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ABSTRACT Offloading heavy virtual reality (VR) computational operations to a network edge computation
entity is receiving increasing attention as a tool to wirelessly and energy efficiently provide low-end client
devices with high-quality and immersive interactive VR services anytime and anywhere across the globe.
In this work, we aim to provide an understanding of various characteristics of VR computation offloading
through comprehensive experiments conducted using a prototype testbed for edge-assisted VR processing
and streaming. First, we investigate the benefits of VR offloading in terms of computational load and power
consumption reduction for a client device compared to standalone operation. Next, we measure VR traffic
patterns, including frame size and data and packet rates with various settings, such as different resolution and
encoding options. We also measure several performance metrics associated with the quality of experience,
namely, frame rate, packet loss rate, and image quality, with various configuration settings. Then, we present
latency measurement studies and investigate per-component latency with various settings. Furthermore,
we report the rigorous experiments performed to study the impacts of latency and motion patterns on the
black borders formed due to image reprojection and the overfilling technique used to eliminate these black
borders.

INDEX TERMS Virtual reality, edge computing, offloading, VR streaming, latency, overfilling.

I. INTRODUCTION
Virtual reality (VR), a three-dimensional (3D) environment

are used to capture a natural scene to produce a panoramic
video resembling that presented by a conventional TV system

allowing a user to enter and interact with alternate realities [1]
that are rendered through the utilization of audio-visual com-
ponents coupled with other sensory devices [2], can exist
in various forms. Such forms include interactive environ-
ments, omnidirectional video, or a hybrid of the two forms
combining computer-generated scenes with natural scenes.
An interactive environment is a form of VR where data mod-
els and algorithms are utilized to generate a synthetic scene
in real-time in accordance with the user’s head pose and other
input triggers. Omnidirectional video, however, is a form of
VR wherein a special camera and several microphone devices
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but having an unrestricted viewing arc.

To realize an interactive VR environment offering com-
plete user immersion, a high-quality visual experience and
seamless navigation in the virtual world are required to mimic
the user’s experience of the real world [3]. These require-
ments are fulfilled using dedicated graphics cards equipped
with abundant GPU cores to render the graphics. Although
VR technology is being rapidly adopted in the consumer
domain, a number of obstacles still hinder its massive-scale
overall adoption. The high costs of the computing and graph-
ics processing hardware, low visual quality and constrained
user mobility are among the notable bottlenecks [4]. The
conventional usage of tethered VR, where a wire harness
or a direct wireless link (e.g., VIVE wireless adapter [5])
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connects the VR headset to a local PC, makes the approach
cumbersome to set up, is relatively expensive and is not cost
effective for single-use scenarios. The costs arise from the
high price of VR headsets (both PC-based and console-based)
in addition to the expensive high-end PC needed to play back
the interactive content. Consequently, the audience is limited
to only those in ownership of suitable platforms. Moreover,
the wire harnessing a tethered VR headset to the process-
ing PC restricts the user’s freedom of movement, and thus,
impacts usability. In contrast, standalone (untethered) VR
headsets make use of built-in processing units, and thus, offer
greater convenience and portability of VR services. However,
they require additional local processing capability and battery
power to render VR content of high quality; otherwise, only
limited-quality VR content is available on these devices.

As a result of this, an approach for offloading all or most
VR computational operations to one or more remote GPUs
of a network edge computation entity, as depicted in Fig. 1,
which we call edge VR in this paper, is receiving increasing
attention.! Offloading heavy VR computations to an edge
computing entity possessing sufficient computational power
reduces the need for local deployment of a powerful PC. This
offers a promising approach for overcoming the highlighted
obstacles hindering the large-scale adoption of VR by a larger
audience wirelessly connected to the internet and allowing
them to experience immersive services from their desired
devices anytime and anywhere across the globe [4], [6]. The
abundant processing and storage resources found at the edge
can make high-quality and pay-as-you-go VR services avail-
able to a large group of online VR users. With the edge pro-
viding the necessary resources to execute and render scenes,
the client headsets are left with only the task of displaying
the content streamed over wireless networks. This makes it
possible to manufacture lighter and cheaper thin client VR
headsets that are more affordable and sustainable. Higher
user mobility is facilitated, and with only light operations
performed by the headsets, their battery life is also expected
to be extended.

However, the offloading of VR computations to the edge is
susceptible to latency, which presents a major challenge [7],
mainly due to the transmission of VR traffic over bandwidth-
limited networks. Although new wireless technologies, such
as fifth-generation (5G) New Radio (NR) [8] and IEEE
802.11be [9] aim to increase bandwidth and reduce latency,
the large volume of raw VR display data resulting from its
ultrahigh resolution is still not fully compatible with the net-
work bandwidths of present and near-future wireless network
and internet systems. This situation inevitably necessitates
the encoding (compression) and decoding (decompression)

