shows the packet loss rates measured at the client. 549

As we use a higher bit rate and a higher resolution, the packet 550

loss rate generally increases. The packet loss rate is highest 551

at a bit rate of 100 Mbps compared to the other cases. It is 552

noted that packet losses mostly occur in the network buffers 553

when the number of packets exceeds the network buffer size. 554

At 100 Mbps, excessive data packets are generated, and thus, 555

some are dropped due to buffer overflow. In particular, the 556
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FIGURE 14. Average packet loss summary for VR streams encoded using
H.264 (left) and H.265 (right) at different resolutions and bit rates.

FIGURE 15. Comparison of VR image quality with varying bit rate in the
CBR mode.

packet loss rate of H.265 reaches approximately 1%. How-557

ever, such packet losses lead to a frame rate decrease of558

only 1 FPS relative to the generated frame rate, as seen in the559

previous subsection. The packet loss rate for H.265-encoded560

frames is not much different from that for frames encoded561

with H.264, especially for a bit rate of 100 Mbps.562

C. QUALITY ASSESSMENT METRICS563

The PSNR and SSIM evaluation results are presented in564

Fig. 15. These results show that the graphics quality improves565

in terms of both metrics when more bits are used to encode566

the VR video frames. When the bit rate is initially increased567

from 1 to 10 Mbps, both metrics improve considerably, while568

the slopes of increase in both metrics become less steep for569

further increases in the bit rate. It can also be observed that570

H.265 achieves higher PSNR and SSIM values overall than571

H.264 for the same bit rate. This can be attributed to the572

superior compression performance of H.265 given the same573

number of bits. We can therefore conclude that better VR574

image quality is attained by encoding streams using higher575

bit rates. However, encoding streams at higher bit rates also576

produces larger payloads. Thus, the optimal value of the bit577

rate should be chosen to strike a balance between acceptable578

perceived quality and an excessively large frame size.579

VII. LATENCY MEASUREMENTS580

In our experiments, we measure the total end-to-end latency581

and the latencies of the new components introduced by VR582

offloading, as defined below:583

• Total latency (1ttotal): the delay between the time when 584

the pose data are generated and sent by the client device 585

to the server (tpose-data) and the time when the corre- 586

spondingVR frame is sent to the display of the device for 587

presentation (tdisplay-buffer-in). The total latency of frame 588

i is given as follows: 589

1ttotal[i] = tdisplay-buffer-in[i]− tpose-data[i]. (2) 590

• Encoding latency (1tencoding): the time interval 591

between the time when a frame is read out from the 592

renderer and presented to the encoder (tencoder-in) and 593

the time when the video frame finishes being com- 594

pressed and is ready for packetization before transmis- 595

sion (tencoder-out). The encoding latency of frame i is 596

given as follows: 597

1tencoding[i] = tencoder-out[i]− tencoder-in[i]. (3) 598

• Transport latency (1ttransport): the delay between the 599

time when an encoded frame is sent from the application 600

layer of the computing host (tserver-app-out) and the time 601

when the frame is successfully received by the applica- 602

tion layer of the client device (tclient-app-in). The transport 603

latency of frame i is given as follows: 604

1ttransport[i] = tclient-app-in[i]− tserver-app-out[i]. (4) 605

• Decoding latency (1tdecoding): the delay between the 606

time when a frame is input to the decoder (tdecoder-in) 607

and the time when the corresponding decoded frame is 608

output by the decoder to be scanned out (tdecoder-out). The 609

decoding latency of frame i is given as follows: 610

1tdecoding[i] = tdecoder-out[i]− tdecoder-in[i]. (5) 611

We first present the time series evolution and CDF curves 612

showing the trends in the individual latency components and 613

the overall total latency in Fig. 16. The curves indicate that 614

the total latency is affected by the encoding bit rate and 615

the resolution. For the 4K resolution, the total latency is 616

approximately 50-60 ms for a bit rate of 1 Mbps but reaches 617

approximately 90 ms for a bit rate of 100 Mbps, peaking at 618

over 100 ms. It is also shown that H.264 has a lower total 619

latency than H.265. Moreover, when similar encoding bit 620

rates are used, the 2K resolution results in smaller delays 621

than the 4K. The causes of the above trends are explained in 622

terms of the encoding, decoding, and transport delays in the 623

following. 624

The CDF curves for the encoding and decoding laten- 625