IThe difference between wirelessly tethered VR and edge VR is the
capability of a networked connection between a VR headset and a computing
entity. Through a networked connection, edge VR is immediately applicable
to various network scenarios, allowing a VR headset to connect to the edge
anywhere anytime under Wi-Fi or cellular coverage and the edge located
anywhere in the network. In contrast, wirelessly tethered VR only provides a
direct connection between a VR headset and a local PC on a room scale and
is not immediately extensible to network scenarios.
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of the raw VR display data on the edge and client sides,
respectively, incurring more latency in addition to the net-
work transport latency. As the latency increases, the incon-
sistency between the rendered VR image and the user’s view-
point at the time of scan-out also increases. A large mismatch
leads to unpleasant physiological symptoms due to the lag
between the sensory inputs and the visual and vestibular sys-
tems, commonly described as motion sickness, and is likely to
cause the user to ultimately quit using the service. Up to 20 ms
of motion-to-photon latency is widely considered acceptable
for VR applications, as this level of mismatch is undetectable
by the user, and thus, does not cause motion sickness [7],
[10]. Moreover, other forms of discomfort, such as unsat-
isfactory image clarity, image smearing, and dizziness, can
also be experienced in high-latency VR environments [11].
The image reprojection technique (also called time warp-
ing) [12], [13], [14] is essential for minimizing the motion-
to-photon latency to remedy the motion sickness problem in
VR. As illustrated in Fig. 2, in this technique, a rendered
frame is reprojected before being scanned out to reflect the
movement in the head pose that occurs after the scene is
rendered [15]. With image reprojection, however, if the end-
to-end latency level is excessive, a large number of black
borders will be produced after reprojection, disrupting user
immersion [2].
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To achieve smooth and comfortable immersion in VR,
good platform designs are vital for meeting a range of appli-
cation requirements at acceptable levels of latency [16]. This
first requires a deep quantitative understanding of the charac-
teristics of VR offloading systems. However, there has been
no in-depth empirical study of edge VR in the literature.
In addition, the expected benefits of edge VR also need to
be proven and measured through empirical studies. There
have been a few testbed studies of VR offloading and stream-
ing [7], [17], but they only provided brief results focusing on
overall performance. Moreover, no study has demonstrated
the impact of latency on perceived quality in VR. Empirical
studies on cloud gaming [18], [19] have not considered VR
applications, and thus, do not provide VR-specific insights.
Therefore, comprehensive empirical studies spanning a range
of VR-specific application requirements for interactive VR
environments are needed to gain an understanding and sup-
port the design of edge VR systems.

In this work, we aim to provide an understanding of
VR computation offloading through comprehensive testbed
experiments addressing various aspects of the situation. For
the experiments, we prototype a testbed of a VR computa-
tion offloading system using existing technologies and use
it to conduct measurement studies. First, we investigate the
benefits of VR offloading in terms of computational load and
power consumption reduction for a client device compared to
standalone operation. Next, we measure VR traffic patterns,
including frame size and data and packet rates under various
settings, such as various resolution and encoding options.
We also measure several performance metrics associated with
the quality of experience, namely, frame rate, packet loss rate,
and image quality under various configuration settings. Then,
we conduct latency measurement studies and investigate the
per-component latency under various settings. Furthermore,
we perform rigorous experiments to study the impacts of
latency and motion patterns on the black borders formed due
to image reprojection and the overfilling technique used to
eliminate these black borders.

The main contributions of our work and the insights
obtained from the experimental results are summarized as
follows:

« We prototype a testbed of a VR computation offload-
ing system using the image reprojection and overfilling
techniques to combat latency and black borders and to
conduct experimental measurements based on real VR
user motion data.

« We investigate the benefits of VR offloading in terms
of computational load and power consumption reduction
compared to standalone operation, which shows that VR
offloading can reduce computational load by up to 74%
and power consumption by up to 27%.

o We measure VR traffic patterns, quality metrics, and
latency. We demonstrate that both the VR traffic patterns
and quality are strongly affected by the encoder con-
figuration. We also show that the encoding and decod-
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ing latencies predominate, while the network transport
latency is also not negligible.

o We study the impacts of latency and motion patterns
on the formation of black borders. Next, we show that
angular changes increase with increasing latency, lead-
ing to increasing black borders, and that overfilling suc-
cessfully reduces black borders at the cost of increasing
computational overhead with increasing latency.

The rest of this paper is organized as follows. Recent
studies related to edge-computing-assisted VR services are
reviewed and discussed in Section II. The testbed system used
for experiments and measurements is described in Section I11.
Section IV reports the VR traffic pattern results. Sections VI
and VII present the quality and latency results, respectively.
Experimental results illustrating the influence of motion pat-
terns, the phenomenon of black borders, and the effect of
overfilling are provided in Section VIII, and the conclusion
is given in Section IX.

Il. RELATED WORKS

A. CLOUD COMPUTING FOR GAMING AND VR

Cloud and edge computing has been extensively studied for a
wide range of tasks, such as big data processing [20], task
offloading for the Internet of Things (IoT) combined with
blockchain technology [21], [22], and offloading of gen-
eral tasks while leveraging between throughput and fairness
[23]. Another use case is gaming for providing high-quality
services with lightweight user-side computing [24]. Shar-
ing computing resources, such as CPU and GPU resources
between virtual machines for cloud gaming was discussed
in [25] and [26]. In addition, it has been demonstrated that a
cloud gaming platform can provide a 3D gaming experience
at an acceptable latency [27]. Interactive remote rendering
systems that have been proposed in the literature were sur-
veyed in [28].

There have been several proposals aimed at reducing
latency in cloud gaming and VR. Outatime [29] predicts
future user actions and renders multiple frames for proba-
ble actions in the near future based on the user’s historical
and recent behavior. The side effects of prediction failures
are prevented by a process checkpoint and rollback service.
Furion [30], Kahawai [31] and Cloud Baking [32] distribute
the rendering loads between the server and the client to
reduce latency and save network bandwidth for streaming.
FlashBack [33] relies on an installed cache to store a set of
costly prerendered frames identified by camera poses. If a
user encounters a scene matching one of the cached frames,
the scene in the nearest-placed cache is retrieved to avoid the
rendering cost for that frame.

B. VR OFFLOADING

Offloading VR processing to a remote host and bandwidth-
efficient streaming of VR contents to user devices have been
studied mostly for 360-degree VR video [34]. To reduce the
heavy bandwidth consumption resulting from the provision
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of full-degree information, each picture frame of a 360 video
can be spatially split into rectangular regions, called files in
H.265 [35], and only a minimal subset of the tiles covering
the user’s current viewpoint can be transferred by a VR video
server [36], [37], [38], [39], [40]. Simultaneously, transfer-
ring a low-resolution layer of the video for a wider area or for
the entire area can also be considered [41], [42]. Moreover, a
heuristic method of probabilistic viewpoint prediction using
curve fitting was proposed in [43]. In [44], the probability
distribution of the fixation-point prediction error was derived
as a normal distribution under certain assumptions, and the
region where the future viewpoint was likely to exist at
a given confidence level was obtained in a closed form.
Feng et al. [45] proposed adaptive user preference model-
ing and word embedding to dynamically select the video
viewpoint at runtime based on the user’s head orientation.
Mehrabi et al. [46] proposed utilizing multiaccess edge com-
puting to jointly optimize the tradeoff between the average
video quality and delivery latency by controlling the amount
and quality of the streamed content.

Enhancing streaming protocols is another way to reduce
the latency and bandwidth consumption of cloud VR. Adap-
tive video streaming [47] is an application-layer stream-
ing protocol for cloud gaming that exploits selective frame
transmission (dropping low-weight frames) and forward
error correction for high-weight frames (I and P frames).
Shi et al. [48] designed a method of selecting key frames to
be encoded at a high bit rate, while others are encoded at a
low bit rate, thereby reducing resource consumption. A mul-
tipath Transmission Control Protocol (TCP)-based stream-
ing framework for 360-degree VR videos that dynamically
selected the appropriate tile bit rate in accordance with the
bandwidths and transmission delays of different subflows
was proposed in [49]. Chen et al. [50] proposed a streaming
framework for 3D assets in VR services based on user gaze
behaviors.

Some research works solved radio resource management
problems for the offloading of VR services [51], [52], [53],
[54]. Chen et al. [55] solved the resource management prob-
lem for wireless VR in cellular networks by exploiting the
potential spatial data correlations among users due to their
engagement in the same VR environment to reduce the
traffic loads in both the uplink and downlink directions.
Guo et al. [54] solved a similar problem using distributed
learning in millimeter wave (mmWave)-enabled wireless net-
works with mobile edge computing. Dang and Peng [52]
solved a joint radio communication, caching and computing
decision problem to maximize the average delay tolerance
at both mobile VR devices and fog access points. Huang
and Zhang [56] proposed a multiuser medium access control
(MAC) scheduling scheme with a low-complexity downlink
user selection algorithm for VR services in a 5G system.

C. WIRELESS VR
There have been recent attempts to design communication
and networking schemes for wireless VR in unlicensed spec-
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tra. Abari et al. [57] proposed MoVR to solve the signal
blocking problem in the 60-GHz band by reflecting signals
toward the user. Kim et al. [58] proposed a dynamic and
adaptive algorithm that could control the power allocation
in 60-GHz transceivers to achieve time-averaged energy effi-
ciency for VR data delivery while preserving queue stability.
In [59], the feasibility of wireless VR using WiGig was
examined through performance measurements and simula-
tion studies. In [60], the feasibility of wireless VR over Wi-Fi
was examined via testbed experiments, and the challenges
were discussed. Ahn ef al. [61] proposed securing timely
transmission opportunities by using trigger-based transmis-
sion. Tan et al. [62] proposed several enhancement schemes
for the Wi-Fi MAC protocol to better support motion feed-
back for wireless VR, including prioritizing older motion
data, obtaining motion feedback using the reverse direction,
and limiting the aggregation size. Kim et al. [63] proposed
a motion-aware interplay mechanism for WiGig and Wi-Fi
to achieve higher perceived quality and connection reliabil-
ity. Considerations regarding the delivery of VR services
over cellular networks, such as 5G systems have also been
addressed. Elbamby er al. [16] discussed the challenges and
enablers for ultrareliable low-latency wireless VR, including
edge computing and proactive caching in mmWave cellular
networks.

D. VR STREAMING TESTBED

There have been a few testbed studies of VR offloading
and streaming. In [7], a VR streaming platform was pro-
totyped, and performance measurements were made. The
authors suggested optimizations for higher frame rates and
lower bandwidth consumption. In addition, they proposed a
dynamic transfer of small objects to the client device at run
time to provide shorter interaction latency. Rohloff ez al. [17]
implemented an open-source framework with a customized
network stack to eliminate unnecessary memory operations
incurred by mismatching data formats in each layer. Further-
more, Xiao et al. [64] implemented a VR streaming frame-
work using Unreal Engine 4 and applied fixed-foveated
rendering technology. Through experimental results, they
showed that it reduces overall latency and increases the frame
rate.