cies under various configurations are presented in Fig. 17. 626

We observe from these curves that, at a similar encoding bit 627

rate, lower-resolution content is encoded and decoded with 628

lower delays than its higher-resolution counterparts. When 629

we keep the resolution fixed, we encounter lower delays for 630

compression and decompression when fewer bits are used 631

for encoding. H.265 consumes longer encoding and decoding 632

times than H.264 due to its heavier computation for obtaining 633

frames of reduced size with superior quality. 634
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FIGURE 16. System latency patterns under various encoding settings.
Trends for VR videos at 4K resolution (a, b) and when the same bit rate
(30 Mbps) is used for encoding (c, d)

FIGURE 17. CDF comparison of the encoding and decoding latencies
when a bit rate of 30 Mbps is used (top), 4K content is streamed (middle),
and the H.265 codec is used (bottom), along with various indicated
encoding configurations.

The transport latency tends to only be affected by the bit635

rate settings, as depicted in Fig. 18. As seen in (a), at a bit636

rate of 30 Mbps, the transport latency is mostly lower than637

FIGURE 18. CDF curves of transport latency under different encoding
parameters.

10 ms for both 2K and 4K video frames encoded with both 638

the H.264 and H.265 encoders. However, as seen in (b) and 639

(c), for a bit rate of 100 Mbps, most latency samples range 640

between 10 and 20 ms regardless of the resolution and the 641

encoder. This implies that when we use a higher bit rate for 642

better image quality, the transport latency becomes a factor 643

influencing the total latency. 644

The contribution of each latency component to the total 645

latency is indicated in Fig. 19. From these bar charts, we can 646

see that the largest delay originates from the decoding com- 647

ponent for both low- and high-resolution contents and at all 648

encoding bit rates, except in the case of H.265 encoding 649

at 100 Mbps. For the 1K resolution, the encoding and trans- 650

port latencies are comparable to each other, but the transport 651

latency increases slightly at a rate of 100 Mbps. For the 4K 652

resolution, however, the transport latency remains the same 653

as in the 1K case, but the encoding latency tends to increase 654

considerably for both encoders and all data rates. 655

We observe varying patterns in the encoding latency 656

between the low- and high-resolution cases, whereas the dif- 657

ference in the transport latency between the two resolutions 658

is insignificant. At a high resolution, the encoding latency 659

makes the second highest contribution, while the transport 660

latency makes the lowest. In the case of low-resolution con- 661

tent, the encoding latency makes the lowest contribution 662

of all. We further note from Fig. 19 that the average sys- 663

tem latency generally increases with both the resolution and 664

encoding bit rate. Additionally, H.264 achieves lower latency 665

than H.265. 666

We also provide the latency results of two different host 667

and VR headset hardware platforms in Fig. 20. We denote 668

the host platform used throughout the paper as PC1 (detailed 669

in Section III) and another platform (Intel i7-9750H, 32 GB 670
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FIGURE 19. Contributions of individual latency components to the total
latency when 1K and 4K contents are encoded using different bit rates
(left bar: 1 Mbps, middle bar: 30 Mbps, right bar: 100 Mbps).

FIGURE 20. Latency comparison between different host and headset
hardware platforms.

RAM, RTX 2060 graphics card) as PC2. The results are671

normalized by those of PC1. The results show that PC2 has672

a slightly higher encoding latency, though only by 2%. The673

latency comparison (normalized by the results of Quest 1)674

between two different headset models, Quests 1 and 2, also675

shows comparable values between them. These results imply676

that the VR processing of our testbed is not highly affected by677

the performance differences of the considered host and VR678

headset hardware platforms in terms of latency. For a better679

understanding of the impact of hardware performance on VR680

processing, a wider range of hardware platforms need to be681

considered, which remains for future work.682

VIII. ANGULAR CHANGES, BLACK BORDERS AND683

OVERFILLING684

In this section, we investigate the impacts of the total685

latency on angular changes, the formation of black borders686

after reprojection, and overfilling to solve these problems.687

In experiments, to emulate the overall latency while repro-688

ducing the same motion patterns, we record user motion data689

FIGURE 21. Angular changes in 3D space at various latency levels.