However, these studies provided only brief and general per-
formance results. Moreover, no study has shown the impact
of latency on perceived quality in VR and the effect of
the overfilling technique for varying latency. Therefore, the
salient point of our work is an in-depth investigation of
the characteristics of VR offloading in various aspects, for
which a testbed of a VR computation offloading system using
the image reprojection and overfilling techniques is proto-
typed and the characteristics and performance benefits are
measured.

lll. VR OFFLOADING SYSTEM TESTBED
The architectural components of our testbed system are dis-
played in Fig. 3. The upper part of the figure shows the
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Experimental Data Flow

general experimental setup with all pieces of the hardware
equipment used and their interconnections, whereas the bot-
tom part depicts the data flow across the different components
of the system. Unless specified otherwise, the host computer
is equipped with an Intel Core i9-10900K CPU @ 3.7 GHz
(10 cores), 32 GB of RAM running on a solid-state drive
(SSD), Windows 10 and an NVIDIA graphics card (RTX
3080) that is capable of hardware acceleration for video
encoding. The rendering engine and encoder are set to gen-
erate 60 frames per second, i.e., one frame every 16.7 ms.
The host computer is connected to a wireless router using a
Gigabit Ethernet connection. The client VR headset is the
Oculus Quest and is connected to a wireless router via an
IEEE 802.11ac Wi-Fi interface. It is located close to the
router so that the highest link speed of the Wi-Fi interface
is always used. The headset periodically sends the user’s
latest pose information to the host computer at 60 Hz. The
streaming protocol of VR frames (including audio data) is
a custom-built protocol using the User Datagram Protocol
(UDP) and that of the pose information is the TCP-based
ZeroMQ messaging protocol [65].

As illustrated in Fig. 4, the operational pipeline of the
system begins with the user’s motion being sensed using
built-in motion tracking sensors in the VR headset. The
sensor data samples are forwarded to the pose estimation
engine to determine the user’s current pose [66]. The pose
data are then transmitted to the application server, based on
which the server performs 3D simulation and renders a VR
viewpoint image corresponding to the pose. The image output
by the renderer is fed into a video encoder to be compressed
prior to being transmitted back to the client headset. At the
client headset, frame packets are received and assembled into
frames. The frame data are then passed to the video decoder
of the headset. After being decoded, the current frame image
is read from the decoder’s output buffer and reprojected
based on the latest pose information retrieved from the pose
estimation engine. The reprojected image is then placed in the
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TABLE 1. Experimental setup.

[ Item [

Host hardware
specification
VR image resolution
Encoding codec
Bit rate of encoding
Quantization parameter

Configuration |

19-10900K, 32 GB RAM, RTX 3080
(PC2:17-9750H, 32 GB RAM, RTX 2060)
[1, 2, 4]K pixels
[H.264, H.265]

[1, 30, 100] Mbps
[18, 28, 35]

VR headset Oculus Quest 1 (and Quest 2)
Headset connection IEEE 802.11ac
Frame rate 60 Hz
Head pose reporting rate 60 Hz

Induced latency
Overfilling factor

[50, 100, 200, 300] ms
[1,1.2,1.4,1.6]

frame buffer and is finally scanned out via the headset display
at the native refresh rate of the display.

IV. OFFLOADING EFFECTS IN TERMS OF
COMPUTATIONAL LOAD AND POWER CONSUMPTION
We present comparisons of the computational loads and
power consumption for two different operating modes of
the client when playing VR games, namely, the standalone
and offloading modes, which are also compared against
the idle state (no content being played). To evaluate the
computational and power performance of the two modes
on the same computing platform, a x86 single-board com-
puter (an Intel Z8350 Quad Core CPU operating at up to
1.92 GHz with 4 GB of RAM) is used. Three different games
(Armagetron Advanced [67], Great Power [68] and Roller
Coaster [69]) are used for experimentation. During gameplay,
the CPU and power metrics are logged by the HWiNFO diag-
nostic software tool [70] and a Wattman power meter [71],
respectively.

The experimental results in Fig. 5, presented in the form
of the cumulative distribution function (CDF) curves and the
corresponding average bar charts in Fig. 6 both show that the
offloading mode substantially reduces both CPU and power
resource consumption compared to the standalone mode.
Regardless of the played contents, the levels of dissipation of
CPU and power resources are lower in the offloading mode.
Fig. 6 shows that the offloading mode consumes from 23%
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(Roller Coaster) to 74% (Armagetron) less CPU power and
from 5% (Roller Coaster) to 27% (Armagetron) less battery
power than the standalone mode for playing the same content.
These gains suggest that the offloading mode is a promising
tool for solving the CPU and the battery power problems of
VR services. Notably, the CPU loads in the standalone mode
show marked variations among the different games, as seen
in Fig. 5, whereas the power consumption in the standalone
mode is similar for all three games.

V. VR STREAMING TRAFFIC PATTERNS

We present observations of the characteristics of VR stream-
ing traffic from the server to the client, including packet
rates, bit rates and frame sizes. To evaluate traffic patterns
in VR streaming, we play the Showdown VR demo [72]?