FIGURE 22. Time evolution patterns of angular changes at various latency
levels.

FIGURE 23. CDFs of angular changes at various latency levels.

in a trace file and apply a specified latency to the file. Then, 690

the motion data in the file are streamed to our VR system. 691

A. LATENCY VS. ANGULAR CHANGES 692

The angular change between the input motion applied for 693

rendering and the input motion at the time of reprojection 694
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FIGURE 24. Left- and right-eye images of the same VR frame without and with overfilling for various latency values, exhibiting different
levels of black borders.

FIGURE 25. CDFs of the black border area for different levels of overfilling applied in various latency cases.

FIGURE 26. Scatter plots of the RMS angular changes vs. black border areas for different levels of overfilling.

strongly affects the quality of a reprojected VR frame. The695

reprojected VR frame is perceived to be more accurate when696

the difference is smaller, better approximating the actual situ-697

ation for certain acceptable error ranges [78]. The difference698

is what ultimately determines the amount of black border area699

produced, as is detailed in the next subsection. As observed700

in the results presented below, the angular change increases701

as the latency increases. Fig. 21 tracks angular changes for702

different amounts of latency. As depicted in this figure, the703

angular changes extend farther as the latency increases. The 704

time evolution curves of the yaw, pitch, and roll angles 705

and their root mean square (RMS) values in Fig. 22 show 706

that the angular changes are minimal at a latency of 50 ms 707

but gradually increase with an increasing latency, reaching 708

their highest values at 500 ms. The angular changes in the 709

yaw coordinate are the greatest, reaching over 20 degrees, 710

while those in the pitch and roll directions are mostly within 711

5 degrees. This is further demonstrated by the CDF curves of 712
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FIGURE 27. Mean black border areas at different latency levels.

the angular changes shown in Fig. 23. If the angular change713

becomes too large due to high latency and fast user head714

motion, the difference between the rendered view and the715

actual view is considerable, resulting in the formation of716

black borders and consequent deterioration in the viewer’s717

quality of experience. To correct such errors and repair the718

resulting black borders, a larger image can be rendered using719

a technique called overfilling, as detailed in a later subsection.720

B. LATENCY VS. BLACK BORDERS721

We perform experiments to investigate the effect of the over-722

all latency on the amount of black border area produced.723

To calculate the black border area (Rblack-border), the VR sys-724

tem captures a sequence of frame images for a given motion725

trace. From the obtained images, the number of black pixels726

(Nblack-border-pixels) is counted and divided by the number of727

field-of-view (FOV) pixels (the number of pixels that would728

fill the screen at zero latency, (NFOV-pixels)) to produce the729

black border area as a percentage value as given below for730

VR frame i:731

Rblack-border[i] =
Nblack-border-pixels[i]