2Results gathered from the Showdown VR demo [72] and from the Acan’s
Call VR game [73] demonstrate quite similar patterns. Thus, only the results
for the Showdown VR demo are presented.
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and observe the resulting patterns in the bandwidth being
consumed, the size of the video frames and the packet rate
during streaming. We conduct experiments under different
configurations in terms of the bit rate, the encoding standard
and the video resolution with which compression is applied
prior to streaming the content. The H.264 advanced video
coding and H.265 high efficiency video coding standards are
used for video compression, while 1, 30, and 100 Mbps are
selected as representative encoding bit rates. We consider
2K (2560 x 1440) and 4K (3840 x 2160) resolutions. The
primary goal of video encoding is to save as many bits
as possible relative to the original data while maintaining
acceptable quality. The method used for rate control plays a
vital role in establishing the tradeoff between the payload size
and the quality of the resulting video. Among the many rate
control methods available, we consider the constant bit rate
(CBR) mode and the constant quantization parameter (QP)
mode as one possible form of a variable bit rate mode in our
experiments. The metrics we obtain from the experiments to
characterize VR traffic patterns are listed below:

o Encoded frame size: This is the data size of each VR
frame after encoding, which is expressed as the number
of bytes.

o Bandwidth usage (data rate): This is the number of data
bytes streamed over the VR service connection per unit
time. It corresponds to the network bandwidth required
to transmit the VR video stream.

o Packet rate: This is the number of packets generated for
the VR video stream per unit time.

Fig. 7 displays the time evolution and CDFs of the encoded
frame sizes for the different codecs and for different bit rates
in the CBR mode. From these curves, we can see that the
applied bit rate for CBR encoding considerably affects the
encoded frame size, but the sizes of the produced frames also
show strong fluctuations over time. The fluctuation in the
frame sizes becomes more severe at 4K resolution. The CDFs
also show that the distribution of the frame sizes is more dis-
persed for a higher bit rate and a higher resolution. Moreover,
the results indicate that the frames generated by the H.264
encoder are slightly larger than those encoded with H.265,
a trend that is observed for both the 2K and 4K resolutions.
The bar charts in Fig. 8 illustrate a summary of the average
sizes of the frames generated under different configurations.
The findings demonstrate that the CBR mode is effective
in the average sense and that the resolution only minimally
affects the average frame size under a CBR configuration.
While H.264 tends to generate larger frames than H.265, the
difference is quite small. We observe that when the constant
QP mode is used for rate control, as seen in Fig. 9, lower QP
values result in larger frames, while the fluctuation trends are
similar for different QP values.

The experimental results therefore indicate that when more
bits are used for encoding, larger frames are produced, and the
graphics quality is consequently better at the expense of more
bandwidth being consumed. However, large QP values imply
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encoder and bit rate configurations.

201 208 209

100 Mbps

o
@
S

208 208
193 4

(KBytes)
2
(=3 o o
=] o o

T

Frame size
v
o
T

2 2 3
1 Mbps 30 Mbps

o

100 Mbps

FIGURE 8. Average frame size comparison between the H.264 (top) and
H.265 (bottom) encoders under different encoding bit rates and
resolution settings.

120 100

80

>

60

40

3
3

Frame Size (Kbytes)
5
&

20

95 - QP: 28
--QP:35
90 - 0
100 150 200 250 300 350 400 450 50( 40 60 80 100 120 140
Frame Number Frame Size (Kbytes)
(a) Frame size time evolution (b) Frame size CDF

FIGURE 9. Comparison of frame sizes when the constant QP mode is
used to control the data rate and H.265 is used for encoding.

that more compression is applied, which leads to smaller
frames and quality degradation. Moreover, it can also be
seen that the H.265 encoder produces smaller frames than
its H.264 counterpart, making it a better choice for efficient
bandwidth utilization.
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for content compression.

Fig. 10 depicts the time evolution and the CDF curves
of the data rates when the VR streams are transmitted after
being encoded using various settings in terms of bit rate,
resolution and encoding standard. The average results are
given in Fig. 11. H.265 shows slightly lower bandwidth usage
than H.264 at 1 and 30 Mbps. However, the gap increases
substantially at 100 Mbps and 4K resolution, which is the
result of a reduced frame rate, as is shown in the next section.
When 4K videos are encoded at 1 Mbps, they tend to consume
more bandwidth than videos at 2K resolution.

Fig. 12 reveals the general trend of the rate at which the
packets are transmitted from the server to the VR device
during streaming. It can be observed that the packet rate of
H.264 increases with an increase in resolution at 1 Mbps even
though the configured rate is fixed at 1 Mbps. In comparison,
H.265 shows a much lower increase in the packet rate with
an increasing resolution. Meanwhile, the trends at 100 Mbps
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FIGURE 12. Packet rate statistics under different configurations in terms
of resolution and encoding standard when configured bit rates of 1 Mbps
(top) and 100 Mbps (bottom) are used.

are different. Both codecs show decreasing packet rates with
increasing resolution. This is again attributed to a decreasing
frame rate. H.265 shows a larger decrease than H.264 because
it has a larger decrease in its frame rate.

V1. VR STREAMING QUALITY OF EXPERIENCE

The quality of experience for VR services is also affected
by the quality of the graphics displayed to the user [18],
[74]. To quantify the graphical quality of VR streaming,
we consider the following metrics:

o Frame rate: This is the number of VR frames received
by the user device over the VR video stream, measured
in frames per second (FPS). To measure the frame rate,
the user device counts the total number of received VR
frames during a play and divides it by the play time as
follows:

Rirame = Nclient-received-frames (1)
Atplaytime

VR content delivered at a sufficiently high frame rate
is able to convince the user’s brain that the user is
fully immersed in the virtual world [75], [76]. A typi-
cal minimum target frame rate is 60 FPS, while 90 or
120 FPS is preferred for higher immersion. We set the
frame generation rate of the VR server to 60 FPS in our
experiments.

o Packet loss rate: Packet losses result in missing data in
the corresponding VR frame. Large packet losses may
produce visual artifacts in the decoded frames. If packet
losses become excessive, decoding failure of the corre-
sponding or consecutive VR frame(s) is also possible.

o Image quality: We use the peak signal-to-noise ratio
(PSNR) and the structural similarity index (SSIM) as
metrics for evaluation. When conducting these experi-
ments, we compare a minute-long segment of the orig-
inal VR video content prior to compression with a
compressed video of the same length as each is being
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FIGURE 13. Server (top) and client (bottom) frame rate statistics when
H.264 (left) and H.265 (right) are used at different resolutions and bit
rates for encoding.

streamed to the client under different settings. The met-
rics are measured using FFmpeg [77].

A. FRAME RATE

Fig. 13 presents the frame rate statistics generated by the
server and is received by the client during streaming under
different settings in terms of resolution, encoding standard
and bit rate of encoding. It is clear from this figure that when
compression is performed using a bit rate of 1 Mbps, a frame
rate of 60 FPS is consistently achieved for both encoder types
at all resolutions and at both the client and server ends. For
2K and 4K resolutions, bit rate settings of 1 and 30 Mbps
result in frame rates of 60 FPS at the server and 59-60 FPS at
the client. At a bit rate of 100 Mbps, a frame rate of 59 FPS
is achieved at the server, but a slightly lower frame rate
of 58 FPS is observed on the client side. However, for 4K
resolution at 100 Mbps, the frame rate at the server drops
to 56 FPS for H.264 and 49 FPS for H.265. This is because the
processing overhead of encoding becomes excessive; thus,
the server fails to generate frames at the target frame rate.
In this case, H.265 has a lower frame rate than H.264 due to
its higher processing overhead and possible suboptimality of
the codec implementation. The client receives the data at a
frame rate that is 1 FPS lower than the generated frame rate
due to packet losses.

B. PACKET LOSS RATE

Fig. 14 shows the packet loss rates measured at the client.
As we use a higher bit rate and a higher resolution, the packet
loss rate generally increases. The packet loss rate is highest
at a bit rate of 100 Mbps compared to the other cases. It is
noted that packet losses mostly occur in the network buffers
when the number of packets exceeds the network buffer size.
At 100 Mbps, excessive data packets are generated, and thus,
some are dropped due to buffer overflow. In particular, the
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packet loss rate of H.265 reaches approximately 1%. How-
ever, such packet losses lead to a frame rate decrease of
only 1 FPS relative to the generated frame rate, as seen in the
previous subsection. The packet loss rate for H.265-encoded
frames is not much different from that for frames encoded
with H.264, especially for a bit rate of 100 Mbps.

C. QUALITY ASSESSMENT METRICS

The PSNR and SSIM evaluation results are presented in
Fig. 15. These results show that the graphics quality improves
in terms of both metrics when more bits are used to encode
the VR video frames. When the bit rate is initially increased
from 1 to 10 Mbps, both metrics improve considerably, while
the slopes of increase in both metrics become less steep for
further increases in the bit rate. It can also be observed that
H.265 achieves higher PSNR and SSIM values overall than
H.264 for the same bit rate. This can be attributed to the
superior compression performance of H.265 given the same
number of bits. We can therefore conclude that better VR
image quality is attained by encoding streams using higher
bit rates. However, encoding streams at higher bit rates also
produces larger payloads. Thus, the optimal value of the bit
rate should be chosen to strike a balance between acceptable
perceived quality and an excessively large frame size.

VII. LATENCY MEASUREMENTS

In our experiments, we measure the total end-to-end latency
and the latencies of the new components introduced by VR
offloading, as defined below:
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« Total latency (Afgotal): the delay between the time when
the pose data are generated and sent by the client device
to the server (fpose-data) and the time when the corre-
sponding VR frame is sent to the display of the device for
presentation (fgisplay-buffer-in)- The total latency of frame
i is given as follows:

Atoalli] = Ldisplay-buffer-in [] — tpose»data[i]- )

o Encoding latency (Afencoding): the time interval
between the time when a frame is read out from the
renderer and presented to the encoder (fencoder-in) and
the time when the video frame finishes being com-
pressed and is ready for packetization before transmis-
sion (fencoder-out). The encoding latency of frame i is
given as follows:

Al‘encoding[i] = fencoder-out[] — fencoder-in[i]- 3)

« Transport latency (Afiransport): the delay between the
time when an encoded frame is sent from the application
layer of the computing host (fserver-app-out) and the time
when the frame is successfully received by the applica-
tion layer of the client device (Zclient-app-in)- The transport
latency of frame i is given as follows:

Al‘transport[i] = tclient—app—in[i] - tserver—app—out[i]- @

« Decoding latency (Afgecoding): the delay between the
time when a frame is input to the decoder (fgecoder-in)
and the time when the corresponding decoded frame is
output by the decoder to be scanned out (#gecoder-out)- The
decoding latency of frame i is given as follows:

Atdecoding [i] = fdecoder-out[f] — Zdecoder-in[Z]- (5)

We first present the time series evolution and CDF curves
showing the trends in the individual latency components and
the overall total latency in Fig. 16. The curves indicate that
the total latency is affected by the encoding bit rate and
the resolution. For the 4K resolution, the total latency is
approximately 50-60 ms for a bit rate of 1 Mbps but reaches
approximately 90 ms for a bit rate of 100 Mbps, peaking at
over 100 ms. It is also shown that H.264 has a lower total
latency than H.265. Moreover, when similar encoding bit
rates are used, the 2K resolution results in smaller delays
than the 4K. The causes of the above trends are explained in
terms of the encoding, decoding, and transport delays in the
following.