NFOV-pixels
. (6)732

The obtained black border area can range from 0% (no black733

borders) to 100% (all pixels are black).734

Black borders in the same VR reference frame (left- and735

right-eye images for each frame) under different levels of736

latency are displayed in Fig. 24. In this figure, we can see737

that noticeable black borders already appear at the left and738

bottom sides of the frame at 50 ms of latency, and the black739

border area gradually increases to reach a substantial amount740

when the latency is 300 ms.741

Such trends are quantitatively captured in the CDFs of the742

black border area shown in Fig. 25(a) for different latency743

cases. In this figure, there is a nonzero black border area in744

the no overfilling case for all VR frames even at 50ms latency.745

Moreover, the black border area tends to increase with an746

increasing latency. Even for a latency of 50 ms, it can be747

above 20%. For a latency of 300 ms, the average black border748

area is approximately 12%, but it reaches up to 45%, meaning 749

that almost half of the screen may appear black. The scatter 750

plot of the RMS angular change vs. the black border area 751

in Fig. 26(a) also shows that the black border area is highly 752

correlated with the angular change. 753

C. OVERFILLING 754

Fig. 24 also presents VR image snapshots obtained when 755

more pixels than only those in the FOV are rendered. For 756

example, 1.4× overfilling denotes the case where 40% more 757

pixels than those in the FOV are rendered around the image. 758

These snapshots show that 1.2× overfilling eliminates black 759

borders for a latency of up to 50 ms. However, even with 760

this level of overfilling, black borders remain at higher 761

latency due to the excessive size of the black borders. For 762

200 and 300 ms of latency, 1.4× overfilling still leaves small 763

black borders. Finally, 1.6× overfilling completely elimi- 764

nates black borders in all latency cases. 765

The CDF curves of the black border area for different 766

latency cases are illustrated in Fig. 25. While black borders 767

are seen for all frames in the case of no overfilling, 1.2× 768

overfilling considerably reduces the number of frames with 769

black borders; only 20% of frames have black borders with 770

1.2× overfilling at 50ms of latency. However, evenwith 1.2× 771

overfilling, 50% of frames still have black borders at 300 ms 772

of latency. This is reduced to 30%with 1.4× overfilling and to 773

20%with 1.6× overfilling, implying that although overfilling 774

is effective in mitigating the black border problem, a higher 775

level of overfilling is needed at higher latency. The scatter 776

plots of the RMS angular changes vs. the black border areas 777

in Fig. 26 show that the slope of the black border area with 778

increasing angular change becomes less steep at a higher level 779

of overfilling. That is, for an equal amount of angular change, 780

a higher level of overfilling results in smaller black borders. 781

This trend is also confirmed by the mean black border areas 782

displayed in Fig. 27. This figure also shows that although the 783

gain from overfilling is higher at a low latency, overfilling 784

is still effective at a high latency. For black border repair, 785

it is better to use the highest degree of overfilling that is 786

feasible. However, rendering more pixels will incur higher 787

computational loads. A tradeoff exists between the severity 788

of the black border phenomenon and the computational load. 789

Therefore, it is desirable to use overfilling to achieve an 790

effective quality increase to an affordable degree within the 791

given budget of computational power. It is also shown that the 792

black border area still increases with an increasing latency for 793

all overfilling cases. 794

IX. CONCLUSION 795

In this work, we investigated various characteristics of VR 796

computation offloading through comprehensive experiments 797

based on a prototyped testbed for edge-assisted VR pro- 798

cessing and streaming. First, we investigated the benefits of 799

VR offloading in terms of computational load and power 800

consumption reduction for the client device compared to 801

standalone operation. Next, we measured VR traffic patterns 802
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in terms of frame size, data and packet rates under various res-803

olutions and encoding options. We also measure several per-804

formance metrics associated with quality of experience, such805

as frame rate, packet loss rate, and image quality, under var-806

ious configuration settings. Then, we presented latency mea-807

surement studies and investigate the per-component latency808

under various settings. Furthermore, we studied the impacts809

of latency and motion patterns on the formation of black810

borders resulting from image reprojection and the overfilling811

technique for correcting these black borders. Based on the812

experimental results, we revealed that VR offloading consid-813

erably reduces computational load and power consumption814

compared to standalone operation, VR traffic patterns, quality815

and latency are strongly affected by the encoding configura-816

tion, the extent of black border formation increases with an817

increasing latency, and that overfilling successfully reduces818

black borders but at the cost of increasing computational819

overhead with an increasing latency.820

The experimental study conducted in this paper has several821

limitations: (1) only a single VR client at a time is consid-822

ered, (2) a limited set of hardware platforms is considered,823

(3) wireless connections are not diverse, and (4) positional824

tracking is not considered. Therefore, reliving the abovemen-825

tioned limitations, i.e., studying the characteristics of edge826

VR in more diverse experimental environments, including827

multiple VR clients at the same time, diverse hosts (e.g.,828

commercial edge and cloud services) and client platforms,829

wireless connections, such as LTE and 5G NR, and positional830

tracking remains for future work. The optimization of the831

VR streaming framework and its communication protocols832

to minimize the total latency is still an important issue to833

explore. A holistic/joint design approach of VR content cre-834

ation, communication protocols and the radio resource man-835

agement of VR client links will maximize the efficiency of836

edge VR, and thus, is a subject for future research. Moreover,837

extending the service platform for augmented and mixed838

reality will be another important direction for future work.839
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