The CDF curves for the encoding and decoding laten-
cies under various configurations are presented in Fig. 17.
We observe from these curves that, at a similar encoding bit
rate, lower-resolution content is encoded and decoded with
lower delays than its higher-resolution counterparts. When
we keep the resolution fixed, we encounter lower delays for
compression and decompression when fewer bits are used
for encoding. H.265 consumes longer encoding and decoding
times than H.264 due to its heavier computation for obtaining
frames of reduced size with superior quality.
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FIGURE 17. CDF comparison of the encoding and decoding latencies
when a bit rate of 30 Mbps is used (top), 4K content is streamed (middle),
and the H.265 codec is used (bottom), along with various indicated
encoding configurations.

The transport latency tends to only be affected by the bit
rate settings, as depicted in Fig. 18. As seen in (a), at a bit
rate of 30 Mbps, the transport latency is mostly lower than
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parameters.

10 ms for both 2K and 4K video frames encoded with both
the H.264 and H.265 encoders. However, as seen in (b) and
(c), for a bit rate of 100 Mbps, most latency samples range
between 10 and 20 ms regardless of the resolution and the
encoder. This implies that when we use a higher bit rate for
better image quality, the transport latency becomes a factor
influencing the total latency.

The contribution of each latency component to the total
latency is indicated in Fig. 19. From these bar charts, we can
see that the largest delay originates from the decoding com-
ponent for both low- and high-resolution contents and at all
encoding bit rates, except in the case of H.265 encoding
at 100 Mbps. For the 1K resolution, the encoding and trans-
port latencies are comparable to each other, but the transport
latency increases slightly at a rate of 100 Mbps. For the 4K
resolution, however, the transport latency remains the same
as in the 1K case, but the encoding latency tends to increase
considerably for both encoders and all data rates.

We observe varying patterns in the encoding latency
between the low- and high-resolution cases, whereas the dif-
ference in the transport latency between the two resolutions
is insignificant. At a high resolution, the encoding latency
makes the second highest contribution, while the transport
latency makes the lowest. In the case of low-resolution con-
tent, the encoding latency makes the lowest contribution
of all. We further note from Fig. 19 that the average sys-
tem latency generally increases with both the resolution and
encoding bit rate. Additionally, H.264 achieves lower latency
than H.265.

We also provide the latency results of two different host
and VR headset hardware platforms in Fig. 20. We denote
the host platform used throughout the paper as PC1 (detailed
in Section IIT) and another platform (Intel i17-9750H, 32 GB
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FIGURE 20. Latency comparison between different host and headset
hardware platforms.

RAM, RTX 2060 graphics card) as PC2. The results are
normalized by those of PC1. The results show that PC2 has
a slightly higher encoding latency, though only by 2%. The
latency comparison (normalized by the results of Quest 1)
between two different headset models, Quests 1 and 2, also
shows comparable values between them. These results imply
that the VR processing of our testbed is not highly affected by
the performance differences of the considered host and VR
headset hardware platforms in terms of latency. For a better
understanding of the impact of hardware performance on VR
processing, a wider range of hardware platforms need to be
considered, which remains for future work.

VIIl. ANGULAR CHANGES, BLACK BORDERS AND
OVERFILLING

In this section, we investigate the impacts of the total
latency on angular changes, the formation of black borders
after reprojection, and overfilling to solve these problems.
In experiments, to emulate the overall latency while repro-
ducing the same motion patterns, we record user motion data
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FIGURE 23. CDFs of angular changes at various latency levels.

in a trace file and apply a specified latency to the file. Then,
the motion data in the file are streamed to our VR system.

A. LATENCY VS. ANGULAR CHANGES
The angular change between the input motion applied for
rendering and the input motion at the time of reprojection
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FIGURE 26. Scatter plots of the RMS angular changes vs. black border areas for different levels of overfilling.

strongly affects the quality of a reprojected VR frame. The
reprojected VR frame is perceived to be more accurate when
the difference is smaller, better approximating the actual situ-
ation for certain acceptable error ranges [78]. The difference
is what ultimately determines the amount of black border area
produced, as is detailed in the next subsection. As observed
in the results presented below, the angular change increases
as the latency increases. Fig. 21 tracks angular changes for
different amounts of latency. As depicted in this figure, the
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angular changes extend farther as the latency increases. The
time evolution curves of the yaw, pitch, and roll angles
and their root mean square (RMS) values in Fig. 22 show
that the angular changes are minimal at a latency of 50 ms
but gradually increase with an increasing latency, reaching
their highest values at 500 ms. The angular changes in the
yaw coordinate are the greatest, reaching over 20 degrees,
while those in the pitch and roll directions are mostly within
5 degrees. This is further demonstrated by the CDF curves of
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the angular changes shown in Fig. 23. If the angular change
becomes too large due to high latency and fast user head
motion, the difference between the rendered view and the
actual view is considerable, resulting in the formation of
black borders and consequent deterioration in the viewer’s
quality of experience. To correct such errors and repair the
resulting black borders, a larger image can be rendered using
atechnique called overfilling, as detailed in a later subsection.

B. LATENCY VS. BLACK BORDERS

We perform experiments to investigate the effect of the over-
all latency on the amount of black border area produced.
To calculate the black border area (Rpjack-border), the VR sys-
tem captures a sequence of frame images for a given motion
trace. From the obtained images, the number of black pixels
(Nblack-border-pixels) 18 counted and divided by the number of
field-of-view (FOV) pixels (the number of pixels that would
fill the screen at zero latency, (NFov-pixels)) to produce the
black border area as a percentage value as given below for
VR frame i:

N black-border-pixels (1]

(6)

Rblack-border[i] =
NEOV-pixels
The obtained black border area can range from 0% (no black
borders) to 100% (all pixels are black).

Black borders in the same VR reference frame (left- and
right-eye images for each frame) under different levels of
latency are displayed in Fig. 24. In this figure, we can see
that noticeable black borders already appear at the left and
bottom sides of the frame at 50 ms of latency, and the black
border area gradually increases to reach a substantial amount
when the latency is 300 ms.

Such trends are quantitatively captured in the CDFs of the
black border area shown in Fig. 25(a) for different latency
cases. In this figure, there is a nonzero black border area in
the no overfilling case for all VR frames even at 50 ms latency.
Moreover, the black border area tends to increase with an
increasing latency. Even for a latency of 50 ms, it can be
above 20%. For a latency of 300 ms, the average black border
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area is approximately 12%, but it reaches up to 45%, meaning
that almost half of the screen may appear black. The scatter
plot of the RMS angular change vs. the black border area
in Fig. 26(a) also shows that the black border area is highly
correlated with the angular change.

C. OVERFILLING

Fig. 24 also presents VR image snapshots obtained when
more pixels than only those in the FOV are rendered. For
example, 1.4x overfilling denotes the case where 40% more
pixels than those in the FOV are rendered around the image.
These snapshots show that 1.2x overfilling eliminates black
borders for a latency of up to 50 ms. However, even with
this level of overfilling, black borders remain at higher
latency due to the excessive size of the black borders. For
200 and 300 ms of latency, 1.4x overfilling still leaves small
black borders. Finally, 1.6x overfilling completely elimi-
nates black borders in all latency cases.

The CDF curves of the black border area for different
latency cases are illustrated in Fig. 25. While black borders
are seen for all frames in the case of no overfilling, 1.2x
overfilling considerably reduces the number of frames with
black borders; only 20% of frames have black borders with
1.2x overfilling at 50 ms of latency. However, even with 1.2 x
overfilling, 50% of frames still have black borders at 300 ms
of latency. This is reduced to 30% with 1.4 x overfilling and to
20% with 1.6 x overfilling, implying that although overfilling
is effective in mitigating the black border problem, a higher
level of overfilling is needed at higher latency. The scatter
plots of the RMS angular changes vs. the black border areas
in Fig. 26 show that the slope of the black border area with
increasing angular change becomes less steep at a higher level
of overfilling. That is, for an equal amount of angular change,
a higher level of overfilling results in smaller black borders.
This trend is also confirmed by the mean black border areas
displayed in Fig. 27. This figure also shows that although the
gain from overfilling is higher at a low latency, overfilling
is still effective at a high latency. For black border repair,
it is better to use the highest degree of overfilling that is
feasible. However, rendering more pixels will incur higher
computational loads. A tradeoff exists between the severity
of the black border phenomenon and the computational load.
Therefore, it is desirable to use overfilling to achieve an
effective quality increase to an affordable degree within the
given budget of computational power. It is also shown that the
black border area still increases with an increasing latency for
all overfilling cases.

IX. CONCLUSION

In this work, we investigated various characteristics of VR
computation offloading through comprehensive experiments
based on a prototyped testbed for edge-assisted VR pro-
cessing and streaming. First, we investigated the benefits of
VR offloading in terms of computational load and power
consumption reduction for the client device compared to
standalone operation. Next, we measured VR traffic patterns
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in terms of frame size, data and packet rates under various res-
olutions and encoding options. We also measure several per-
formance metrics associated with quality of experience, such
as frame rate, packet loss rate, and image quality, under var-
ious configuration settings. Then, we presented latency mea-
surement studies and investigate the per-component latency
under various settings. Furthermore, we studied the impacts
of latency and motion patterns on the formation of black
borders resulting from image reprojection and the overfilling
technique for correcting these black borders. Based on the
experimental results, we revealed that VR offloading consid-
erably reduces computational load and power consumption
compared to standalone operation, VR traffic patterns, quality
and latency are strongly affected by the encoding configura-
tion, the extent of black border formation increases with an
increasing latency, and that overfilling successfully reduces
black borders but at the cost of increasing computational
overhead with an increasing latency.

The experimental study conducted in this paper has several
limitations: (1) only a single VR client at a time is consid-
ered, (2) a limited set of hardware platforms is considered,
(3) wireless connections are not diverse, and (4) positional
tracking is not considered. Therefore, reliving the abovemen-
tioned limitations, i.e., studying the characteristics of edge
VR in more diverse experimental environments, including
multiple VR clients at the same time, diverse hosts (e.g.,
commercial edge and cloud services) and client platforms,
wireless connections, such as LTE and 5G NR, and positional
tracking remains for future work. The optimization of the
VR streaming framework and its communication protocols
to minimize the total latency is still an important issue to
explore. A holistic/joint design approach of VR content cre-
ation, communication protocols and the radio resource man-
agement of VR client links will maximize the efficiency of
edge VR, and thus, is a subject for future research. Moreover,
extending the service platform for augmented and mixed
reality will be another important direction for future work.
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